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Abstract

Mapping molecular structure to odor perception is a key challenge in olfaction. Here, we use
graph neural networks (GNN) to generate a Principal Odor Map (POM) that preserves
perceptual relationships and enables odor quality prediction for novel odorants. The model is
as reliable as a human in describing odor quality: on a prospective validation set of 400 novel
odorants, the model-generated odor pro�le more closely matched the trained panel mean
(n=15) than did the median panelist. Applying simple, interpretable, theoretically-rooted
transformations, the POM outpe�ormed chemoinformatic models on several other odor
prediction tasks, indicating that the POM successfully encoded a generalized map of
structure-odor relationships. This approach broadly enables odor prediction and paves the
way toward digitizing odors.
(119 words)

One-Sentence Summary

An odor map achieves human-level odor description pe�ormance and generalizes to diverse
odor-prediction tasks.
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Introduction

A fundamental problem in neuroscience is mapping the physical prope�ies of a stimulus to
perceptual characteristics. In vision, wavelength maps to color; in audition, frequency maps
to pitch. By contrast, the mapping from chemical structures to olfactory percepts is poorly
understood. Detailed and modality-speci�c maps like the CIE color space (1), and Fourier
space (2) led to a be�er understanding of visual and auditory coding. Similarly, to be�er
understand olfactory coding, olfaction needs a be�er map.

Pitch increases monotonically with frequency; in contrast, the relationship between odor
percept and odorant structure is riddled with discontinuities, exempli�ed by Sell’s triplets (3),
trios of molecules in which the structurally similar pair is not the perceptually similar pair (Fig.
1A). These discontinuities in the structure-odor relationship suggest that standard
chemoinformatic representations of molecules—functional group counts, physical prope�ies,
molecular �ngerprints, etc.— used in recent odor modeling work (4–6) are inadequate to map
odor space.

Results

To generate odor-relevant representations of molecules, we constructed a Message Passing
Neural Network (MPNN) (7), a speci�c type of graph neural network (GNN) (8), to map
chemical structures to odor percepts. Each molecule is represented as a graph, with each
atom described by its valence, degree, hydrogen count, hybridization, formal charge, and
atomic number. Each bond is described by its degree, aromaticity, and whether it is in a ring.
Unlike traditional �ngerprinting techniques (9), which assign equal weight to all molecular
fragments within a set bond radius, a GNN can optimize fragment weights for odor-speci�c
applications. Neural networks have unlocked predictive modeling breakthroughs in diverse
perceptual domains (e.g., natural images (10), faces (11), and sounds (12)) and naturally
produce intermediate representations of their input data that are functionally
high-dimensional, data-driven maps. We use the �nal layer of the GNN (hencefo�h, “our
model”) to directly predict odor qualities, and the penultimate layer of the model as a
principal odor map (POM). The POM 1) faithfully represents known perceptual hierarchies and
distances, 2) extends to novel odorants, 3) is robust to discontinuities in structure-odor
distances, and 4) generalizes to other olfactory tasks.

To train the model, we curated a reference dataset of approximately 5000 molecules, each
described by multiple odor labels (e.g. creamy, grassy), by combining the Goodscents (13)
and Le�ngwell (14) (GS/LF) �avor and fragrance databases (Fig. 1B). The model (Fig. 1C)
achieved strong cross-validation predictive pe�ormance of AUROC=0.89 (15).
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Fig. 1. POM preserves the structure of odor perceptual space. (A) Example triplet of molecules in which the
structurally similar pair is not the perceptually similar pair. (B) The GNN was trained on a curated dataset of
~5000 semantically labeled molecules drawn from GoodScents (13) and Le�ngwell (14) �avor and fragrance
databases; one square represents 100 molecules; three example training set molecules and their odor
descriptions are shown: 2-methyl-2-hexenoic acid (top), 2,5-dimethyl-3-thioisovalerylfuran (middle),
1-methyl-3-hexenyl acetate (bo�om). (C) Schematic illustrating the process of training a GNN to generate the
POM. (D-F) Odorants plo�ed by the �rst and second principal components (PC) of their (D) perceptual labels
from GS/LF training dataset (138 labels), (E) cFP structural �ngerprints (radius 4, 2048-bit), and (F) POM
coordinates (256 dimensions). Areas dense with molecules having the broad category labels �oral, meaty, or
alcoholic are shaded; areas dense with narrow category labels are outlined. The POM recapitulates the true
perceptual map, but the FP map does not; note that only relative (not absolute) coordinates ma�er.

To test how well the POM represents known perceptual relationships, we compared both the
POM and a map built with standard chemoinformatic features - Morgan �ngerprints (FP) -  to
empirical perceptual space (Fig. 1D-F). We measured the �delity of the maps in representing
true relative perceptual distances, (e.g. two molecules that smell of jasmine should be nearer
to each other than to a beefy molecule) and hierarchies (e.g. jasmine and lavender are
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subtypes of the �oral odor family). The POM be�er represents relative distances: distances in
the perceptual map (Fig. 1D) are more signi�cantly correlated to distances in the POM
(R=0.73, Fig. S1A) than to distances in the FP map (R=-0.12, p <0.001, Fig. S1B). The POM be�er
represents perceptual hierarchies: molecules with a shared odor label have signi�cantly
tighter cluster density (CD) in the POM (CD = 0.51± 0.19) than in the FP map (CD = 0.68 ± 0.23,
p <0.001, Fig. S2), where smaller CD values denote more dense clusters.

To test if the model extends to novel odorants, we designed a prospective validation
challenge (16) in which we benchmarked model predictive pe�ormance against individual
human raters. In olfaction, no reliable instrumental method of measuring odor perception
exists, and trained human sensory panels are the gold standard for odor characterization (17).
Like other sensory modalities, odor perception is variable across individuals (18, 19), but
group-averaged odor ratings have been shown to be stable across repeated measurements
(20) and represent our best avenue to establish the ground-truth odor character for novel
odorants. We trained a coho� of subjects to describe their perception of odorants using the
Rate-All-That-Apply method (RATA) and a 55-word odor lexicon. During training sessions,
each term in the lexicon was paired with visual and odor references (Table S1; Fig. S3). Only
subjects that met pe�ormance standards on the pretest of 20 common odorants (Data S2;
individual test-retest correlation R > 0.35; reasonable label selection for common odorants)
were invited to join the panel.

To avoid trivial test cases, we applied the following selection criteria for the set of 400 novel
odorants: 1) molecules must be structurally distinct from each other (Fig. S4), 2) molecules
should cover the widest gamut of odor labels (Data S1), and 3) molecules must be structurally
or perceptually distinct from any training example (e.g. Fig. 1A, Data S1). Our prospective
validation set consists of 55-odor label RATA data for 400 novel, intensity-balanced odorants
generated by our coho� of ≥15 panelists (2 replicates). Summary statistics and correlation
structure of the human perceptual data is presented in Fig. S5-7. Our panel’s mean ratings
were highly stable (panel test-retest: R = 0.80, n = 15; Fig. S8) and more consistent than the
DREAM coho�’s ratings (6) (Fig. S9-10).

Of the 400 molecules characterized, 80 were dropped from the �nal prospective validation
set due to low intensity (42) (Fig. S11), redundancy (1), mistaken inclusion (1), or with con�rmed
or potential contamination (26) (Data S1). Model pe�ormance was evaluated on the remaining
320 molecules without model retraining.
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Fig. 2: GNN model displays human-level odor description pe�ormance. (A) GNN model label predictions,
(B) random forest (RF) model label predictions, (C) panel mean ratings with standard error bars, and (D)
individual panelist ratings, averaged over 2 replicates, for the molecule
2,3-dihydrobenzofuran-5-carboxaldehyde. In panels A-C, the top 5 ranked descriptors are in orange (GNN),
purple (RF), or green (panel). Descriptors in panels A-D are ordered by panel mean ratings. Panels A, B, and D
are annotated with the Pearson correlation coe�cient of their data to the panel mean rating shown in panel C.
Panel D includes panelist/panel correlation coe�cients for the panelist that best matches the panel mean and
for the panelist with the median match. (E) Cumulative density plot showing the distribution of correlations
between human panelists and the panel mean (in green) and between the GNN, RF, and GNN shu�ed model
predictions and the panel mean on a per molecule basis. Curves shi�ed to the right are more strongly correlated
to the panel mean. (F) Di�erence in the median correlation to the panel mean relative to the median human
subject’s correlation to the panel mean for models trained using k-nearest neighbor (KNN) and RF, trained on
cFPs or Mordred features, and the GNN model. Only the GNN model has a median correlation to the panel mean
that is higher than that of the median panelist.
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To measure the model's pe�ormance, we compared the concordance of its normalized
predictions with the normalized panel mean rating (Fig. 2A and 2C). While there is
considerable variation across molecules in the ability of both individual raters and the model
to match the panel mean ratings, the model output comes closer to the panel mean than
does the median panelist for 53% of molecules (Fig. 2E and 2F). The model’s superiority at the
task is even more impressive given that panelists are able to smell each odorant as they rate
it, while the model’s predictions are based solely on nominal molecular structure.

As a baseline comparison, we trained a cFP-based random forest (RF) model, the previous
state-of-the-a� (6), on the same dataset (Fig. 2B). This baseline model surpassed the median
panelist for only 41% of molecules, showing that our GNN model’s pe�ormance increase
comes not only from the volume and quality of the data, but impo�antly from the model
architecture.

The GNN model shows human-level pe�ormance in aggregate, but how does it pe�orm
across perceptual and chemical classes? When we disaggregate pe�ormance by odor label,
the model is within the distribution of human raters for all labels except musk and surpasses
the median panelist for 32/55 labels (58%, Fig. 3A). This per-label view suppo�s the view that
the GNN model is superior to the previous state of the a� model trained on the same data
(paired 2-tailed t-test p=1.0e-7).

Predictive pe�ormance for a given label depends on the complexity of the structure-odor
mapping for that label, so it is unsurprising that it pe�orms best for labels like garlic and �shy
that have clear structural determinants (sulfur-containing for garlic; amines for �shy), and
worst for the label musk, which includes at least 5 distinct structural classes (macrocyclic,
polycyclic, nitro, steroid-type, and straight-chain) (21, 22). In contrast, a panelist’s
pe�ormance for a given label depends on their familiarity with the label in the context of
smell; consequently, we see strong panelist-panel agreement for labels describing common
food smells like nu�y, garlic, and cheesy and weak agreement for labels like musk and hay.
Weak agreement for musk may also be due to genetic variability in perception, a
well-documented phenomenon (23).

Model pe�ormance also depends on the number of training examples for a given label; with
enough examples, models can learn even complex structure-percept relationships. In general,
our model’s pe�ormance is high for labels with many training examples (e.g, fruity, sweet,
�oral) (Fig. 3B), but pe�ormance for labels with few training examples can be either high (e.g.,
�shy, camphoreous, cooling) or low (e.g, ozone, sharp, fermented). In other words, collecting
more training data raises the �oor for model pe�ormance. Likewise, model pe�ormance is
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bounded above by panel test-retest correlation (Fig. S13). When we disaggregate by chemical
classes (e.g. esters, phenols, amines), both panelist and model pe�ormance is relatively
uniform (Fig. 3C), with sulfur-containing molecules showing strongest pe�ormance from
panelists and the model (R = 0.52).

Chemical materials are impure - a fact too o�en unaccounted for in olfactory research(24). To
measure the contribution of impurities to the odor percept of our stimuli, we applied a gas
chromatography-mass spectrometry (GC-MS and gas chromatography-olfactometry
(GC-O) quality control (QC) procedure to 50 stimuli (Data S1). This QC procedure matches an
odor percept to its causal molecule, allowing us to identify stimuli for which the primary odor
character was not due to the nominal compound. Our QC led to diverse conclusions: the
nominal compound caused the odor (12/50), the nominal compound and contaminants
contribute to the odor (16/50), contaminants caused the odor (18/50), or the cause of the
odor could not be determined (4/50) (Fig. 3D). In some cases, while we purchased a novel
odorant, the dominant odorant was not novel; for example, the stimulus
4,5-dimethyl-1,3-thiazol-2-amine was described by the panel as bu�ery, sweet, and dairy, but
this odor percept was a�ributed through QC to the contaminant diacetyl, a well-known
bu�ery odorant. In another case, the purchased odorant, isobornyl methylacrylate, was
described by the panel and the model as both piney and �oral; however, through QC we
determined that the nominal compound was �oral only and that the piney aroma was due to
the closely related compound, borneol, which was detected as a contaminant in the sample.
Based on QC results, we removed 26 molecules known or suspected to have high degrees of
odorous contamination (Data S1).

The prevalence of odorous contamination that we found demonstrates that it is not safe to
assume that the odor percept of a purchased chemical is due to the nominal compound. The
Flavor & Fragrance (F&F) industry is motivated to minimize odorous contaminants for
commercially valued odorants, but there is no such incentive for non-F&F commodity
chemicals. We stress the need for caution and diligence in expanding odor stimulus space.

Implications of each QC result on model pe�ormance are unique (Data S1). In some cases,
the model pe�ormed well despite the presence of odorous contaminants. We estimate that,
if these contaminants were removed from the rated samples, model pe�ormance improves
in 6 of 50 scenarios, degrades in another 6 of 50 scenarios, remains neutral in 21 of 50
scenarios, and cannot be determined in 17 of 50 scenarios.
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Fig. 3. Model pe�ormance is robust across structural and perceptual classes. (A) Correlation of GNN (in
orange) and RF (in purple) model predictions and panelist ratings (in gray) to the panel mean for each of the 55
odor labels. (B) GNN model correlation to panel mean for each of the 55 odor labels plo�ed against the number
of molecules in the training data for which the label applies. Circle size is propo�ional to the number of test set
molecules for which the label applies. Selected data points are annotated. (C) Mean correlation of GNN (in
orange) and RF (in purple) model predictions and panelist ratings (in gray) to the panel mean for molecules
belonging to 12 common chemical classes. (D) Categorization of gas chromatography-olfactometry quality
control results for 50 validation set stimuli.

To test if the model is robust to discontinuities in structure-odor distances, we designed an
additional challenge in which 41 new triplets (example in Fig. 4A) were constructed and
validated by the panel (as in Fig. 1A). In each triplet, the anchor molecule is a known odorant,
and is matched with one structurally similar and one structurally dissimilar novel odorant, and
in which the more structurally dissimilar odorant is predicted to be the more perceptually
similar of the two to the anchor. Our trained panelists were presented with the three
odorants as a set and rated the perceptual distance between each of the molecules in the
triplet (Fig. 4B). Con�rming the model’s predictions -- counterintuitive under simpler
structural models of odor -- our panelists generally rated the structurally dissimilar molecules
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as being more perceptually similar to an anchor molecule than the anchor’s structural
neighbor (p < 2.2e-16, Fig. 4C). This signi�cant result is fu�her evidence that the POM
overcomes discontinuities in the structure-odor relationship.

Fig. 4. POM solves discontinuities in structure-odor mapping. (A) Example triplet of molecules identi�ed by
the GNN model in which the structurally similar pair is not the perceptually similar pair. We used the model to
select 41 such triplets. (B) Diagram of the psychophysical task in which panelists rated perceptual distances
between molecules in predicted triplets. (C) Mean perceptual distance rating for molecules that are structurally
dissimilar (le�) or structurally similar (right) to the same anchor molecule. Lines connect each pair of molecules
compared to the same anchor molecule; line color corresponds to the relative di�erence in perceptual similarity.
Perceptual similarity followed model predictions rather than structural similarity.

A reliable structure-odor map allows us to explore odor space at scale. We compiled a list of
~500,000 potential odorants whose empirical prope�ies are currently unknown to science or
industry; most have never been synthesized before. Because a molecule’s coordinates in the
POM are directly computable from the model, we can plot these potential odorants in the
POM (Fig. 5A), revealing a potential space of odorous molecules that is much larger than the
much smaller space covered by current fragrance catalogs (~5,000 purchasable,
characterized odorants). These molecules would take approximately 70 person-years of
continuous smelling time to collect using our trained human panel.
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Fig. 5. POM solves a fundamental set of olfactory prediction tasks. (A) 2D trimap embedding of 500,000
unique likely odorants previously uncharacterized. The position of each point (molecule) is determined by POM
coordinates, and the RGB values of each point correspond to their coordinates in the �rst 3 dimensions of a
non-negative matrix factorization of the predicted odor labels. (B) Intuitive geometric measures like vector
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length, vector distance, and vector projection correspond to the odor prediction tasks of odor detectability,
similarity, and descriptor applicability. Equation shows that the projected space Y represents the dot product
between POM and a task-speci�c projection matrix X. (C) A linear model atop POM outpe�orms a
chemoinformatic SVM baseline at predicting odor applicability on two extant datasets, Dravnieks (25) and
DREAM (6), as well as the current data. (D) A linear model atop POM outpe�orms a chemoinformatic SVM
baseline at predicting odor detection threshold using data from Abraham et al, 2011 (26). (E) A linear model atop
POM outpe�orms a chemoinformatic SVM baseline at predicting perceptual similarity on Snitz et al, 2013 (4).

We show that the POM has a meaningful interpretation by extracting intuitive, geometric
measures and mapping them to several olfactory prediction tasks (Fig. 5B). The applicability
of any set of odor descriptors corresponds to a projection of the POM coordinates onto axes
corresponding to those descriptors; odor strength (detectability) corresponds to the
magnitude of this projection (Fig. S12), and odor similarity corresponds to the distance
between such projects for di�erent molecules. We �nd that a simple linear model applied to
POM and using these geometric interpretations has comparable or superior pe�ormance to
a chemoinformatic suppo� vector machine (SVM) model across multiple published datasets
(Fig 5C, D, E), collectively representing some of the most thorough previous public e�o�s to
characterize these features of odor.

Discussion

There is no universally accepted method for quantifying and categorizing an odor percept. In
other words, olfaction has been a sense without a map. Systems of odor classi�cation have
been proposed: �rst intuitive categorizations (28), then empirically-suppo�ed universal
spaces (29, 30), and later a�empts to incorporate receptor mechanisms (31, 32). However,
these systems do not tie stimulus prope�ies to perception, and none have reached broad
acceptance. Here we propose and validate a novel, data-driven, high-dimensional map of
human olfaction. We have shown that this map recapitulates the structure and relationships
of odor perceptual categories evoked by single molecules, that it can be used to achieve
prospective predictive accuracy in odor description that exceeds that of the typical individual
human, and that it is broadly transferrable to arbitrary olfactory perceptual tasks using natural
and interpretable transformations. This map represents for odor what the CIE color space
represents for vision.

Nearly all published chemosensory models were �t to the data used in their construction.
Even using cross-validation, the oppo�unity for over-��ing is high, because the data comes
from a single distribution, task, or experimental source. Prospective validation on new data
from a new source with no adjustments, as we pe�ormed, represents a much more stringent
test of real-world utility.  In this prospective context, we found that our model pe�orms
roughly on par with the median human panelist, beating a chemoinformatic baseline.
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However, in a real-world se�ing, models can and should be updated as new data becomes
available. This process is called ‘online learning’ (27), and is a central capability of many
real-world ML systems. Fig 5C demonstrates that a linear model atop POM reaches an even
higher level of pe�ormance when the POM is tuned to the new dataset.

The success of this model is not merely an advance in predictive modeling.  It o�ers a simple,
intuitive, contiguous, hierarchical, parseable map of molecular space in terms of odor, much
as color spaces represents wavelengths of light in terms of colors and color components.  It
enables human-level pe�ormance not only for odor description but also generalizes to a
gamut of other olfactory tasks.  It o�ers the oppo�unity to reason, intuitively and
computationally, about the relationships within and between molecular and odor spaces.

There are some practical considerations to keep in mind when using this map. First, the
concentration of an odor in�uences odor character, but is not explicitly included in the map.
So while it can predict detection thresholds, a prope�y of the odorant molecule, it cannot
predict suprathreshold intensity, a function of the odorant and its concentration.  Many
molecules have no odor, which we addressed by pre-screening with a separate, simpler
model (33), and we diluted odorants to standardize intensity. Second, predictive pe�ormance
is strong for organic molecules, the vast majority of odorants we encounter, but we could not
extend the predictions into halides or molecules that include novel elements due to the lack
of safety data for those molecules. Given uniformly strong pe�ormance across broad
chemical classes tested in our prospective validation set (Fig. 3C), we expect high accuracy
on novel chemicals within these chemical classes, but we would not expect high pe�ormance
for molecules that have chemical motifs not represented in our training set. For instance, if
our training dataset did not contain any molecules with carbon macrocycles, we would not
expect the model to accurately predict the odor of an unseen macrocyclic musk (Fig. 3A).
Third, many chemical stimuli have odorous contaminants (24), pa�icularly those that have not
been developed for use in fragrance applications. Neural networks are known to pe�orm
well, even with substantial noise in the training and test sets, which we see in the present
work. Nonetheless, we recommend isolating the compound of interest from odorous
contaminants, and/or characterizing the perceptual quality of contaminants. Finally, datasets
in real-world se�ings are not static, but grow in size, and shi� in distribution — models should
be periodically retrained to incorporate new data. We showed that model pe�ormance tends
to improve with increased training data (Fig. 3B) and data quality (Fig. S13), consistent with ML
applications in other areas (34, 35). Indeed, the most impo�ant future work -- work which will
increase the accuracy and resolution of the map and any model that uses it -- will be scaling
the volume and quality of training data.
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Progress in neuroscience is o�en measured by the creation and discovery of new maps of
the world suppo�ed by neural circuitry—maps of space in hippocampus, faces in the
superior temporal sulcus, tonotopy in auditory co�ex, and retinotopy and Gabor �lters in V1
visual co�ex, among others. Each is only possible because scientists �rst possessed a map of
the external world, and then measured how responses in the brain varied with stimulus
position on the map. We have had no such map for odor, but this study proposes and
validates a novel data-driven map of human olfaction. We hope this map will be useful to
researchers in chemistry, olfactory neuroscience, and psychophysics: �rst, as a drop-in
replacement for chemoinformatic descriptors, and more broadly as a new tool for
investigating the nature of olfactory sensation.
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Supplemental Methods

Training dataset
The GoodScents (h�p://www.thegoodscentscompany.com/) and Le�ngwell PMP 2001
(h�ps://zenodo.org/record/4085098#.YqoYk8jMIUE) datasets each contain odorant molecules and
corresponding odor descriptors. Variations and misspellings of odor descriptors were merged, and
any odor descriptor with <=30 occurrences in the dataset were discarded. The remaining list of odor
descriptors is: [

'alcoholic', 'aldehydic', 'alliaceous', 'almond', 'amber', 'animal',
'anisic', 'apple', 'apricot', 'aromatic', 'balsamic', 'banana', 'beefy',
'bergamot', 'berry', 'bi�er', 'black currant', 'brandy', 'burnt',
'bu�ery', 'cabbage', 'camphoreous', 'caramellic', 'cedar', 'celery',
'chamomile', 'cheesy', 'cherry', 'chocolate', 'cinnamon', 'citrus', 'clean',
'clove', 'cocoa', 'coconut', 'co�ee', 'cognac', 'cooked', 'cooling',
'co�ex', 'coumarinic', 'creamy', 'cucumber', 'dairy', 'dry', 'ea�hy',
'ethereal', 'fa�y', 'fermented', '�shy', '�oral', 'fresh', 'fruit skin',
'fruity', 'garlic', 'gassy', 'geranium', 'grape', 'grapefruit', 'grassy',
'green', 'hawthorn', 'hay', 'hazelnut', 'herbal', 'honey', 'hyacinth',
'jasmin', 'juicy', 'ketonic', 'lactonic', 'lavender', 'leafy', 'leathery',
'lemon', 'lily', 'malty', 'meaty', 'medicinal', 'melon', 'metallic',
'milky', 'mint', 'muguet', 'mushroom', 'musk', 'musty', 'natural', 'nu�y',
'odorless', 'oily', 'onion', 'orange', 'orange�ower', 'orris', 'ozone',
'peach', 'pear', 'phenolic', 'pine', 'pineapple', 'plum', 'popcorn',
'potato', 'powdery', 'pungent', 'radish', 'raspberry', 'ripe', 'roasted',
'rose', 'rummy', 'sandalwood', 'savory', 'sharp', 'smoky', 'soapy',
'solvent', 'sour', 'spicy', 'strawberry', 'sulfurous', 'sweaty', 'sweet',
'tea', 'terpenic', 'tobacco', 'tomato', 'tropical', 'vanilla', 'vegetable',
'vetiver', 'violet', 'warm', 'waxy', 'weedy', 'winey', 'woody'

]
These datasets were merged and are subsequently referred to as “GS/LF”.

Model Training and Tuning
The network consists of several message-passing layers, followed by a radius 0 combination to fold
atom and bond embeddings together, followed by a reduce-sum across atoms, followed by several
fully connected layers and a �nal sigmoid function to make label predictions for each of the 138
curated descriptors described above.

All references to the GNN “embedding space” refer to the 256-dimensional activation of the �nal
dense neural network layer. These embeddings are mapped to the �nal 138-dimensional prediction by
one �nal dense layer of 138 neurons followed by a sigmoid function.
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Hyperparameters of the neural network were optimized using 5-fold cross validation in our training
set of ∼4,000 molecules, using 500 trials of random search. Each model �t took less than 1 hour on a
Tesla P100. We present results for the model with the highest mean AUROC on the cross-validation
set. Since our multi-label problem had highly unbalanced labels, we used second-order iterative
strati�cation to build our train/test/validation splits [47]. Iterative strati�cation is a procedure for
strati�ed sampling that a�empts to preserve many-order label ratios, prioritizing more unbalanced
combinations. For second order, this means preserving ratios of pairs of labels in each split.

The objective function for training was a summed cross-entropy loss over all 138 descriptors, with
each descriptor’s contribution to the loss being weighted by a factor of log(1+ class_imbalance_ratio),
such that rarer descriptors were given a higher weighting. l1 and l2-norm losses were also utilized.

For our random forest (RF) baseline methods, we tuned an exhaustive space of con�gurations of
�ngerprinting methods (bits, radius, counted/binary, RDKit/Morgan), and RF hyperparameters. The
RDKit so�ware(36) was used to calculate all features. We found a radius-4, 2048-bit Morgan
�ngerprint to pe�orm most strongly in predicting odor labels.

Using an 80-20 strati�ed train/test split, we found that a trained GNN achieved an AUROC of 0.894 [CI
0.888 - 0.902] on the combined GS/LF dataset, whereas RF on Morgan �ngerprints was the strongest
baseline method with an AUROC of 0.850 [CI 0.838 - 0.860]. (15)

Model- and label-space comparisons
A�er applying a top-2 principal component reduction to GNN embedding, Morgan �ngerprints, and
perceptual label spaces, we found that GNN embedding inter-cluster distances correlate strongly (r =
0.725) with label inter-cluster distances, whereas Morgan �ngerprints correlate weakly (r = -0.119).
Inter-cluster distances are computed as the mean Euclidean distance of all |Cluster 1| * |Cluster 2|
pairwise molecule distances. Fig S1A and S1B show all (138^2 - 138) pairwise comparisons of odor
clusters.
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Fig. S1. Inter-cluster distance correlation. Each point represents a pair of odors (e.g. [fruity, sweet]. (A) Cluster
distance, as measured by Euclidean distance of embeddings, correlates strongly with Jaccard overlap of
clusters. (B) Cluster distance, as measured by Euclidean distance of �ngerprints, does not correlate with
Jaccard overlap of clusters.
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Fig. S2. Distribution of cluster tightness across 138 odor classes. Cluster tightness is de�ned as the ratio of
{mean Euclidean distance of all in-group pairwise distances} to {mean Euclidean distance of all in/out-group
pairwise distances}. 50th percentile cluster tightness for GNN embedding space was 0.513, similar to cluster
tightness for label space (0.536), and tighter than �ngerprint space (0.679).

Collecting a Prospective Validation Set
Aroma lexicon
We selected 55 of the 138 common labels from the GS/LF dataset to form our lexicon. We prioritized
the selection of broad category terms (e.g., fruity, �oral) to span the range of possible odor percepts,
but also included speci�c terms from within an aroma category to measure model precision (e.g.,
fruity/citrus/lemon). Hierarchical clustering of GS/LF data suppo�ed our selections. Subjects used this
lexicon exclusively to describe their odor quality perception of the odorants. The �nal list of odor
descriptors used during human labeling is presented in Data S1.

Table S1. Lexicon and associated aroma references. The 55 descriptors in the lexicon were organized so that
perceptually similar terms were close together in the list; terms are listed in the order they appeared on rater’s
ballots. Each term was paired with one or more aroma references to facilitate rater training.
Lexicon Term Aroma References
green Le Nez Du Vin aroma standard - Vegetal
grassy 2% cis-3-hexenol solution
cucumber 1% nona-2,6-dienal solution
tomato AromaMasters aroma standard - Tomato
hay Animal bedding
herbal Herbs de Provence; Dried dill
mint Dried mint
woody AromaMasters aroma standard - Cedar; Pine shavings
pine 5% alpha-pinene solution
�oral AromaMasters aroma standard - Linden; AromaMasters aroma standard - Honeysuckle
jasmine Jasmine essential oil
rose Rose water
honey Honey
fruity Good & Gather �avor fusion fruit strips
citrus Combined essential oils of orange, grapefruit, lime, and lemon
Lemon Lemon essential oil
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orange Orange essential oil
tropical Trident tropical twist gum
berry Le Nez Du Vin aroma standard - Bilberry
peach Le Nez Du Vin aroma standard - Peach
apple Jolly Rancher - green apple
sour White vinegar
fermented GT's original kombucha
alcoholic 200 proof ethanol
winey Su�er Home red wine blend
rummy Oakhea� spiced rum
caramellic Caramel �avor extract
vanilla Vanilla extract
spicy Blend of ground cinnamon, nutmeg, cloves, and allspice; Ground black pepper
co�ee Folgers medium roast ground co�ee
smoky 5% guaiacol solution
roasted Le Nez Du Vin aroma standard - Toasted
meaty Le Nez Du Vin aroma standard - Cooked beef
nu�y Roasted mixed nuts
fa�y 10% (E,E)-2,4-decadienal solution
coconut AromaMasters aroma standard - Coconut
waxy Crayola crayon
dairy Carnation half & half pods
bu�ery Bu�er extract
cheesy Kernel Seasons white cheddar powder
sulfurous Le Nez Du Vin aroma standard - Ro�en egg
garlic Garlic powder
ea�hy Peat moss
musty 0.1% 2,4,6-tribromoanisole solution
animal AromaMasters aroma standard - Horse sweat
musk Solution of galaxolide, ethylene brassylate, and tonalide
powdery Johnson & Johnson baby powder
sweet Charms co�on candy
cooling Menthol crystals
sharp 10% acetic acid solution
medicinal Vicks VapoRub
camphoreous 1% camphor solution
metallic Pennies to be rubbed against skin
ozone Adoxal
�shy 0.5% trimethylamine solution

Panelist training and screening
A pool of 26 prospective panelists between the ages of 18 and 55 and with a normal sense of smell
were recruited from the Philadelphia area to pa�icipate in a 5-session series of training and screening
exercises. The research protocol was approved by the University of Pennsylvania IRB, and all subjects
gave informed consent prior to enrolling in the study. Subjects received odorant kits sho�ly before
the sta� of the experiment and pa�icipated in sessions from home, facilitated by an experimenter
over a Zoom video call (Zoom Meetings, h�ps://zoom.us). The initial odorant kit (Fig. S3) contained 58
odor references (Table S1), 10 blinded odor references used for training quizzes, and 20 common
odorants used in screening exercises (Data S2).
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Figure S3. Initial odorant kit, containing 58 unique odor references corresponding to odor labels in the lexicon
(rows 1-6, 8), 10 blinded odor references (row 7), and 20 blinded common odorants (rows 9-10).

In the �rst session, subjects were introduced to the study and trained to use the rate-all-that-apply
(RATA) method to describe their perception of odorants (37); in the RATA method, subjects choose
from a list terms that apply to the sample being evaluated, and then rate how strongly the chosen
terms apply to the sample from 1 (low/slightly applicable) to 5 (high/very applicable). Subjects were
given guidance on how to evaluate the odorants (e.g. take several sho� sni�s, hold the vial far from
the nose to sta� and gradually bring it closer while sni�ng, keep the cap tightly on each vial while not
actively evaluating it) and taught to use a standard nasal rinse protocol (wet clean washcloth until just
saturated, heat in microwave for 60s to produce steam, breathe in moist air above washcloth through
nose for 30 seconds between evaluations, re-warm washcloth as needed; washcloths were provided
with odor kits). Subjects then evaluated 20 common odorants using the RATA method as a pre-test.

In the second and third sessions, researchers trained subjects on the meaning of labels in the aroma
lexicon. For each label, researchers described the olfactory meaning of the label, showed a related
image, and prompted subjects to smell the associated odor reference(s). At the end of each session,
subjects pa�icipated in a quiz in which they tried to identify blinded odor references and mixtures of
references. Researchers then revealed the true identity of the blinded references and led a discussion
about the results, prompting subjects to re-smell references and reinforce label meanings.

Following training, subjects evaluated the 20 common odorants in the fou�h and again in the ��h
session. Researchers reviewed subjects’ quiz responses label selections for the 20 common odorants
and calculated their test-retest correlation for post-training ratings. We invited 18 subjects who met
our test-retest criterion (R>0.35) and made reasonable label selections for common odorants (e.g.
mint selected to describe (-)-carvone) to join our panel (12 female, 6 male; 12 Caucasian, 4 African
American or Black, 2 Asian; 3 Hispanic or Latino/a).
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Vi�ual screening protocol for molecule selection

We began by �ltering molecules listed in the eMolecules catalog -- which contains ~1 million
commercially available molecules -- for atom composition (C/N/O/S/H only), price (<$1000 per 10
grams), purity (>95%), and availability (<4 weeks lead time). We developed a toxicity �lter to
conservatively remove potentially irritating or harmful compounds, (protocol developed by a ce�i�ed
toxicologist, approved by the University of Pennsylvania IRB), and removed likely odorless molecules
according to water-soluble (cLogP < 0) and nonvolatile (boiling point > 300 C) criteria. We manually
removed molecules that were likely to degrade or react under our experimental conditions. Finally, we
compared predicted odor descriptors to the odor descriptors of all structurally similar reference
molecules. All selected molecules satis�ed one of two criteria:

1. Structurally similar to a molecule in the reference GS/LF dataset, yet with a negative prediction
for that molecule’s given descriptors. Prediction thresholds for descriptors were set at a
threshold according to a geometric mean of training data frequency and test data empirical
label frequency.

2. Structurally dissimilar to all molecules in the reference GS/LF dataset having a pa�icular
descriptor.

We selected and purchased 580 structurally distinct molecules from these structurally/perceptually
divergent candidates (Fig. S4). Upon receipt of purchased molecules, we manually inspected for
odorless molecules and diluted with propylene glycol to manually intensity-balanced each sample.
400 molecules were evaluated by human panelists, and the remainder of molecules were not tested
fu�her. Selection rationale for the 400 molecules is noted in Data S1.

Fig. S4. Candidate and selected molecules from the eMolecules catalog displayed in chemical feature PCA
space. Selected molecules span the space of potential candidate molecules from eMolecules.
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Odor evaluations
Invited panelists were asked to rate the applicability of the 55 odor labels for each sample using the
RATA method, as well as rate the intensity and pleasantness of each sample. Panelists received the
odorants in sets of 50 and evaluated each twice over 4 sessions (25 evaluations/session). There was
an enforced 30s break between each evaluation, and subjects followed the standard nasal rinse
protocol described above during that break. In total, we characterized 400 novel odorants using this
approach, and at least 15 of the initial 18 panelists pa�icipated in each phase of the study such that n ≥
15 for each odorant*replicate.

Against the backdrop of a global COVID-19 pandemic, we were wary of COVID-induced anosmia.
Each session began with a training warm-up exercise to engage panelists in the rating task, reinforce
label meanings, and enable researchers to verify that panelists had a normally functioning sense of
smell. No subjects became anosmic during the course of the study.

Overall, we collected 400 molecules X 55 odor classes X 15 panelists X 2 replicates = 660,000 human
sensory data points. The raw ratings are provided in Data S3, and summary statistics are described in
Fig. S5. The distribution of non-zero descriptor ratings is shown in Fig. S5A, and the distribution of the
number of descriptors applied to each molecule is shown in Fig. S5B. Each molecule is typically
assigned between 1-6 descriptor ratings by each rater. Most descriptors are used at least once by
every rater. Fig. S5C shows the percentage of molecules that are described by each of the 55 terms in
the lexicon. Sweet was the most commonly applied descriptor.
Descriptor ratings show a clear correlation structure (Fig. S6). For example, fruity descriptors are more
likely to co-occur with each other and less likely to co-occur with other descriptors including meaty,
sulfurous, and roasted. Descriptor ratings are also related to odorant chemical class (Fig. S7). For
example, molecules containing a sulfur atom are more likely to be described as meaty, molecules
containing an amine group are more likely to be described as �shy, and molecules containing a
carboxylic acid group are more likely to be described as sour.
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Fig. S5. Human psychophysics prospective validation set summary statistics. (A) Distribution of non-zero
descriptor ratings, (B) distribution of the number of descriptors applied to each molecule, and (C) percent of
molecules described by each of the 55 odor descriptors according to the 75th percentile panelist’s ratings.
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Fig. S6. Correlation matrix of panelist ratings for the 55 odor lexicon descriptors. Descriptors with strong
positive correlations are dark green; descriptors with strong negative correlations are in dark pink. Odor
descriptors show a clear correlation structure.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.01.504602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.504602
http://creativecommons.org/licenses/by/4.0/


Fig S7. Correlation of structural and perceptual categories. Each of the 400 molecules in the human validation
set is non-exclusively classi�ed according to structural and perceptual categories, and each table entry
represents the Jaccard overlap (intersection over union) of molecule sets.

Rater pe�ormance
Aggregating all molecules and descriptors, our panel exhibited a test-retest correlation of 0.8.  The
panel test-retest correlation was high for most descriptors (Fig. S8). Compared to a prior large-scale
human psychophysical study (6), our collected dataset has more descriptors and higher panel mean
test-retest reliability (Fig. S9 and Fig. S10), even with fewer panelists.

Molecules with lower rated intensity were found to have the weakest panel test-retest correlations,
indicating that the panel was not able to get a consistent evaluation (Fig. S11). We therefore excluded
any molecules with intensity <3 (on a 0-10 scale) from the study. Of the 400 molecules evaluated by
the panel, 42 were dropped from the validation set due to low odor intensity.
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Fig. S8. Panel mean (n≥15 subjects) test-retest correlation (R) for the 55 descriptors in the lexicon applied to the
400 novel odorants in the prospective validation set. Descriptors are ordered by descending correlation.
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Fig. S9. Panel mean (n=49) test-retest correlation (R) for the 19 descriptors in the DREAM olfaction challenge
dataset (6). Descriptors are ordered by descending correlation.

Fig. S10. Panel mean test-retest correlation for the 19 descriptors in the DREAM olfaction challenge (le�) (6) and
for the 55 descriptors in the present study (right). Each dot represents one odor descriptor.
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Fig S11. Test-retest correlation for 400 novel odorants as a function of panel mean intensity rating for that
odorant. Molecules with lower rated intensity have weaker test-retest correlation of the panel mean.
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Fig. S12. L2 norm length of the mean RATA rating vector as a function of panel mean rated odorant intensity.
Human psychophysical ratings were gathered in 8 data collection waves; di�erently colored dots and �ts come
from di�erent tranches of data collection. Panelists use more descriptors and give higher RATA ratings for
higher-intensity stimuli.

Evaluating Model Pe�ormance on Prospective Validation Set
We chose cosine similarity of a 55-dimensional vector as a metric that would emphasize overall
accuracy of the predicted odor pro�le, rather than a “hit rate” on individual descriptors. This metric
encountered some initial di�culties, as we discovered that the model and panelists were not directly
comparable. The model makes an independent prediction for all 138 odor classes, resulting in a dense
vector, whereas panelists typically rated only the top 3.2 ± 1.7 labels per odorant, resulting in sparse
vectors. When shu�ed, the model’s predictions had a positive nonzero score, indicating a systematic
scoring bias in the model’s favor. We found that subtracting each individual model or panelists’ mean
rating across all molecules from the respective predictions had the e�ect of zeroing out the shu�ed
baseline’s cosine similarity scores. We used this centered prediction or rating as the input to all of our
calculations, as it would be a fairer comparison between model and panelist. Mathematically, this is
similar to a Pearson correlation calculation, as the ratings are centered, but di�erent due to not
rescaling, as this would have destroyed useful information.

One disadvantage of the cosine metric is that it treats all 55 dimensions equally, yet not all mistakes
are equally wrong. Descriptors have hierarchical relationships, and as such a “pa�ial credit �lter” --
which spreads observed single descriptor ratings across multiple descriptors -- can be learned and
indeed can substantially improve pe�ormance (data not shown), but complicates the presentation of
the results as it goes beyond simple arithmetic operations on raw data.

Model predictive pe�ormance is higher when human validation data has greater inter- and
intra-subject agreement (Fig. S13). Increasing rater test-retest reliability and agreement is a necessary
precursor to increasing measured model accuracy.

Fig. S13. Relationship between model predictive pe�ormance and inter- and intra-subject agreement. (A)
Inter-subject correlation as a function of intra-subject correlation (test-retest correlation). (B) RF and GNN
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model-panel correlation as a function of binned test-retest correlation. (C) RF and GNN model-panel correlation
as a function of binned inter-subject correlation. Model pe�ormance is capped by panelists’ rating consistency.

Accounting for odorous contaminants
To account for the potential presence of odorous contaminants in the 400 commercial compounds
purchased for the human validation study, we developed a gas chromatography-mass
spectrometry/olfactometry quality control (QC) procedure.  Fi�y of the 400 molecules were selected
for QC and shipped to the University of Reading for GC-MS/O analysis. By comparing retention
indices of recorded odor percepts measured via GC-O to compound identities determined via
GC-MS, we were able to identify cases in which contaminants in�uenced the odor of the material. We
classi�ed the molecules into one of 4 verdict categories: 1) Clean - no odorous contaminants found, 2)
Mixed - odorous contaminant found but both nominal compound and contaminant contribute to odor,
3) Contaminated - odorous contaminant found, contaminant is the dominant contribution to odor, 4)
Inconclusive - the causal odorant was not identi�ed in GC-O, nor was there any detected odor at the
expected elution time. This can happen due to thermal or oxidative degradation of the molecule under
GC-O conditions, synergistic odorant combinations, or other experimental di�culties. GC-O
experimenter notes and classi�cation verdicts for the 50 QC-set molecules are included in Data S1.

In both QC-set cases where a non-sulfur containing molecule was rated sulfurous by the panel, GC-O
showed that a sulfur-containing contaminant was the culprit. Additionally, in most QC-set cases
where a non-dimethylamino-containing molecule was rated strongly �shy by the panel, GC-O showed
that a dimethylamine contaminant was present. On this basis, molecules with an unexpectedly
monotonic �shy/garlic/sulfurous pro�le were excluded from our analysis, including some molecules
that had not been con�rmed to be contaminated by GC-O analysis. Next, based on anecdotal repo�s
from fragrance chemists that Michael acceptors are aggressive nucleophile scavengers, we excluded
Michael acceptors that were repo�ed as garlicky (phosphorous or sulfur impurity), sulfurous (sulfur
impurity) or �shy (nitrogen impurity). Acetylene derivatives are also o�en garlicky due to phosphine
(PH3) impurities and we excluded a few molecules ��ing this pro�le. In total, 26 molecules were
dropped from the validation set due to con�rmed or potential contamination. The rationale for these
exclusions are included in table S1.  The decision to exclude these molecules had no signi�cant impact
on model pe�ormance.

GC-O and GC-MS procedures

Extraction of the compound onto the �ber: The 50 compounds destined for gas
chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS) were
supplied either diluted in polyethylene glycol or neat, and absorbed onto xxxxx (white polyethylene?)
balls (3 mm diameter, purchased from xxxx). For GC-O, approximately 10 balls (or fewer if the
compound was very strong, more if it was very weak) were placed in a 20 mL SPME vial and
equilibrated in a water bath prior to extraction onto a preconditioned triple phase solid phase
microextraction (SPME) �ber (50/30 μm divinylbenzene/carboxen on polydimethylsiloxane (Supelco,

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 6, 2022. ; https://doi.org/10.1101/2022.09.01.504602doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.01.504602
http://creativecommons.org/licenses/by/4.0/


Poole, UK). Generally, the samples were incubated at 45 or 55 °C depending on their volatility for 10
min, and extracted for a fu�her 10 min (details in Table xxx).
Gas Chromatography-Olfactometry (GC-O): A�er extraction, the SPME device was inse�ed into
the injection po� of an HP7890 GC from Agilent Technologies (Santa Clara, CA, USA) coupled to a
Series II ODO 2 GC-O system (SGE, Ringwood, Victoria, Australia). The SPME �bre was desorbed in a
split/splitless injection po� held at 280 °C. The column employed was an Agilent HP-5 MSUi capillary
(30 m, 0.25 mm i.d., 1.0 µm df) non-polar column. The temperature gradients was as follows: 40 °C
initial temperature with a rise of 8 °C/min up to 200 °C and 15 °C/min from 200 °C to 300 °C and the
�nal temperature held for a fu�her 10 min. Helium was used as carrier gas (2 mL/min). At the end of
the column, the �ow was split 1�1 between a �ame ionisation detector (kept at 250 °C) and a sni�ng
po� using 2 untreated silica-fused capillaries of the same dimensions (1 m, 0.32 mm i.d.).
Odor assessment: Odor assessment was carried out by two �avour expe�s with 20 years’
experience in using the GC-O, who had been familiarised with the standard lexicon. One expe�
assessed 46, compounds while the second assessed the remaining 4, and con�rmed the assessment
of a fu�her 24 where clari�cation was required. Each assessor waited until the solvent had eluted (~5
mins) and sni�ed the compounds eluting from the column until 20 min (equivalent to an LRI of 1700).
They noted the time, intensity and descriptors for each compound that was detected. Linear retention
indices were calculated by comparison with the retention times of C6-C25 n-alkane series analysed
on the same day using the same conditions as for sample analyses. Where the LRI matched that of the
target compound as determined by GC-MS, this was deemed to be the target compound and any
other odors detected were contaminants.
Gas chromatography-mass spectrometry (GC-MS): For identi�cation of the target compound by
GC-MS, 2 balls (or more of it was very weak) were placed in a 20 mL SPME vial and equilibrated in a
water bath at 30 °C for 10 min prior to a 30 s extraction onto the same SPME �bre type as used for
GC-O.  For six less volatile samples (133 136 316 728 917), 10 balls were used, the incubation time was
increased to 20 min at 55 °C, and extraction time increased to 20 min. A 7890A Gas Chromatograph
coupled to a 5975C series GC/MSD from Agilent was used, equipped with the same column as
described above. The oven sta�ed at 40 °C and increased to 300 °C at a rate of 8 °C/min. Helium was
the carrier gas at a �ow rate of 0.9 mL/min. Mass spectra were recorded in electron impact mode at
an ionization voltage of 70 eV and source temperature of 220 °C. A scan range of m/z 25-450 with a
scan time of 0.69 s was employed and the data were controlled and stored by the ChemStation
so�ware (Agilent, Santa Clara, CA). Linear retention indices were calculated by comparison with the
retention times of C6-C25 n-alkane series analysed on the same day using the same conditions as for
sample analyses. Compounds and contaminants were identi�ed by comparison of their mass
spectrum with those in the NIST 2020 library and, where available, the LRI was compared to that
repo�ed in the online NIST chemistry webbook or PubChem.

Historical explanations of Odor
Historical structure-odor relation models came in the form of empirical rules that are phrased as
boolean logic expressions on the presence, absence, or proximity of molecular fragments.For
example, Boelens’ Rose rule is phrased as “the presence of a 7-9 carbon moiety with a hydroxy or oxy
carbonyl or ether group a�ached to the moiety.”(38) We also note that the original expression of these
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rules are o�en underspeci�ed, meaning that these plain-language rules cannot be conve�ed directly
into e.g. Python code. We show two examples below, including Boelens’ 1973 rose rule and Stoll’s 1936
musk rule (Fig. S14)(38–40).

Fig. S14: Example of two historical odor rules with their recall as measured on the Goodscents,
Le�ngwell datasets.
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Supplemental Data

Molecules are indexed by a unique identi�er (RedJade Code) allowing for reproduction of
most results shown here.  Information required to identify chemical structures will be
provided upon publication.

Data S1. Metadata for 400 molecules comprising the prospective validation dataset.
Columns in the dataset are de�ned as follows:

RedJade Code Internal anonymizing tracking number for
panelist responses [PRIMARY KEY]

Odor Key Tracking number from chemical inventory
system, ignore.

Category, Kit Batch number of the molecule. Molecules were
tested in 8 waves of 50 molecules.

Solvent Diluting solvent, if needed for safety or for
intensity balancing

Final [] Concentration of molecule (w/w) in �nal sample

GCO raw commentary Raw notes from GC-O analyst, if molecule was
tested with GC-O

GCO result Verdict from GC-O analysis

GCO contaminant, if identi�ed Canonical SMILES of the causal contaminant, if
one was successfully identi�ed

Impact on GNN pe�ormance Whether the GCO result had a good, bad,
neutral, or unknown e�ect on GNN’s prediction
pe�ormance.

Disquali�cation reason Reason for disquali�cation. If blank, molecule
was retained for analysis

Selection reason Original selection criteria. Molecules were
predicted by the GNN or Random Forest model
to have an odor prediction above some
threshold despite structural dissimilarity to
known instances of that odor class, or to have an
odor prediction below some threshold, despite
structural similarity to known instances of that
odor class.

Data S2. Panelist evaluations of 20 common odorants. Prospective panelists gave RATA
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ratings using the 55-word lexicon for 20 common odorants; panelists with a raw test-retest
correlation greater than 0.35 were invited to join the panel.

Data S3. Panelist evaluations of 400 novel odorants. Between 15 and 18 panelists rated
intensity and pleasantness and gave RATA ratings using the 55-word lexicon for each
molecule.

Data S4. Odor a�ribute predictions on 400 molecules by a random forest model trained on
GS/LF datasets.

Data S5. Odor a�ribute predictions on 400 molecules by a graph neural network model
trained on GS/LF datasets. Final layer.

Data S6. Graph neural network embeddings on 400 molecules. Penultimate layer.

Data S7. Correspondence table between internal odorant identi�ers and chemical structures.
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