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Abstract

Perceptual decision-making has been extensively modeled using the ideal observer framework. How-
ever, a range of deviations from optimality demand an extension of this framework to characterize the
different sources of suboptimality. Prior work has mostly formalized these sources by adding biases and
variability in the context of specific process models but are hard to generalize to more complex tasks.
Here, we formalize suboptimalities as part of the brain’s probabilistic model of the task. Data from a tra-
ditional binary discrimination task cannot separate between different kinds of biases, or between sensory
noise and approximate computations. We showed that this was possible using a recently developed causal
inference task in which observers discriminated auditory cues in the presence of choice-uninformative vi-
sual cues. An extension of the task with different stimulus durations provided evidence for an increase in
the precision of the computations with stimulus duration, separate from a decrease in observation noise.

1 Introduction1

Much of our knowledge about how the brain converts sensory observations into percepts, and percepts into2

decisions, has been gained in the context of binary discrimination tasks. In such tasks, human behavior3

has often been found to be close to optimal under certain sensory noise distributions (Swets et al., 1961;4

Ernst and Banks, 2002). Normative modeling starts by specifying the experimenter’s probabilistic model5

that links observations to correct choices. It assumes that the brain has learned and uses this model to6

infer correct responses from its observations. These models are mathematical descriptions of how an optimal7

decision making agent (ideal observer) would make their decisions. Approaching complex systems like the8

brain through the lens of the ideal observer has provided us with guiding principles (Geisler, 2011). However,9

there is increasing evidence for suboptimalities in human behavior (reviewed in Rahnev and Denison (2018))10

calling into question the utility of a normative approach (Bowers and Davis, 2012; Gardner, 2019). Instead11

of abandoning the ideal observer model completely, it has been suggested to use it as a starting point (Icard,12

2018). To construct better models of human behavior it can be extended by incorporating increasingly13

realistic assumptions about its components (Rahnev and Denison, 2018).14

There are two principal approaches to this process. The first approach starts with the generative model15

for the task. Suboptimalities arise from deviations in the brain’s internal model, and the fact that the16

inference computations are performed approximately instead of exactly. For example, systematic biases in17

observer responses have been modeled as arising due to observers using priors learned for natural behavior18

that are not optimal in laboratory settings (Stocker and Simoncelli, 2006; Odegaard et al., 2015; Ma, 2019).19

Similarly, approximations in the inference process can lead to substantial deviations from optimal behavior20

and have been shown to be a important source of suboptimality in decisions (Beck et al., 2012; Wyart and21

Koechlin, 2016; Drugowitsch et al., 2016). One way in which approximations in the inference computations22

have been quantified is by using a sampling-based approximation, where the number of samples quantifies23

the degree of approximation. Prior studies have found that observers are best described by few samples,24

corresponding to coarse approximations (Vul et al., 2014; Sanborn and Chater, 2016; Wozny et al., 2010).25
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The second approach starts with a process model that inverts the above generative model. This model26

optimally converts observations into responses (as defined for the ideal observer) and suboptimalities can27

be added to its components in the form of noise or bias. This approach was followed in recent attempts to28

dissociate between sensory and computational sources of suboptimality (Drugowitsch et al., 2016), and dif-29

ferent sources of biases (Linares et al., 2019). Most commonly, this approach uses the signal detection theory30

framework where a decision is made by comparing the observation against a criterion (Gold and Shadlen,31

2007; Green et al., 1966). Response biases can then be modeled as an incorrect placement of the criterion,32

and response variability as an inability to maintain a stable criterion (see Rahnev and Denison (2018) for a33

detailed review). Formalizing suboptimalities in a process model introduces the challenge that complicated34

probabilistic models (for more complex or naturalistic tasks) do not allow for implementation-agnostic mod-35

els to which variability or a bias can be applied as commonly done. Instead they require a commitment36

to how the inference computations are being implemented despite the fact that this implementation in the37

brain is still unknown (Pouget et al., 2013; Fiser et al., 2010). This problem is compounded by the fact that38

it is unclear to what degree different sources of suboptimality can be dissociated given empirical data from39

simple tasks (also a challenge in the first approach), driving the need for more complex tasks. For instance,40

(Linares et al., 2019) combined data from two task conditions to be able to dissociate perceptual biases41

from category biases. In order to dissociate sensory noise from approximate inference, (Lengyel et al., 2015)42

designed a dual-report estimation/confidence judgement task, and (Drugowitsch et al., 2016) designed a task43

requiring the accumulation of evidence across a variable number of pieces of evidence. Therefore separating44

sources of suboptimalities has required a need for using more complex tasks.45

Here, we followed the first approach. We derived a formalization of decision making in binary discrimi-46

nation tasks under common Gaussian assumptions and showed that data from classic discrimination tasks47

cannot distinguish between perceptual and categorical biases, nor between sensory noise and approximate48

computations. In order to distinguish between these different sources of suboptimality, we applied our for-49

malization to a hierarchical causal inference model of audio-visual integration. Analyzing previously collected50

data (Cappelloni et al., 2019), we showed that data from this task dissociates all four sources of suboptimal51

inference described above. We also applied our model to an extension of the task with variable duration52

(Cappelloni et al., 2020) and showed that both the computational approximation becomes coarser, and the53

observation noise becomes larger, as the duration of the stimulus becomes shorter.54

2 Results55

Our Results section is organized as follows: we first formalize the different sources of suboptimalities in the56

context of classic binary discrimination tasks and demonstrate how different sources of bias and variability57

cannot be dissociated using data from classic discrimination tasks. We next apply the same formalization to58

a recent task which does allow for such a dissociation. Finally, we show that the improvement in behavioral59

performance with increasing stimulus duration is the result of both less sensory noise and more precise60

computations.61

2.1 Sources of approximate decision-making in a binary discrimination task62

In traditional binary discrimination tasks where the observer has to compare a cue against a reference63

boundary, the observer’s responses can be summarized using a psychometric curve (observer reports measured64

as a function of cue position). The psychometric curve is commonly characterized by bias(Figure 1A) and65

a threshold (Figure 1B). The bias can be equivalently measured (Figure 1A) as the proportion of ‘right’66

responses for cue position at the midline or the point of subjective equality (PSE) which is the cue position for67

which the observer reports ‘right’ and ‘left’ with equal probability. The threshold (Figure 1B) is proportional68

to the inverse slope around the PSE.69

We formalize optimal decision-making by modeling it as Bayesian inference. We assume that the brain70

has learned an approximation to the generative model of the task, and that it inverts this model for inference71

and decision-making (Figure 1C). On every trial the experimenter chooses a ‘correct’ trial category (De) and72

a stimulus, i.e. cue (se). For concreteness, we will use a position discrimination task in line with the second73

part of the paper as an example but the formalization here holds in general. The observer observes a noisy74

version of the cue position that deviates from the experimenter defined value due to sources of noise that may75
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Figure 1: Modeling suboptimalities in perceptual decision making in a binary discrimination task: (A,B)
Predicted psychometric curve for a Bayesian observer. Responses can be summarized using the empirical
bias (or equivalently the point of subjective equality, i.e. PSE) as shown in A and the empirical threshold
(or equivalently the slope around PSE, i.e. sensitivity) as shown in B. (C) Top row: Stages of perceptual
decision making: In a binary discrimination task, where the goal is to discriminate which side of a reference
the presented cue came from, the Bayesian observer first infers the belief about the cue position (x). It does
so by combining the likelihood of the noisy observation (o) with its prior belief about the cue position. The
noisy observation differs from the experimenter defined cue position (se) due to external and internal sources
of noise. The ideal observer then infers the belief about the trial category (D) which is then converted to a
response in the decision making stage where the response is chosen according to Bayesian decision theory;
Middle row: Equivalent generative model formalization of the decision making process. Bottom row:
Suboptimalities in the decision making process. The observer response could differ from the experimenter
chosen correct trial category (DE) due to biases and noise/approximations associated with the different parts
of each model.
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be external or internal from the brain’s perspective. The ideal observer computes the posterior belief over76

the cue position and the trial category by inverting the generative model it has learned. They then convert77

this belief into a response that minimizes the loss/reward function of the task as formalized by Bayesian78

decision theory (Figure 1C, middle row) To account for deviations from the ideal observer, this model can be79

extended by adding potential sources of approximations and biases in the decision making process (Rahnev80

and Denison, 2018; Ma, 2019). Biases can arise at the perceptual, categorical and/or the response stage. The81

two principal forms of variability are observation noise and approximate computations (Beck et al. (2012)).82

Next, we briefly describe each source of suboptimality as it arises during the transformation from sensory83

observation to behavioral response (Figure 1C, bottom row).84

Observations: Observations are inherently noisy and possibly ambiguous giving rise to observation noise.85

Here, we include uncertainty from both external factors and internal factors, such as noise in the sensory86

periphery. In many cases, the magnitude of observation noise depends on the position of the cue. Such a87

dependence has been extensively studied in the context of Weber’s law, Steven’s power law etc. We follow88

Acerbi et al. (2014) who showed that such dependencies of observation noise on position can be accounted89

for by defining a nonlinear mapping from the external to an internal coordinate system in which noise is90

additive and Gaussian. For our later data analysis, we will fit this mapping directly to data (see Methods,91

and Figure 2 Figure supplement 1 for an illustration of this mapping).92

Perceptual inference: We assume that during perception, the brain infers beliefs about latent variables93

x, given its sensory observations, o. The resulting belief, p(x|o), is the product of the likelihood, p(o|x), that94

characterizes the observation process and the brain’s prior expectations about x. For low-level sensory latent95

variables like position, this relationship of sensory latent variables to sensory observations is learned over a96

long time, and generally assumed to be close to optimal. We therefore model deviations from optimality in97

the inference process by allowing the mean (perceptual bias) and variance of the observer’s prior to differ98

from the (optimal) task-defined distributions. This choice is also justified by the fact that the distribution99

of observations usually deviate drastically between experiments and natural sensory inputs, implying a100

mismatch in an observer’s natural prior (obtained through lifelong learning) and the optimal prior for the101

task.102

Categorical inference: Binary discrimination tasks introduce a binary variable, D, corresponding to the103

trial category that mediates the relationship between stimuli and correct responses, a relationship that we104

assume the observer has learned through instructions and task experience. For simplicity, and consistency105

with the task analyzed in the second part of this paper, we consider a simple localization task in which106

category D = 1 corresponds to locations to the right of the midline, x > 0, and category D = −1 corresponds107

to x < 0. However, any classification tasks in which the positions corresponding to each category i.e.108

p(x|D = −1) and p(x|D = +1) differ (e.g. different overlapping distributions as in (Drugowitsch et al.,109

2016)) are equally covered by this framework.110

Importantly, the experimenter-defined distribution over o and the observer’s perceptual prior over x111

specify a distribution over the trial category. For instance, in the absence of a perceptual bias, and in an112

experiment in which o < 0 and o > 0 occur equally often, then the implied distribution over D is flat,113

i.e. p(D = −1) = p(D = +1) = 0.5 (Figure 2B). On the other hand, if the observer has a negative114

perceptual bias, then they, over the course of the experiment, will more often perceive the category to be115

−1, rather than +1. However, this implied distribution over the trial category may now be in conflict with116

the experimenter’s feedback after each trial, which will typically (by design in most experiments) imply a117

balance of both categories (the case we assumed here). As a result, the observer may learn an additional118

bias over the categories to act in such a way as to (partially) compensate for their perceptual bias. In119

the generative model, such a bias is formalized as a categorical prior, which may deviate from both the120

distribution over D implied by the sensory prior, but also from the one implied by the relative frequency of121

correct choices of either kind (Figure 2E). We call this additional bias ‘categorical bias’ since it leads to the122

observer’s perceptual inference to be non-calibrated in the sense that its expectations about the observations123

now deviate from the actually observed distribution. In general, perceptual and categorical bias can act124

independently of each other and separating them using data may be a challenge, as shown in 2.1.1.125
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Approximate computations and behavioral responses: Given a posterior belief over the trial cate-126

gory, the optimal response minimizes the expected task defined loss under the posterior. In the case of binary127

discrimination tasks with equal reward for either choice, this results in a strategy where it is optimal to report128

the trial category for which the posterior is highest (Figure 2C). The fact that inferences in the brain are129

approximate introduces yet another source of suboptimality. Since these approximations influence behavior130

by way of the categorical belief, πD = p(D|o), we model the aggregate effect of all computational approxi-131

mations as resulting in an approximate posterior belief over the trial category. Inspired by sampling-based132

models of perception and cognition (Fiser et al. 2010), we chose to quantify the degree of approximation133

as the number of samples the brain uses to approximate the posterior. The approximation becomes more134

accurate as the number of samples increases, with infinitely many samples being equivalent to exact infer-135

ence. The observer chooses the response corresponding to the belief for which most samples were generated.136

For the case of a single sample, this results in probability matching, while larger numbers of samples can137

be equivalently interpreted as a softmax response strategy with a temperature parameter that is inversely138

related to the number of samples (Drugowitsch et al., 2016). We emphasize that this parameterization of139

the degree of approximation does not commit our model to a neural sampling-based implementation but is140

simply an intuitive and general way to quantify computational precision.141

Finally, we note that we also account for lapses (which are outside our Bayesian observer model frame-142

work) in order to model real data. We model lapses as occurring independently of the decision making143

process as shown in the generative model in Figure 1C. The lapse parameters in our model encapsulate144

any influences on the decision not yet captured, like choice error, loss of attention etc. Any motor-related145

response biases are also encapsulated in the lapse parameters that we fit for each observer (for details see146

Methods).147

2.1.1 Non-identifiability of different sources of suboptimality using observer responses in a148

binary discrimination task149

Having defined different sources of suboptimality raises the question of whether they can actually be in-150

dependently constrained using empirical data. It turns out that data from a simple binary discrimination151

task cannot distinguish between (a) perceptual bias and categorical bias and (b) degree of approximation152

(number of samples) and observation noise. This is because these four quantities combine to determine the153

empirically measured bias and sensitivity in a way that can not be disentangled. We have shown (Methods)154

that even with the extra suboptimality parameters, the observer response is given by the classic family of155

psychometric curves156

p(R|se) = λrλb + (1− λr)Φ

[
m(se)− empirical bias

empirical sensitivity−1

]
(1)

where λr is the lapse rate, λb is the lapse bias, Φ is the cumulative Gaussian distribution function, and m(se)157

maps the external cue location onto internal coordinates to account for non-additive noise. Importantly, the158

empirical bias is a function of the perceptual bias, the categorical bias, the observation noise, and the prior159

variance. The empirical sensitivity is a function of the observation noise, the accuracy of the computational160

approximations, and the prior variance (see Methods for full analytical relationships).161

Sources of bias: The empirical bias implied by the observer responses is the result of the priors in the162

observer ’s generative model of the task differing from those used by the experimenter. The ideal observer’s163

priors over the cue position and the category match those of the experimenter. The prior over cue position164

is typically centered on zero and the prior over the category is typically 50-50 as illustrated in Figure 2A165

and 2B. When an observer has a biased perceptual prior (Figure 2D), this implies a categorical prior that166

differs from 50-50 (orange shading in Figure 2D and 2E). Furthermore, the observer’s categorical prior may167

be different from that implied by the perceptual prior, resulting in a categorical bias (Figure 2E indicated168

by the red shading). The categorical bias also scales the perceptual prior to reflect the different categorical169

prior than that implied by the perceptual prior (Figure 2D). An observer’s perceptual and categorical priors170

together determine its empirical bias. Equation (1) demonstrates that the two biases are indistinguishable171

given a single measured psychometric function. This is also illustrated by the iso-contours in Figure 2I where172

an observed empirical bias (Figure 2G) can arise from infinite combinations of perceptual and categorical173

biases.174
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Figure 2: (A-C) Ideal observer for canonical task: zero mean prior that corresponds to the experimenter’s
prior (A), and 50-50 categorical prior (B) which we assume to be the correct one for the modeled experiment.
The response is chosen that corresponds to the category with the highest posterior belief (C). (D-E) Biased
observer: a perceptual bias can be modeled as a prior whose mean is shifted away from zero (D, orange). A
categorical bias manifests itself in a prior over the category D that differs from the distribution implied by the
perceptual prior and the distribution over observations (E, red). (F) We model approximate computations
by basing the response, R, on a finite number of samples drawn from the exact posterior, πD. One sample
results in probability matching, and ∞ samples correspond to exact inference. (G,I) Any empirical bias can
arise from different combinations of calibration and perceptual biases as illustrated by iso-contour lines in
(I) for different empirical biases (corresponding psychometric curves shown in G). Hatched region indicates
impossible combinations of perceptual and categorical bias. (H,J) As in (G,I) the observed empirical
threshold can arise from different combinations of number of samples and observation noise as illustrated by
iso-contour lines in J for different empirical log thresholds (corresponding psychometric curves shown in H)

Sources of noise: The observed empirical threshold depends on observation noise and the degree of175

computational approximation in the inference process. The ideal observer performs exact inference using the176

exact posterior probability over trial categories to choose the response that is most probable as illustrated in177

Figure 2C. Real observers, however, are necessarily approximate. We quantify the degree of approximation178

by the equivalent number of samples (infinite corresponding to exact inference, and one sample corresponding179

to probability matching). This results in a different response strategy as a function of the number of samples180

(Figure 2F). The observation noise and the number of samples together determine the empirical threshold.181

Equation (1) indicates that the two are indistinguishable given a single measured psychometric function.182

This is illustrated by the iso-contours in Figure 2J where an observed empirical threshold (Figure 2H) can183

arise from different combinations of observation noise and number of samples.184

2.2 Choice irrelevant cues in a multi-sensory causal inference task can be used185

to dissociate different sources of suboptimality186

We recently presented a task for which we demonstrated the ideal observer has a qualitatively different187

behavior than an approximate observer, regardless of their observation (sensory) noise (Cappelloni et al.,188

2019). This means that, in principle, it should be possible to use data from this task to infer sensory noise189

and degree of approximation separately. We will also show that, for this task, sensory prior and calibration190

prior have different effects on psychometric curves, implying that these two sources of suboptimality could,191

in principle, be dissociated using the empirical data.192

First, we briefly summarize the task from Cappelloni et al. (2019): Two brief (300 ms) auditory stimuli,193

a tone and noise, were presented at equal eccentricity on opposite sides of the midline (Figure 3A). The194

observer was asked to report on which side of the midline the tone appeared. Temporally paired with the195

auditory stimuli, two random visual shapes were presented on the screen at different positions depending196

on the condition. In the first “central” condition, the visual shapes were presented on the midline, at the197

center of the screen. In the “matched” condition, the two visual shapes were presented at the same locations198

as the two auditory signals, tone and noise. Importantly, the appearance of the visual cues were random199

and not paired in any way with tone and noise and hence contained no information about the correct choice200

(left/right) in both conditions. In the matched condition, however, the visual cues did contribute information201

about the location of the auditory stimuli. The ideal observer in this task performs inference over whether202

they are in the central or matched condition: in the central condition, the visual cues should be ignored203

and in the matched condition, the observed locations of the visual cues should be cue-combined with the204

locations of the auditory cues. This process can be formalized as “causal inference” (Körding et al., 2007;205

Shams and Beierholm, 2010) and is shown as a graphical model in Figure 3B where the variable C represents206

the condition from the experimenter’s perspective, or the causal structure from the brain’s perspective and207

determines whether auditory and visual signals are combined (for equations see Methods).208

Importantly, an ideal observer, i.e. without any biases and performing exact inference, has the same209

psychometric functions in both the central and matched conditions. This is in line with expectations based210

on the fact that the visual cues by themselves contain no information about the correct choice. However, it211
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Figure 3: Task paradigm involving choice uninformative cues allowing for a dissociation of different sources of
suboptimality. (A) On every trial, the observer observes four cues: a tone and a noise which are equidistant
from the midline but on opposite sides and two visual cues (shapes) that are either overlapping at the midline
in the central condition or aligned with the tone and noise in the matched condition. The pairing of shape and
sound are random, making the visual cues uninformative about the correct choice. (B) Generative model for
this task. The observer performs causal inference (Körding et al., 2007) to determine whether or not sounds
and visual cues have the same eccentricity, and whether to combine information across them.(C) Illustration
of how the visual cues affect the belief over the trial category. In the absence of visual cues, the belief over
the trial category is the area of the likelihood function to the right of midline (assuming a flat prior over the
inferred tone position and no biases). Assuming that the visual cues have a lower observation noise than the
auditory cues, visual cues that are aligned (matched condition) will result in a bimodal likelihood function
at the two cue positions. Since the larger of the two modes will always be on the same side as the mode
of the auditory likelihood, the ideal observer will choose the same response in both conditions. However,
since the left/right distribution of probability mass changes, an approximate observer (e.g. probability
matching) may produce different responses in the two conditions (D) Predicted psychometric curves from
an approximate Bayesian observer using realistic parameters (see fits to data below). (E) Power analysis
that shows the probability of getting substantial evidence (measured using Bayes factor) in favor of two
suboptimality extensions to the ideal observer model: approximate computations vs exact inference (solid
line), categorical bias vs a perceptual bias (dashed line). Traditional binary discrimination task provide zero
evidence in favor of both extensions. A similar plot using AIC for model comparison is shown in Figure 3
Figure supplement 1.
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turns out that the psychometric functions for each condition differ for an approximate observer in this task.212

Empirically the observer performance was also affected between central and matched conditions. Figure213

3C recapitulates the visual proof (Cappelloni et al., 2019). In brief, in the central condition, when the214

auditory cues are not combined with the visual cues, the posterior may be a wide Gaussian centered on215

the observation. The ideal observer will report the side with the higher probability mass. However, in the216

condition in which the visual cues are matched to the auditory cues in eccentricity, the resulting posterior217

will be more highly localized around the eccentricities given by the visual cues. Importantly, while the side218

on which the probability mass is higher does not change leading an ideal observer to make the same decision219

in both conditions, the relative probability mass changes between conditions. As a result, the behavior of220

an approximate observer will be different since their ‘confusion probability’ will depend on the relative mass221

on both side. Note that the amount by which the approximate observer’s curves differ between the two222

conditions decreases with increasing approximation quality (parameterized by smaller number of samples in223

our case).224

We performed a power analysis for the probability of finding substantial evidence in favor of approximate225

computations, where we defined ‘substantial’ as a Bayes factor greater than
√
10 (Kass and Raftery, 1995)226

when compared against the exact inference model (Figure 3E). We simulated data from the causal inference227

model by choosing the sensory parameters as the average fit parameters across 20 observers for a particular228

value of number of samples and categorical bias (psychometric curve shown in Figure 3D). Given the number229

of trials available in our dataset (8000 trials across all participants), we had more power to constrain the230

computational approximation parameter independent of the sensory noise as compared to independently231

constraining sensory and categorical bias. We note that our estimate of the power is a conservative under-232

estimate since the bias of the average observer considered here is smaller than that of the typical observer233

(since biases average out, unlike the computational approximation). We also performed the same power234

analyses using AIC instead of Bayes factor and obtained very similar results (see Figure 3 Figure supplement235

1).236

We next investigated the empirical signatures of the key suboptimalities in our model (Figure 4A).237

Traditional observation noise and perceptual bias, in the absence of computational approximations or a238

categorical bias, produce traditional sigmoidal psychometric curves that are identical for matched and central239

condition (Figure 4A “perceptual bias”). However, as soon as either the computations are approximate240

(Figure 4A “approximate inference), or the observer has a categorical bias (Figure 4A, “categorical bias”),241

the psychometric curves for central and matched condition deviate in characteristic ways. Despite the fact242

that the visual cues do not contain any information about the correct choice, an approximate observer’s243

performance improves substantially in the matched condition for intermediate eccentricities where the visual244

cues increase the certainty over the inferred category. A categorical bias, on the other hand, has an even245

more idiosyncratic effect on behavior. When it is “compensatory” to the perceptual bias, it reduces the246

overall bias as expected. However, it does so not by a simple shift in the psychometric function, but in a247

way that preserves the perceptual bias when the cue is at the discrimination boundary (zero), leading to a248

two-lobed adjustment to the psychometric curve (Figure 4A, “compensatory biases”). In our data, we find249

evidence for all these signatures of the different suboptimalities. Data from four example observers together250

with their model fits are shown in Figure 4B. We note that these signatures directly arise from the canonical251

extensions to the generative model, and were not the result of trying to post-hoc fit the data. In fact, it252

is hard to imagine an extension of a phenomenological model involving sigmoidal psychometric curves, e.g.253

by allowing for different slopes of biases across conditions, that would produce the predicted, and observed,254

behavior. (Also, see methods for a mathematical characterizations of these signatures.)255

2.3 Analysis of behavioral data in choice-uninformative cue task256

We next fit our approximate Bayesian observer model (Figure 3B) to the responses for each of the 20 individ-257

ual observers in our data set (Cappelloni et al., 2019). We obtain full posteriors over all model parameters258

under weakly informative priors for each of the 20 observers (see Methods for fitting details). The key pa-259

rameters of interest are the number of samples that quantify the degree of approximation and the categorical260

bias. Categorical bias represents the choice prior’s deviation from what is implied by the perceptual bias.261

The number of samples lies between one (coarsest approximation) and ∞ (exact inference). Since drawing262

100 samples is indistinguishable from exact inference in our case, we only consider the range from 1 to 100,263
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Figure 4: Empirical signatures of each suboptimality included in the model, and data from example observers.
(A) Model predictions from left to right: (a) perceptual bias with no categorical bias and exact inference
(b) categorical bias with no perceptual bias and exact inference (c) both perceptual and categorical biases
such that the categorical bias is ’perfectly’ compensatory, i.e. the empirically bias under this combination of
perceptual and categorical biases is 0; exact inference (d) approximate inference with no bias. (B) Data from
example observers responses and model fits: (a) perceptual bias with small categorical bias (b) categorical
bias with small perceptual bias (c) both perceptual and categorical biases such that the categorical bias is
compensatory, exact inference (d) approximate inference with no bias.
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Figure 5: Model fitting and model comparison: (A) Responses from two example observers along with
approximate Bayesian observer fits. Errorbars indicate 1 s.e.m. The dotted lines show the best fit ideal
observer (unbiased and exact). (B) Model comparison between the approximate inference model and two
alternate models: (i) exact inference model without categorical bias and (ii) exact inference with categorical
bias. Positive Bayes factors indicate evidence in favor of the approximate inference model and values greater
than

√
10 indicate substantial support for the approximate inference model. (C) Likelihood function showing

likelihood of the data for different values of number of samples marginalizing out the other parameters. Thin
graylines represents individual observers with the thin black lines indicating the example observers in A.
The thick line represents average across observers. (D) Posterior distribution over the categorical bias for
each observer indicated by thin gray lines with black lines indicating example observers in A.

in addition to exact computations. We will compare the following three models: (a) exact inference without264

a categorical bias (but with a perceptual bias), (b) exact inference with perceptual and categorical bias,265

and (c) approximate inference with both kinds of biases and a finite number of samples characterizing the266

approximate computations. Approximate computations are the main focus for the remainder of the Results267

section.268

Responses of two example observers were chosen to examine the model predictions more closely as shown269

in Figure 5A. Observer 1 was close to unbiased with approximate computations. Observer 2 suffered from270

both a perceptual and categorical bias and was also best explained assuming approximate computations.271

Data from both observers deviate from the assumption of exact inference (Figure 5A, dotted lines correspond272

to the null model, i.e. unbiased exact inference). All models explained the variance in the data reasonably273

well. There was a modest improvement for the model including suboptimalities, even when accounting for274

the increase in number of parameters (Figure 5 Figure supplement 1). We also performed a Bayesian model275

comparison using Bayes Factors (BF) to quantify how much one model is favored by the data compared to276

another model (Figure 5B). All our comparisons compare the full approximate inference model to its simpler277

alternatives, with BF’s larger than 1 indicating evidence in favor of the approximate model, and greater than278 √
10 indicating substantial evidence in favor of the approximate inference model (Kass and Raftery, 1995).279

The data provides substantial support in favor of the approximate inference model over the exact inference280

model without categorical bias for ten of 20 observers and in favor of the approximate inference model over281

the exact inference model with categorical bias for 4 observers. Data from three of 20 observers provide282
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strong evidence (BF> 10) for the approximate inference model as compared to the null model (unbiased283

exact inference).284

The degree of approximation that best describes the data is shown individually for each observer in285

Figure 5C. Interestingly, for most observers, both extremes (one sample and 100 samples) are favored by286

the data, suggesting that there is a wide range of degrees of approximations underlying the task-relevant287

computations for the observers in our population. However, care must be taken to avoid over-interpreting288

the individual observer posteriors as they are wide due to the limited data per observer.289

Figure 5D shows the joint posteriors over perceptual bias and categorical bias for individual observers.290

As expected from our power analysis (Figure 3E), for most observers there is little information constraining291

biases from the limited amount of data that we have for each observer. However, for a few observers (e.g.292

observer 2) the posteriors are markedly different from the prior clearly constraining both types of biases.293

2.3.1 Aggregate observer analysis294

In order to pool statistical power across observers, we also perform our analysis on an aggregate observer295

whose responses are the combined responses across observers. The way we construct the aggregate observer296

from our data is equivalent to fitting a hierarchical model across observers allowing for variability across297

observers in all parameters except categorical bias and number of samples. Therefore the estimated categor-298

ical bias and number of samples are the average values across the population. We construct this aggregate299

observer by aligning the data from each individual observer in such a way as to account for their individ-300

ual lapses, perceptual bias – all parameters except for number of samples and categorical bias (for details301

see Methods). If each observer performed exact inference and had no categorical bias, the transformed302

psychometric functions from all observers would be identical.303

The aggregate observer data are shown in Figure 6A where the top panel shows the average psychometric304

curves for the central and matched conditions whereas the bottom row shows the average difference. The305

bottom panel is based on a paired comparison (difference) of matched and central condition per observer306

and clearly shows the hallmark of approximate inference in our task: enhanced performance for intermediate307

eccentricities, but little change for zero and large eccentricities. Our analysis of this aggregate observer308

strengthens the conclusion from the analysis of the individual observer data: the data decisively favors the309

approximate inference model (Figure 6C). The degree of approximation that best fits the data is based on a310

single sample, i.e. a coarse approximation. Its bias is not well-constrained by the data (Figure 6D). Finally,311

the full model accounts for marginally more variance in the data after accounting for the increase in number312

of parameters (Figure 5 Figure supplement 1).313

2.4 Effect of stimulus duration on degree of approximation and sensory noise314

Most theories of approximate inference (whether parameteric or sampling-based) predict that computations315

become more exact over time (Fiser et al., 2010; Pouget et al., 2013; Ma, 2019). However, testing whether316

this prediction holds in the case of the brain is complicated by the fact that observation noise is also likely317

to decrease with stimulus duration (Lengyel et al., 2015). Since our task allows us to dissociate the two318

of them, we repeated the experiment for different durations of the stimulus(Cappelloni et al., 2020). A319

change in sensory noise will manifest itself in a change in the overall slope of the psychometric functions. A320

change in computational accuracy affects both slope and the difference between the matched and the central321

conditions in a way that interacts with the observer’s biases.322

Figure 7A shows the data from an example observer, showing a change in the difference between matched323

and central condition for increasing stimulus durations (top: 100 ms, middle: 300 ms, and bottom: 1000 ms).324

As expected, the overall slope of the psychometric functions increases with stimulus duration, compatible325

with a decrease in sensory observation noise. Additionally, the difference between the central and the matched326

conditions clearly decreases between 100 ms and 300 ms. While the change from 300 ms to 1000 ms is less327

obvious, model fitting confirms that the data for 300 ms favor a coarser approximation than the data for328

1000 ms (Figure 7D).329

We perform Bayesian model comparison using Bayes Factors as before, now comparing the full approxi-330

mate inference model with a degree of approximation (number of samples) that depends on stimulus duration,331

to two simpler models: first, (a) an approximate inference model with a fixed degree of approximation across332
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Figure 6: Model comparison for aggregate observer. (A) Model fits to aggregate observer data. Shading
represents 1 s.e.m uncertainty intervals of posterior predictive distribution. The aggregate observer is con-
structed by combining normalized data from all individual observers after correcting for individual perceptual
biases, observation noises and lapse parameters. The dotted line shows the fit ideal observer. (B) Mean
difference between the probability of “right” responses between matched and central conditions condition.
The dotted line shows the ideal observer prediction. Shading represents 1 s.e.m confidence intervals. (C)
Model comparison (as in Figure 5C) shows overwhelming support for the approximate inference model over
exact computations. (D) Likelihood of number of samples as in Figure 5D clearly favoring small number of
samples. (E) The slight shift in the posterior over categorical bias for the aggregate observer provides weak
evidence for a categorical bias on the population level.
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all stimulus durations, and second, (b) an exact inference model (Figure 7B). Each of these three models333

includes for both perceptual and categorical biases. All models explained the variance in the data reasonably334

well (Figure 5 Figure supplement 1). We find that the data for eight of 20 observers provides substantial335

evidence in favor of approximate inference over exact inference, and for six of twenty observers in favor of a336

degree of approximation that changes with stimulus duration (Figure 7B).337

Furthermore, and independent of our finding of the change in degree of approximation, we find that338

observation noise decreases as duration increases across the entire range of stimulus durations up to 1000ms339

(Figure 7C). As before, we find that the data from individual observers tends to favor either low or high340

numbers of samples, with a weak trend favoring higher numbers of samples for longer stimulus durations341

(Figure 7D). However, we clearly do not have enough data to draw reliable conclusions for most observers.342

In order to again increase statistical power, we pool the data to form an aggregate observer (Methods).343

For all stimulus durations we find the pattern in the aggregate data that is characteristic of approximate344

inference (Figure 8A). Furthermore, we find that on the population level the data contains substantial345

evidence for an approximate inference model whose degree of accuracy changes with stimulus duration over346

an exact inference model and one whose degree of approximation is independent of duration (Figure 8B).347

Importantly, and in line with our initial hypothesis, we find that the data implies a systematic change from348

coarser to finer approximate computations as duration increases (Figure 8C).349

3 Discussion350

Our work makes several conceptual and empirical contributions. First, we have extended the classic ideal351

observer model by four key sources of potential suboptimality in the context of the generative model, inde-352

pendent of how the inference process is implemented algorithmically. We showed that data from a simple353

discrimination task cannot dissociate the two sources of bias in our model, nor the two sources of variability354

(noise). Second, we showed that a more complex task involving causal inference containing choice irrelevant355

cues that affect the performance of suboptimal observers differently from ideal observers can dissociate be-356

tween all these sources of suboptimality. Third, we used psychophysical data from that task to infer the357

sources of suboptimality for each observer. We found clear evidence for approximate computations, separate358

from observation noise, in both individual observers and on the population level. Finally, we found that359

both observation noise, and the accuracy of the approximate computations, improved with the duration of360

the presented stimulus across the entire range of tested stimulus durations: from 100 ms to 1000 ms.361

Our Bayesian observer framework formalizes the prescription in (Rahnev and Denison, 2018) to construct362

observer models that quantitatively characterize the different sources of suboptimality in perceptual decision363

making. There are two principal ways in which suboptimality parameters can be added in a Bayesian frame-364

work: either by adding parameters to the components of the generative model (e.g. priors and likelihoods),365

or the components of the discriminative model (e.g. criterions or inference noise). Our work follows the the366

generative approach, in line with the idea that the brain learns a generative model of its inputs (“analysis367

by synthesis” Yuille and Kersten (2006); Lee and Mumford (2003)). Further it is related to earlier work368

quantifying deviations from optimality in a task by allowing for priors that were different from those defined369

by the experimenter (Stocker and Simoncelli, 2006; Odegaard et al., 2015; Noel et al., 2021). However, our370

approach differs from prior work that followed the discriminate model approach and added suboptimality371

parameters to the discriminative ideal observer model (e.g. (Brunton et al., 2013; Drugowitsch et al., 2016)).372

An important test for both generative and discriminative approaches will be how well the suboptimalities373

inferred in either framework will generalize to other tasks or contexts. As a practical concern we note that374

beyond extremely simple stimuli and tasks, the exact discriminative model quickly becomes complex and375

intractable, limiting the feasibility of the discriminative approach for natural or complex stimuli and tasks.376

Taking a generative approach allows one to define the perceptual bias and the categorical bias in a way377

that directly relates to discrepancies between the statistics of natural inputs and those in a given task. Task378

statistics are rarely similar to natural statistics and earlier studies have indeed found that biased responses379

could be explained as a result of observers using their natural perceptual priors instead of those implied by380

a given experiment (Stocker and Simoncelli (2006); Odegaard et al. (2015)). How the brain resolves this381

conflict between priors learned outside and inside the context of a specific task might provide insights into the382

brain’s learning and compensation strategy among neurotypical and patient populations (see e.g. Noel et al.383
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Figure 7: Individual observer analysis of variable duration task data: (A) Example observer psychometric
curves (1 s.e.m. errorbars). Solid lines represent fits of approximate inference model whose degree of
approximation varies with duration. Dotted lines represent exact inference model fits. (B)Model comparison
of the approximate inference model with varying degree of approximation with two alternate models: exact
inference model and approximate inference model with fixed degree of approximation. All models include
perceptual and categorical biases. Positive Bayes factors indicate evidence in favor of the approximate
inference model with varying degree of approximation with duration. (C) Observation noise as a function
of duration for individual observers (thin gray lines) and population average (thick black line). Statistical
significance assessed by a right tailed paired t-test (p = 2.5 × 10−5 for change from 100 ms to 300 ms and
p = 2.8×10−4 for difference between 300 ms and 1000 ms). Significance is consistent under a non-parametric
sign test. (D) Likelihood function for number of samples marginalizing out the other parameters for each
duration. Individual observers (thin lines) and population average (thick line).
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(2021)). By formulating decision priors as parameters in the generative model, we provide a systematic way384

of characterizing any deviation between decision and perceptual priors as categorical biases in the model,385

likely relevant for a wide range of studies into human decision-making.386

Perceptual biases in decision making could also arise in the likelihood as opposed to the prior (Stocker387

and Simoncelli, 2005). While our formalization can easily be extended to allow for this additional source388

of suboptimality, under Gaussian assumptions for likelihood and prior, the biases in the likelihood and the389

prior are mathematically equivalent. Therefore, having an additional bias term in the likelihood would not390

change the explanatory power of the model in the context of our dataset.391

We analytically showed the non-identifiability of the different sources of suboptimality. This was noticed392

earlier (Acuna et al., 2015; Linares et al., 2019; Wyart and Koechlin, 2016; Drugowitsch et al., 2016),393

leading to efforts to break them by using a more sophisticated task design. For example, Acuna et al.394

combined the results from an estimation task with those of a categorization task to dissociate sensory noise395

from approximate inference and did not find evidence of the latter. Drugowitsch et al. used an evidence396

integration task in which they varied the number of to-be-integrated stimulus frames in order to dissociate397

sensory from computational noise, finding that computational noise was an important source of behavioral398

suboptimality. Linares et al. combined data from two discrimination tasks with two different discrimination399

boundaries to dissociate between perceptual and categorical priors but did not distinguish between sensory400

noise and computational approximations. The data analyzed in our work has the advantage of being based on401

a single task (auditory discrimination with respect to the midline) with two randomly interleaved conditions402

(central and matched) of equal duration. This minimized changes between different tasks (e.g. estimation403

vs discrimination) potentially relying on different representations and decision strategies.404

Our task design allows us to directly estimate the importance of observation noise and of approximate405

inference as a function of time. Traditionally, longer stimulus durations are thought to trigger an evidence406

integration process during which the brain averages away noise (Gold and Shadlen, 2007; Stine et al., 2020)407

explaining the observed improvement in behavioral performance. However, most approximate inference408

computations make the same prediction due to better approximations over time (Lengyel et al., 2015) – either409

due to their iterative nature as in MCMC sampling (Fiser et al., 2010) or stochastic implementation Pouget410

et al. (2013). Interestingly, we found evidence that both observation noise and degree of approximation411

changed across the entire range of stimulus durations tested (Figure 7C,8C;Figure 7 Figure supplement 1).412

Traditionally, perceptual inference has been conceptualized as a statistical problem of finding a signal in413

the noise (Swets et al., 1961). This framing has lead to non-bias sources of suboptimality being introduced414

as external and internal noise (Lu and Dosher, 2008). In our model, external noise is included in the415

observation noise while internal noise is split into two parts. Noise that is associated with the sensor416

generating the observation (e.g. the retina) is included in the observation noise. On the other hand, internal417

noise associated with increased variability during downstream computations contributes to approximate418

computations.419

Our work also suggests a new explanation for improvements in observer performance in the presence420

of choice-uninformative cues in general: approximate inference. For instance, a previous study found that421

non-spatial auditory signals can improve performance during a visual search task in a cluttered environment422

(Van der Burg et al., 2008).423

Our mathematical formalization also deviates from traditional approaches in two more minor ways. First,424

we allow for a flexible mapping from external to internal sensory “coordinates”. The observation noise in425

external coordinates has long been known to be stimulus dependent. However, the internal coordinates426

are chosen such that the observation noise in internal coordinates becomes additive and Gaussian, thereby427

making further inferences analytically tractable. This formulation is a modification of the mapping used428

by (Acerbi et al., 2014) providing a more intuitive understanding of the mapping parameters and contains429

purely linear (as used in most Bayesian models) and purely logarithmic (Fechner, 1860) as special cases430

instead of limiting cases as in (Acerbi et al., 2014). Second, we characterize lapses in observer responses431

using two parameters, lapse rate and lapse bias, reflecting an assumption about the underlying generative432

model about how they arise: as a fraction of trials in which the observer strategy is qualitatively different433

from their usual stimulus-based strategy, possibly reflecting lapses in attention as commonly assumed, or434

exploratory strategies (Pisupati et al., 2021).435

Perceptual decision-making is suboptimal in many ways. How to best formalize the sources of these sub-436

optimalities in order to arrive at models that better describe behavior, and that allow for deeper insights into437
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the underlying beliefs and computations, is an open question (Rahnev and Denison, 2018). Our work demon-438

strates the usefulness of a formalization in terms of the generative model and approximate computations,439

when applied to data from a task of higher complexity than classic discrimination tasks.440

4 Methods441

4.1 Bayesian observer model for binary discrimination tasks442

We model observer responses in a binary discrimination task using the Bayesian observer model presented443

in Figure 1C. The process of making a response based on sensory observations involves two stages: (a) the444

perceptual decision stage and (b) the response stage. Each stage describes a particular stage of the decision445

making process and is used to systematically parameterize any deviation from optimality. We use the case of446

auditory binary discrimination as an example for describing the model but the model is general for any task447

where the observer has to classify a presented cue between different categories. In the auditory discrimination448

task considered, the observer has to report which side of the midline, (i.e. a decision boundary), the auditory449

tone/cue came from.450

We model the sensory observations of the observer as deviating from the veridical position due to external451

and internal observation noise. We model this as a zero mean additive noise added to the veridical position452

on each trial as given in Eq. (2)453

p(o|se) = N (o; se, σ
′2) (2)

where N (x;µ, σ2) denotes the normal PDF with a mean µ and variance σ2. This model assumes that the454

observations are unbiased. The variance of the noise in general can be dependent on the tone position (Webers455

law, Stevens law etc), i.e. σ′2 = f(se) where f is some function parameterizing the sensory noise. However,456

a position dependent variance makes the sensation distribution non gaussian which makes modeling further457

computations analytically intractable. However we can transform the cue position to internal coordinates458

(Acerbi et al. (2014)) such that the observation noise is cue independent in the internal coordinates as shown459

in Eq. (3)460

p(o|sinte ) = N (o; sinte , σ2) (3)

We use a transformation461

sinte = m(se) = sgn(se)

[
α

( |se|
se,max

)d
+ (1− α)

log(1 + |se|)
log(1 + se,max)

]
(4)

where se is the veridical cue position and sinte is the transformed value in internal coordinates. α controls462

the interpolation between a pure power law (Steven’s law, α = 1) to a purely logarithmic mapping (Weber’s463

law, α = 0). The exponent d models the power law coefficient where d = 1 corresponds to a purely linearly464

mapping which is the traditional assumption in Bayesian models for perceptual decision making. se,max465

is used to define the maximum value that the cue position can take such. This ensures any value when466

transformed to internal coordinates lies between -1 and 1. While the transformation holds for cue positions467

greater than se,max, we can define the se,max as the edge of the screen in the experiment such that for any468

experiment, all cues lie within the specific maximum values. Since cue positions for most experiments defined469

in terms of visual angle are circular variables, the cue position in Eq. (4) can be shifted to lie within the470

principle range. The illustration of transformation of observation noise in internal coordinates is illustrated471

visually in Figure 2 Figure supplement 1472

The perceptual decision stage describes how observers infer the beliefs about the latent causes that473

generated the sensory input. We consider two types of latent variables in the generative model: (a) perceptual474

latents that model the generative process for the observer’s observations and (b) task dependent latents that475

model the influence of task learning on the perceptual latents. In the discrimination task, the perceptual476

latent is the inferred tone position. We model all inferred variables to be in internal coordinates so we model477

the likelihood of the inferred tone position given in Eq. (5) to have the same form as Eq. (3) thereby478

assuming that the observers have learned a good estimate of their observation noise over lifelong learning.479
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p(o|x) = N (o;x, σ2) (5)

The task dependent latent is the decision variable (denoted by D) that represents the side of the decision480

boundary (assigned as the midline/zero without loss of generality) that the tone came from. The distribution481

over the inferred tone position conditioned on the decision variable is proportional to the product of two482

components as given in Eq. (6)483

p(x|D) ∝ fnatural(x)ftask(x|D) (6)

The proportionality constant can be obtained by integrating Eq. (6) over the support of x. The first484

component fnatural(x) represents the natural prior over tone positions that the observer has learned over485

lifelong learning independent of performing the task. We model this component as a gaussian distribution486

as given in Eq. (7)487

fnatural(x) = N (x;µ, σ2
p) (7)

The second component partitions the space of x conditioned on the value of D. Denoting the value of D488

as 1 if the tone position is to the right of midline and -1 if the tone position is to the left of the midline, we489

define ftask(x|D) as the approporiate partitioning of the space of x depending on D as written compactly in490

Eq. (8)491

ftask(x|D) = H(Dx) (8)

where H(x) is the heaviside function. The prior belief over D is modeled as a Bernoulli distribution with492

a prior β′ = β +Φ
(
µ
σp

)
(Eq. (9)) where β is the categorical bias.493

p(D) = Ber(D;β′) (9)

Defining the prior over x as given in Eq. (6) allows us to model task specific beliefs for each partition494

as specified by the prior belief over the decision variable (Eq. (9)) but also incorporate observer’s natural495

belief over the task variable (Eq. (7)) within each partition. The observer may or may not maintain separate496

task specific beliefs over the tone position. Our framework allows us to model the case where the observer497

does not have a separate task specific belief as is traditionally modeled when β is equal to the area of the498

natural component to the right of the midline which is Φ
(
µ
σp

)
where Φ is the standard cumulative Gaussian499

distribution. Therefore any deviation of β from Φ
(
µ
σp

)
indicates the presence of a separate task specific500

belief that we refer to as categorical bias.501

The response stage describes how observers convert their inferred belief about the decision variable into502

a response. Bayesian Decision theory provides a formal method of translating the posterior distribution over503

beliefs into observer responses by minimizing the task specific loss function, i.e.504

R∗
BDT = arg min

r∈−1,1

∑
d∈−1,1

L(D = d,R = r)p(D = d|o) (10)

For the discrimination task with a 0-1 loss where the loss function is 0 if the observer reports the correct505

side and 1 otherwise, the optimal strategy is to choose R∗
BDT = 1 if p(D = 1|o) > 0.5 and R∗

BDT = −1506

otherwise. However, the observer necessarily approximates the computation of p(D = 1|o) as exact Bayesian507

inference is intractable. We quantify the degree of approximation using a sampling based scheme where the508

observer uses a particular number of samples to approximate the posterior as given in Eq. (11)509

p̂(D|o) = 1

nsamp

nsamp∑
i=1

Di (11)

where Di ∼ p(D|o). Therefore under such an approximation scheme, the observer response strategy510

becomes511

RBDT = I[p̂(D|o) > 0.5] (12)
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Intuitively, the observer draws nsamp samples from the posterior over D and chooses the side with the512

majority number of samples.513

The observer responses could, however, deviate from RBDT due to other external factors like attentional514

lapses, motor error etc. We model lapses as an independent corruption of the response (which we call515

lapse responses) by two variables lapse rate (λr) and lapse bias (λb). Lapse rate models the frequency of516

lapse responses and lapse bias models any bias towards D=1 while making a lapse response. This provides517

an alternate parameterization of two lapses that characterize the upper and lower offset in psychometric518

curve functions commonly used to model responses in binary discrimination tasks Fründ et al. (2011).519

Mathematically, this is given in Eq. (13)520

R = lRlapse + (1− l)RBDT (13)

where l indicates whether or not lapse occured on a particular trial and is modeled as a bernoulli variable521

as given in Eq. (14) and Rlapse models whether the observer made a response 1 or -1 which is also modeled522

as a bernoulli variable as given in Eq. (15)523

l ∼ Ber(l;λr) (14)

Rlapse ∼ Ber(Rlapse;λb) (15)

The distribution over observer responses for a given observation can be obtain by marginalizing over l524

and Rlapse in Eq. (13) using Eqs. (14) and (15) as given in (16)525

p(R|o) = λrλb + (1− λr)p(RBDT|o) (16)

While Eq. (16) describes the observer response for a given observation, this cannot be measured directly526

by the experimenter. In turn they can only measure the observer response for a given se which forms the527

psychometric curve. In order to evaluate the psychometric curve, we have to marginalize across all sensory528

observations in Eq.(16) as given in Eq. (17)529

p(R|se) =
∫
p(R|o)N (o;m(se), σ

2)do (17)

The integral in Eq.(17) is generally intractable but we derive an analytical approximation which is given530

in Eq. (18)531

p(R|se) = λrλb + (1− λr)Φ

(
m(se) + f(µ, σ2

p, β, σ
2)

g(σ2, σ2
p,nsamp)

)
(18)

The effective bias f(µ, σ2
p, β, σ

2) is532

f(µ, σ2
p, β, σ

2) =
σ

√
γp

[
− µ

σp

(
1−

√
1− γp

)
+Φ−1(β′)

]
(19)

where γp is the cue combined weight on the observation, i.e.
σ2
p

σ2
p+σ

2
a
, β = β′ − Φ

(
µ
σ2
p

)
is the categorical533

bias and Φ−1 is the standard normal quantile function. The effective threshold is534

g(σ2, σ2
p,nsamp) = σ

{
1 +

ψ1[0.5(nsamp + 1)]

γpψ1(1)

}
(20)

where ψ1 is the trigamma function. The full derivation of Eq. (18) is given in the following section.535
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4.2 Derivation of Bayesian observer responses in binary discrimination task536

In this section, we derive the analytical approximation for a Bayesian observer in binary discrimination tasks,537

i.e. Eq. (18) in the previous section. We start with the response function (Eq. (12)) where the probability538

of making a “right” response is given by539

RBDT = I[p̂(D = 1|o) > 0.5] (12)

Given that p̂(D = 1|o) is a sample mean based estimate of p(D = 1|o) using nsamp samples, the probability540

that p̂(D|o) is greater than 0.5 is the probability that sum of nsamp random draws from the Bernoulli541

distribution with probability p̂(D = 1|o) is greater than 0.5nsamp. This can be written in terms of the542

Binomial CDF Φb as given in Eq. (21)543

p(RBDT = 1|o) = 1− Φb[0.5nsamp, nsamp, p(D = 1|o)] (21)

We can use the property relating the Binomial CDF to a Beta CDF to obtain a continuous expansion of544

Eq. (21) in terms of the beta cdf (Φβ) as given in Eq. (22)545

p(RBDT = 1|o) = Φβ [p(D = 1|o); 0.5(nsamp + 1), 0.5(nsamp + 1)] (22)

The advantage of Eq. (22) over Eq. (21) is that it provides an expression for the probability of the trial546

category that is approximated using nsamp and interpolates to continuous values of nsamp. This is useful for547

optimization and analytic purposes. Eq. (22) can be rewritten in terms of the definition of the Beta CDF548

as given in Eq. (23)549

p(RBDT = 1|o) = Eζ [ζ < p(D = 1|o)] (23)

where ζ ∼ Beta[0.5(nsamp +1), 0.5(nsamp +1)] is a beta random variable. The inequality in Eq. (23) can550

be written in terms of the posterior odds over the trial category as shown in Eq. (24)551

p(RBDT = 1|o) = Eζ
[

ζ

1− ζ
<

p(D = 1|o)
p(D = −1|o)

]
(24)

We can use Eqs. (5) to (9) to expand Eq. (24) to get Eq. (25)552

p(RBDT = 1|o) = Eζ

 ζ

1− ζ
<

Φ(
oγp+µ(1−γp)

σ
√
γp

)Φ(− µ
σp

)β′

Φ(− oγp+µ(1−γp)
σ
√
γp

)Φ( µσp
)(1− β′)

 (25)

We can rearrange Eq. (25) as follows553

p(RBDT = 1|o) = Eζ

o > −µ (1− γp)

γp
+

σ
√
γp

Φ−1

[
1 +

(1− ζ)β′Φ(− µ
σp

)

ζ(1− β′)Φ( µσp
)

]−1
 (26)

Eq. (26) shows an equivalence between the Bayesian observer and a signal detection theory model of554

decision making where the criterion is now stochastic for finite nsamp and reduces to a deterministic criterion555

for exact inference. Eq. (26) provides the probability of response for a particular sensory observation o556

which is inaccessible to the experimenter. The experimenter measures the probability of responding “right”557

for a value of se that they vary to get the psychometric curve. Therefore, to get the probability of making558

a response RBDT = 1 for a given s, we have to compute the expected probability of Eq. (26) under the559

generative process of o given in Eq. (17) as shown in560

p(RBDT = 1|se) = EoEζ

o > −µ (1− γp)

γp
+

σ
√
γp

Φ−1

[
1 +

(1− ζ)β′Φ(− µ
σp

)

ζ(1− β′)Φ( µσp
)

]−1
 (27)

Since, the expectation is commutative, we can reorder the expectation above and write it in terms of the561

normal CDF to get562
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p(RBDT = 1|se) = EζΦ


m(se) + µ

(1−γp)
γp

− σ√
γp
Φ−1

[
1 +

(1−ζ)β′Φ(− µ
σp

)

ζ(1−β′)Φ( µ
σp

)

]−1

σ

 (28)

Using an approximation that Φ−1(x) ≈ cs−1(x) where s is the logistic sigmoid function (see equivalence563

analysis in (Drugowitsch et al., 2016)), we can simplify Eq. (28) to get564

p(RBDT = 1|se) = EζΦ

(
m(se) + f(µ, σ2

p, β, σ
2)− σ√

γp
Φ−1(ζ)

σ

)
(29)

where

f(µ, σ2
p, β, σ

2) =
σ

√
γp

[
− µ

σp

(
1−

√
1− γp

)
+Φ−1(β′)

]
and β = β′ − Φ

(
µ
σ2
p

)
is the categorical bias565

We can also approximate Φ−1(ζ) with moment matched gaussian distribution that has a mean of 0 and566

variance 2c2ψ1(0.5nsamp+1) where ψ1 is the trigamma function and c is the approximation constant relating567

the cumulative normal cdf to a logistic sigmoid, i.e. Φ−1(x) ≈ cs−1(x). We can analytically evaluate the568

expectation in Eq. (29) under this normal approximation to get Eq. (18)569

p(R|se) = λrλb + (1− λr)Φ

(
m(se) + f(µ, σ2

p, β, σ
2)

g(σ2, σ2
p,nsamp)

)
(18)

where570

g(σ2, σ2
p,nsamp) = σ

{
1 +

ψ1[0.5(nsamp + 1)]

γpψ1(1)

}

4.3 Task description for the choice uninformative cue tasks571

We briefly describe the task in Cappelloni et al. (2019) which we refer to as the choice-uninformative cue572

task. On each trial, the observer observes two auditory stimuli: a tone (harmonics of 220 Hz) and noise.573

The noise was a randomly generated pink noise pattern with energy between 220 and 4000 Hz. Both the574

tone and noise had a with a 1/f spectral envelope. The auditory stimuli were accompanied with two visual575

shapes which were regular polygons inscribed in a circle with diameter 1.5 deg. The polygons were generated576

with constant luminance, saturation and opposite hues with number of sides randomly generated between577

four and eight such that the sides had different shapes on each trial. On every trial, the observer fixated at578

the center and observed the visual stimuli that appeared 100 ms before the auditory stimuli. The auditory579

stimuli were presented for 300 ms and both the auditory and visual cues ended together. The visual stimuli580

were presented at the midline in the “central” condition and aligned in eccentricity with the auditory stimuli581

in the “matched” condition. The observers had to report the side of the tone at the end of the trial. The582

eccentricities tested were 0.625, 1.25, 2.5, 5 and 10 degrees (both left and right) and there were 40 trials per583

condition resulting in a total of 800 trials across all conditions per observer.584

In the variable duration version of the task (Cappelloni et al., 2020), the stimuli were the same but585

now the visual and auditory cue occurred concurrently. The four cues were presented for three different586

durations: 100 ms, 300 ms and 1000 ms. The stimuli were present in size 1 up 1 down staircase tracks587

that were interleaved with the separation between the tone and noise doubling when the observer made an588

incorrect response and reducing by a factor of 21/3 when the observer made a correct response.589

4.4 Bayesian observer model description for the choice uninformative cue task590

We extend the Bayesian observer model presented in section 4.1 to model auditory discrimination in the591

presence of choice uninformative visual cues. The observer’s generative model in this task is given in Figure592
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3C where we present only the sensation and perception stage as the response stage is same as the Bayesian593

observer model in Figure 1C. The observer observes a tone and a noise which are drawn from the veridical594

values sa and −sa corrupted by sensory noise as given in Eq. (30) where the cues are first transformed to595

internal coordinates using a mapping function m [Eq. (4)]596

p(otonea , onoisea |sa) = N
[
otonea ;m(sa), σ

2
a,tone)

]
N
[
onoisea ;−m(sa), σ

2
a,noise)

]
(30)

Similarly the observer observes a right and left visual cue which are drawn from the veridical values sv597

and −sv corrupted by sensory noise as given in Eq. (31) where the cues are first transformed to internal598

coordinates using a mapping function m [Eq. (4)]599

p(orightv , oleftv |sv) = N
[
orightv ;m(sv), σ

2
v)
]
N
[
oleftv ;−m(sv), σ

2
v)
]

(31)

The likelihood of the inferred tone position mirrors the generative process as in the case of the Bayesian600

observer [Eq. (5)]. This is under the assumption that the observer has learned the task and combines601

information from both tone and noise observations to infer the belief over tone position as given in Eq. (32)602

p(otonea , onoisea |xa) = N
[
otonea ;xa, σ

2
a,tone

]
N
[
onoisea ;−xa, σ2

a,noise

]
(32)

Similarly the likelihood of the right visual cue mirrors the generative process given in Eq. (31) under the603

assumption that the observer uses both right and left visual cue information to infer the belief over the right604

visual cue position as given in Eq. (33)605

p(orightv , oleftv |xv) = N
[
orightv ;xv, σ

2
v

]
N
[
oleftv ;−xv, σ2

v

]
(33)

We model multisensory perception using a causal inference model where the observer infers whether606

or not the auditory and visual cues came from the same cause and use this to decide whether or not to607

combine information across the two cues. The model consists of four perceptual latents: (i) unisensory tone608

position (xa), (ii) unisensory right visual cue position (xv; right cue chosen without loss of generality), (iii)609

multisensory cue combined position (xav) and (iv) inferred causal structure (C). We also model task specific610

beliefs using a decision variable that indicates the side of the tone w.r.t the midline. The joint prior over611

the perceptual latents conditioned on the decision variable and the different values of the inferrred causal612

structure are given in (34) and (35)613

p(xa, xv, xav|D,C = 0) ∝ fa,natural(xa)fv,natural(xv)fav,natural(xav)ftask(xa|D) (34)

p(xa, xv, xav|D,C = 1) ∝ δ(xa − xav)δ(xv −Dxav)fav,natural(xav)ftask(xa|D) (35)

The proportionality constant can be obtained by integrating Eq. (6) over the support of xa,xv and xav.614

The first three components represents the natural prior over the tone, right visual cue and the auditory-visual615

combined cue positions which we model as a gaussian distribution as given in Eq. (36)616

fa,natural(xa) = N (xa;µ, σ
2
p)

fv,natural(xv) = N (xv;µ, σ
2
p)H(xv)

fav,natural(xav) = N (xav;µ, σ
2
p) (36)

The fourth component models the influence of the decision variable on the perceptual latents as it617

partitions the space of xa conditioned on the value of D as given in Eq. (37)618

ftask(xa|D) = H(Dxa) (37)

The prior belief over C is modeled as a Bernoulli distribution with a prior probability pcommon. Similarly,619

as was the case for the Bayesian observer, the prior belief over D is modeled as a bernoulli distribution with620

a parameter β′ = β +Φ
(
µ
σ2
p

)
. These two equations are given in Eq. (38).621
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p(C) = Ber(C; pcommon)

p(D) = Ber(D;β′) (38)

The mapping of the posterior probability over the decision variable to observer response is the same as622

the response stage described in section 4.1 [Eqs. (10) to (16)]. The observer response for given sensory623

observations can therefore be written as624

p(R|o) = λrλb + (1− λr)p(RBDT|o) (39)

where otonea , onoisea , orightv , oleftv are abbreviated as o. λr is the lapse rate which is the probability of making625

a lapse response and λb is the lapse bias which is the probability of making a “right” response when lapsing.626

Further details about evaluating p(RBDT|o) are given in the. As in section 4.1, RBDT is the response of the627

Bayesian observer approximated using nsamp samples628

RBDT = I[p̂(D|o) > 0.5] (40)

p̂(D|o) = 1

nsamp

nsamp∑
i=1

Di (41)

where Di ∼ p(D|o). In order to evaluate the psychometric curve for given experimenter defined positions,629

we have to marginalize across all sensory observations in Eq.(39) as given in Eq. (42)630

p(R|sa, sv) =
∫
dov

∫
doap(R|o)N

[
otonea ;m(sa), σ

2
a,tone)

]
N
[
onoisea ;−m(sa), σ

2
a,noise)

]
N
[
orightv ;m(sv), σ

2
v)
]
N
[
oleftv ;−m(sv), σ

2
v)
]

(42)

Since the integral in Eq. (42) is analytically intractable, we approximated the integrals using gaussian631

quadrature (Golub and Welsch, 1969). Gaussian quadratures provide a good approximation to the integral632

when p(R|o) is smooth. This is the case when nsamp is small. For larger values, the integrand becomes633

closer to a step function with the decision boundary becoming discontinuous. Therefore for the exact infer-634

ence comparison models, we computed the decision boundary using a multi-dimensional bisection method635

(Bachrathy and Stépán, 2012) and then used this to compute the integral analytically. Given the predicted636

response from the model we can evaluate the likelihood of the observer responses r measured empirically for637

experimenter defined cue positions sa, sv as given in Eq. (43)638

p(r|sa, sv) =
∏
i

Bin[ni, ri, p(R|sa, sv)] (43)

We obtained the maximum a posteriori (MAP) estimate for the model parameters under weakly infor-639

mative priors using a quasi-newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) unconstrained optimization640

procedure (fminunc in MATLAB) starting with 100 restarts to find the global optimum. We also obtained full641

posteriors over parameters using generalized elliptical slice sampling (Nishihara et al., 2014) which allowed642

us to get uncertainty estimates over parameter estimates.643

In order get a goodness of fit estimate of the model, we computed the explainable variance explained
(EVE) as described in (Haefner and Cumming, 2008). This estimate is an extension of the tradition variance
explained/coefficient of determination but accounts for the uncertainty in the data generation process which
is the case for us with limited number of trials per condition. In addition, it corrects for the number of
parameters in the model to allow for overfitting. We also use Bayes Factor (Kass and Raftery, 1995) to
perform model comparison. Computing the Bayes factor requires computing the marginal likelihood which
requires evaluating the intractable integral in Eq. (44)

p(r|sa, sv) =
∫
p(r|θ, sa, sv)p(θ)dθ (44)
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We approximate this using importance sampling as shown in Eq. (45)

p(r|sa, sv) =
∫
p(r|θ, sa, sv)

p(θ)

q(θ)
q(θ)dθ (45)

The quality of the approximation depends on how similar q(θ) is to the posterior p(θ|r, sa, sv). Therefore644

we approximate the posterior using a variational laplace approximation (Daunizeau, 2017) to approximate the645

posterior using a normal distribution and use that for evaluating the importance sampling based expectation.646

We improved the quality of the importance sampling approximation by using a Pareto fit smoothing to the647

weights as described in (Vehtari et al., 2015) and used a large number of samples (10000) to get a good648

estimate of the Bayes factor.649

4.5 Derivation of observer responses in the choice uninformative cue task650

We present a further derivation of the observer responses in the choice uninformative cue task and then651

present an approximation in the case when the visual uncertainty is much smaller than the auditory un-652

certainty. The response stage for the observer is the same as that described for the Bayesian observer in a653

binary discrimination task. Therefore the probability of response as predicted by Bayesian Decision Theory654

is655

p(RBDT = 1|o) = Eζ
[

ζ

1− ζ
<

p(D = 1|o)
p(D = −1|o)

]
(24)

where otonea , onoisea , orightv , oleftv are together abbreviated as o. Since the experimenter only has access to sa656

and sv, in order to get the predicted probability of making a response RBDT = 1 for a given sa and sv, we657

have to compute the expected probability of Eq. (26) under the generative process of o given in Eqs. (30)658

and (31) as shown in659

p(RBDT = 1|o) = EoEζ
[

ζ

1− ζ
<

p(D = 1|o)
p(D = −1|o)

]
(46)

The belief about the trial category depends on the inferred causal structure and therefore we marginalize660

across the different causal structures to get p(D = 1|o)661

p(D = 1|o) =
∑

c={0,1}

p(D = 1|o, C = c)p(C = c|o) (47)

The conditional distribution p(D = 1|o, C = c) can be evaluated by marginalizing across the perceptual662

latents as given in663

p(D = 1|o, C = c) ∝ p(o|D = 1, C = c)p(D = 1)

p(D = 1|o, C = c) ∝
∫ ∫ ∫

p(o|xa, xv, xav)p(xa, xv, xav|C = c,D = 1)p(D = 1) (48)

Using equations 23-29, we can infer the conditional belief over the trial category if the inferred causal664

structure is C = 0 as given in Eq. (49)665

p(D = 1|o, C = 0) ∝
Φ(

oaγap+µ(1−γap)
σa

√
γap

)

Φ( µσp
)

β′

p(D = −1|o, C = 0) ∝
Φ(− oaγap+µ(1−γap)

σa
√
γap

)

Φ(− µ
σp

)
(1− β′) (49)
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where oa = otonea γtn−onoisea (1−γtn) is the cue combined auditory position estimate, γtn =
σ2
a,noise

σ2
a,tone+σ

2
a,noise

,666

γap =
σ2
p

σ2
p+σ

2
a
and σ2

a = σ2
a,toneγtn. Similarly we can infer the conditional belief over the trial category if the667

inferred causal structure is C = 1 as given in Eq. (50)668

p(D = 1|o, C = 1) ∝
Φ(

oav,1γavp+µ(1−γavp)
σav

√
γavp

)

Φ( µσp
)

N (oa; ov, σ
2
a + σ2

v)N (oav,1;µ, σ
2
aγav + σ2

p)β
′

p(D = −1|o, C = 1) ∝
Φ(− oav,−1γavp+µ(1−γavp)

σav
√
γavp

)

Φ(− µ
σp

)
N (oa;−ov, σ2

a + σ2
v)N (oav,−1;µ, σ

2
aγav + σ2

p)β
′ (50)

where oav,1 = oaγav+ov(1−γav),oav,−1 = oaγav−ov(1−γav), γav = σ2
v′

σ2
v′+σ

2
a
,σ2
v′ = 0.5σ2

v , γav =
σ2
p

σ2
aγav+σ2

p
.669

We can also evaluate the posterior probability over common cause using Eqs. (49) and (50) as given in (51)670

p(C = c|o) =
∑

d={0,1}

p(D = 1|o, C = c)p(C = c) (51)

Approximate characterization of observer responses in the choice uninformative cue task671

In order to get an interpretable functional form for observer responses, we make two assumptions: (a) For672

eccentricities sufficiently far from the midlines, the central condition always corresponds to the observer673

inferring C = 0 and the matched condition always corresponds to the observer inferring C = 1 (b) Also, we674

assume that the visual cue is very reliable, i.e. σ2
v → 0675

Substituting Eq.(49) in Eq.(46) and following the derivation similar to the traditional binary discrimina-676

tion task, we can approximate the probability of observer response in the central condition as677

p(R|sa, sv, C = 0) = λrλb + (1− λr)Φ

m(sa) +
(1−γap)
γap

µ+ σa√
γap

[
Φ−1(β′)− µ

σp

]
σa

{
1 +

ψ1[0.5(nsamp+1)]
γapψ1(1)

}
 (52)

Similarly, the probability of observer response in the matched condition is given in Eq. (53)678

p(R|sa, sv, C = 1) = λrλb + (1− λr)Φ

m(sa) +
(1−γap)
γap

µ− σ2
a

2sv

{
s−1(β′)− s−1

[
Φ
(
µ
σp

)]}
σa

{
1 +

σ2
a

s2v
ψ1[0.5(nsamp + 1)]

}
 (53)

Intuitively, thresholds measured at different visual eccentricities from the matched condition allow us to679

separate the observation noise and number of samples. Measuring the biases for different visual eccentricities680

can allow us to separate the perceptual and categorical biases.681

4.6 Combining observer responses into responses of an aggregate observer682

While there is no analytical solution relating the observer responses to the experimenter defined cues positions683

in the choice uninformative cue task, we can approximate the response to a form (see previous section) as684

given below685

p(R = 1|sa, sv) ≈ λλr + (1− λ)Φ

m(sa) +
(1−γap)
γap

µ+ t1

σat2

 (54)

where λ is the lapse rate, λr is the lapse bias, γap =
σ2
a,prior

σ2
a+σ

2
a,prior

, σ2
a is the observation noise, m(s) is686

the mapping function and µ, σ2
a,prior are the prior mean and variance over tone positions. The mapping687
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function T maps experimeter defined locations sa to an internal measurement space such that any stimulus688

dependence on eccentricity is mapped to a stimulus independent uncertainty. t1and t2 are functions of other689

parameters mainly visual cue location, categorical priors and number of samples respectively. t1 and t2 are 0690

and 1 respectively, for observers who have no categorical biases (categorical prior matches perceptual prior)691

and perform exact inference. The left hand side of Eq. 1 is what we estimate by getting the proportion692

of rightward responses for a given sa, sv pair which we denote as πR. Since all the parameters differ from693

observer to observer, we can rewrite Eq. (54) for a observer i to get694

πiR,eff = Φ

[
sia,eff + ti1

ti2

]
(55)

where sia,eff =
m(sa)+

(1−γi
ap)

γi
ap

µi

σi
a

and πiR,eff =
πi
R−λiλi

r

(1−λi) . We can see from Eq. (55) that deviations of695

πiR,eff from Φ(sia,eff) arise as a result of the observer having either a categorical bias or performing exact696

inference. Therefore if we combine responses across observers into an aggregate observer after mapping697

the sia, π
i
R → sia,eff , π

i
R,eff , then any deviation between πcombinedR,eff and Φ(scombineda,eff ) will contain information698

about the categorical biases and number of samples across observers. Since we do not have access to the699

true parameters for the observer, we sample from the posterior over the observer parameters. We therefore700

construct an aggregate observer using each parameter sample to get a distribution over aggregate observer701

responses. The number of trials that come from a observer for a given sia,eff is (1 − λi)ni where ni are the702

original number of trials for sia to compensate for the lapse responses made by the observer. Instead of703

just fitting t1 and t2 to the aggregate observer, we fit the full model to the aggregate observer to allow for704

deviations of sample estimate from the true value and the approximation involved in obtaining Eq. (54).705

4.7 Modeling observer responses in the variable duration task706

Unlike the fixed duration task where the observer responses were measured with a fixed set of stimuli, in707

the variable duration task, the observer responses were collected along a staircase procedure. The model in708

Figure 3C was fit separately to each duration while fixing the perceptual parameters across durations. In709

other words, we allow for different degree of approximation, sensory noise and lapse parameters for different710

durations while fixing the prior parameters. As in the previous section, we compare the approximate inference711

model to the exact inference model. We also compare the full approximate inference model to another712

approximate inference model where the degree of approximation is fixed across durations.713

Code and data availability714

Code and data available at https://osf.io/6xbzt/715
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Supplementary Figures812

Figure 2 Figure supplement 1813

Illustration of the cue-position dependent sensory noise obtained by using a non-linear transformation to814

internal coordinates and then adding a cue position independent sensory noise (Eq. (3)). The experimenter815

defined cue position, which we refer to as external position is transformed to internal coordinates with a816

mapping that lies between a linear and logarithmic mapping. If the mapping is linear, then the observation817

noise is independent of cue position in the internal coordinates. If the transformation is logarithmic, then the818

observation noise scales with cue position. This is depicted using the errorbars where the vertical errorbars819

indicate the observation noise in internal coordiantes that is cue independent. The horizontal errorbars820

depict the corresponding uncertainty in external position which scales with position for logarithmic and821

intermediate mappings822

Figure 3 Figure supplement 1823

Power analysis that shows the probability of getting substantial evidence (measured using AIC) in favor of824

two systematic extensions to the ideal observer model: solid line showing the approximate inference model as825

compared to a observer performance exact inference and dashed line showing the model having a categorical826

bias in addition to a perceptual bias as compared to a model having no categorical bias. Traditional binary827

discrimination task provide zero evidence in favor of both extensions.828

Figure 5 Figure supplement 1829

Absolute goodness of fit quantified by Explainable Variance Explained (EVE, (Haefner and Cumming, 2008))830

which is the proportion of variance in the data that is predicted by the model adjusted for uncertainty in831

the data and number of parameters in the model. Goodness of fit presented for: (A) Fixed duration tasks832

for individual observers (B) Fixed duration tasks for aggregate observer (C) Variable duration tasks for833

individual observers (D) Variable duration tasks for aggregate observer834

Figure 7 Figure supplement 1835

Relative contribution of approximate inference to the measured threshold. For each observer, the relative836

threshold contribution is calculated as one minus the ratio of the threshold predicted under exact inference to837

the total threshold. The decrease in threshold contribution due to approximate inference is greatest for the838

shortest duration. Significance was assessed using a non parametric sign test and the decrease in threshold839

contribution from 100 ms to 300 ms was significant (p = 0.0013 for central and p = 0.001 for matched840

condition)841
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