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Abstract

In human health research, metabolic signatures extracted from metabolomics data are a strong-added

value for stratifying patients and identifying biomarkers. Nevertheless, one of the main challenges is to

interpret and relate these lists of discriminant metabolites to pathological mechanisms. This task requires

experts to combine their knowledge with information extracted from databases and the scientific literature.

However, we show that a large fraction of metabolites are rarely or never mentioned in the litera-

ture. Consequently, these overlooked metabolites are often set aside and the interpretation of metabolic

signatures is restricted to a subset of the significant metabolites. To suggest potential pathological

phenotypes related to these understudied metabolites, we extend the ’guilt by association’ principle

to literature information by using a Bayesian framework. With this approach, we suggest more than

35,000 associations between 1,047 overlooked metabolites and 3,288 diseases (or disease families). All

these newly inferred associations are freely available on the FORUM ftp server (See information at

https://github.com/eMetaboHUB/Forum-LiteraturePropagation.).
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1 Introduction

Omics experiments have become widespread in biomedical research, and are frequently used to study

pathologies at the genome, transcriptome, proteome and metabolome levels. The subsequent discrimi-

nant analysis leads to a set (a signature) of genes, proteins or metabolites, reflecting alterations of the

phenotype at different levels of post-genomic processes. The interpretation of these signatures requires

gathering knowledge about each of its elements from the scientific literature and dedicated databases

(DisGeNET[1], Uniprot[2], HMDB[3], CTD[4], MarkerDB[5], FORUM[6]). However, despite its exponen-

tial growth[7], the scientific literature suffers from an imbalanced knowledge distribution. This topic has

received much attention for genes and proteins, showing a highly skewed distribution of the number of

articles mentioning each entity. Consequently, this strong imbalance has an impact on the quantity and

quality of gene annotations in databases[8, 9, 10, 11, 12]. Indeed, what is known as the Matthew effect [13],

which refers to the saying ”the rich get richer”, is particularly valid in scientific communications. For

instance, as reported in [9]: ”more than 75% of protein research still focuses on the 10% of proteins that

were known before the genome was mapped” and as reported in [12] ”all genes that had been reported upon

by 1991 (corresponding to 16% of all genes) account for 49% of the literature of the year 2015.”.

Metablomics emerged later than its omics siblings, transcriptomics and proteomics, and has, like them,

benefited from technological advancements, such as NMR and mass spectrometry. While we are getting

closer to a complete reconstruction of the human genome[14], our knowledge of the metabolome, i.e.

the set of metabolites present in a biological system[15], is still limited by technical constraints. Among

them, the main limitations are the identification of unknown metabolites and the sometimes inaccurate

identification of known ones [16, 17]. For instance, only a small fraction (< 20%) of metabolic spectra

can be correctly annotated [18, 19] in an untargeted metabolic analysis. This disparity is also reflected in

the distribution of the number of articles mentioning each compound present in the PubChem Database.

While only a small fraction of them are mentioned in thousands of articles, the majority remains rarely

or never mentioned [20]. This imbalance has consequences for the interpretation of the signatures, which

can rely solely on a subset of its members that are sufficiently covered to provide insights. In Human

health research, it is therefore critical to bring knowledge to these understudied compounds, by suggesting

diseases that could be linked to them.

A metabolite is suspected to be impacted or involved in a particular disease through metabolism when an

imbalance in its abundance has been observed in comparison to control cases. Moreover, metabolites are

linked to each other by biochemical reactions, and therefore their abundances are also interdependent.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 15, 2022. ; https://doi.org/10.1101/2022.09.13.507596doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.13.507596
http://creativecommons.org/licenses/by/4.0/


Among other factors, the abundance of a compound can depend on the concentration of its precursors

and, in turn, can also influence the rate of production of other compounds. Following the well known ’guilt

by association’ hypothesis, we assume that: if a metabolite has been linked to a particular disease due

to an imbalance in its abundance, metabolites that are connected to it by biochemical reactions, i.e. its

metabolic neighbourhood, can also be suspected of being linked to this disease. Metabolic networks[21],

built originally for modelling purposes, describe those substrate-product relations between compounds

and thus provide a suitable support to extend these suspicions to metabolic neighbours. For Human, the

reconstruction of the metabolic network (Human1 v1.7 [22]) contains 13,082 reactions and 8,378 metabo-

lites. In other omics fields, network-based strategies following ”guilt-by-association” principle have been

applied to build several recommendation systems proposing new genes or proteins that could be related

to a given disease from a list of known genes/proteins [23, 24, 25]. We also developed a similar approach

for metabolic signatures using random walks in metabolic networks [26].

If a compound is rarely or never mentioned, we hypothetize that the literature in its surrounding neigh-

bourhood may provide a priori knowledge on its biomedical context. To combine both this a priori and

the available literature of the compound (if any) in the suggestions, we propose a method based on the

Bayesian framework. The method returns several predictors to evaluate whether a significant proportion

of the articles mentioning a metabolite would also mention a disease. In addition, several indicators can

be used to highlight the most influential metabolic neighbours in the suggestions.

All the required data were extracted from the FORUM Knowledge Graph (KG)[6]. FORUM contains

significant associations between PubChem chemical compounds and MeSH biomedical descriptors based

on their co-mention frequency in PubMed articles. We evaluated our hypothesis by testing whether

significant associations between metabolites and diseases could be retrieved solely on the basis of the

literature of their neighbours. We illustrate the behaviour of the method in two scenarios: a metabolite

without available literature for which the prior is the only source of information (Hydroxytyrosol) and a

rarely mentioned metabolite (5α-androstane-3,17-dione with 82 articles). Using this approach on human

metabolic network, we suggested more than 35,000 new relations between overlooked metabolites and

diseases (and disease families). The code and the data needed to reproduce the results are available at

https://github.com/eMetaboHUB/Forum-LiteraturePropagation.
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2 Method Summary

The core of the method is the construction of a prior distribution on the probability that an article

mentioning a metabolite would also mention a particular disease. This distribution is estimated from

the literature of its metabolic neighbourhood. The metabolic neighbourhood of a compound consists of

the metabolites that can be reached through a sequence of biochemical reactions. It is defined from the

Human1 metabolic network[22], which was pruned from spurious connections using an atom-mapping

procedure[26] (see S1.1). In the following description of the method and subsequent analyses, overlooked

metabolites will be divided into two categories: those without literature (1) and those that are rarely

mentioned (2).

The Figure 1 summarizes all the steps in the proposed method. Figure 1.A introduces the example

of a relation between an overlooked metabolite A and a disease. The prior distribution on the probability

that an article mentioning A, would also mention the disease, is built from a mixture of the literature

of its close neighbourhood in the metabolic network. The weight of the component of these metabolites

in the mixture, depends both on their distance to A and their amount of literature (see details in 7.2).

We impose that a metabolite can’t influence its own prior or the prior of far distant metabolites. As an

illustration, B shares a quantity tB,A of its literature to build the prior of A, but doesn’t influence its

own prior, as well as the prior of Z (Cf. Figure 1.B). The weight of B in the prior of A is then estimated

as the amount of literature it had shared with A, relative to the other neighbours C, D, F (See Figure

1.C). We refer to B, C, D and F as the contributors to the prior of A. By analogy, it is as if each

metabolite spreads its literature in the metabolic network, and the prior of A was built from the articles

it had received from its contributors.

In Figure 1.D, the contributor F is also an overlooked metabolite with only 2 annotated articles, in-

cluding one mentioning the disease. This lack of literature may lead to a less reliable contribution. To

avoid this issue, an initial shrinkage procedure is applied to all contributors. The probability distribution

that one of its articles mentions the disease is readjusted toward the overall probability of mentioning the

disease (see details in 7.3).

Then, we build the prior distribution for A, by mixing the probability distributions of each contribu-

tor (see Figure 1.E) according to their weights estimated in the previous step (Figure 1.C). The prior

mixture distribution is denoted by fprior. The constructed prior distribution for A represents the proba-

bility distribution that an article from one of its contributors would mention the disease. In the scenario
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where A has no literature (1), the predictions will be based solely on fprior.

However if A is mentioned in few articles (2), we compute the posterior distribution, thus updating

the weights and distributions of each contributor in the mixture (Figure 1.E). The posterior mixture

distribution is denoted by fpost.

From the mixture distribution, two predictors are estimated: LogOdds and Log2FC. LogOdds expresses

the ratio between the probability of the disease being mentioned more frequently than expected in the

literature of the compound, rather than less frequently. Log2FC expresses the change between the average

probability of mentioning the disease in the mixture distribution, compared to the expected probability

in the whole literature. In summary, both should be considered jointly in the predictions: LogOdds as

a measure of significance and Log2FC as a measure of effect size. In (2), to get an intuition about the

belief of the neighbourhood only, we also return similar indicators estimated from fprior: priorLogOdds

and priorLog2FC (see details in 7.4 and 7.5). Finally, several diagnostic values such as Entropy allow to

assess the composition of the built prior (See S1.3). Entropy evaluates the good balance of contributions

in the prior. The more metabolites contribute to the mixture and the more their weights are uniformly

distributed, the higher the entropy.

3 Results

3.1 Unbalanced distribution of the literature related to chemical compounds

The FORUM KG links PubChem compounds to the PubMed articles that mention them. Among the 103

million PubChem compounds in FORUM, only 376,508 are mentioned in PubMed articles, representing

a coverage lower than 0.4%. For these mentioned compounds, the distribution of the literature is highly

skewed (Figure 2.A). The top 1% of the most mentioned compounds (red area) concentrates 80% of the

links between PubChem compounds and PubMed articles. Similarly, the blue area indicates that 63% of

compounds (218,291) have only one article mentioning them, which, to give a point of comparison, is less

than the literature associated with glucose: 278,277 distinct articles.

Considering only metabolites, Figure 2.B presents the distribution of the number of articles mention-

ing the 2704 metabolites, conserved in the pruned version of the Human1 metabolic network. Because

of the skewed distribution of the literature and the lack of external identifiers, 62.09% of the metabolites

in the metabolic network have no annotated articles. Nevertheless, almost 72% of them have at least
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Figure 1: A step by step description of the proposed method. Compound A has 0 < nA ≤ 100 articles, with

some co-occurrence with the disease of interest (0 ≤ yA ≤ nA). In the blocks A and B, the nodes represent

metabolites and the edges substrate/product relationships in the metabolic network. Dashed lines indicate more

distant connections.
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one direct neighbour in the metabolic network with available literature (See Figure 2.C). Moreover, by

considering the close neighbourhood (paths up to three reactions), almost all the metabolites (≈ 97.26%)

without initial literature can reach a described neighbour, showing the availability of nearby literature to

build a prior.

3.2 Evaluation of the prior computation

The critical step in the proposed method is the construction of a relevant prior. While its influence on

the results will decrease as the size of the literature of the targeted compound increases, it will mainly

drive the predictions for the rarely mentioned compounds we are interested in [27].

The relevance of the prior was evaluated by testing whether significant associations with diseases, could

be retrieved using only the literature from the metabolic neighbourhood of the metabolite. The validation

dataset includes 10,000 significant relations between metabolites and disease-related MeSH extracted from

the FORUM KG, and 10,000 random metabolite-MeSH pairs to serve as negative examples. The method

is evaluated by considering either the direct or a larger neighbourhood (metabolites that can be reached

through a path of two or more reactions). In the method, the considered neighbourhood is controlled by

the parameter α (see details in 7.2 and S4.1) and is set to α = 0 for the direct neighbourhood and α = 0.4

for a larger one.

We decided to compare the proposed method against two different baselines (more details in S4.2).

Baseline-Freq is the most naive approach in which the predictions are solely based on the overall probability

of mentioning the disease, such that a metabolite is more likely to be related to frequently mentioned dis-

eases in the literature. Hence, Baseline-Freq ignores the network information (metabolic neighbourhood).

On the contrary, the predictions with Baseline-DN are based on the average probability of mentioning the

disease in the direct neighbourhood, thus closer to the proposed approach. It is worth noting that, if all

direct neighbours have relatively the same amount of annotated articles and are well covered (negligible

shrinkage), the method parameterized with α = 0 behaves like the simple Baseline-DN for metabolites

without literature. We used Log2FC as predictor for the proposed method in Figure 3.

All tested approaches outperform Baseline-Freq, showing the benefit of examining the neighbouring lit-

erature. When considering the direct neighbourhood (method with α = 0), the method is more efficient

than Baseline-DN. However, as previously shown in Figure 2.C, the direct neighbourhood cannot bring

information for more than 28% of metabolites without literature. Therefore, considering a larger neigh-

bourhood can be essential for some overlooked metabolites, and the approach achieves solid performances
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Figure 2: A: Distribution of the number of annotated articles (expressed in log-scale) for PubChem compounds

that have at least one article in FORUM, in descending order. The red area represents the proportion of the most

mentioned compounds required to attain 80% of the total number of annotations, while the blue area represents

the fraction of compounds with only one annotated article. B: Distribution of the number of annotated articles per

metabolites, organised by bins, in the carbon skeleton graph of Human1. The first bar represents the metabolites

without literature. Among them, 81.5% don’t have annotated PubChem identifiers, making it impossible to link

them to PubMed articles with FORUM. The remaining 16.5% have annotated PubChem identifiers, but no articles

were found mentioning them. In total, there are 1336 articles with an available PubChem identifier. C: Distribution

of the shortest distance to the first neighbour in the metabolic network with at least one annotated article, for the

metabolites without literature in the network (bold bar of B). The distances were computed with the Dijkstra

algorithm.
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(AUC=0.78) on the validation dataset with α = 0.4. Applying a threshold on Log2FC > 1 results in

a TPR=0.35 and a FPR=0.05. Using LogOdds as predictor, the method achieved slightly lower perfor-

mances (AUC=0.76), with a TPR=0.22 and a FPR=0.04 when applying a threshold on LogOdds > 2.

Beyond the validation, LogOdds is more robust to outlier contributions than Log2FC and when examin-

ing predictions, they should be considered together as complementary indicators of significance and effect

size. These results suggest that the prior built from the neighbouring literature alone, holds relevant

information about the biomedical context of metabolites and could be efficient to drive predictions for

rarely mentioned compounds. To evaluate the performance of predictions based on the posterior distri-

bution, a complementary analysis is provided in S4.3. Finally, as mentioned in the Method summary, the

metabolic network was pruned from spurious connections using an atom-mapping procedure (see S1.1).

The benefit of this procedure on the predictions is evaluated in S4.4.

Figure 3: Receiver operating characteristic (ROC) of the method considering only the direct neighbourhood (α = 0)

or a larger (α = 0.4) and two different baselines. For Baseline-Freq the predictions are only based on the overall

probability of mentioning the disease in the literature. For Baseline-DN the predictions are based on the ratio

between the average probability of mentioning the disease in the direct neighbourhood and its overall probability.

Respective AUC (Area Under the Curve) for Method (α = 0), Method (α = 0.4), Baseline-DN and Baseline-Freq

are: 0.75, 0.78, 0.72 and 0.54.
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3.3 Suggesting relations with diseases for overlooked metabolites

In the FORUM KG, 80% of the significant associations with biomedical concepts are observed for the

20% of compounds with more than 100 annotated articles. This manifestation of the Pareto principle[28]

reflects the need for additional knowledge for compounds that are less frequently mentioned. Therefore in

this analysis, we applied the proposed method on all metabolites in the human metabolic network with less

than 100 annotated articles (see Table 1). According to the experiments on the validation dataset (See.

3.2), we applied a threshold on LogOdds > 2 and Log2FC > 1. We also retained predictions based on

well-balanced contributions from the neighbourhood by filtering on the diagnostic indicator Entropy > 1

(See details in Method and S1.3).

1863 predictions correspond to relations that are not novel, since they are already supported by one or

several publications in the literature (co-mention:yes in Table 1). However, by re-evaluating these pre-

dictions using a right-tailed Fisher exact Test (BH correction and selecting those with q.value <= 0.05),

we found that ≈ 50% of them (925) would not have been found significant. These relations are still weakly

supported, nevertheless, our method showed that they are consistent with the neighbourhood. 7,286 novel

relations have also been suggested with disease-related MeSH, without having already been mentioned in

their literature (co-mention:no). Finally, for 793 metabolites without literature, 26,436 relations have

been suggested only by exploiting the neighbourhood literature. All the results are available on the FO-

RUM ftp server (See https://github.com/eMetaboHUB/Forum-LiteraturePropagation.), filling a gap

when it comes to the interpretation of signatures with these understudied metabolites.

Nb. metabolites co-mention Nb. predictions

Metabolites without literature 793 no 26,436

Metabolites with few articles (< 100 articles) 254
no 7,286

yes 1863

Table 1: Summary table of the number of disease-related MeSH predicted for metabolites in the network with less

than 100 annotated articles. The results are separated between the two major scenarios: (1) Metabolites without

literature and (2) metabolites poorly described in the literature (< 100 articles). In the second case, results are

also arranged according to whether the metabolite already co-mentions the MeSH (co-mention column). Only

predictions with LogOdds > 2, Log2FC > 1 and Entropy > 1 are considered. For the 1863 predictions where

the metabolite co-mentions the MeSH, 938 (≈ 50%) are also retrieved using a right-tailed Fisher exact test (BH

correction and q.value < 0.05). Only 793 metabolites among the 1679 without literature and 254 among those with

literature have significant results according to the used thresholds.
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3.4 Case study

In this section, we will describe the behaviour and benefits of the method through two test cases. As men-

tioned in 2, Hydroxytyrosol is an example of a metabolite without literature (1) and 5alpha-androstane-

3,17-dione of a metabolite with only a few annotated articles (2) and with a weakly supported association.

3.4.1 Hydroxytyrosol and its potential link with Parkinson’s disease

Hydroxytyrosol is a metabolite which is known for its antioxidant properties [29] and mentioned by 856

publications in FORUM. However, its literature will only serve as ground truth, and Hydroxytyrosol

will be considered as a metabolite without literature in this analysis. Consequently, the predictions are

solely derived from the neighbouring literature (fprior). The top 10 predictions ranked by LogOdds are

presented in Supplementary Table S1. Parkinson’s disease is the most suggested disease, followed by

broader descriptors also related to neurodegenerative disorders. This suggestion is mainly driven by the

literature of close metabolic neighbours: dopamine and 3,4-dihydroxyphenylacetate (Figure 4). Both

compounds’ literature frequently mention Parkinson’s Disease (Table S2) suggesting that Hydroxytyrosol

may also be related to this disease. Other contributors such as 3.4-dihydroxyphenylacetaldehyde or

homovanillate also seem to be related to the pathology but only contribute ≈ 5% to the prior as they are

more distant neighbours or have less literature. In the actual literature of Hydroxytyrosol, 2 articles[30, 31]

explicitly discuss its therapeutic properties on Parkinson’s disease.

Figure 4: Profile of the contributors for the association between Hydroxytyrosol and Parkinson’s Disease. This shows

the repartition of the literature received by Hydroxytyrosol from its neighbourhood to build its prior. Contributors

are organised in blocks by increasing weights in the prior mixture (wi,k), from left to right. The weights also give

the width of the block. The colour of each block associated with a contributor depends on its individual LogOdds,

from blue to red, for negative (less likely) to positive (more likely) contributions respectively. Weights and LogOdds

are also detailed in table S2.
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3.4.2 Highlighting the role of 5alpha-androstane-3,17-dione in Polycystic Ovary Syndrome

Since 82 articles are available for 5-α-androstane-3,17-dione (5-αA), the predictions are derived from both

its literature and that of its metabolic neighbourhood. The top 25 predictions ranked by LogOdds are

presented in Supplementary Table S3, along with the p-value from a right-tailed Fisher exact test using

the same data for comparison (S1.2). The highest ranked associations are both supported by several

mentions of the compound and by the neighbourhood (high priorLogOdds). They correspond to mildly-

interesting predictions as the literature of the compound alone would have been sufficient (significant

Fisher p-value): the neighbourhood only strengthens the relation. Instead, we choose to focus on the re-

lation with Polycystic Ovary Syndrome (PCOS) which has a non-significant Fisher p-value and only one

article supporting the relation [32]. The priorLogOdds (5.47) indicates that the literature gathered from

the metabolic neighbourhood seems highly related to the disease (Figure 5). While the literature of the

compound alone is insufficient to highlight an association with PCOS, the posterior distribution, combin-

ing information available from the compound and its neighbours, strongly suggests one (LogOdds = 6.23

and Log2FC = 3.14). Androsterone, a direct neighbour of 5-αA through the reaction 3(or 17)-alpha-

hydroxysteroid dehydrogenase, is the main contributor supporting the prediction (Figure 5). Additional

contributors such as testosterone, testosterone-sulfate, estradiol-17β and progesterone are more distant

metabolically (2-3 reactions) but are also frequently mentioned in this context [33, 34, 35, 36, 37, 38, 39].

Also, PCOS is much more frequently mentioned in the literature of 4-androstene-3,17-dione compared to

the other metabolites in the neighbourhood, making it an outlier among the contributors. Interestingly,

its contribution significantly drops in the posterior distribution (See details in Supplementary materials

S4.5 and Table S4). A view of the metabolic neighbourhood of 5-αA is also presented in Supplementary

Figure S3.

To illustrate the influence of the observations on the posterior distribution, we re-evaluated the rela-

tion by removing the single co-occurrence between the 5-αA and PCOS. By suppressing this mention,

the LogOdds drops to 3.67, Log2FC to 2.80, and the weights in the posterior mixture change accord-

ing to the new observations (See Supplementary Figure S2). For instance the weight of androsterone,

which literature mentions PCOS less frequently than the other top contributors (testosterone, estra-

diol, etc.), increased while those of the others decreased. More significantly, the weight of 16alpha-

hydroxydehydroepiandrosterone, which is never mentioned with the disease, increases from 0.38% to 3%.

More details in Supplementary materials S4.5. By removing this mention, the likelihood of the evidences

for each contributor changed, favouring those for whom the disease is less likely to be mentioned in an

article. Although the relation is still suggested by the neighbourhood, this result shows the impact of the
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available literature on the predictions.

Figure 5: Profile of the contributors for the association between 5alpha-androstane-3,17-dione and Polycystic Ovary

Syndrome in the prior mixture (A) and in the posterior mixture (B). Contributors are organised in blocks by

increasing weights in the mixture from left to right, and the weights also give the width of the block. The colour

of each block associated with a contributor depends on its individual LogOdds, from blue to red, for negative (less

likely) to positive (more likely) contributions respectively. Details in Table S4.

4 Discussion

The interpretation of experimental results in metabolomics requires an intensive dive in the scientific liter-

ature. In a biomedical context, researchers often seek studies that mention metabolites from an observed

signature, as well as report variations in their concentration in similar phenotypes. However, we have

shown that there is a strong imbalance in the distribution of the literature among metabolites, suggesting

that this research could be restricted to a subset of the initial metabolic signature. Even if this imbalance

is accentuated by technical limitations, it also reflects biological facts: some metabolites are more central

and sensitive to phenotypic alterations and would therefore be more frequently reported. Nonetheless,

they do not necessarily provide key information when interpreting results, because they do not point to
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dysregulations on specific pathways. To extend the available data to help interpret results, we propose a

method to suggest relations between understudied metabolites and diseases. Most metabolites (62%) in

the network have no literature available, and many cannot be mapped to their corresponding PubChem

identifier. It is a common issue when dealing with metabolic networks, as they are initially built for mod-

elling purposes [40]. The absence of annotations also indicates that a compound is not widely described

and studied, which may suggest that little literature has actually been lost.

The predictions for metabolites without literature are solely based on their prior distribution which

is built from a mixture of the neighbouring literature. We first evaluated the prior alone on a valida-

tion dataset (AUC ≈ 0.78) and showed that it holds relevant information about the biomedical context

of metabolites. Since the contributors, their weights, and influences in the mixture distribution (more

or less likely to mention the disease in an article) are known, the prior is transparent by design. In

the example of hydroxytyrosol, the prediction was mainly derived from the literature of dopamine, 3-4-

dihydroxyphenylacetaldehyde (DOPAL), 3,4-dihydroxyphenylacetate (DOPAC) who all frequently men-

tion Parkinson’s disease in their literature. Hydroxytyrosol and its contributors belong to the dopamine

degradation pathway [41]. The literature supporting the relation with Parkinson’s disease mainly dis-

cusses the production of hydrogen peroxide during dopamine degradation to DOPAL by MAO enzymes.

Since DOPAL is then inactivated into either DOPAC or Hydroxytyrosol, the literature that has been

propagated by the contributors is metabolically relevant for hydroxytyrosol. Indeed, [42] shows that Hy-

droxytyrosol can induce a negative feedback inhibition on dopamine synthesis resulting in a decrease of

the oxidation rate of dopamine. By indicating which and how neighbours contributed to the predictions,

the contribution profile thus adds explainability to the predictions, which we believe is an important

quality of the method. It can be quickly established if there was a clear consensus in the neighbourhood

or if the association was only carried by one dominant contributor. In the case of positive suggestions,

the associated literature of each contributor could be examined to understand the nature of their relation

with the disease and assess the consistency of the prediction. Typically, we want to evaluate whether the

relationship between the contributors and the disease can indeed be transferred to the target compound,

whether it may suggest another, or whether it is irrelevant.

While a consensus is of course preferred (not matter the outcome of the prediction), some contributors

may also have divergent literature for a particular disease. To complete the example of hydroxytyrosol,

we show the profile of the contributors for the relation between 5-S-Cysteinyldopamine (CysDA) and

Parkinson’s disease (See Figure S4.A). CysDA is the S-conjugate of dopamine and cysteine and its prior
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is mainly influenced by the literature of both of these precursors, at 51% and 45% respectively. While

dopamine is strongly related to the disease, cysteine is much less mentioned in this context and the prior

is consequently indecisive (priorLogOdds ≈ 0.1). In this case, only the observed literature of CysDA

can reduce the uncertainty by updating the prior distribution. In FORUM, 11 articles out of 33 mention

CysDA and Parkinson’s disease, which has an important impact on the weights in the posterior mix-

ture in favour of dopamine, which then becomes the dominant contributor (See Figure S4.B). Indeed,

the posterior weights are proportional to the likelihood of the data according to the prior defined by

each contributor. For CysDA, observations clearly suggest that it should be frequently mentioned with

Parkinson’s disease, like dopamine, contrary to what is suggested by cysteine. The prediction is highly

significant (LogOdds = 50.7, Log2FC = 3.87) as the literature of CysDA is very indicative. However, we

would have already suggested the relation if only 2 articles out of 33 had mentioned the disease (see Figure

S4.C). This highlights the sensibility of the method which may suggest still poorly supported relations,

but which are consistent with the metabolic neighbourhood’s literature.

Likewise, the literature linking 5-αA to PCOS is not sufficient in quantity to statistically show a re-

lation. From an expert’s perspective, only one qualitative article could be sufficient to justify a relation

between a metabolite and a disease. But since the literature and the topics related with metabolomics

are broad, highlighting these weakly supported relations could point to relevant paths of interpretation

that may have been missed. The relation between 5-αA and PCOS is supported by only one article but is

highly coherent in the metabolic neighbourhood, as androgen metabolism dysfunctions are central in this

pathology [43]. As the contributors are widely studied metabolites (androsterone, testosterone, ...) that

also frequently mention the disease in their literature, the prior regarding the relationship is strong and

strengthens the observations. We also show that after removing the only supporting article and computing

the posterior distribution accordingly, the relation is still suggested but the LogOdds and Log2FC signif-

icantly drops. This illustrates the behaviour of the method, where the posterior distribution proposes a

compromise between the compound’s literature and that of its contributors, giving more weight to those

that are the most mentioned and for whom the observations are the most consistent. The neighbourhood

literature can also help to discard suggestions that are supported by secondary or negligible mentions

(See S4.6).

With FORUM’s data, relations are evaluated for both disease-specific MeSH and broader descriptors,

representative of disease families such as Neurodegenerative Diseases (D019636). When there is no con-

sensus among contributors at the level of specific diseases but they all belong to the same category of
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disorders, it could allow to suggest more coarse-grained relations. Although this increases the redundancy

of the results, it makes it easier to grasp the overall biomedical context of some understudied metabolites.

5 Limitations

The most evident limitation of the proposed approach is that the assumption that the literature in the

metabolic neighbourhood of a metabolite provides relevant prior knowledge on its biomedical context, is

not always accurate. A short path of reactions can indeed have a major impact on the metabolic activity

of compounds, resulting in separate biological pathways and invalidating the hypothesis. For instance,

while dopamine is a derivative of tyrosine, the former is a neurotransmitter and the latter a fundamental

amino acid. Their biomedical literature therefore covers very different topics, and one would not pro-

vide a good a priori on the other. Nonetheless, thanks to the transparency of the contributors’ profile,

such irrelevant contributions can be identified and the corresponding predictions re-evaluated or discarded.

Based solely on the metabolic network, we ignore the regulatory mechanisms of biological pathways

and only focus on biochemistry. We therefore assume that all paths of reactions are active and valid when

propagating the literature, which is not true and may vary depending on physiological conditions. The

predictions could potentially be improved by integrating a regulation layer, but this would add major

complexity to the method and we choose to ignore these constraints by proposing a more general ap-

proach. Although reconstructions of the human metabolism like Human1 are constantly improving, they

remain incomplete and some pathways (eg. lipids[44]) are simplified with missing or artificially created

links, mainly for modelling purposes.

With their overflowing literature, overstudied metabolites (amino acids, cholesterol, etc.) can erase the

contributions of other neighbours in the construction of a prior. This results in a strong prior which

is only fuelled by the literature of one dominant contributor, and in the case of a metabolite without

literature, predictions will therefore be solely based on it. We therefore provide diagnostic indicators like

Entropy, CtbAvgDistance and CtbAvgCorporaSize (See S1.3) to identify these unbalanced priors and flag

these predictions. Finally, a part of the biomedical literature of some influential compounds may not be

related to their metabolic activity. For instance, ethanol is strongly related to bacterial infections, not

as a metabolite but because of its antiseptic properties, which may suggest out-of-context relations by

spreading its literature to neighbours. Although we kept it in our analysis for sake of exhaustively, it

could be beneficial to remove its literature and that of metabolites with similar behaviours, for predictions

on their close neighbours.
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6 Conclusion

Based on the literature extracted from the FORUM KG, we showed the imbalance in the distribution of

the literature related to metabolites. To overcome this bias, we proposed an approach in which we extend

the guilt by association principle in the Bayesian framework. Basically, we use a mixture of the literature

of the metabolic neighbourhood of a compound to build a prior distribution on the probability that one

of its articles would mention a particular disease. The transparency of the contributor’s profile is essential

and helps diagnose and explain the predictions by indicating which and how metabolic neighbours have

contributed. More than 35,000 relations between metabolites and disease-related MeSH descriptors have

been extracted and are available on the FORUM ftp. These relations may help interpret metabolic signa-

tures when no or little information can be found in the literature or databases. In the upcoming release

of the FORUM KG, these relations will be integrated as a peripheral graph to supplement the existing

metabolite-disease associations and create new paths of hypotheses. In this analysis we restricted our

predictions to diseases-related concept because the metabolic network, although suitable for propagating

this type of relationship, would be less reliable for propagating functional relations for instance. The

process is also network dependent, which means that using a different metabolic network (human or other

organisms) could result in different suggestions. Nonetheless, the approach could be extended to other

entities (genes, proteins) and relations, as long as the related literature is available and the neighbourhood

of an individual can provide a meaningful prior. Finally, as the literature grows rapidly and metabolic

networks become more comprehensive, we hope that this will also improve both the quantity and quality

of the suggestions in the future.

7 Method

7.1 Settings

The approach is metabolite-centric, considering all the available literature for each metabolite and its co-

mentions with disease-related MeSH descriptors as input data. Note that each article frequently mentions

numerous metabolites and therefore the literature related to each metabolite, in terms of publications, is

not exclusive to that chemical, but can be shared with others. We thus call a ’mention’ the fact that an

article mentions a metabolite.

For M metabolites in the metabolic network, we note ni the total number of mentions of a metabo-

lite i and then define N =
∑M

i=1 ni as the total number of mentions in the network. Given a specific

disease-related MeSH descriptor, we also define yi as the number of articles co-mentioning the metabolite
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i and the disease, with m =
∑M

i=1 yi the total number of mentions involving that disease. Details on the

extraction of literature data from the FORUM KG are presented in S1.2.

For a metabolite k of interest, the random variable pk denotes the probability that an article men-

tioning the metabolite k, also mentions the disease. The aim of the method is to estimate the posterior

distribution of pk, given a prior built from the literature of its metabolic neighbourhood. To assess the

strength of their relation, pk is then compared to the expected probability P = m
N that any mentions of a

metabolite in the literature also involves the disease. As in the method summary, the scenario in Figure

1 will be used to illustrate the different steps.

7.2 Estimating the contributions of metabolic neighbours

Based on the assumption that the literature from the metabolic neighbourhood of a compound could

provide a useful prior on its biomedical context, the first step is to propagate the neighbours’ literature.

A random walk with restart (RWR) algorithm (or Personalized PageRank) is used to model a mention,

sent by a metabolite i, which moves randomly through the edges in the network and reaches another

compound k. At each step, the mention has a probability α, named the damping factor, of continuing the

walk and (1−α) of restarting from the metabolite i. The result is a probability vector πi., indicating the

probability that a mention sent by i reaches any metabolites k in the network, noted πi,k. The expected

number of mentions sent by i that reach the compound k are then πi,kni. However, in this model, a

compound can receive its own mentions (πk,k > 0) although only those derived from the neighbourhood

should be used to build the prior, as the metabolite should not influence itself. A second bias is relative

to the set of neighbours for which a metabolite is allowed to contribute to their prior. Metabolites with

very large corpora (Glucose, Tryptophan, etc.) can propagate their literature to distant metabolites in

the network, even if their probability to reach them is low. In the case of metabolites with a rarely

mentioned direct neighbourhood, they can predominantly contribute to the prior, although they are not

metabolically relevant. This bias is accentuated by the highly skewed distribution of the literature.

To contribute to the prior of k, we therefore require that a metabolite i should have a probability of

reaching k (without considering the walks that land on itself) greater than the probability of choosing k

randomly. The set of metabolites k to which i is allowed to contribute, namely the influence neighbourhood

of i, noted Hi, is therefore defined as :

k ∈ Hi ∀k ̸= i,
πi,k

(1− πi,i)
>

1

(n− 1)

According to these probabilities, the quantity of literature sent by i that reaches k is noted ti,k such as:
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ti,k =


πi,k∑

k′∈Hi
πi,k′

ni, if k ∈ Hi.

0, otherwise.

These aspects are illustrated in Figure 1.B: B propagates its literature to its neighbourhood but no

mentions return to B, B is not allowed to send mentions to Z (being too far) and A receives tB,A

mentions from B. Symmetrically, we defined Tk as the set of contributors of k, such that ti,k > 0. Each

contributor i, has a weight wi,k in the prior of k, representing the proportion of literature reaching k, that

was sent by i:

wi,k =
ti,k∑

i′∈Tk
ti′,k

The weight vector for compound k is noted wk. In Figure 1.C, wB,A is the weight of B in the prior of A

and as A cannot contribute to itself, wA,A = 0.

7.3 Mixing neighbouring literature to build a prior

We assume that a priori, any metabolites and diseases are independent concepts in the literature, so that

mention of the former does not affect the probability of mentioning the latter and E[pi] = P . Under

this assumption, for any contributor i, the prior distribution of pi is modelled as a Beta distribution

parameterized by mean (µ) and sample size (ν):

yi|ni, pi ∼ Bin(ni, pi)

pi ∼ Beta(α(0), β(0))

α(0) = µν, β(0) = (1− µ)ν with µ = P

The sample size ν is a hyperparameter and controls the variance, the higher ν, the lower the variance:

V ar[pi] =
µ(1−µ)
1+ν . More intuitively, ν can be seen as the number of pseudo-obeservations that support

this prior belief. The higher ν, the more each contributor i would have to bring new evidences (ni) to

change the prior belief[45]. As the Beta distribution is a conjugate prior of the Binomial distribution, the

posterior distribution of pi can also be expressed as a Beta distribution:

pi|yi, ni ∼ Beta(α
(1)
i , β

(1)
i )

α
(1)
i = α(0) + yi and β

(1)
i = β(0) + (ni − yi)

For overlooked neighbours which might bring unreliable contributions, the posterior distribution of pi acts

as a shrinkage procedure, by adjusting the probability distribution toward the overall probability P of
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mentioning the disease. This is illustrated in Figure 1.D: the contributor F has only 2 annotated publica-

tions, with one mentioning the disease. While the raw estimated probability that F mentions the disease

clearly seems overestimated due to its small amount of available literature, the posterior distribution of

pF is more reliable.

As illustrated in Figure 1.E, the prior distribution of pk, also noted fprior, is then defined as a mix-

ture of the distributions Beta(α
(1)
i , β

(1)
i ) of each contributor, weighted by wi,k:

yk|nk, pk ∼ Bin(nk, pk)

pk ∼
∑
i∈Tk

wi,kBeta(α
(1)
i , β

(1)
i )

In summary, the parameters α and ν respectively control the average distance to which a metabolite is

allowed to contribute to the prior of its neighbours, and the strength of the initial prior in the shrinkage

procedure. The impact of these parameters on the constructed prior and predictions is discussed in S4.1.

In the analyses presented in 3.3 and 3.4, we set α = 0.4 and ν = 1000.

7.4 Updating prior and selecting novel associations

For the compound k, the final posterior mixture distribution of pk, also noted fpost (Cf. Figure 1.F),

is thus expressed as a mixture of the updated posterior distributions of each contributor, reweighted

according to the observed data (nk and yk):

pk|yk, nk ∼
∑
i∈Tk

Wi,kBeta(α
(2)
i , β

(2)
i )

Wi,k =
wi,kCi,k∑

i′∈Tk
wi′,kCi′,k

with Ci,k =

(
nk

yk

)
B(α

(2)
i , β

(2)
i )

B(α
(1)
i , β

(1)
i )

, α
(2)
i = α

(1)
i + yk and β

(2)
i = β

(1)
i + (nk − yk)

Ci,k represents the probability of observing the data (yk, nk) of the metabolite k, where pk is drawn from

the Beta distribution of the contributor i (Beta(α
(1)
i , β

(1)
i )), as in a Beta-binomial model. Therefore, the

posterior weights in the mixture (Wi,k) correspond to the initial weights (wi,k), reweighted according to

the likelihood of the observations from the perspective of the contributor i.

From the mixture distribution, we evaluate the probability that pk ≤ P , or the posterior error that

an article mentioning the metabolite k, would mention the disease more frequently than expected, noted

CDF . We set q = 1 − CDF and then use the log odds of q, such as LogOdds = log( q
1−q ). Therefore,

if LogOdds > 0, it is more likely that the metabolite k is related to the MeSH than it is not, and vice-

verca. Also, we defined Log2FC = log2(
E[fpost]

P ). As LogOdds can lead to infinite values (if CDF wasn’t
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precisely computed and approximated to 0), the Log2FC can in turn provide a useful estimator to rank

the relations. In turn, Log2FC is much more sensitive to outlier contributors than LogOdds. When eval-

uating predictions, LogOdds should be considered as a measure of significance and Log2FC as a measure

of effect size. Finally, LogOdds and Log2FC can also be computed independently for each contributor

i using their associated component in the prior (Beta(α
(1)
i , β

(1)
i )) and posterior mixture (Beta(α

(2)
i , β

(2)
i )).

7.5 Different scenarios

For metabolites mentioned in few articles and with literature available in the neighbourhood (2), the

behaviour of the method is exactly as described above. When the compound k has no annotated articles

(1), only the distribution fprior is used to compute LogOdds and Log2FC. In summary, for metabolites

without literature, LogOdds and Log2FC are derived from fprior, while for metabolites with literature,

they are obtained from fpost. For the latter, priorLogOdds and priorLog2FC are computed from the

prior distribution fprior and aim to represent the belief of the metabolic neighbourhood, without the

influence of the compound’s literature.

There may be no literature available in the neighbourhood of some metabolites. In this case, the prior

distribution is simply defined by Beta(α(0), β(0)) and then the posterior distribution is Beta(α
(1)
k , β

(1)
k ).

In the worst-case, where no literature is available for the metabolite and its neighbourhood, the basic

distribution Beta(α(0), β(0)) is used, but predictions are automatically discarded.

Since the construction of the prior from the neighbourhood’s literature is critical in the proposed method,

several diagnostic values are also reported to judge its consistency. Those additional indicators are detailed

in Supplementary materials S1.3.
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