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Linkage disequilibrium (LD) is the correlation among nearby genetic variants. In genetic 
association studies, LD is often modeled using massive local correlation matrices, but this 
approach is slow, especially in ancestrally diverse studies. Here, we introduce LD graphical 
models (LDGMs), which are an extremely sparse and efficient representation of LD. LDGMs are 
derived from genome-wide genealogies; statistical relationships among alleles in the LDGM 
correspond to genealogical relationships among haplotypes. We publish LDGMs and ancestry 
specific LDGM precision matrices for 18 million common SNPs (MAF>1%) in five ancestry 
groups, validate their accuracy, and demonstrate order-of-magnitude improvements in runtime 
for commonly used LD matrix computations. We implement an extremely fast multi-ancestry 
polygenic prediction method, BLUPx-ldgm, which performs better than a similar method based 
on the reference LD correlation matrix. LDGMs will enable sophisticated methods that scale to 
ancestrally genetic association data across millions of variants and individuals.  
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Introduction 
Linkage disequilibrium (LD) is the correlation among nearby genetic variants.1,2 It poses a 
challenge in genome-wide association studies (GWAS), as disease-causing alleles reside on 
haplotypes with numerous tag SNPs. In applications like heritability partitioning3,4, polygenic risk 
prediction5,6, and fine mapping7,8, LD is often modeled using large local correlation matrices, 
with thousands of entries per SNP; however, these can be terabytes in size8, leading to 
computational bottlenecks. 
  
The challenge is exacerbated in ancestrally diverse association studies. Diversity carries crucial 
scientific benefits6,9–13, but it also poses a methodological challenge, as LD patterns vary across 
ancestry groups14. This variation makes it even more important to model LD in applications, and 
it also increases the difficulty of doing so. 
 
To model LD efficiently and accurately, a possible approach is to leverage the genealogical 
history that gave rise to LD in the first place. New mutations arise on haplotypes carrying 
existing alleles and become correlated as they increase in frequency.1,15 With recent 
breakthroughs, genome-wide genealogies of recombining organisms can be inferred from large-
scale genetic datasets and recorded in succinct tree sequences16–19. Capitalizing on the limited 
number of common ancestral haplotypes at most loci, tree sequences provide a highly compact 
representation of human genetic data18,20. Tree sequences, and the closely related ancestral 
recombination graph, have enabled powerful new methods for understanding ancestral 
relationships21–23, measuring selection19,24,25, and analyzing complex traits26,27. 
 
Here we show that LD can be modeled using extremely sparse LD graphical models (LDGMs) 
derived from inferred tree sequences. LDGMs compresses the correlation matrix in the same 
manner that a road map would compress a matrix of pairwise travel distances, only recording 
the relationship between adjacent pairs of locations or SNPs. Ancestry-specific LD patterns are 
encoded in an LDGM precision matrix, which is a sparse regularized inverse of the LD 
correlation matrix. We show how LDGMs address computational challenges in GWAS 
applications, and we apply them to analyze the transferability of polygenic risk scores across 
ancestries in simulations with ancestry-specific LD patterns. 
 
Results 
 
Overview of methods 
Graphical models are commonly used to represent the joint distribution of several random 
variables. Each vertex of the graph represents a random variable, and each edge represents a 
conditional dependency; when two variables are not connected by an edge, it means that they 
are conditionally independent given the other variables. A simple example is a Markov chain, 
which is often used to model a time series or a sequence of states along the genome.28  
 
Graphical models emerge naturally in genealogies. Suppose that four mutations, a, b, c and d, 
arise in a single lineage without recombination, resulting in the five haplotypes ABCD, aBCD, 
abCD, abcD and abcd. Sampling a haplotype 𝑋 at random, the joint distribution has a Markov 
chain as its graphical model: 

𝑋! − 𝑋" − 𝑋# − 𝑋$ . 
𝑋! and 𝑋# are conditionally independent given 𝑋" because any haplotype with a b must have an 
a, and any haplotype with a B must have a C. 
 
More generally, LDGMs capture the conditional dependencies that arise among SNPs when 
sampling from a set of ancestral haplotypes. In the Supplementary Note, we show that the 
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LDGM is correct, in the sense that every conditional dependency corresponds to a connected 
set in the LDGM, and we also show that it is minimal, in the sense that none of its edges are 
spurious. However, our theoretical results have two limitations related to the haplotype sampling 
process that we analyze. First, sampling an ancestral haplotype is not equivalent to sampling an 
entire genome, and in particular, population structure causes the haplotypes that are observed 
at different positions to be non-independent. These types of dependencies are not captured by 
the LDGM because they are not observed when sampling one haplotype at a time. Second, the 
LDGM captures all of the conditional dependencies that may arise in an unstructured population 
with certain ancestral haplotypes, but in a particular population, only some of those 
dependencies will actually arise (due to its particular haplotype frequencies). This distinction 
motivates the use of heuristics to increase the sparsity of the LDGM (in particular, an edge 
weight threshold and an L1 penalty; see Supplementary Note). 
 

 
Figure 1: deriving LD graphical models from genome-wide genealogies. (A) First, we modify the 
tree sequence to produce a bricked tree sequence. In this example, there are two trees, differing 
by one recombination at haplotype 2. Some edges (colored black) span both trees. Others 
(denoted with colors) span only one tree; unlike in the original tree sequence, edges in the 
bricked tree sequence have the same descendent haplotypes in every tree that they span, and 
edges with this property are called “bricks.” (b) The LDGM is based on brick diagrams, which 
include all of the paths between two haplotypes via their MRCAs. The brick diagram for 
haplotypes 2 and 3 encodes a path with MRCA 9 and a path with MRCA 6, and it has mutations a 
and b. (c) The LDGM of this tree sequence has an edge between every pair of SNPs except c and 
d; for example, a and b are connected because they are siblings, and they comprise the 
symmetric difference between haplotypes 2 and 3. 

 
 
To construct the LDGM, we start with a tree sequence16 inferred using tsinfer18 and modify its 
edges to produce a bricked tree sequence. In the original tree sequence, there is a different 
genealogical tree at each position in the genome. The edges of each tree describe parent-child 
relationships between haplotypes, and the edges of the tree sequence span the entire genomic 
interval where a particular parent-child relationship is observed. Within that interval, the child 
haplotype itself may have different descendants at different positions. In the bricked tree 
sequence, such edges are bifurcated to form “bricks” that have the same descendants at every 
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position. For example, in Figure 1a, there are two positions and trees, differing by a single 
recombination (i.e., haplotype 2 has different parents in each tree). Haplotypes 7 is the parent of 
haplotype 5 in both trees, but the corresponding edge is bifurcated into two bricks because 
haplotype 5 has different descendants in each tree (i.e., haplotype 2 is its descendent at 
position 1 only).  
 
The LDGM is defined using brick diagrams, which are generalized paths between haplotypes 
(Figure 1b). When there is only one genealogical tree, every two haplotypes are connected by a 
single path, coalescing at their most recent common ancestor (MRCA). With recombination, the 
haplotypes coalesce differently at different positions in the genome, and their brick diagram 
comprises the bricks that appear in their coalescent. Because bricks have the same 
descendants at every position, brick diagrams have a key property: mutations that occur on a 
brick diagram are carried by exactly one of the two haplotypes. This property is significant 
because differences between pairs of haplotypes – sets of SNPs appearing on brick diagrams – 
are the possible conditional dependencies of the joint distribution. The LDGM comprises a 
minimal set of edges guaranteeing that the SNPs on a brick diagram form a connected set in 
the graph (Figure 1c). We provide a formal discussion and describe our algorithm to produce 
the LDGM in the Supplementary Note. 
 
Most applications of LDGMs involve LDGM precision matrices, which allow commonly used LD 
matrix operations to be performed extremely efficiently. The LDGM precision matrix is a sparse 
regularized inverse of the LD correlation matrix, with nonzero entries corresponding to the 
edges of the LDGM. Unlike the LDGM itself, the precision matrix differs across ancestry groups 
(because the correlation matrix is different). The precision matrix is inferred from the sample 
correlations corresponding to the edges of the LDGM, using a coordinate descent algorithm 
based on DP-GLASSO (dual-primal graphical lasso)29. DP-GLASSO infers a sparse precision 
matrix by maximizing an L1-penalized Gaussian likelihood (which is still appropriate for non-
Gaussian data), but it cannot be applied to LD matrices with many thousands of SNPs. Our 
modified algorithm makes inference feasible by restricting to the edges of the LDGM (see 
Supplementary Note). The L1 penalty is used to discard edges of the LDGM that are not 
needed in the population being analyzed, after which the penalty is removed. 
 
Our method involves three parameters. First, we impose a recombination frequency threshold, 
only bifurcating edges to form bricks if a recombined haplotype has enough descendants at the 
position of the recombination; we use a threshold of 1%, which is also our SNP frequency 
threshold. Second, we impose an edge-weight threshold, discarding edges whose weight 
exceeds the threshold; these weights are defined using a well-motivated heuristic, which 
corresponds to 𝑟% in the absence of recombination (see Supplementary Note). Third, in the 
precision matrix inference step, we use an L1 (lasso) penalty with a tunable coefficient to 
produce additional sparsity. 
 
Sparse and accurate LD graphical models across five ancestry groups 
We analyzed high-coverage 1000 Genomes whole-genome sequencing data30, including 2504 
individuals across five continental ancestries (African, AFR; admixed American, AMR; East 
Asian, EAS; European, EUR; South Asian, SAS). We included 18M SNPs with MAF>1% in any 
group that passed variant QC (see Methods). We inferred tree sequences using tsinfer (Kelleher 
et al., 2019; Wohns et al. 2022) (see Methods). We partitioned the genome into 1361 nearly 
independent LD blocks with around 13,000 SNPs per block, as previously described32,33, and we 
confirmed that these blocks were appropriate for every ancestry group (Supplementary Figure 
1). One LD block containing <100 SNPs (the fewest) was removed due to QC. For each LD 
block, we produced one LDGM and five precision matrices (one for each ancestry group).  
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We quantified the accuracy and sparsity of our LDGM precision matrices across three ancestry 
groups in a representative LD block. As expected, LD correlation matrices vary with ancestry 
(Figure 2a, upper triangles). Comparing these matrices with the inverse of our LDGM precision 
matrices (Figure 2a, lower triangles), they are visually concordant, except for smaller nonzero 
entries between faraway SNPs in the LDGM precision matrix inverse. This effect is most 
apparent in AMR, where the correlation matrix exhibits low-rank structure due to admixture and 
our LDGMs are less accurate (see below). Unlike the sample correlation matrices, however, our 
LDGM precision matrices are extremely sparse: they have an average degree of around 20 
neighbors per SNP, while most SNPs have hundreds of LD partners with 𝑟% > 0.01 (Figure 2b). 
 

 
Figure 2: Accuracy and sparsity of the LDGM precision matrix for a representative LD block. (a) 
LD correlation matrices of common SNPs in three 1000 Genomes ancestry groups (AFR, AMR 
and EUR) (M=1,966 SNPs with MAF>1% in all ancestries). Upper triangles (blue outline) show the 
sample correlation matrix, and lower triangles (orange outline) show the LDGM precision matrix 
inverse. (b) Density of the sample correlation matrix compared with the LDGM precision matrix. 
We compare the number of LD partners per SNP (𝑟% > 0.01) in the correlation matrix with the 
number of nonzero entries per SNP in the precision matrix. 

 
Similar results were obtained across the genome. Most precision matrices had an average 
degree of less than 20 (compared with a median block size of ~5,000) (Figure 3a), and they 
were highly accurate for every ancestry group except AMR, with a median mean-squared error 
(MSE; see Methods) of around 0.0012 (0.0023 in AMR) (Figure 3b). This number is close to the 
variance of the sample correlation between two uncorrelated SNPs in 500 individuals (i.e., 
1/2𝑛 = 0.001). High accuracy was also observed using an alternative error metric 
(Supplementary Figure 2). The much lower accuracy observed in the admixed AMR population 
is expected, since LDGMs are justified mathematically under a model that does not include 
admixture or population structure. It suggests that LDGMs should not be currently applied to 
admixed datasets; however, this limitation might be addressed using local ancestry inference34 
(see Discussion).  
 
We performed out-of-sample validation in pan-UK Biobank35, which includes samples from each 
of five subsamples based on genetic ancestry similarity (see Data Availability). Across 
chromosome 22, our LD precision matrices had a median out-of-sample MSE of around 0.0013 
in AFR, EAS and SAS, 0.0016 in AFR, and 0.0033 in AMR (Figure 3c). These numbers support 
the use of 1000 genomes based LDGMs in UK Biobank, but we caution that they will not be 
appropriate for every dataset (see Discussion). 
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Figure 3:  Accuracy and sparsity of LDGM precision matrices across the genome.   (a) Average 
degree (neighbors per SNP) within each LD block across ancestries. (b) Mean squared error 
(MSE) of each LD block across ancestries. (c) Out-of-sample MSE of LD precision matrices on 
chromosome 22, comparing LDGM precision matrices derived from 1000 Genomes with 
ancestry-matched correlation matrices from pan-UK Biobank. (d) Accuracy and sparsity of LDGM 
precision matrices derived from true vs. inferred tree sequences in simulations with msprime. 
For numerical results, see Supplementary Tables 1-2. 

 
We investigated whether the accuracy of tree sequence inference affected the accuracy of our 
LDGMs. We simulated tree sequences using msprime36 under a neutral coalescent model with 
human-like parameters in regions the size of a typical LD block (see Methods). Tree sequences 
were inferred from the simulated genetic variation data with tsinfer18. Next, LDGMs and 
precision matrices were inferred for each simulated and inferred tree sequence. MSE was 
approximately 24% higher in inferred vs. simulated tree sequences (Figure 3d), indicating that 
imperfect tree sequence inference is a minor source of error for our LDGMs. 
 
An existing approach to regularize the LD correlation matrix is the estimator of Wen and 
Stephens, which shrinks the correlation between each pair of SNPs by a factor that depends on 
their map distance and the sample size (but does not produce a very sparse matrix). Comparing 
the Wen and Stephens estimator with the inverse of our LDGM precision matrix on chromosome 
22 EUR, we found that the MSE between them is very low, since both methods shrink the 
correlations between faraway SNPs toward zero (Supplementary Figure 3a). This similarity is 
encouraging, as the Wen and Stephens estimator has been shown to improve heritability 
estimates when it is used instead of the sample correlation matrix. Although the Wen and 
Stephens estimator produces sparsity when it is applied to large regions, it does not produce 
much sparsity within LD blocks (Supplementary Figure 3c). 
 
A different existing approach, which does compress the local LD matrix, is to truncate its 
eigenvalues. Shi et al.37,38 used this approach to estimate heritability and genetic correlations, 
and it has been used by recently developed methods as well39–41.  We compared our LDGM 
precision matrices with rank-k approximations for different values of k and found that LDGM 
precision matrices are much more accurate than small-k approximations (Supplementary Figure 
4a-b). Unlike the Wen and Stephens estimator, low-rank approximations did not exhibit similarity 
with the LDGM precision matrix inverse (Supplementary Figure 4c). 
 
We performed four secondary analyses on chromosome 22 in EUR. First, we performed two-
fold cross validation within 1000 Genomes, fitting our precision matrices to 50% of EUR 
individuals and testing in the other 50%. Median cross-validated MSE was 0.0027 (within-
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sample MSE: 0.0019); this number compares favorably with the MSE between the two sample 
correlation matrices (median: 0.0038, 𝑃&'()*'+, < 10-.) (Supplementary Figure 5). The higher 
within-sample MSE in this analysis indicates that within-sample MSE decreases with sample 
size. Second, to verify that our LDGM performs better than a naïve approach, we computed 
precision matrices from a simple banded-diagonal LDGM (Supplementary Figure 6). Depending 
on band size, the resulting precision matrices either had higher MSE and similar density 
(median MSE: 0.003, degree: 20.1), or similar MSE and higher density (median MSE: 0.0013, 
degree: 38.3). We also tried an 𝑟%-threshold based LDGM, which had high MSE (median MSE: 
0.0053, degree: 17.3). Third, we stratified SNPs into three allele frequency bins (0.01-0.05, 
0.05-0.2, 0.2-0.5); low-frequency SNPs had slightly higher MSE (median: 0.0013, 0.0012, 
0.0011 respectively) and substantially smaller average degree (median: 12.5, 19.7, 24.1) 
(Supplementary Figure 7). Fourth, we evaluated the performance of our LDGMs with different 
L1 penalties and path weight thresholds (Supplementary Figure 8). Different parameter settings 
produce different tradeoffs between within-sample accuracy and sparsity, and there is no choice 
of parameters that is obviously best.  
 
Computational advantages of LDGMs 
Statistical methods to analyze GWAS data often utilize LD data from a reference panel together 
with summary association statistics.42 Many of these methods, especially sophisticated 
Bayesian algorithms, rely on slow LD matrix operations. Slow operations involving the LD 
correlation matrix, 𝑅, can be replaced with efficient operations involving the LDGM precision 
matrix, 𝑃. In Figure 4a and the Supplementary Note, we list LD matrix operations that can be 
replaced with the LDGM precision matrix, with their respective runtimes. For most operations, 
order-of-magnitude improvements are obtained. These include basic operations like matrix-by-
vector multiplication and also more complex calculations involving the sampling distribution of 
the GWAS summary statistics43,44 . Using LDGMs, most of these operations run in ~10 minutes 
on the entire genome (AFR; 11.6 million SNPs) (Figure 4a; Methods). 
 

 

 

Ancestry Correlation file 
size (GB) 

Precision file 
size (GB) 

AFR 894 3.8 
AMR 406 2.7 
EAS 248 1.8 
EUR 314 2.2 
SAS 342 2.3 

Figure 4: computational advantages of LDGMs. (a) Runtime of matrix operations and likelihood 
calculations using LDGM precision matrices vs. correlation matrices, for AFR (11.6M SNPs). (b) 
Total uncompressed file size of LDGM precision matrices vs. correlation matrices in each 
ancestry group. For numerical results, see Supplementary Table 3. 

 
LDGMs also allow order-of-magnitude reductions in memory usage. The total memory usage of 
the 1,360 EUR correlation matrices is 314GB (largest: 3.8GB), compared with 2.2GB for the 
LDGM precision matrices (largest: 6MB) (Figure 4b; Methods). This >100x reduction makes it 
feasible to work with LD matrices covering the entire genome on a personal computer. 
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Moreover, memory is often a bottleneck in cluster compute environments, and reduced memory 
requirements allow for more efficient parallelization. 
 
It is computationally expensive to compute LDGMs and LDGM precision matrices themselves. 
Computing the LDGM takes an average of ~18 hours per LD block, and computing the LDGM 
precision matrix takes an average of ~3 hours per block in populations besides AFR (~20 hours 
in AFR, due to the much larger number of common SNPs) (Supplementary Figure 9). Most 
users will not have to perform these computations themselves, as we have released pre-
computed LDGM precision matrices for all five 1000 Genomes populations. Users with access 
to individual-level GWAS data may compute within-sample LDGM precision matrices by re-
running the precision matrix inference step on precomputed LDGMs (see Discussion). 
 
Polygenic prediction across populations using LDGMs 
A potential application of LDGMs is in methods to calculate polygenic scores (PGS). PGS have 
gained attention recently for their applications in personalized medicine, but genetic predictors 
based on pedigrees rather than genotypes have been used in animal breeding for decades, and 
in fact, sparse precision matrices had an important role in their development. Between 1953 and 
1976, Henderson45–47 developed the best linear unbiased predictor (BLUP) of phenotypic values 
(e.g., milk production) from pedigrees, but initially, it seemed necessary to work with a large 
covariance matrix describing the relationship between every pair of cattle (i.e., the genetic 
relatedness matrix). This was intractable for large herds, until Henderson showed that the same 
relationships could be encoded in a sparse precision matrix instead, and the computational 
bottleneck was lifted.46,47 Our use of a sparse precision matrix for LD (i.e., 𝐸(𝑋/𝑋)-0) parallels 
Henderson’s for relatedness (i.e., 𝐸(𝑋𝑋/)-0). 
 
In human datasets with genotypes instead of pedigrees, Henderson’s approach is not directly 
applicable. However, a SNP-based relatedness covariance matrix can be used instead48, and 
BLUP has also been reformulated to operate on GWAS summary statistics and LD correlation 
matrices, as implemented in LDpred-inf.5 BLUP is not the state of the art for genotype-based 
prediction, as it imposes an infinitesimal (Gaussian) prior on the distribution of effect sizes, and 
better performance can be obtained using a non-infinitesimal prior.5,49 Nonetheless, BLUP is a 
simple and canonical genetic prediction method that enables a fair comparison between 
methods based correlation matrices and methods based on the LDGM. It also provides a 
starting point for the development of more sophisticated algorithms. 
 
We reformulated BLUP to operate on LDGM precision matrices (BLUP-ldgm) and compared it 
with an implementation that operates on LD correlation matrices (BLUP-ldcov; equivalent to 
LDpred-inf5) (see Methods). We applied both methods to UK Biobank summary statistics for four 
traits (Supplementary Table 6) and 1000 Genomes reference LD; as a gold standard, we also 
applied BLUP-ldcov to within-sample UK Biobank LD (computed by Weissbrod et al.8). We 
calculated the correlation between the resulting PGS weights across chromosomes 21-22 (39 
LD blocks). This comparison is much better powered than a comparison of phenotypic 
prediction accuracy, which would depend on the number of samples in the validation cohort, 
and it is appropriate for the purpose of comparing BLUP-ldgm with BLUP-ldcov, which are 
equivalent except for the LD matrices that are used. 
 
We found that BLUP-ldgm was actually closer to the gold standard within-sample weights 
compared with BLUP-ldcov (Figure 5a). Both methods were highly correlated, and the 
difference was small but highly significant. Since the methods are equivalent, this indicates that 
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the 1000 Genomes LDGM precision matrix is a better approximation to UK Biobank LD than the 
1000 Genomes LD correlation matrix. The correlation matrix contains noise (due to the limited 
number of samples), and by leveraging the independence of haplotypes at different positions, 
LDGMs usefully regularize the LD matrix. (Concordantly, out-of-sample MSE was higher for the 
1000 Genomes correlation matrices than for our 1000 Genomes precision matrices; 
Supplementary Table 5). We also compared BLUP-ldgm and BLUP-ldcov with simulated 
summary statistics and confirmed that their results are nearly identical at small to realistic 
sample sizes (𝑁 ≤ 10.), becoming divergent at extremely large sample sizes (𝑁 ≥ 101) 
(Supplementary Figure 10). These estimates indicate that extremely well-powered GWAS 
require more accurate LD reference panels (see Discussion), consistent with what has been 
reported in fine mapping studies.50  
 

 
 

Figure 5: Best linear unbiased prediction with LDGMs. (a) We applied BLUP-ldgm and BLUP-
ldcov to UK Biobank summary statistics for four traits, with 1000 Genomes EUR reference LD, 
and compared their PGS weights with gold-standard weights calculated from within-UKB LD 
(using BLUP-ldcov). Box plots indicate the distribution of 𝑟% values across LD blocks 
(chromosomes 21-22), and binomial p-values are reported. For numerical results, see 
Supplementary Table 5. (b) Runtime of BLUPx-ldgm and BLUPx-ldcov in whole-genome 
simulations with different numbers of ancestry groups. For numerical results, see 
Supplementary Table 7. (c) Prediction accuracy (𝑟234% ) of BLUP-ldgm when training in a single 
ancestry group (EUR or AFR). For numerical results, see Supplementary Table 8. (d) Prediction 
accuracy of BLUPx-ldgm when training in four ancestry groups (AFR, EUR, EAS, SAS), with 
different relative sample sizes and a total sample size of 1e6. For numerical results, see 
Supplementary Table 8. 
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A well-known challenge is that PGS are not portable across genetic ancestries, primarily due to 
differences in allele frequency and LD, motivating the development of methods that analyze 
ancestrally diverse GWAS.6,9,51,52 BLUP has been extended to handle multiple ancestry groups, 
but computational complexity is a challenge.11,53 We implemented multi-ancestry BLUP using 
LDGMs (BLUPx-ldgm) or covariance matrices (BLUPx-ldcov) and compared their runtime in 
simulations involving one to four populations and the entire genome (1361 LD blocks). BLUPx-
ldgm was ~40 times faster, running in 2.6 vs. 93 hours in the simulation with four groups (Figure 
5b).  
 
Then, we applied BLUPx-ldgm to summary statistics simulated from different genetic ancestries 
in order to quantify non-portability. We simulated summary statistics from their asymptotic 
sampling distribution43,44 with allele frequencies and LDGM precision matrices from AFR or 
EUR, applied BLUPx-ldgm to data from one group or the other, and evaluated its prediction 
accuracy in each group (see Methods). As expected, scores trained in EUR had much lower 
accuracy in AFR (concordant with what is observed with real phenotypes9). However, non-
portability was directionally asymmetric: the decrease in accuracy was smaller when training in 
AFR and testing in EUR (Figure 5c). Asymmetric non-portability was also observed in other 
population pairs involving AFR, but it was not observed in non-AFR population pairs 
(Supplementary Table 8). The apparent asymmetry in PGS portability might be a consequence 
of the out-of-Africa bottleneck, which reduced the diversity of haplotypes that are found outside 
of Africa; polygenic prediction in AFR is fundamentally harder than in other ancestry groups, 
owing to its greater diversity.  
 
Finally, we simulated population specific summary statistics from four ancestry groups (AFR, 
EUR, EAS, SAS), applied BLUPx-ldgm to all of them jointly, and evaluated its prediction 
accuracy in each. With equal sample size (and heritability) in each ancestry group, prediction 
accuracy was not equal. Instead, it was ~30% lower in AFR (Figure 5d and Supplementary 
Table 8), probably also because of greater genetic diversity within AFR. In order to equalize 
prediction accuracy across groups in these simulations, it was necessary for 70% of the training 
data to be AFR (10% each EUR, EAS and SAS) (Figure 5d and Supplementary Table 8). 
 
These simulations indicate that LDGMs can be used to greatly improve the computational 
performance of PGS methods without any loss in accuracy, and that a particularly promising 
application is the development of PGS methods that are able to handle data from multiple 
ancestry groups. However, for AFR in particular, large amounts of new data will be required to 
equalize PGS accuracy, even with the use of multi-ancestry methods. 
 
Discussion 
Computational and statistical challenges in human genetics can be overcome using explicit 
genealogical models. The Li-Stephens model15 is widely used for imputation54 and phasing,55 

and it is also an important component of scalable genealogy inference methods like tsinfer and 
relate18,19. Large-scale genealogies, in turn, have enabled a variety of powerful methods in 
statistical and population genetics26,27,56. In this study, we leveraged genome-wide genealogies 
to derive LDGMs and to address computational challenges associated with LD and ancestral 
diversity. 
 
LDGMs have several promising applications. In polygenic prediction, state-of-the-art Bayesian 
methods6,41,49,57,58 rely on slow LD matrix operations, and scaling across genetic ancestries 
remains an important challenge despite recent progress6,41,57. We have implemented BLUP with 
LDGMs, achieving large improvements in runtime; BLUP is not the state of the art for polygenic 
prediction (due to its reliance on an infinitesimal prior), but it is a logical step toward the 
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development of more sophisticated methods. Another promising application is heritability 
partitioning, where the state-of-the art method, S-LDSC3,59, is more widely used than likelihood-
based estimators like RSS4 due to its speed and scalability, despite likelihood-based methods 
having better accuracy39. A potential application is fine mapping, although we caution that 
accurate fine mapping may require extremely accurate LD matrices, and individual-level 
estimation may be the most robust solution.8,50 
 
When modeling LD, it is sometimes critical to distinguish between within-sample LD (i.e., the 
sample covariance matrix of the genotypes), reference LD (i.e., the sample covariance matrix of 
a different set of genotypes from the same ancestry group), and population LD (i.e., the 
covariance matrix of the entire population). The LDGM precision matrix is an estimator of 
population LD; it is based on a model for the conditional dependencies that arise when sampling 
ancestral haplotypes to produce a new genome, not the particular genomes observed in the 
study. As such, it should not be used in situations where within-sample LD is strictly needed, 
even if it is inferred within-sample. Still, LDGM precision matrices inferred within-sample may 
have advantages over those inferred from a reference panel (especially a relatively small one 
like 1000 Genomes), as they avoid mismatch between the respective genetic ancestries. When 
individual level data is available, it may still be advantageous to use LDGMs and summary 
association statistics because the computational complexity of individual-level methods scales 
with the size of the study. When individual level data is unavailable, it is possible to assess 
whether a reference LD matrix is appropriate using DENTIST60.  
 
Even though LDGM precision matrices can be used to model ancestry-specific LD patterns, our 
approach does not rely conceptually on populations as discrete or essential features of human 
ancestry.61 Instead, the LDGM is shared across the ancestries represented in 1000 Genomes. 
Haplotype frequencies differ with ancestry, but ancestral haplotypes themselves are mostly 
shared, and it is the haplotypes, not their frequencies, that determine the LDGM. In contrast, 
LDGM precision matrices do depend on haplotype frequencies, and ancestry groups (especially 
“EUR”) can be used to match the study population with an appropriate LD reference panel; this 
heuristic is useful because of the way that most existing association studies are ascertained. 
 
Adjacencies in the LDGM correspond to genealogical, not biological, relationships. Although LD 
patterns are strongly affected by negative selection, and they differ between functional and 
neutral regions of the genome, we do not see a reason that LDGMs would be functionally 
informative for individual variants or clusters of variants. Conversely, statistical methods to 
analyze GWAS data using LDGMs are not shielded from the effects of LD dependent 
architecture, which can be an important source of bias if not modeled appropriately. 59,62 
 
Our work has several limitations. First, LDGMs do not model population structure or admixture, 
and they can perform poorly in groups with strong population structure. Our results support their 
use within the ancestry groups besides AMR defined in 1000 Genomes, but currently, we 
recommend that they not be applied to admixed populations. Local ancestry inference is a 
possible approach to address this limitation.34 Second, LDGMs and LDGM precision matrices 
are computationally expensive to compute. This is a barrier for users who wish to tailor LDGM 
precision matrices to their own genotype data; however, we have released 1000 Genomes 
LDGM precision matrices for each superpopulation (see Data Accessibility), and we envision 
that most users will be able to use this resource and avoid the upfront cost. Third, some 
applications – especially fine mapping – may require more accurate LDGM precision matrices 
than it is possible to infer from 1000 Genomes. LDGM precision matrices can be tailored to 
specific datasets, and parameter choices permit a tradeoff between sparsity and within-sample 
accuracy.  
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Despite these limitations, LDGMs address statistical and computational challenges associated 
with genetic association studies and ancestral diversity. We advocate for GWAS consortia and 
biobanks, especially ancestrally diverse studies without a well-matched reference panel, to 
publicly release LD information together with their summary association statistics, allowing them 
to be analyzed using LDGMs. 
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Methods 
 
Dataset preparation and tree sequence inference 
We analyzed VCF files containing 1000 Genomes Data sequenced to 30x coverage by the New 
York Genome Center (see Data Availability).30 This phased genetic dataset is in the GRCh38 
genome build and contains 3,202 sampled individuals; we analyzed 2,504 approximately 
unrelated individuals from phase three of the 1000 Genomes project.  
 
We inferred tree sequences from the autosomes of the 2,504 unrelated individuals using tsinfer 
version 0.231. We first converted the downloaded VCF files to the .samples format used by 
tsinfer. We used all biallelic SNPs with high confidence ancestral states in Ensembl release 
10063 to infer tree sequence topologies using tsinfer’s default parameter settings. This meant 
that no mismatch parameters were specified, enforcing the infinite-sites assumption. Afterwards, 
the tree sequences contained 63M SNPs. 
 
However, restricting our analysis to biallelic SNPs with high-confidence ancestral states 
excluded many SNPs that we wished to incorporate in downstream analyses. Thus, we mapped 
SNPs with a low-confidence ancestral state or no inferred ancestral state, as well as indels, 
back onto the tree sequences using parsimony. Our LDGM creation algorithm does not currently 
support recurrent mutation, so we only kept variants where a single mutation captured the 
pattern of variation at that site. After adding these variants, our tree sequences contain 93.1% of 
a comparison set of 7,742,161 imputed, common GWAS SNPs (>1% MAF).  
 
Generating LDGMs and precision matrices 
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We estimated precision matrices from 1,361 approximately independent LD blocks and each 
1000 Genomes continental ancestry group (see Data Availability).32 
 
We used ldgm version 0.1 to create LDGMs from the inferred tree sequences with the following 
parameters: path_threshold=8, MAF=0.01, recombination_threshold=0.01. The minor allele 
frequency threshold was applied such that SNPs with at least a 1% MAF in any of the five 
ancestry groups were retained in the final LDGM (18M SNPs).  
 
Finally, precision matrices were estimated for each 1000 Genomes ancestry group using the 
LDGMs from the previous step, using a path threshold of 4 and an L1 penalty of 0.1. In AFR, 
which has a larger number of common SNPs per block, we used an L1 penalty of 0.2 for some 
of the blocks in order to reduce runtime (Supplementary Table 1). 
 
Mean squared error 
We define the mean squared error (MSE) between an LD correlation matrix 𝑅 and an LDGM 
precision matrix 𝑃 as: 

MSE ≔
1
𝑚% : ;𝑅56 − (𝑃-0)56<

%

5,680,…,:

. (1) 

 
This is proportional to the mean squared error when multiplying a vector by 𝑅 or instead dividing 
it by 𝑃, and it is mostly sensitive to the large eigenvalues of 𝑅 (small eigenvalues of 𝑃). If 𝑥 ∼
𝑁(0,𝑚-0𝐼), then 

𝑚-0	𝐸 BC|𝑅𝑥 − 𝑃-0𝑥|C%E = 𝑚-0𝐸(𝑥/(𝑅 − 𝑃-0)%𝑥) 
= 𝑚-0	𝑇𝑟;(𝑅 − 𝑃-0)%𝐸(𝑥𝑥/)< = MSE. (2) 

The MSE quantifies how close 𝑃-0 is to 𝑅. An alternative definition, which quantifies how close 
𝑃𝑅 is to the identity matrix, is defined in the Supplementary Note. 
 
Evaluating LDGMs on simulated and inferred tree sequences 
To evaluate the impact of tree sequence inference accuracy on the accuracy and sparsity of 
LDGM precision matrices, we compared the results of our pipeline on true, simulated tree 
sequences compared to tree sequences inferred with tsinfer. We first used msprime to simulate 
ten replicates of a tree sequence that approximates the size of a typical LD block in our 
analysis. We simulated 3 Mb of sequence, with 5008 sampled chromosomes, a mutation rate of 
1.2e-8 mutations per-base pair per-generation, a recombination rate of 1e-8 recombinations 
per-base pair per-generation and an effective population size of 10,000. We then used the 
genotype data from these simulations to infer tree sequences using tsinfer. 
 
We ran our LDGM inference pipeline on the simulated and inferred tree sequence from each 
simulation replicate and evaluated the accuracy of the LDGM precision matrix compared to the 
correlation matrix (MSE) as well as the sparsity (average degree). The accuracy results are 
visualized in Figure 3d, and the full results are in Supplementary Table 2. 
 
Runtime and memory usage 
Runtime experiments were performed on the Broad Institute compute cluster, parallelized and 
summed across LD blocks, using MATLAB R2019a. 
 
Correlation matrix memory usage in bytes was calculated as 8𝑚%, where 𝑚 is the number of 
SNPs with AF>0.01 in an LD block. Precision matrix memory usage was calculated as 16𝑚𝑑 +
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8(𝑚 + 1), where 𝑑 is the average degree (and 𝑚𝑑 is the number of nonzero entries), which is 
the minimum memory requirement in MATLAB. 
 
Best linear unbiased predictor 
The BLUP PGS weights have a simple formula: 

𝛽L<=>? = 𝑛0 %⁄ Σ(𝑛Σ + 𝑃)-0𝑃𝑧	 (3) 
where 𝑛 is the GWAS sample size, Σ is the prior covariance matrix of the per-s.d. effect sizes 𝛽 
(e.g., Σ = A!

:
𝐼), 𝑃 is the LDGM precision matrix, and 𝑧 is the vector of GWAS Z scores. In BLUP-

ldgm, this formula is evaluated by solving a sparse system of equations: 
(𝑛Σ + 𝑃)𝑥 = 𝑃𝑧	 (4) 

and setting 𝛽LBCD2-E$F: = 𝑛0/%Σ𝑥. If SNPs in the LDGM are missing from the summary statistics, 
it is handled as described in the Supplementary Note. BLUP-ldcov solves a dense system of 
equations instead: 

(𝑛𝑅 + Σ-0)𝛽LBCD2-E$#HI = 𝑛0 %⁄ 𝑧	 (5) 
where 𝑅 is the sample covariance matrix. Both BLUP-ldcov and BLUP-ldgm are parallelized 
across LD blocks. 
 
BLUPx is a straightforward generalization of BLUP. The Z scores are concatenated across 
populations, and the precision matrices (or correlation matrices) are concatenated to form a 
block-diagonal matrix. The prior covariance matrix Σ has nonzero off-diagonal entries 
corresponding to the same SNP in two different populations. For example, if SNP j is present in 
populations 1 and 2 with effect size variance 𝜎60% , 𝜎6%%  respectively, and the cross-population 
genetic correlation is 𝑟JHJ, then the corresponding entry is 𝜎60𝜎6%𝑟JHJ. If SNP j is absent in 
population 2, then there is no corresponding entry. In our simulations, the effect-size variance 
for every SNP is the same, and it is chosen to produce the desired heritability in each ancestry 
group. We produce the cross-population effect-size covariance matrix, concatenate the 
population-specific precision matrices to form a block-diagonal matrix, concatenate the Z scores 
to form a longer vector; then, we substitute these matrices into equation (4). 
 
Polygenic scores with multiple ancestry groups 
In our PGS simulations, first, we simulated causal effect sizes from a multivariate normal 
distribution for every SNP with allele frequency at least 1% in any of the four ancestry groups 
(AFR, EAS, EUR, SAS). (AMR was excluded due to high its MSE). The effect size variance for 
each population was chosen so that the expected heritability would be 0.1, and the effect size 
correlation between each pair of populations was 0.9. For each ancestry group, we simulated 
summary statistics from their asymptotic sampling distribution based on the LDGM precision 
matrix and the 1000 Genomes allele frequencies (see Supplementary Note). We applied 
BLUPx-ldgm to these summary statistics, using as a prior the same distribution that was used to 
simulate the data. Supplementary Table 8 lists the sample sizes that were used in each 
simulation. To calculate the prediction accuracy, we used the following formula: 

𝑟234% =
(𝛽KLMN/ 𝑉𝛽234)%

𝛽234/ 𝑉𝛽234
	 (6) 

where 𝛽KLMN is the vector of true per-allele effect sizes, 𝛽234 is the vector of estimated per-allele 
effect sizes, and 𝑉 is the genotype covariance matrix for the target population (i.e., 𝐷𝑅𝐷 where 
𝐷 is a diagonal matrix).  
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