






Fig. S9. Panel mean (n=49) test-retest correlation (R) for the 19 descriptors in the DREAM olfaction challenge
dataset (6). Descriptors are ordered by descending correlation.

Fig. S10. Panel mean test-retest correlation for the 19 descriptors in the DREAM olfaction challenge (left) (6) and
for the 55 descriptors in the present study (right). Each dot represents one odor descriptor.
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Fig S11. Test-retest correlation for 400 novel odorants as a function of panel mean intensity rating for that
odorant. Molecules with lower rated intensity have weaker test-retest correlation of the panel mean.
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Fig. S12. L2 norm length of the mean RATA rating vector as a function of panel mean rated odorant intensity.
Human psychophysical ratings were gathered in 8 data collection waves; differently colored dots and fits come
from different tranches of data collection. Panelists use more descriptors and give higher RATA ratings for
higher-intensity stimuli.

Evaluating Model Performance on Prospective Validation Set
We chose cosine similarity of a 55-dimensional vector as a metric that would emphasize overall
accuracy of the predicted odor profile, rather than a “hit rate” on individual descriptors. This metric
encountered some initial difficulties, as we discovered that the model and panelists were not directly
comparable. The model makes an independent prediction for all 138 odor classes, resulting in a dense
vector, whereas panelists typically rated only the top 3.2 ± 1.7 labels per odorant, resulting in sparse
vectors. When shuffled, the model’s predictions had a positive nonzero score, indicating a systematic
scoring bias in the model’s favor. We found that subtracting each individual model or panelists’ mean
rating across all molecules from the respective predictions had the effect of zeroing out the shuffled
baseline’s cosine similarity scores. We used this centered prediction or rating as the input to all of our
calculations, as it would be a fairer comparison between model and panelist. Mathematically, this is
similar to a Pearson correlation calculation, as the ratings are centered, but different due to not
rescaling, as this would have destroyed useful information.

One disadvantage of the cosine metric is that it treats all 55 dimensions equally, yet not all mistakes
are equally wrong. Descriptors have hierarchical relationships, and as such a “partial credit filter” --
which spreads observed single descriptor ratings across multiple descriptors -- can be learned and
indeed can substantially improve performance (data not shown), but complicates the presentation of
the results as it goes beyond simple arithmetic operations on raw data.

Model predictive performance is higher when human validation data has greater inter- and
intra-subject agreement (Fig. S13). Increasing rater test-retest reliability and agreement is a necessary
precursor to increasing measured model accuracy.

Fig. S13. Relationship between model predictive performance and inter- and intra-subject agreement. (A)
Inter-subject correlation as a function of intra-subject correlation (test-retest correlation). (B) RF and GNN
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model-panel correlation as a function of binned test-retest correlation. (C) RF and GNN model-panel correlation
as a function of binned inter-subject correlation. Model performance is capped by panelists’ rating consistency.

Accounting for odorous contaminants
To account for the potential presence of odorous contaminants in the 400 commercial compounds
purchased for the human validation study, we developed a gas chromatography-mass
spectrometry/olfactometry quality control (QC) procedure.  Fifty of the 400 molecules were selected
for QC and shipped to the University of Reading for GC-MS/O analysis. By comparing retention
indices of recorded odor percepts measured via GC-O to compound identities determined via
GC-MS, we were able to identify cases in which contaminants influenced the odor of the material. We
classified the molecules into one of 4 verdict categories: 1) Clean - no odorous contaminants found, 2)
Mixed - odorous contaminant found but both nominal compound and contaminant contribute to odor,
3) Contaminated - odorous contaminant found, contaminant is the dominant contribution to odor, 4)
Inconclusive - the causal odorant was not identified in GC-O, nor was there any detected odor at the
expected elution time. This can happen due to thermal or oxidative degradation of the molecule under
GC-O conditions, synergistic odorant combinations, or other experimental difficulties. GC-O
experimenter notes and classification verdicts for the 50 QC-set molecules are included in Data S1.

In both QC-set cases where a non-sulfur containing molecule was rated sulfurous by the panel, GC-O
showed that a sulfur-containing contaminant was the culprit. Additionally, in most QC-set cases
where a non-dimethylamino-containing molecule was rated strongly fishy by the panel, GC-O showed
that a dimethylamine contaminant was present. On this basis, molecules with an unexpectedly
monotonic fishy/garlic/sulfurous profile were excluded from our analysis, including some molecules
that had not been confirmed to be contaminated by GC-O analysis. Next, based on anecdotal reports
from fragrance chemists that Michael acceptors are aggressive nucleophile scavengers, we excluded
Michael acceptors that were reported as garlicky (phosphorous or sulfur impurity), sulfurous (sulfur
impurity) or fishy (nitrogen impurity). Acetylene derivatives are also often garlicky due to phosphine
(PH3) impurities and we excluded a few molecules fitting this profile. In total, 26 molecules were
dropped from the validation set due to confirmed or potential contamination. The rationale for these
exclusions are included in table S1.  The decision to exclude these molecules had no significant impact
on model performance.

GC-O and GC-MS procedures

Extraction of the compound onto the fiber: The 50 compounds destined for gas
chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS) were
supplied either diluted in polyethylene glycol or neat, and absorbed onto xxxxx (white polyethylene?)
balls (3 mm diameter, purchased from xxxx). For GC-O, approximately 10 balls (or fewer if the
compound was very strong, more if it was very weak) were placed in a 20 mL SPME vial and
equilibrated in a water bath prior to extraction onto a preconditioned triple phase solid phase
microextraction (SPME) fiber (50/30 μm divinylbenzene/carboxen on polydimethylsiloxane (Supelco,
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Poole, UK). Generally, the samples were incubated at 45 or 55 °C depending on their volatility for 10
min, and extracted for a further 10 min (details in Table xxx).
Gas Chromatography-Olfactometry (GC-O): After extraction, the SPME device was inserted into
the injection port of an HP7890 GC from Agilent Technologies (Santa Clara, CA, USA) coupled to a
Series II ODO 2 GC-O system (SGE, Ringwood, Victoria, Australia). The SPME fibre was desorbed in a
split/splitless injection port held at 280 °C. The column employed was an Agilent HP-5 MSUi capillary
(30 m, 0.25 mm i.d., 1.0 µm df) non-polar column. The temperature gradients was as follows: 40 °C
initial temperature with a rise of 8 °C/min up to 200 °C and 15 °C/min from 200 °C to 300 °C and the
final temperature held for a further 10 min. Helium was used as carrier gas (2 mL/min). At the end of
the column, the flow was split 1:1 between a flame ionisation detector (kept at 250 °C) and a sniffing
port using 2 untreated silica-fused capillaries of the same dimensions (1 m, 0.32 mm i.d.).
Odor assessment: Odor assessment was carried out by two flavour experts with 20 years’
experience in using the GC-O, who had been familiarised with the standard lexicon. One expert
assessed 46, compounds while the second assessed the remaining 4, and confirmed the assessment
of a further 24 where clarification was required. Each assessor waited until the solvent had eluted (~5
mins) and sniffed the compounds eluting from the column until 20 min (equivalent to an LRI of 1700).
They noted the time, intensity and descriptors for each compound that was detected. Linear retention
indices were calculated by comparison with the retention times of C6-C25 n-alkane series analysed
on the same day using the same conditions as for sample analyses. Where the LRI matched that of the
target compound as determined by GC-MS, this was deemed to be the target compound and any
other odors detected were contaminants.
Gas chromatography-mass spectrometry (GC-MS): For identification of the target compound by
GC-MS, 2 balls (or more of it was very weak) were placed in a 20 mL SPME vial and equilibrated in a
water bath at 30 °C for 10 min prior to a 30 s extraction onto the same SPME fibre type as used for
GC-O.  For six less volatile samples (133 136 316 728 917), 10 balls were used, the incubation time was
increased to 20 min at 55 °C, and extraction time increased to 20 min. A 7890A Gas Chromatograph
coupled to a 5975C series GC/MSD from Agilent was used, equipped with the same column as
described above. The oven started at 40 °C and increased to 300 °C at a rate of 8 °C/min. Helium was
the carrier gas at a flow rate of 0.9 mL/min. Mass spectra were recorded in electron impact mode at
an ionization voltage of 70 eV and source temperature of 220 °C. A scan range of m/z 25-450 with a
scan time of 0.69 s was employed and the data were controlled and stored by the ChemStation
software (Agilent, Santa Clara, CA). Linear retention indices were calculated by comparison with the
retention times of C6-C25 n-alkane series analysed on the same day using the same conditions as for
sample analyses. Compounds and contaminants were identified by comparison of their mass
spectrum with those in the NIST 2020 library and, where available, the LRI was compared to that
reported in the online NIST chemistry webbook or PubChem.

Historical explanations of Odor
Historical structure-odor relation models came in the form of empirical rules that are phrased as
boolean logic expressions on the presence, absence, or proximity of molecular fragments.For
example, Boelens’ Rose rule is phrased as “the presence of a 7-9 carbon moiety with a hydroxy or oxy
carbonyl or ether group attached to the moiety.”(38) We also note that the original expression of these
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rules are often underspecified, meaning that these plain-language rules cannot be converted directly
into e.g. Python code. We show two examples below, including Boelens’ 1973 rose rule and Stoll’s 1936
musk rule (Fig. S14)(38–40).

Fig. S14: Example of two historical odor rules with their recall as measured on the Goodscents,
Leffingwell datasets.
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Supplemental Data

Molecules are indexed by a unique identifier (RedJade Code) allowing for reproduction of
most results shown here.  Information required to identify chemical structures will be
provided upon publication.

Data S1. Metadata for 400 molecules comprising the prospective validation dataset.
Columns in the dataset are defined as follows:

RedJade Code Internal anonymizing tracking number for
panelist responses [PRIMARY KEY]

Odor Key Tracking number from chemical inventory
system, ignore.

Category, Kit Batch number of the molecule. Molecules were
tested in 8 waves of 50 molecules.

Solvent Diluting solvent, if needed for safety or for
intensity balancing

Final [] Concentration of molecule (w/w) in final sample

GCO raw commentary Raw notes from GC-O analyst, if molecule was
tested with GC-O

GCO result Verdict from GC-O analysis

GCO contaminant, if identified Canonical SMILES of the causal contaminant, if
one was successfully identified

Impact on GNN performance Whether the GCO result had a good, bad,
neutral, or unknown effect on GNN’s prediction
performance.

Disqualification reason Reason for disqualification. If blank, molecule
was retained for analysis

Selection reason Original selection criteria. Molecules were
predicted by the GNN or Random Forest model
to have an odor prediction above some
threshold despite structural dissimilarity to
known instances of that odor class, or to have an
odor prediction below some threshold, despite
structural similarity to known instances of that
odor class.

Data S2. Panelist evaluations of 20 common odorants. Prospective panelists gave RATA
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ratings using the 55-word lexicon for 20 common odorants; panelists with a raw test-retest
correlation greater than 0.35 were invited to join the panel.

Data S3. Panelist evaluations of 400 novel odorants. Between 15 and 18 panelists rated
intensity and pleasantness and gave RATA ratings using the 55-word lexicon for each
molecule.

Data S4. Odor attribute predictions on 400 molecules by a random forest model trained on
GS/LF datasets.

Data S5. Odor attribute predictions on 400 molecules by a graph neural network model
trained on GS/LF datasets. Final layer.

Data S6. Graph neural network embeddings on 400 molecules. Penultimate layer.

Data S7. Correspondence table between internal odorant identifiers and chemical structures.
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