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Abstract 

The cerebellum is a highly conserved structure of the vertebrate central nervous system 
that plays a role in the timing and calibration of motor sequences. Its function is supported 
by the convergence of fibers from granule cells (GCs) and inferior olive neurons (IONs) onto 
Purkinje cells (PCs). Theories of cerebellar function postulate that IONs convey error signals 
to PCs that, paired with the contextual information provided by GCs, can be used as a 
teaching signal to guide motor learning. 

Here, we use the larval zebrafish to investigate (i) how sensory representations of the 
same stimulus vary across GCs and IONs and (ii) how PC activity reflects these two 
different input streams. We use population calcium imaging to measure the cell responses 
to flashes of diverse luminance and duration to show that IONs and GCs encode different 
stimulus properties. First, most GCs show tonic and graded responses, as opposed to IONs, 
whose activity peaks only at on and off luminance transitions, in agreement with the notion 
that GCs and IONs encode context and error information, respectively. Secondly, we show 
that GC activity is patterned over time: some neurons had sustained responses for the entire 
duration of the stimulus, while in others activity was ramping up with slow time constants. 
This suggests that, by performing temporal integration, GCs could provide a basis that PCs 
may use to decode time. Finally, we show how PC activity can be largely reconstructed by 
a linear combination of granule cells and inferior olive neurons. Together, our observations 
give support to the notion of an error signal coming from IONs, and provide the first 
experimental evidence for a temporal patterning of GC activity over many seconds. 
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Introduction 
IN ORDER to orchestrate appropriate motor reactions and maximize survival chances 

of the organism, brains need to generate efficient sensory representations of the 
environment and its changes. The cerebellum has long been considered one of the main 
regions involved in the integration of sensory and motor representations, and plays a 
central role in motor coordination, the control of fine motor skills, and the calibration 
of reflexes and motor learning (Ito, 2006) . These abilities are supported by the 
convergence of two information streams onto Purkinje cells (PCs): parallel fibers and 
climbing fibers (Eccles et al., 1967).  

Parallel fibers originate in the granule cells (GCs) of the molecular layer of the 
cerebellum, the most abundant cell type in the human brain (Williams and Herrup, 
1988). Thousands of parallel fibers establish excitatory synapses onto a single PC. 
Inspired by these numbers, the first theories of cerebellar function proposed that GCs 
sparsely code and expand the dimensionality of inputs, which originate in pre-
cerebellar nuclei and arrive via mossy fibers (Marr, 1969; Albus, 1971). This high-
dimensional representation of sensory information allows selective and differential 
weighting of stimulus properties and the acquisition of context-dependent cerebellar-
guided behavioral responses (Dean et al., 2010). The wide scope of modalities that can 
be represented by GCs encompasses sensorimotor (Knogler et al., 2017), somatosensory 
(Arenz et al., 2009) and even predictive (Giovannucci et al., 2017; Wagner et al., 2017) 
information, but recent studies have challenged the notion of sparse representations 
(Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 2017). In addition to sparse 
coding, theories postulate that GCs can provide temporal information to PCs, as 
feedforward control of movement depends on the ability of the cerebellum to perform 
temporally-specific learning (Kawato and Gomi, 1992; Ohyama et al., 2003) although see 
(Johansson et al., 2014). The large number of GCs makes them suited to encode this 
information, but while temporal patterning of GC responses has been assumed in 
multiple theoretical studies  (Buonomano and Mauk, 1994; Medina and Mauk, 2000; 
Medina et al., 2000) it has found little empirical evidence so far, (but see (Kennedy et al., 
2014)). 

The second stream arriving to PCs via climbing fibers originates in inferior olive 
neurons (IONs). Each PC is innervated by a single climbing fiber (Eccles et al., 1966), 
that fires at low frequency and evokes large and sustained depolarizations. Most 
widespread theories argue that climbing fibers convey error signals (Ito, 2013). These, 
paired with the contextual information provided by parallel fibers, can guide motor 
learning (Marr, 1969; Albus, 1971) through LTD at the parallel fiber to Purkinje cell 
synapse (Ito, 2000) . 
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To characterize and compare the functional properties of these convergent 
information streams, we studied them in the olivo-cerebellar circuit of the zebrafish 
larvae. The zebrafish cerebellum shares the same basic circuitry with the mammalian 
cerebellar cortex (Bae et al., 2009; Hamling and Tobias, 2015), but contains a greatly 
reduced number of neurons, and its cells are already mature by 5 days post-fertilization 
(dpf) (Hibi and Shimizu, 2012). Moreover, the fish cerebellum has been implicated in 
several sensory-motor behaviors such as the optokinetic reflex (Portugues et al., 2014) 
and optomotor response adaptation (Ahrens et al., 2012; Markov et al., 2021) .  

Taking advantage of the optical transparency of the fish larvae and the availability 
of transgenic lines that express in specific cell types of the circuit, here we sequentially 
monitored whole-field luminance responses of all main cerebellar subpopulations in 
awake and sensing zebrafish larvae. These experiments allowed us to study how GCs 
and IONs convey different information about the same stimulus. We observed that 
while GCs showed sustained responses carrying accurate information about the current 
state of the sensory input, IONs responded mostly to stimulus changes. Moreover, we 
were able to observe the signs of temporal integration in GCs responses, suggesting that 
their activity could provide a basis for temporal coding in the cerebellum. Finally, we 
investigated how GC and ION response profiles are integrated at the level of PCs. 

Results 

Experiment description and anatomy. 

We exploited the optical transparency and the genetic amenability of the larval 
zebrafish to follow how information over a simple visual stimulus is processed and 
transformed through different elements of the cerebellar circuitry. We employed two-
photon microscopy in restrained zebrafish larvae to monitor neuronal activity while 
presenting them with visual stimuli projected on a screen below (Figure 1A). Larvae 
expressed GCaMP6s or a modified slow version of GCaMP6f (GCaMP6fe05) in either 
GCs, PCs or IONs (see Methods).  The entire volume of either the cerebellum or the 
inferior olive was scanned in 1 μm (for inferior olive) or 1.5 μm (for the cerebellum) - 
spaced planes. In this way, we were able to acquire the responses of a large fraction of 
the GCs, PCs or IONs populations (Figure 1B). 
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Zebrafish larvae are highly visual animals, and previous work from our laboratory 
(Knogler et al., 2017) has shown that luminance is very salient for neurons in the fish 
cerebellum. Therefore, we decided to investigate the diversity of responses across cell 
types as whole-field luminance was changed over a screen placed below the fish. This 
protocol elicited only a very mild behavior (Figure S1A), slightly reducing bout 
probability after light-to-dark transitions (Figure S1B-D), allowing us to analyze the 
sensory representations of the stimulus without the confounding effect of motor-related 
activity. 

Responses of GCs and IONs to different luminance levels 

In a first set of experiments, we investigated the responses of GCs and IONs during 
a protocol where luminance was changed between four distinct levels. The progression 
was designed to ensure that transitions between all pairs of luminance levels were 
sampled (Figure S2A). The entire sequence was presented six times during the imaging 
of every plane, yielding a robust number of repetitions for all ROIs.  

Granule cells  

We collected the responses of 5013 ROIs from 5 larvae. To estimate how many cells 
were reliably engaged by the stimulus, we calculated the average correlation of calcium 
activity during each pair of stimulus trials (“reliability score”).  In the GC population, 
the distribution of the obtained reliability scores was clearly bimodal (Figure 2A) with 
a fraction of about half strongly responsive cells (47.2% with an automatic thresholding, 
see Methods). 

 

Figure 1: Experiment description and anatomy.  

A) Experimental setup: a two photon microscope was used to image 7 dpf head-restrained larvae while flashes of 
different luminance were projected on a screen below. B) Composite image showing stacks from GCs (red), IONs (in 
blue) and PCs (green) registered on a reference anatomy with the whole brain of a 7 dpf larva (in gray). In the 
enlargements, examples of the raw anatomy (in gray) and of the segmented ROIs from a 2-photon imaging session 
(in red, blue and green for GCs, IONs and PCs, respectively). 
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To explore the diversity of GC responses to the stimulus, we employed hierarchical 
clustering to classify the average response of all luminance-selective neurons (Figure 
2A). The main branching in the distance tree arose from the distinction between ON 
and OFF cells, hereby defined as the property of an ROI of exhibiting a positive or 
negative calcium transient in response to an increase in the luminance level. The ON 
and OFF populations represented 57% and 43% of the responsive ROIs, confirming 
previous reports from our lab (Knogler et al., 2017). However, the presentation of 
intermediate luminance steps revealed the presence of a minority of ROIs (clusters GC4-
5) that were specifically recruited by intermediate levels of luminance while silent at 
either minimum or maximum luminance (Figure 2A, Figure S2B). 

 

Figure 2: Responses of GCs, IONs and PCs to the “luminance steps” 
protocol 

A) (Left) Histogram of the average inter-trial correlation (average correlation between activity recorded in different 
trials). The calculated threshold and the relative fraction of active cells are reported on the histogram. (Center) 
Average traces grouped after hierarchical clustering. Cutting the dendrogram at the height marked by the line (on the 
left) resulted in eight different clusters, whose average activity is shown on the right, over imposed on a shade 
matching at each timepoint the brightness level displayed. B) Same plot as in A), for IONs. 
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ON and OFF cells did not respond in a homogeneous way to the battery of stimuli. 
First of all, we note that granule cell activation was almost always sustained during the 
entire presentation of each luminance step. Secondly, cells in both the ON and OFF 
clusters largely differed in terms of their threshold and saturation points (Fig S2B). 
Finally, for some clusters the activation during the presentation of an intermediate 
luminance level strongly changed depending on the previous luminance level (Fig S2C). 
We did not find any consistent anatomical organization in the localization of the 
clusters across fish. 

Inferior olive 
We then turned to the analysis of the responses of IONs (495 cells from 5 fish). IONs 

were less selective for the luminance stimulus, with a smaller fraction of cells (12.9% 
with automatic thresholding) exhibiting reliable responses across stimulus 
presentations. Even if the number of luminance selective cells was smaller, we could 
observe a broad diversity of responses in the IONs, with several types of response 
profiles appearing across fish (Figure 2B). In striking opposition with the sustained 
responses observed in GCs, ION responses were generally transient, peaking 
immediately after luminance transitions and quickly decaying afterwards. Some IONs 
were selective to either OFF or ON-transitions (clusters ION1 and ION3), while others 
were recruited by both (ION4). Only a minority of cells showed a sustained activation 
during high luminance periods (ION2, 14%), while two other clusters showed sustained 
activation during intermediate levels of luminance (ION5 and ION6). Interestingly, in 
cluster ION6, neurons seemed to combine a sustained activation during intermediate 
luminance levels with a marked transient activation upon stimulus transitions involving 
luminance decrements. 

Taken together, these observations suggest that the two cerebellar input streams 
might convey complementary information to PCs. On one hand, GCs almost always 
presented sustained activation during the luminance steps, with a broad diversity of 
responses coming from different thresholds and saturation points. On the other hand, 
most IONs reacted to sharp transitions in the presented stimulus. 

GC and IONs respond to stimulus intensity and derivative, respectively 
To further investigate this point, we carried out a regression-based analysis on the 

individual cell responses to better describe these different behaviors.  We created a panel 
of regressors of two different kinds. The first group included regressors obtained by 
applying different gamma corrections to the raw luminance profile to describe 
responses with different thresholds and saturation points, plus a regressor obtained by 
subtracting two luminance traces with different gamma corrections to account for 
intermediate-luminance selective cells. The second group included regressors created 
from the luminance derivative: on-transitions, off-transitions, or both (Figure 3A). We 
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Figure 3: GC and IONs respond to stimulus intensity and derivative 
A) Regressor-based analysis was used to calculate correlation coefficient between each cell fluorescence (lines) and a 
panel of regressors (shades). The plot shows the cells with the highest correlation values for luminance-related (first 
two rows) and transition-related (second two rows) regressors. B) Histogram of the distribution of best fitting regressors 
for GCs (top) and IONs (bottom). Regressors on the left of the dashed line are luminance related, regressors on the 
right are transition related. GCs score higher in luminance-related regressors compared to IONs. C) Scatterplot of the 
best transition-related coefficient and the best luminance-related coefficient for GCs (red) and IONs (blue), and their 
relative marginal distributions. The GC population has been downsampled randomly to match the number of IONs, 
while the marginal distributions refer to the entire population. GCs cluster in the bottom right quadrant of the plot (high 
luminance-regressors correlation, low transition-regressors correlation), while IONs show higher correlation 
coefficients for transition-related regressors. D) Performance of a non-linear decoder used to predict luminance values 
from GCs (left) and IONs (right) activity. Each point in the swarm plot is one frame of the protocol with the 
corresponding luminance level (horizontal line). For GCs, 20 iterations of the decoding analysis were performed, with 
the number of GCs downsampled to match that of IONs. The violin plots in the left panel show the average distribution 
of predictions across all iterations, while the dots correspond to a single representative iteration. 
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then looked at the distribution of the best predictor for each GC and ION in the dataset. 
While GCs show large correlations with luminance levels and small correlations with 
transition-related regressors, IONs were divided in a group showing high luminance 
related correlations and a group showing high transition-related correlations. Overall, 
a larger fraction of IONs responses were better predicted by transition-related 
regressors compared to GCs responses (42.4% of IONs vs. 3% of GCs, Figure 3B-C). If 
our observations are true, it should be possible to accurately predict absolute luminance 
values (the only instantaneous property of the stimulus) from GC activity, and more 
accurately predict transitions of the stimulus from ION activity. By using a nonlinear 
decoder (a radial-basis-function support vector machine regressor - SVM), we tried to 
decode the current luminance level from the activity of IONs, or from subsets of GCs 
matching in size the ION population. This confirmed that the displayed luminance can 
be decoded to a higher degree of accuracy from GCs compared to the IO population, 
which has more transitory and inconsistent responses (Figure 3D). 

Responses of GCs and IONs to flashes of different duration 
Looking at the temporal dynamics of the GC responses, we noticed that in some 

clusters fluorescence was still markedly increasing at the end of the luminance step 
(cluster GC2, Figure 2A). We reasoned that this could be the hallmark of temporal 
integration of the luminance stimulus. Temporal integration has been suggested as a 
timing mechanism that the cerebellum could exploit to keep track of the period elapsed 
since  stimulus onset, as is required for the acquisition of appropriately timed cerebellar-
dependent responses such as eye blink delay conditioning (Medina and Mauk, 2000). 
Long time constants in GC responses have been postulated in models to account for 
timing in the cerebellum (Bullock et al., 1994), but they have never been convincingly 
observed experimentally. 

To unravel temporal integration in the responses of the cerebellar circuitry, we 
designed a second protocol, consisting of three luminance flashes of different durations 
(3, 7 and 21 seconds) at maximal luminance (Figure S4A). The complete protocol was 
presented 6 times in each plane, and the reliability of responses of individual GCs and 
IONs was assessed as described above.  

Granule cells 
We sampled 13763 GCs from 5 fish and selected a fraction of 26% responsive ROIs 

for successive analyses (Figure 4A). As in the previous protocol, the major split in the 
GC diversity dendrogram corresponded mapped the difference between ON and OFF 
cells, (54% and 46% of the responsive cells, Figure 4A). Interestingly, the population of 
ON cells contained three clusters whose profiles differed in their temporal dynamics. 
Cluster GC3 showed the simple sustained activity that was reported in the steps 
protocol; cluster GC2 rapidly peaked after the flash onset, and then decayed to baseline 
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before stimulus end; and cluster GC4 exhibited the response profile expected from a 
temporal integrator, ramping up slowly for the whole duration of the stimulus 
presentation. Since the experimental paradigm featured only sustained high luminance 
periods, we could not compare the kinetics of the luminance ON and the luminance OFF 
clusters. 

Inferior olive 

We imaged 337 IONs from 5 fish and, consistent with the previous observations, 
reliably responsive cells (7.1%) were mostly activated by luminance transitions. 50% 
were selective for negative luminance transitions (cluster ION1), 23% were selective for 
positive transitions (cluster ION4) and 8% for both transition types (cluster ON5). Only 
20% of cells had sustained ON or OFF activations (clusters ION2 and ION3 respectively). 

 

 

 

Figure 4: responses of GCs, IONs and PCs to the “flashes” protocol 
A) (Upper-left) Inter-trial correlation histogram of GCs for the “flashes” protocol. (Center) Cells sorted after 
hierarchical clustering and (right) average activity for each cluster.  B) Same plot as in A), for IONs. 
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Figure 5: Granule cell activity is temporally patterned 
A) Single traces for early- (green), sustained- (gray) and late-responding (brown) ROIs. The average response (thick 
line) is superimposed to all single repetitions (thin lines) of stimulus presentation. B) GCs included in any of the 
luminance-excited clusters were then sorted based on their center of mass (COM) during the longest flash, with 
earlier-responding neurons on the top, and late responding ones in the bottom (bottom panels). The above traces 
represent the average response for ROIs binned according to the time at which their COM was reached (green for 
early-responding neurons, brown for late-responding ones).  C) Same plot as in B), for IONs. In this case, traces in 
the top panels correspond to single ROI responses. D) Probability density function describing the time points at 
which responses of neurons from the two imaged populations reach their maximal response. E) Scatter plot of 
predicted vs. actual time elapsed stimulus onset. Prediction was performed at each frame from IONs activity (blue 
dots) and from activity of a random subset of GCs (red dots). The red line and shaded area show average +/- standard 
deviation of predictions from 200 GCs subsets. 
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Granule cells activity is temporally patterned 
Intrigued by the slow temporal dynamics in cluster GC4 (Figure 4A), we decided to 

further investigate their temporal response properties. Different GCs responded with 
very different profiles that were consistent across stimulus presentations (Figure 5A). 
Remarkably, some cells from cluster GC4 clearly showed a period of suppressed activity 
after the stimulus presentation, followed by a positive, “integrator-like” response that 
could start  rising several seconds after the beginning of the stimulus (Fig 5A, third 
trace). This might reflect the interplay between excitatory and inhibitory drives having 
different time constants, whose summing effects give rise to the observed diversity in 
the GCs responses timing. 

To look at the distribution of time constants in the responses of GCs from ON clusters 
(GC2, GC3, and GC4), we sorted them by their cross-validated center of mass (COM) 
computed on the 21-second flash (see Methods and Figure S5A). We observed a 
continuum between the different response profiles, ranging from early responding 
neurons that peak after the flash onset to late-responding neurons with responses 
slowly ramping up during stimulus presentation (Figure 5B).  Most of the neurons 
reached their maximal activity shortly after stimulus onset, while many others were 
still ramping up at the time of its offset (Figure 5D). IONs did not show any integrating-
like responses, and most ON cells peaked immediately after luminance onsets (Figure 
5C-D).  

Temporal integration would provide PCs with a representation of time elapsed since 
stimulus onset, as postulated in models of temporal learning in the cerebellum (Medina 
and Mauk, 2000; Yamazaki and Tanaka, 2009). Therefore, we examined whether it is 
possible to linearly decode this time since from the activity of an equal number of GCs 
or IONs. We observed that this decoding is possible to a high degree of accuracy by 
using the activity of granule cells (Figure 5E), with an R2 value of around 0.8. Since the 
temporal dynamics are nonlinear and share a saturating trend at longer durations, the 
optimal linear decoder overestimates the time at shorter durations and underestimates 
longer durations (Figure 5E). The inferior olive cells on the other hand show no long-
term temporal patterning and it was therefore not possible to decode the duration of 
the stimulus presentation (R2=0,29, Figure S5B). 

We conclude that the GCs exhibit diverse temporal dynamics that could provide PCs 
with a temporal basis for reading out the time since stimulus onset.  

PC responses to luminance stimuli 
Both parallel fibers from GCs and climbing fibers from IONs make synaptic contact 

with PCs. Therefore, we decided to investigate the responses of PCs to the same battery 
of stimuli, to understand how the afferent cerebellar inputs are integrated when they 
converge at the level of their postsynaptic target. We used a transgenic line that 
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expresses GCaMP6s selectively in all PCs.  It is important to note that the unique 
biophysics of the PC spiking properties (namely, the difference between complex spikes 
elicited by climbing fibers and the simple spiking modulated by parallel fibers) might 
complicate the mapping between intracellular calcium-related fluorescence and spiking 
activity. Nevertheless, previous data from our lab (Knogler et al., 2019) has shown that 
both complex spikes and bursts of simple spikes induce comparable GCaMP6s 
fluorescence signals in fish PCs. 

We first analyzed the responses of PCs to the “steps” protocol (Figure 6A) in 3318 
ROIs from 5 fish. Of these, 20.3% were recruited by the stimulus. Given the well 
characterized nature of synaptic inputs of PCs, we expected to find response profiles 
reflecting the profiles observed in the GC and the ION populations. PCs showed both 
ON- and OFF-selectivity, a fraction of which were selective for intermediate luminance 
levels, as was observed in GCs (cluster PC1). However, there were significantly more 

 

Figure 6: PC responses to luminance stimuli 
A) (Upper-left) Histogram of the average inter-trial correlation and its relative threshold (center) Hierarchical 
clustering of PC responses to the “steps” protocol, and average activity of the clusters selected after cutting the 
dendrogram at the height marked by the lines. Shade matches at each timepoint the brightness level displayed. B) 
Same as in A), for the “flash” protocol. 
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ON cells than OFF cells (67% vs 32%, respectively) suggesting that the former are over-
represented in PCs compared to GCs. Importantly, from the clustering approach we 
could find only one definite group of cells showing transient, transition-related activity 
(PC3), while most clusters looked modulated mainly by GC inputs.  

Then, we turned to the investigation of PC activity during the “flashes” protocol 
(Figure 6B), analyzing the responses of 2267 ROIs from 5 fish, (25.9% responsive). PC 
activation profiles showed mixed IO and GC features. Just as in GCs, there were many 
late-responding ROIs that exhibited integrating-like responses (cluster PC3), but no 
cluster showed a constant, sustained response throughout the stimulation period. 
Moreover, a large group of ON cells showed only a transient ION-like activation after 
luminance onset (cluster PC4) that was faster than the one observed in GCs (cluster 
GC2 in Figure 4), suggesting an input from IONs only. 

Modeling of PC responses from GCs and IONs inputs 
Our main aim in this study was to characterize the two input streams to the 

cerebellum and compare their activity, in order to understand how they contribute to 
PC responses. In order to make some headway in this direction, we first asked to what 
extent, PC activity could be expressed as a weighted linear sum of the various GC and 
ION profiles we found. We started from the average response profiles of GC and ION 
clusters during the “steps” protocol to build a panel of regressors that could be used to 
reconstruct PC activity (Figure 7A). Then, we used multivariate linear regression with 
cross-validation and LASSO regularization to reconstruct the individual stimulus 
responses of each individual PC as a weighted sum of the GC and ION regressors plus 
an offset term (Figure 7A and Methods). As both these populations contact PCs with 
excitatory synapses, we constrained the model to have only positive weights. The 
regularization parameter was estimated using cross-validation and it provided sparsity 
in the weight matrix, ensuring that only regressors important for describing the PC 
activity got a non-zero coefficient. The details of the model and the fitting are described 
in Methods. The activity of most cells was successfully captured by our simple linear 
model, with around 57% of cells with a better-than-chance fit cost (Figure S7A). As 
expected, there was an inverse relationship between fit cost and cell reliability (Figure 
S7B). 

The relative contribution of GC and ION regressors varied across the PC population. 
Figure 7B shows three examples of the fit obtained for three different PCs displaying 
different degrees of similarity with the GC or the ION responses. From the connectivity 
of the cerebellar circuitry, we would expect the number of non-zero weights for ION 
regressors to be lower than the number of GC regressors. This was indeed the case, 
although, surprisingly, also the number of required GC regressors required to predict 
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PC activity was low (Figure S7C, 1.6 vs 2.8 average non-zero weights per PC for GC and 

 

Figure 7: Reconstructing PC activity from IO and GC inputs 

A) Schema of the modeling approach. (Left) PCs receive inputs from IONs and GCs. Starting from GC and IO 
response clusters (center) we linearly combined them trying to reconstruct each PC activity (right). B) Examples of 
individual fits. (Left) Average PC response (thick green line) calculated on the individual test repetitions (thin green 
lines), and reconstructed trace from the model((black line). (Right) Red, trace reconstructed with GC coefficients 
only; blue: trace reconstructed with IO coefficients only. C) Matrix of weights assigned to each regressor (rows) for 
all PC ROIs (columns). D) Scatter plot showing the relation between the GC/IO weights ratio vs. cell reliability. 
Each dot represents the two values for a single PC cell, color coded by the GC/IO index. The response of PCs 
dominated by GC inputs are more reliable compared to cells dominated by IO inputs (Spearman rho: 0.19, p = 5.8*10-
4). E) Evolution in time of the median contribution of either GC or IO clusters to the activity of PCs. Purple line: 
median contribution ratio trace across the entire PC population; purple shades: first-to-third quartile range. 
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ION regressors, respectively). The diversity in the distribution of the weights across PCs 
matches the clustering on the traces (Figure 7C) indicating that these functional classes 
identified in Figure 6 may arise from different connectivity of their inputs. To quantify 
the relative contribution of GC and ION clusters across the PC population, we computed 
for each cell a GC/ION ratio index going from -1 (only ION clusters with non-zero 
weights) to +1 (only GC clusters with non-zero weights, see Methods). The average 
GC/ION index was > 0 (number - error), with most cells having a stronger contribution 
from GC clusters compared to ION, confirming our qualitative observation that, when 
probed with our luminance stimulus, GC input dominates the activity profile of PCs. 
Given the differences in the reliability indexes of the GC and the ION responses (Figure 
2A-B), we would expect that PCs dominated by ION inputs would show a lower 
reliability when compared with neurons dominated by GC inputs. This was indeed the 
case: there was a significant positive correlation between the reliability index of the PC 
and the GC/IONs index (Spearman 𝜌𝜌=0.19, p=0.0006; Figure 7D). We had previously 
observed that whereas GC responses could be sustained in time, ION activity was more 
transient in nature, concentrated around stimulus transitions. Indeed, by computing the 
instantaneous contribution to PC activity from their GC and ION inputs across a trial, 
we observe that GC input dominates except during stimulus-OFF transients (Figure 7E).  

In conclusion, we observed that PC responses can indeed be reconstructed as a linear 
combination of GC and ION responses profiles. Although the activity of most PCs was 
better predicted using loads on GCs regressors, the PC population exhibited a broad 
diversity of the GC vs ION loads, ranging from ION inputs only, to GC inputs only. 

Discussion 
Here, we undertook a large-scale investigation of the representations of a simple 

visual stimulus in the olivo-cerebellar system of larval zebrafish at the single-cell level. 
Previous reports from our lab have been exploring the responses of individual cell types 
in the cerebellar circuitry (Knogler et al., 2017, 2019; Harmon et al., 2020; Felix et al., 
2021). Building on this previous work, we have systematically explored the responses 
of IONs and GCs to changes in luminance. Furthermore, we recorded activity in PCs, 
which receive both GC and ION input, in order to understand how they could combine 
these signals. 

Stimulus state and transition coding in GCs and IONs 

We observed that a large fraction of GCs were recruited by our sensory stimulation, 
strengthening previous observations that point against the notion of sparse coding in 
GCs (Giovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 2017).  Responses 
clustered into few groups which, nevertheless, displayed a diversity of response 
properties, varying in their sign, threshold, and saturation points. Intriguingly, some 
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GCs were not clearly luminance-ON or luminance OFF but were excited by intermediate 
luminance and inhibited by strong luminance (and vice versa). This activity profile could 
be easily generated by the interplay between an excitatory input coming via mossy 
fibers and recurrent inhibition provided by Golgi cells, combined with different 
threshold and saturation levels in GCs (Bratby et al., 2017). However, we cannot exclude 
that such responses are not directly inherited by pre-cerebellar inputs (Barker et al., 
2017). The diversity observed in these response types would suggest that the 
representation of the sensory input in the GC layer is not only dense but also allows to 
reliably decode the presented luminance even from the responses of small subsets of 
GCs. 

On the other side, a smaller fraction of IONs showed consistent responses during our 
stimulation. Importantly, the responses of IONs were much more phasic in nature 
compared to GC, with a single peak following light-to-dark or dark-to-light transitions 
(or, less often, both). This observation is in agreement with the idea that climbing fibers 
report “error” or “salience” signals, that can result in cerebellar learning by inducing 
plasticity on GC to PCs synapses which convey contextual evidence about the state of 
the environment. As a result, while decoding the presented luminance from IONs 
activity was worse than GC activity-based decoding, IONs traces allowed for a more 
reliable discrimination of the stimulus transition times. 

Together, these observations confirm the idea that parallel fibers from GCs provide 
contextual evidence to the cerebellum, while IONs code for sudden changes in the 
environment, a central tenet of models of learning in the cerebellum. 

Temporal coding in GC responses 

The cerebellum is involved in the acquisition and timing of motor sequences. This is 
exemplified in classic paradigms of delay conditioning, where the conditioned motor 
response has to be precisely delayed from the onset of the conditioning stimulus. This 
requires that even the simple conditioning stimuli used in paradigms such as eye-blink 
conditioning need to evoke GCs responses that vary in time, so that selective 
reinforcement of some parallel fibers synapses can modulate the PC firing rate at 
specific intervals from the onset of the stimulus. Several mechanisms have been 
proposed to underlie such temporal patterning (Medina and Mauk, 2000; Yamazaki and 
Tanaka, 2009). On one hand, in delay line models, the stimulus-elicited activity is 
delayed by a fixed amount of time by variable number of synaptic connections in the 
pre-cerebellar neurons that impinge onto each GC, making the activity of GCs sparse 
in time, with variable onsets (Moore et al., 1989). On the other hand, in oscillatory 
models, the responses of GCs are supposed to be oscillatory, with a different 
characteristic frequency in each GC, so that they can sum up to form a basis for 
arbitrarily delayed PC responses (Gluck et al., 1990). Finally, in spectral models, the 
temporal patterning arises as a combination of varied membrane time constants in GCs 
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and in inhibitory companion Golgi cells, that generate unique time constants for the on 
and off phase of each GC (Bullock et al., 1994; Bratby et al., 2017).  

Although some work has shown hints of temporal coding in GCs (Kennedy et al., 
2014) this has never been investigated at the whole GC population scale. Previous 
reports from our lab have reported no evidence of temporal patterning in GCs (Knogler 
et al., 2017) but they analyzed temporal patterning in recordings from a very limited 
number of neurons. In our experiments, we could find no evidence for temporally sparse 
or oscillatory activity, but we do see a continuum spectrum of delay in the responses, 
from fast onset, fast offset GCs to GCs whose activity was suppressed for several 
seconds before starting to ramp up. Interestingly, this was happening over a much 
longer timescale than what usually has been investigated in cerebellar studies. We 
report GCs whose onset followed by up to 5-6 s the stimulus onset, and whose activity 
was still increasing after 20 s of stimulus presentation. IONs, on the other side, were 
carrying very little temporal information about the ongoing stimulus. A decoding 
approach confirmed that accurate prediction of time occurred since stimulus onset was 
possible from GC activity but not from ION activity. Our data suggests that GCs can 
indeed provide a base for temporal coding in the cerebellum, and strongly supports the 
spectral timing model for temporally specific cerebellar learning. 

PCs integration of GC and ION activity 

Finally, we aimed at describing the activity of PCs as a linear combination of IONs 
and GCs inputs. It has already been shown that such a linear modeling on afferent inputs 
can provide a good description of the PCs activity (Chen et al., 2017; Tanaka et al., 2019). 
Indeed, wWe could describe most of the PCs responses as a linear weighted sum of 
responses from IONs and GC clusters. As IONs are more active at stimulus transitions, 
PC dynamics is more driven by ION activity at transition times. Perhaps surprisingly, 
there was some heterogeneity in the amount of contributions from ION and GC clusters 
between cells, with some PC cells mostly showing ION-like activity and a majority of 
cells that were described better by GC regressors, hence suggesting that GC and ION 
inputs related to the same sensory modality do not necessarily converge over the same 
PCs. An obvious caveat of our study is the focus on calcium imaging dynamics in PCs, 
as calcium transients might be produced by different biophysical dynamics for ION-
elicited complex spikes and simple spikes. However, it was recently shown that in larval 
zebrafish both complex spikes and bursts of simple spikes could be detected using the 
PC:GCaMP6s line (Knogler et al., 2017, 2019), and we could indeed observe both GC-
like and ION-like activity in PCs. 

In conclusion, our work provides the first parallel characterization of population 
responses of GCs, IONs and PCs in the cerebellum. This approach gives new insights 
into how stimulus features and timing are differently represented in the two converging 
cerebellar pathways and are integrated at the level of PCs, and could be leveraged in the 
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future to mechanistically address the involvement of the cerebellum in processing 
sensorimotor signals. 
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Methods  
Zebrafish lines 

The following experiments were performed with 6-8 days post-fertilization (dpf) 
zebrafish (Danio rerio) larvae. Before experimentation, larvae were kept on a 14h 
light/10h dark cycle and at a constant temperature of 28oC. Three types of transgenic 
lines in a nacre (mitf-/-) (Lister et al., 1999) genetic background were used for functional 
imaging experiments. For GCs and IONs imaging, a modified fast calcium indicator 
under the UAS promoter UAS:GCaMP6fEF05, see (Felix et al., 2021)) was expressed 
either under a GC-specific Tg(gSA2AzGFF152B) (Takeuchi et al., 2015)) or ION-specific 
(Tg(hspGFFDMC28C), (Takeuchi et al., 2015)) Gal4 promoter. For PC imaging, 
GCaMP6s was expressed under a direct PC promoter (Tg(PC:GCaMP6f), (Knogler et al., 
2019). For behavioral experiments, the Tuepfel long-fin (TL) wild-type strain was used. 
All experimental procedures were performed in accordance with the guidelines from 
the Regierung von Oberbayern, and following protocols approved by the Max Planck 
Society. 

Stimuli 

All stimuli were presented to the lower part of the visual field of the fish, to cover 
the whole base of the dish where the larvae were embedded or swimming. These stimuli 
consisted of different combinations of sharp luminance changes, and their display was 
controlled with Stytra (Štih et al., 2019). For the experiments presented in this study, 
two different protocols were used. The “steps” protocol consisted on 5 s luminance steps 
of three different brightness levels (corresponding to 5%, 20% and 100% of the maximal 
luminance, chosen to map quasi-logarithmically the dynamic range of the projector) 
with 7 s inter-stimulus intervals. All the possible luminance transitions between the 
different levels were sampled in each repetition. The “flashes” protocol consisted of 3-, 
7- and 21-s flashes of maximal brightness, interspaced by 7 s inter-stimulus intervals. 
The projectors were calibrated before the design of the stimuli: the lowest and highest 
luminances (corresponding to 0 and 255 pixel brightness values) were 0.3 lm and 55.7 
lm respectively. 

Freely swimming behavioral experiments 

For behavioral experiments, 6-7 dpf fish larvae were placed 3 at the time in about 1 
cm of water in a rectangular-shaped arena cut in a 1% agarose matrix in 88 mm Petri 
dishes. The dish was placed on top of a light-diffusing screen mounted on a clear acrylic 
support, illuminated from below using an array of IR LEDs (setup fully described in 
(Štih et al., 2019) and in Stytra documentation). Larvae were tracked online at 500Hz 
using a high-speed camera (Ximea MQ013MG-ON) with Stytra. Visual stimulation was 
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displayed from below using an Asus P2E microprojector and a cold mirror (Edmund 
Optics). A red long-pass filter (Kodak Wratten No. 25) was placed after the projector to 
match the absolute luminance values and wavelength of the imaging experiments 
stimulation. In freely swimming experiments we used the “steps” protocol, presented a 
total of 36 times (1 h total duration).  

Functional imaging experiments 

For functional imaging, larvae were placed in 35 mm Petri dishes and embedded in 
2.5% agarose. The dishes were placed onto an acrylic support, on top of a light-diffusing 
screen, and either the cerebellum or the inferior olive were systematically imaged with 
a custom-built two-photon microscope. For excitation, a TiSapphire laser (Spectra 
Physics Mai Tai) tuned to a 905 nm wavelength was used. Visual stimuli were projected 
from below at a rate of 60 frames per second using an Asus P2E microprojector, and a 
red long-pass filter (Kodak Wratten No. 25) was placed in front of the projector. Imaging 
frames were acquired every 248.88 ms (for cerebellum imaging) or 246.38 ms (for 
inferior olive imaging). The protocol was presented 6 times while acquiring every plane, 
then the focus was shifted ventrally 1.5 μm (for cerebellum imaging) or 1 μm (for inferior 
olive imaging) and the process was repeated. For every fish about 50-70 planes were 
imaged. 

Image processing 

Alignment. 2P data were first aligned with a plane-wise rigid transformation. A 
reference image for each plane was computed as the average of n frames, and 
displacement of each individual plane from the reference was found through image 
cross-correlation and corrected with rigid translation. Frames with a correlation peak > 
10 microns from the center, usually coming from motion artefacts, where set to nan and 
discard in following analyses. To correct for shifts happening between planes, and 
similar procedure was followed calculating shifts from one plane to the next using cross 
correlation between consecutive planes averages.  

ROI extraction: For ROI extraction, we used a combination of approaches. For GCs 
and PCs, as the number of cells is high, manual segmentation would be unfeasible; but, 
as responsive cells were generally reliable, it was possible to reconstruct individual ROIs 
spanning multiple planes thanks to the similarity of the signal between planes. For 
IONs, the sparse activity made it difficult to match ROI activity across planes based on 
correlation, but the low number of cells (~80 per fish) makes manual segmentation 
feasible.  

For automatic ROI extraction, we used exactly the same iterative procedure described 
in (Markov et al). Briefly, a spatial correlation map was computed where each pixel was 
assigned a value corresponding to the correlations over time between its fluorescence 
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and average fluorescence of the 8 neighbor pixels. Then, starting from the yet 
unassigned pixel with the highest correlation value (seed), neighbor pixels were 
included in the ROIs if their fluorescence correlation with the average fluorescence of 
the ROI grown so far passed a certain threshold. 

For manual ROI extraction, a custom python GUI was used to draw ROIs on the 
correlation maps. 

 

Response analysis 

All the analysis on the obtained traces was done in Python; Jupyter notebooks 
generating all the figures of the paper are available in the linked repository.  

Reliability index and filtering: to find a measure of responsiveness to the presented 
stimulus as independent as possible from the specific response profile, we calculated for 
each ROI we calculated the average correlation of the responses across all individual 
presentations of the stimulus. The distribution of the obtained correlations had a peak 
close to zero and a second peak (or a long tail) of positive correlations corresponding to 
responsive cells. To use an objective criterion to select responsive cells, we used Otsu’s 
method from the scipy package to set a threshold on the obtained histogram. 

Hierarchical clustering: Next, we calculated the mean response for each responsive 
ROI and we used the ward algorithm for hierarchical clustering (from the scipy package) 
to cluster them. We manually specify a cut on the clustering tree to obtain the discrete 
clusters that we use in the rest of the analysis. We arbitrary decided for a threshold that 
was low enough to include all clusters with qualitatively different changes in their 
response properties 

Regressor analysis: For regressor-based analysis, we manually designed a set of 
regressors starting from either luminance profiles with a gamma correction of 1, ½ or 
2; the difference between the luminance profile with gamma 2 and with gamma 1 
(imitating intermediate luminance responses); and on, off, and combined on and off 
transitions. The obtained regressors were then convolved with a kernel of (n) s, to match 
the temporal response of GCaMP6fe05. For each cell, Pearson correlation with all 
regressor was computed. 

COM sorting: The COM was defined as the point in time where the integral of the 
neuronal trace reached half of its total integral value. To cross-validate the plots, its 
value for each individual ROI was estimated based on the half of neuronal responses 
that were not used for the plotting (Figure S5A). 

Decoding: To decode different information from the cell activities, we used standard 
methods from the Scikit-Learn Python package (Pedregosa et al., 2011). Every decoding 
analysis was trained on 10 randomly chosen trials and tested on two others (only cells 
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with data from 12 or more trials were used in the analysis). Ridge regression was used 
to decode the time since stimulus onset (Figure 5E). Kernel-based support vector 
regression (SVR) was used in Figure 3D. Grid search over the one regularization 
parameter was performed in all cases by leaving out each of the 10 training trials. For 
all decoding analyses we have to caution that the population activity used to decode the 
populations is constructed. Neurons were sampled from different repetitions and 
animals, therefore destroying correlations between neurons. In many cases, such 
correlations, often termed noise correlations (because these remain unaccounted for 
after taking out stimulus responses) can have a significant impact on the decoding 
quality (Moreno-Bote et al., 2014) . The decoding analysis is provided together with the 
rest of the analysis code. 

Model fitting: For the PC modeling analysis, we used the data acquired with the 
“steps” protocol. First, we calculated average responses from all the GCs and IONs 
clusters (8 clusters of GCs, and 6 clusters of IONs). To address potential differences in 
time constants between calcium sensors, we deconvolved average responses using the 
GCaMP6fe05 kernel, and convolved using the GCaMP6s kernel to match the sensor used 
in PCs. The resulting average traces were normalized to be strictly positive and with 
integral 1. Then, the traces from luminance responsive PCs were Z-scored on a trial-by-
trial base, high-pass filtered with a very low cutoff frequency (1/80 Hz) to remove slow 
drifts, and smoothed with a 3 pts mean boxcar window to reduce noise. 

The function that was optimized for each cell was the following: 

𝑃𝑃𝐶𝐶𝑖𝑖 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡𝑖𝑖 + 𝐺𝐺𝐶𝐶𝐺𝐺𝑜𝑜𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜 ∗ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐶𝐶𝑖𝑖 + 𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝑜𝑜𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜 ∗ 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝐼𝐼𝑖𝑖 

Where: 

● 𝑃𝑃𝐶𝐶𝑖𝑖 is the trace for the ith PC cell; 
● 𝐺𝐺𝐶𝐶𝐺𝐺𝑜𝑜𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜,𝐼𝐼𝐼𝐼𝐼𝐼𝐺𝐺𝑜𝑜𝐺𝐺𝐺𝐺𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝑜𝑜 : are the matrix of GC and ION regressors 

The optimization was done on the following parameters: 

● 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑡𝑡: a constant term, bound to be between -5 and 5 
● 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐺𝐺𝐶𝐶,: coefficients for GC regressors, bound to be between 0 and 1000  
● 𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐼𝐼𝐼𝐼𝐼𝐼: coefficients for ION regressors, bound to be between 0 and 1000 

The large coefficient boundaries come from the different normalizations applied on 
regressors - norm - and on trace -Z scoring. 

For each cell, 2 stimulus repetitions (“test” data) were left out to be the final test 
traces for the analysis and excluded from the entire fitting process. The remaining 
repetitions (4 or more, for cells spanning multiple planes) were used to find the 
regularization term and doing the fit. 
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To find the L1 regularization lambda parameter, we used leave-one-out cross-
validation to calculate fit costs over a logarithmic sweep of lambdas between 10^-7 and 
10^-2. We trained the model on all the fit traces but one, we calculated the fit cost on 
the remaining trace and took the average value across all the left-out traces. Then, we 
calculated the average lambda and used it for all cells, to allow for a more appropriate 
comparison of the fit parameters across cells. 

After the cross-validation of regularization lambda, the parameters were fit over all 
the “fit” repetitions. The “test” repetitions were then used to estimate final fit 
performance and for all the plots in Figure 7. 

 

Behavioral analysis 

To analyze the behavioral responses to the luminance transitions, we started from 
raw velocity traces saved by Stytra. As zebrafish larvae swim in discrete events called 
bouts, the fish speed was thresholded to extract individual bout events. The time 
occurrence of each bout event relative to the presented stimulus was binned, a 
histogram of bout times was obtained for each fish (Figure S1A). To assess whether the 
decrease of bout probability after each luminance off transition was statistically 
significant, we bootstrapped a distribution of bout probabilities from the histogram of 
each fish, and compared the average bout probability 1.5 s after the off transition with 
the 1st percentile of the bootstrapped distribution (Figure S2C). In all but three fish, the 
post-transition probability was lower than the 1st percentile of the histogram (Figure 
S2C-D). 
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Supplementary Figures 
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Figure S1  

A) Average normalized bout probability for each individual fish across all stimulus presentations (heatmap), and 
average probability across all fish (blue line). B) Bout probability changes on a 3.5 s window around luminance 
offsets. Average bout probability across all off transitions is shown for each fish in gray lines, and the average 
bout probability across all fish is plotted in blue. C) The average bout probability at offset (during the 1.5 s 
following luminance changes, green line) across all fish, compared to the 1st percentile (red line) of a dataset 
generated via bootstrapping. D) Difference between the bout probability at offset and the 1st percentile for the 
bootstrapping analysis performed individually on each fish. Fish labeled in green correspond to animals where 
the bout probability was smaller than the 1st percentile. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 14, 2022. ; https://doi.org/10.1101/2022.09.12.507660doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507660
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29 

 

Figure S2  

A) Schema of the stimulus presented, with the color scheme used for all figures mapped on top of its luminance 
profile. B) Average fluorescence during the upward luminance steps from minimum luminance (left) and during 
downward luminance steps from maximum luminance (right) for each GC cluster. C) History dependence of 
luminance responses for all GC clusters. Average normalized fluorescence during the presentation of the same 
two intermediate levels of luminance (low intermediate: above, high intermediate: below), compared in epochs 
when it was reached from a higher (x values) or lower (y values) luminance level. Clusters that deviate from the 
diagonal are the ones showing the strongest temporal history dependence (color-coded according to Figure 2A). 
D)  Example of GC responses from various clusters, with individual stimulus repetitions (thin lines), average 
(thick line), and the ROI morphology (on the right). E) Contribution of individual fish to the observed clusters 
for GCs and IONs. Each color corresponds to one fish.  
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Figure S3 

All regressors used in the regression analysis (shades), and the best scoring ROI for each regressor (lines). While 
for luminance-related regressors the highest correlation values were always from GCs, for transition-related 
regressors most of the best scoring ROIs were from IONs. 
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Figure S4  

A) Schema of the stimulus presented, with the color scheme used for all figures mapped on top of its luminance 
profile. E) Contribution of individual fish to the observed clusters for GCs and IONs. Each color corresponds to 
one fish. 
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Figure S5:  

A) In order to cross-validate our sorting of ROI responses, the COM for each neuron was calculated based on the 
average response during half of its repetitions, and the other half of the repetitions were used to plot the figures 
shown in Figure 5.  Figure S5A shows, for each ROI, the COM calculated on each half of the repetition. B) 
Histogram of the R2 values between predicted and actual time from stimulus onset, as decoded from 200 
subsamples of GCs. The blue line marks the R2 value obtained using the same number of IONs. 
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Figure S6.  

A) Contribution of individual fish to the observed clusters for PCs in the steps protocol. Each color corresponds 
to one fish. B) Contribution of individual fish to the observed clusters for PCs in the flashes protocol. 
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Figure S7. 

A) Histogram of costs (L2) on the test traces from all PCs (green line), compared to a shuffle distribution (brown 
shade) that was obtained calculating costs after a random regressor-wise reshuffling of the weight matrix (i.e., all 
values from each individual regressor were kept and reshuffled in new random combinations). A threshold was 
defined to ensure that only 5% of these random fits could have a lower cost. The green shade indicates the data 
that were kept after such selection. B) Correlation between the reliability index and the fit error, including only 
PCs for which the fit was considered better-than-random. C) Distribution of the number of non-zero weights for 
IONs (average: 1.6 weights) and GCs (average: 2.8 weights) regressors. 
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