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Abstract 39 

Inositol pyrophosphates (PP-IPs) regulate diverse physiological processes; to better 40 

understand their functional roles, assessing their tissue-specific distribution is important. 41 

Here, we profiled PP-IP levels in mammalian organs using a novel HILIC-MS/MS 42 

protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels 43 

of IP7 and its precursor IP6. Although their absolute levels in the GIT is diet-dependent, 44 

elevated IP7 metabolism still exists under dietary regimes devoid of exogenous IP7. Of 45 

the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme 46 

IP6K2. IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the 47 

various organs including the proximal GIT. Additionally, HILIC-MS/MS analysis 48 

displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the 49 

gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome 50 

analysis of duodenal muscularis externa further suggested that IP6K2 inhibition induced 51 

the gene sets associated with mature neurons such as inhibitory, GABAergic and 52 

dopaminergic neurons, concomitantly with suppression of those for neural 53 

progenitor/stem cells and glial cells. In addition, IP6K2 inhibition explicitly affected 54 

transcript levels of certain genes modulating neuronal differentiation and functioning, 55 

implying critical roles of IP6K2-IP7 axis in developmental and functional regulation of 56 

enteric nervous system. These results collectively reveal an unexpected role of 57 

mammalian IP7—a highly active IP6K2-IP7 pathway is conducive to enteric nervous 58 

system. 59 

 60 

Keywords: inositol pyrophosphate, diphosphoinositol pentakisphosphate, inositol 61 

hexakisphosphate kinase 2, hydrophilic interaction liquid chromatography-tandem mass 62 
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spectrometry, enteric nervous system  63 
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Introduction 65 

Myo-inositol phosphates (IPs) are ubiquitously synthesized in all organisms and are 66 

involved in pleiotropic biological processes, most importantly in intracellular signaling 67 

(Irvine and Schell, 2001). Among the IP family, inositol hexakisphosphate (IP6) is the 68 

most abundant, and serves as a precursor of inositol pyrophosphates (PP-IPs) possessing 69 

diphosphate moieties at specific carbon positions (Saiardi, 2012; Wilson et al, 2013; 70 

Shears, 2015; Shah et al, 2017). Diphosphoinositol pentakisphosphate (IP7) and 71 

bisdiphosphoinositol tetrakisphosphate (IP8) are the most well-characterized PP-IPs in 72 

mammals and yeasts, and carry diphosphate moieties at the 5-position (5-IP7) and 73 

1,5-positions (1,5-IP8) of the inositol ring, respectively (Draskovic et al, 2008; Shears, 74 

2015). Recent studies using mammalian cells have demonstrated that PP-IPs regulate 75 

phosphate flux, energy homeostasis, and post-transcriptional processes at the molecular 76 

level (Wilson et al, 2019; Li et al, 2020; López-Sánchez et al, 2020; Sahu et al, 2020; 77 

Gu et al, 2021). In mammals, 5-IP7 is synthesized by three inositol hexakisphosphate 78 

kinases (IP6Ks) IP6K1, IP6K2, and IP6K3. IP6K1 and IP6K2 are expressed in most 79 

mammalian tissues, with highest expression in the brain and testis, whereas IP6K3 80 

expression is mainly restricted to the muscles (Saiardi et al, 2001; Moritoh et al, 2016; 81 

Laha et al, 2021). In vivo studies using IP6K1- or IP6K2-knockout mice suggest that 82 

PP-IPs contribute to the development and maintenance of neuronal cells (Fu et al, 2017; 83 

Nagpal et al, 2018, 2021). In addition to these in vivo mice studies, our as well as other 84 

research groups have shown that PP-IPs are pathophysiologically involved in the 85 

progression of obesity (Chakraborty et al, 2010; Ghoshal et al, 2016), in cancer (Rao et 86 

al, 2015) and in neurodegenerative disorders such as Huntington’s disease (Nagata et al, 87 

2011), amyotrophic lateral sclerosis (Nagata et al, 2016), and Alzheimer’s disease 88 
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(Crocco et al, 2016). Therefore, PP-IPs are currently being considered as potential 89 

therapeutic targets for several diverse human disorders (Shears, 2016; Chakraborty, 90 

2018). However, we are unaware of any systematic studies that have directly and 91 

comprehensively analyzed PP-IP distribution in mammalian tissues, which could 92 

provide valuable insights into the effects of pharmacological interventions on the PP-IP 93 

system. 94 

Over the past decade, extensive efforts have been made to develop analytical methods 95 

for detecting PP-IPs. Traditionally, PP-IPs have been studied using radioisotopic 96 

3H-inositol labeling coupled with anion exchange chromatography (Azevedo and 97 

Saiardi, 2006), which allows sensitive detection of metabolically labeled PP-IPs from 98 

cultured cells. Electrophoretic separation and colorimetric visualization of PP-IPs 99 

(Losito et al, 2009) have also become alternative standard methods for distinguishing 100 

PP-IPs. However, PP-IPs in mammalian tissues can neither be radioisotopically labelled, 101 

nor explicitly detected using colorimetric visualization. A mass spectrometric method 102 

coupled with capillary electrophoretic separation (capillary electrophoresis-mass 103 

spectrometry, CE-MS) (Qiu et al, 2020) was recently reported for sensitive analysis of 104 

PP-IPs in biological samples at the isomer level. However, the instrument setup 105 

involved is complex and requires skillful handling, and is therefore rarely available in 106 

research institutes. 107 

 We recently developed an analytical method that directly detects 108 

mammalian-derived IP7 and its precursor IP6 using conventional liquid 109 

chromatography-tandem mass spectrometry (LC-MS/MS) coupled with hydrophilic 110 

interaction liquid chromatography (HILIC) (Ito et al, 2018), enabling the previously 111 

impossible quantitation of PP-IPs in mammalian tissues. In this study, we analyzed 112 
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PP-IP and their precursor IP6 levels in mammalian organs using a refined 113 

HILIC-MS/MS protocol. We found that IP7 was present at explicit levels in the 114 

mammalian central nervous system (CNS), where IP6Ks are highly expressed. 115 

Surprisingly, we also discovered that the highest IP7 production was observed in the 116 

gastrointestinal tract (GIT), even after depletion of dietary derived IP7. Of the major 117 

GIT cells, enteric neurons selectively expressed IP7-synthesizing enzyme IP6K2, which 118 

was revealed by assessment of single cell RNA-sequencing (scRNA-seq) data sets and 119 

confirmed by immunohistochemical detection. Our HILIC-MS/MS survey using 120 

IP6K2-knockout (IP6K2-/-) mice exhibited that IP6K2-dependent enhanced IP7 121 

metabolism exists in the gut and duodenal muscularis externa where myenteric plexus is 122 

located. We further performed whole transcriptome analysis of IP6K2-deficient and 123 

wild type (WT) duodenal muscularis externa to define a physiological role of IP6K2-IP7 124 

pathway in enteric nervous system (ENS). 125 

 126 

 127 
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Results 129 

Refinement of HILIC-MS/MS protocol for PP-IP analysis 130 

  Before investigating PP-IP metabolism in mammalian tissues, we improved our 131 

HILIC-MS/MS analysis protocol for unequivocal detection and more precise 132 

quantitation of PP-IPs. Medronic acid compatible with LC-MS analysis significantly 133 

improves the chromatographic peak shape of phosphorylated compounds (Hsiao et al, 134 

2018). We employed a form of this solvent additive that has been optimized for HILIC 135 

analysis (InfinityLab deactivator additive, Agilent Technologies) and found that using it 136 

significantly improved the peak shapes of IP6 and IP7 (Fig. 1A), whereas without the 137 

additive, remarkably poor IP6 and IP7 peak shapes were obtained, probably due to the 138 

cumulative adsorption of cationic contaminants on the column derivative (amino group). 139 

Chromatographic peaks of IP7 levels as low as 10 pmol were discernible using this 140 

additive (Fig. 1B). Direct use of LC-MS grade medronic acid resulted in similar 141 

beneficial effects on IP6 and IP7 peaks (Fig. S1), but the background noise was 142 

relatively higher than that for the InfinityLab deactivator additive. Thus, the additive 143 

was used in all our subsequent analyses.  144 

To quantitate IP8 (Fig. 1C) simultaneously with IP6 and IP7, we assessed the mass 145 

spectra of IP8 fragment ions obtained by collision-induced dissociation of the synthetic 146 

IP8 standard (Fig. 1D). A series of fragment ions representing the losses of phosphate 147 

(80 Da) and water (18 Da) appeared in the spectra. Based on this result, we assigned 148 

each IP8 fragment and optimized the selected reaction monitoring (SRM) conditions 149 

(Table S1). Using chemical standards of PP-IPs and their precursor IP6, we observed 150 

chromatographic peaks of IP6, IP7, and IP8 at regular intervals of 0.2 min (Fig. 1E). To 151 

benchmark this method for the detection of endogenous PP-IPs, we treated HCT116 152 
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cells with NaF, which is known to increase IP7 level (Menniti et al, 1993). While a clear 153 

IP6 SRM peak and subtle IP7 and IP8 SRM peaks were observed for untreated HCT116 154 

cells, explicit IP7 and IP8 SRM peaks were detected for NaF-treated cells (Fig. 1F). We 155 

also observed a dose-dependent reduction in IP7 level and the IP7/IP6 ratio in HCT116 156 

cells treated with the IP6K inhibitor TNP (Fig. S2). Thus, our refined HILIC-MS/MS 157 

protocol achieved robust, sensitive, and reliable detection of endogenous IP6, IP7, and 158 

IP8 in biological samples. 159 

 160 

The mammalian gastrointestinal tract (GIT) contains high levels of PP-IPs 161 

Using the newly developed HILIC-MS/MS protocol, we investigated the distribution 162 

of PP-IPs in experimental model rodents fed with a standard plant-based diet (CE-2; 163 

Clea, Japan). Fifteen organs, including the CNS and GIT, were harvested from standard 164 

diet-fed C57BL/6J male mice. Surprisingly, HILIC-MS/MS analysis showed that the 165 

GIT had the highest levels of IP6 and IP7, even after extensive rinsing of the organs with 166 

phosphate-buffered saline (PBS) to wash out the digested contents (Fig. 2A, B and 167 

Table S2). Importantly, the IP7/IP6 ratio in the GIT was remarkably high, by far the 168 

highest in all organs examined (Fig. 2C and Table S2). A subtle IP8 SRM peak was 169 

detected in stomach and small intestine samples, wherein IP7 was abundant (Fig. 2D) 170 

but was not detected in other organs. While IP7 SRM peaks were clearly detected in 171 

CNS samples (Fig. 2E), IP7 levels in the CNS were modest compared with those in the 172 

GIT. Moreover, the IP7/IP6 ratio in the spinal cord appeared to be higher than that in the 173 

cerebrum (Fig. 2C).  174 

Several reports have shown that IPs (mainly IP6, known as phytic acid) are present in 175 

a variety of crop seeds (Dorsch et al, 2003; Liu et al, 2009; Kolozsvari et al, 2015; 176 
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Duong et al, 2017); moreover, plants also generate PP-IPs, which are crucial for 177 

phosphorus-starvation responses (Dong et al, 2019; Ried et al, 2021; Riemer et al, 2021). 178 

Therefore, we assumed that the plant-based CE-2 diet contains IP6 and PP-IPs, and 179 

explicit chromatographic peaks of IP6, IP7, and IP8 were observed in CE-2 samples (Fig. 180 

2F, upper panels). The concentrations of IP6 and IP7 in CE-2 were 3.96 ± 0.82 nmol/mg 181 

and 0.17 ± 0.03 nmol/mg, respectively. We next investigated their concentrations in 182 

purified diets with minimal levels of plant-derived components (Fig. 2F, middle and 183 

lower panels). The two purified diets examined (iVid-neo and 70% casein) contained 184 

low amounts of IP6 and negligible amounts of IP7 and IP8. Quantitative analysis 185 

revealed that the levels of all PP-IPs in both purified diets were less than 2% of those in 186 

CE-2 (Fig. 2G).  187 

Since the IP7/IP6 ratios in the stomach and duodenum were significantly higher than 188 

that in CE-2 (Fig. 2C), the high IP7 level detected could not be attributed to its direct 189 

absorption from CE-2 diet, so it must have been endogenously produced by active IP6K 190 

enzyme. However, to exclude the possibility of selective intestinal absorption of IP7, we 191 

analyzed the feces of mice fed on CE-2 and estimated the loss of IP6 and IP7 in the 192 

digestive system (Fig. 2H). Similar to those for CE-2 samples, IP6 and IP7 SRM peaks 193 

were clearly observed in mouse feces samples. Quantitative analysis showed that 194 

approximately 50% of IP6 and IP7 in ingested food remained in the feces (Fig. 2I). Since 195 

the IP7/IP6 ratio remained unchanged between undigested CE-2 and feces, we could 196 

exclude that IP7 is selectively absorbed in the GIT, further demonstrating that the 197 

abundant IP7 levels observed in the GIT must be endogenously generated by cellular 198 

metabolism. 199 

 200 
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Enhanced IP7 metabolism is retained in the proximal GIT of rodents under 201 

conditions of depleted dietary IP6 and PP-IP supply 202 

To validate the presence of endogenously synthesized PP-IPs in the GIT, C57BL/6J 203 

mice were fed for 2 months on standard CE-2 diet; on iVid-neo containing negligible 204 

amounts of IP6 and PP-IPs (Fig. 2E); or left fasting for 48 h (Fig. 3A). The GIT of both 205 

purified diet-fed and fasted mice showed a reduction in IP6 and IP7 levels compared 206 

with those of standard diet-fed mice; however, the levels were still close to (in the case 207 

of IP6) or far greater than (in the case of IP7) the CNS levels (Fig. 3B and C). IP8 was 208 

not detected in any of the tested organs of purified diet-fed and fasted mice. The SRM 209 

chromatograms of both purified diet-fed and fasted mice samples had explicit IP7 SRM 210 

peaks (Fig. 3D). Importantly, the stomach and duodenum of these mice showed 211 

prominently higher IP7/IP6 ratio than those of their standard diet-fed counterparts (Fig. 212 

3E), implying further enhanced IP7 metabolism compensated for the overall reduced IP7 213 

level. On the other hand, both purified diet-fed and fasted mice did not show any 214 

changes in the IP6 and IP7 levels as well as the IP7/IP6 ratio in the CNS and testis 215 

compared with those of mice fed a standard diet. However, as with standard diet-fed 216 

mice, both purified diet-fed and fasted mice showed higher IP7/IP6 ratios in the spinal 217 

cord than in the cerebrum. We also investigated IP7 levels in the GIT of purified diet 218 

(70% casein)-fed Sprague–Dawley rats (Fig. 3F). Analogous to the results observed in 219 

the mouse model, both IP6 and IP7 levels in the GIT of these rats were drastically 220 

reduced compared with those in the standard diet-fed GIT and comparable to those in 221 

the CNS (Fig. 3G and H). In addition, the IP7/IP6 ratio was higher in the stomach and 222 

duodenum of purified diet-fed rats compared with that of standard diet-fed rats (Fig. 3I), 223 

further demonstrating very active IP7 metabolism in the mammalian proximal GIT.  224 
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 225 

Enteric neurons highly express IP6K2 in the mammalian GIT 226 

To investigate the expression levels of the three IP6Ks in each GIT cell type, we used 227 

single-cell RNA sequencing (scRNA-seq) datasets and compared the expression levels 228 

of IP6Ks among GIT cell types. Quantitative analysis using a human embryonic 229 

intestinal cell scRNA-seq dataset (Fawkner-Corbett et al, 2021) showed that enteric 230 

neural cells expressed the highest levels of IP6K2 among different intestinal cells (Fig. 231 

4A, left panel). In enteric neural cells, IP6K2 was selectively expressed across enteric 232 

neuron subsets, such as motor neurons, interneurons, and neuroendocrine cells, but not 233 

in glial cells (Fig. 4A, right panel). This analysis was further supported by the IP6K 234 

quantitation using both E15.5 (Fig. S3A) and E18.5 (Fig. 4B) mouse embryonic ENS 235 

scRNA-seq datasets (Morarach et al, 2021). As in humans, IP6K2 isoform expression 236 

level in mouse enteric neurons was higher than in other neural cells such as neuroblasts, 237 

progenitors, glial cells, and Schwann cells. Moreover, the transcriptional analysis-based 238 

data were verified using immunohistochemical analyses. IP6K2 colocalized with the 239 

neuronal marker HuC/D in the mouse duodenal muscle layer, suggesting IP6K2 was 240 

expressed in the myenteric plexus (Fig. 4C). Other than enteric neurons, several cell 241 

types, including secretory progenitor cells, also expressed relatively high levels of 242 

IP6K2 (Fig. S3B). In addition, mouse enteric epithelial cell scRNA-seq data (Haber et 243 

al, 2017) showed that IP6K2 is expressed in mouse enteroendocrine cells (Fig. S3C). 244 

Expression levels of IP6K1 and IP6K3 in entire embryonic intestinal cells were low and 245 

negligible, respectively (Fig. 4A and B). These results suggest that IP6K2 is highly 246 

expressed in mammalian enteric neurons.  247 

 248 
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IP6K2-/- mice show significant impairment of IP7 metabolism in the proximal GIT 249 

To estimate the importance of IP6K2 in endogenous IP7 synthesis in the mammalian 250 

organs including GIT, we employed a genetically modified mouse in which IP6K2 exon 251 

6, encoding the kinase domain, was specifically deleted (Fig. 5A, upper panel) (Rao et 252 

al, 2014). To avoid any contamination of dietary-derived IPs in our analysis, 253 

IP6K2-knockout (IP6K2-/-) or wild type (WT) mice raised on the standard CE-2 diet 254 

were switched to a purified diet (iVid-neo) for one week, and then fasted for 48 h before 255 

sacrifice (Fig. 5A, lower panel). In WT mice, IP6K2 mRNA containing the exon 6 256 

sequence was expressed in the proximal GIT but only marginally compared with the 257 

expression in the CNS (Fig. 5B). As expected, the IP6K2 transcript was absent in 258 

IP6K2-/- mouse organs. We confirmed the loss of IP6K2 expression at the protein level 259 

using cerebrum lysate (Fig. 5C), because it has high IP6K2 protein expression and thus 260 

was useful for clearly validating the loss of IP6K2 in IP6K2-/- mice. HILIC-MS/MS 261 

analysis showed that IP6K2-/- mice had significantly lower levels of IP7 in various 262 

organs, including the stomach and duodenum, compared with those in their WT 263 

counterparts, while IP6 levels in each organ were almost the same between IP6K2-/- and 264 

WT mice (Fig. 5D and E). As previously observed (Fig. 3E and I), the IP7/IP6 ratios in 265 

the stomach and duodenum of WT mice were much higher than those in the other 266 

organs examined (Fig. 5F). On the other hand, the IP7/IP6 ratios in these two organs 267 

were significantly reduced in IP6K2-/- mice. The IP7 SRM peaks for the IP6K2-/- mouse 268 

stomach and duodenum were also smaller compared with those of WT mice, while IP6 269 

levels were unchanged (Fig. 5G and H). Collectively, these data demonstrate that IP6K2 270 

is required for enhanced IP7 metabolism in the mammalian proximal GIT. 271 

 272 
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IP6K2-dependent enhanced IP7 metabolism exists in the gut and duodenal 273 

muscularis externa where the myenteric plexus is located 274 

  Since IP7-synthesizing kinase IP6K2 is selectively expressed in enteric neurons (Fig. 275 

4), we next sought to investigate IP7 metabolism in the mammalian ENS. To this end, 276 

we collected the stomach and the consecutive 5 cm segments of duodenum, jejunum, 277 

and ileum from standard diet-fed or fasted mice. Some of these organs collected were 278 

subsequently used to isolate the muscularis externa where the myenteric plexus is 279 

located. These total GIT tissues and their muscularis externa were subjected to 280 

HILIC-MS/MS analysis to compare their IP7 metabolism (Fig. 6A). Similar to the 281 

results shown in Fig. 3, 48 h fasting of mice rendered drastic reduction of IP6 and IP7 282 

levels with concomitant increase of IP7/IP6 ratio in total GIT tissues (Fig. 6B-D). 283 

Although the muscularis externa contained less IP6 and IP7 than total GIT tissues, the 284 

muscle layer exhibited a higher IP7/IP6 ratio than total GIT tissues, which was less 285 

dependent on dietary conditions. IP7/IP6 ratio of the duodenal muscularis externa was 286 

highest among the corresponding muscle layers of the neighboring GITs, implying 287 

highly active IP7 metabolism in the duodenal ENS. To verify the relationship between 288 

IP6K2-IP7 axis and ENS, we first attempted to visualize the duodenal myenteric plexus 289 

of IP6K2-/- mice by whole mount immunostaining (Fig. 6E). We found that IP6K2 290 

deletion largely affected neither the morphological features nor the neuronal cell density 291 

in the duodenal myenteric plexus (Fig. 6F). We next prepared the muscularis externa 292 

from the stomach to the ileum of WT and IP6K2-/- mice, first depleting dietary IP7 in the 293 

GIT by 48 h fasting and performed HILIC-MS/MS analysis to evaluate IP7 metabolism 294 

in the ENS of IP6K2-/- proximal GITs (Fig. 6G). While IP6 levels in the muscularis 295 

externa were almost equivalent between WT and IP6K2-/- mice, IP7 levels and IP7/IP6 296 
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ratios were significantly reduced in the gut and duodenal muscularis externa of IP6K2-/- 297 

mice (Fig. 6H-J). These results suggest that IP6K2 actively produces IP7 in the gut and 298 

duodenal muscularis externa where enteric neurons are concentrated.  299 

 300 

The IP6K2-IP7 axis is crucial for certain neurotranscriptome profiles associated 301 

with ENS development and functioning 302 

Considering the active IP6K2-IP7 axis in the ENS, we assumed that alteration of IP7 303 

metabolism by IP6K2 deletion might affect neuronal status in the proximal GIT. Thus, 304 

we randomly selected two neuronal genes expressed in the GIT as well as the CNS 305 

(Gremel et al, 2015), namely dopamine receptor D5 (Drd5), and cholecystokinin B 306 

receptor (Cckbr), and investigated their mRNA levels in both the CNS and GIT by 307 

quantitative PCR (qPCR) (Fig. 7A). Compared with those in WT mice, these mRNA 308 

levels were explicitly increased from the stomach through the small intestine of IP6K2-/- 309 

mice, especially in the duodenum, but not the colon and CNS. To comprehensively 310 

appreciate the role of IP6K2-dependent IP7 metabolism in neuronal gene regulation in 311 

the mammalian ENS, we isolated the duodenal muscularis externa from WT and 312 

IP6K2-/- mice and performed whole transcriptome analysis by RNA-sequencing 313 

(RNA-seq) (Fig.7B). Gene set enrichment analysis (GSEA) showed that IP6K2 deletion 314 

suppressed certain gene sets associated with neural stem/progenitor cells, 315 

oligodendrocyte progenitor cells, and glial cells, concomitantly with the induction of 316 

those of mature neurons such as inhibitory, dopaminergic or GABAergic neurons (Fig. 317 

7C, D and Data S1), implying that inhibition of the IP6K2-IP7 pathway triggers 318 

neurodevelopmental imbalance in the mammalian ENS. The RNA-seq analysis also 319 

exhibited that 107 and 134 out of 23,405 genes were more than 1.5-fold increased or 320 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 19, 2022. ; https://doi.org/10.1101/2022.09.19.508459doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508459
http://creativecommons.org/licenses/by-nd/4.0/


16 

 

decreased in IP6K2-/- with P-value less than 0.05, respectively (Fig. S4A). Pathway 321 

enrichment analysis of these genes showed that transcripts increased more than 1.5-fold 322 

in IP6K2-/- were significantly enriched for proteins involved in neuronal signaling 323 

(neuroactive ligand-receptor interaction of KEGG annotation) (Fig. S4B). In these 324 

transcripts, we observed that 7 genes associated with neuronal function (Nckipsd, and 325 

Hrh4) or development (Noto, Tbx1, Tbx18, Pax7, and Mycn) were prominently altered 326 

in their transcript levels between WT and IP6K2-/- (Fig. 7E). To validate our RNA-seq 327 

results, differential expression of these 7 neuronal genes were further assessed by qPCR 328 

and all of these candidate genes exhibited similar significant or prominent changes in 329 

transcript levels as observed in RNA-seq results (Fig. 7F). Quantitative PCR analysis 330 

also showed that expression of other neuronal genes, including Drd5 and Cckbr, 331 

explicitly increased in IP6K2-/- duodenal muscularis externa (Fig. 7G). These changes 332 

were not observed in the RNA-seq analysis possibly because they were below the lower 333 

detection limit and/or quantitation error (Robert and Watson, 2015; Everaert et al, 2017). 334 

Collectively, the IP6K2-IP7 axis contributes to certain neurotranscriptome profiles 335 

involved in ENS development and functioning. 336 

 337 

  338 
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Discussion 339 

Mammalian PP-IPs have been implicated in obesity and diseases such as cancer and 340 

neurodegenerative disorders, and thus, their metabolism is a promising drug target 341 

(Shears, 2016; Chakraborty, 2018). For this reason, in vivo PP-IP profiling of 342 

mammalian tissues is an important subject of research. However, this objective has been 343 

thwarted by various technical difficulties. Recently, we developed an HILIC-MS/MS 344 

analysis protocol for the sensitive and specific detection of IP7 and its precursor IP6 (Ito 345 

et al, 2018). In this study, we quantified in vivo PP-IP levels in mammalian organs using 346 

a refined HILIC-MS/MS protocol and evaluated the contribution of IP6K2 to PP-IP 347 

metabolism by analyzing mice lacking this IP7-synthesizing kinase. 348 

We observed abundant IP6 and a small but detectable quantity of IP7 in various 349 

mammalian organs. Specifically, a discernible level of IP7 was detected in the 350 

mammalian CNS. These results correlate with the fact that expression of the 351 

IP7-synthesizing kinases IP6K1 and IP6K2 is ubiquitous and highest in the CNS 352 

(Saiardi et al, 2001; Moritoh et al, 2016; Laha et al, 2021). Since IP7 levels in the CNS 353 

remain constant irrespective of dietary supply (Fig. 3C and H), it is plausible that 354 

food-derived IP7 is not directly delivered to the CNS. In agreement with this idea, 355 

previous studies on rodents have reported that food-derived IPs are degraded in the GIT 356 

and released into the circulation as myo-inositol or inositol monophosphate (IP1) 357 

(Sakamoto et al, 1993; Eiseman et al, 2011). There is also evidence that circulating 358 

plasma contains no higher order IPs, such as IP6 (Wilson et al, 2015). Considering our 359 

observation that IP7 levels were significantly decreased in the CNS of IP6K2-/- mice 360 

compared with those in WT counterparts (Fig. 5E), it is reasonable to regard the IP7 361 

detected in the CNS as endogenously generated. Intriguingly, the IP7/IP6 ratio in the 362 
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spinal cord was higher than those in the cerebrum and cerebellum, suggesting 363 

heterogeneous IP7 metabolic activity in the rostral and caudal CNS.  364 

  Surprisingly, we found that standard diet-fed rodents had far more IP7 in the GIT than 365 

in the CNS (Fig. 2B). Furthermore, the IP7/IP6 ratio, an indicator of PP-IPs metabolism, 366 

was far higher in the GIT than in the CNS (Fig. 2C). The mouse diet affected the level 367 

of IP6 and IP7 in the GIT but did not influence the high IP7 metabolism, as revealed by 368 

the IP7/IP6 ratio (Fig. 3E and I). The dietary influence on IP6 and IP7 levels in the GIT is 369 

likely a direct consequence of the availability of inositol in plant-derived food (CE-2). 370 

Some of this inositol could be generated from IP6 by intestinal flora (Priyodip et al, 371 

2017) and directly absorbed by inositol transporters such as SMIT1, SMIT2, and HMIT 372 

(Schneider, 2015). A considerable amount of IP7 was detected in the GIT of rodents 373 

even when the supply of dietary PP-IPs was almost depleted (Fig. 3C and H). The 374 

IP7/IP6 ratio was heterogeneous along the GIT but significantly higher in the proximal 375 

GIT of these dietary PP-IP-depleted rodents (Fig. 3E and I), indicating that substantial 376 

endogenous IP7 metabolism occurs in the proximal GIT. Accordingly, IP7 levels in the 377 

stomach and duodenum were significantly diminished in IP6K2-/- mice under dietary 378 

PP-IP-depleted conditions (Fig. 5E). Therefore, our HILIC-MS/MS analysis 379 

unexpectedly revealed enhanced IP7 metabolism in the mammalian GIT. 380 

  The GIT consists of several histological layers including the muscularis externa that 381 

contains the myenteric plexus, a collection of large neuronal assemblies in the GIT. Our 382 

HILIC-MS/MS survey of the proximal GIT clarified that the muscularis externa has a 383 

higher IP7/IP6 ratio than whole GIT tissues, and the duodenal muscle layer has a much 384 

higher IP7/IP6 ratio than those of neighboring GIT segments (Fig. 6D). Considering the 385 

expression of the IP7-synthesizing enzyme IP6K2 in the myenteric plexus (Fig. 4A-C) 386 
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and the significant decrease of IP7/IP6 ratio in IP6K2-deficient gut and duodenal muscle 387 

layers (Fig. 6J), these observations lead to the idea that IP6K2 actively synthesizes 388 

endogenous IP7 in the ENS of the proximal GIT. Our results also implied the presence 389 

of endogenous IP7 in other GIT layers since total GIT tissues of dietary IP7-depleted 390 

(fasted) mice contained a greater amount of IP7 than their corresponding muscle layers 391 

(Fig. 6C). Since another major nerve plexus exists in the submucosal layer (i.e. 392 

submucosal plexus), the submucosal layer may contain endogenous IP7 to some extent. 393 

This PP-IP might also exist in mucosal epithelium because certain enteroendocrine cells, 394 

including Tuft cells, express IP6Ks at the relatively high level (Fig. S3B and C). Tuft 395 

cell is one of rare cell types present in intestinal epithelium. Park et al. recently showed 396 

that Tuft cell development is controlled by inositol polyphosphate multikinase (IPMK), 397 

an enzyme responsible for driving IP metabolic pathway leading to IP7 synthesis (Park 398 

et al, 2022). This fact and our data (Fig. S3B and C) encourage to deem that IP6K2 and 399 

IP7 might underlie Tuft cell physiology as well. Future study is required for assessing 400 

cell type-specific IP7 metabolism both in enteric neurons as well as in other GIT cells to 401 

more precisely characterize IP7 metabolism in the GIT. 402 

Although IP6K2 was initially cloned as a Pi uptake stimulator from a rabbit 403 

duodenum complementary DNA (cDNA) library (Norbis et al, 1997) and was annotated 404 

soon after as encoding an IP7-synthesizing enzyme (Saiardi et al, 1999; Schell et al, 405 

1999), the role of IP6K2 in the GIT has not been investigated until now. In this study, 406 

we observed that IP6K2 is prominently expressed in myenteric plexus (Fig. 4A-C), and 407 

genetic deletion of IP6K2 diminishes IP7 metabolism in the proximal GIT (Fig. 5F) as 408 

well as its muscularis externa containing myenteric plexus (Fig. 6J), suggesting the 409 

presence of an active IP6K2-IP7 pathway in the ENS of the proximal GIT. Our 410 
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RNA-seq analysis of the duodenal muscularis externa indicated that genetic ablation of 411 

IP6K2 causes certain gene products associated with mature neurons to accumulate 412 

concomitantly with the reduction of those of neural progenitor/stem cells and glial cells 413 

(Fig. 7C and D). Given that the developmental lineage of enteric neurons comprises 414 

several differentiation points such as neural crest cell migration, neuron-glia bifurcation, 415 

and neural stem/progenitor cell differentiation into mature enteric neurons (Rao and 416 

Gershon, 2018), inhibition of the IP6K2-IP7 axis possibly causes developmental 417 

imbalances of the ENS at the several differentiation points at least including the 418 

maturation of both enteric neurons and glial cells. This idea is also supported by our 419 

findings that IP6K2 inhibition significantly altered the expression levels of several 420 

transcription factors regulating neural crest cell differentiation (Fig. 7E and F) 421 

(Knoepfler et al, 2002; Vitelli et al, 2002; Abdelkhalek et al, 2004; Bussen et al, 2004; 422 

Basch et al, 2006; Simões-Costa et al, 2012). In fact, IP6K2 activity was shown to be 423 

required for normal migration and development of neural crest cells in zebrafish 424 

(Sarmah and Wente, 2010). Besides, genetic inhibition of IP6K2 in the duodenal 425 

muscularis externa significantly or prominently changed mRNA levels of several genes 426 

modulating neuronal functions (Fig. 7E, F and G). Notably, Nckipsd transcript, one of 427 

the transcripts most significantly induced in IP6K2-/- duodenal muscularis externa, 428 

contributes to the formation of neural dendrites (Fukuoka et al, 2001; Lee et al, 2006) 429 

and intracellular neuronal signaling (Kim et al, 2009). These pieces of knowledge lead 430 

to the hypothesis that the IP6K2-IP7 axis might directly or indirectly contribute to 431 

development and several distinct neuronal functions of enteric neurons, even though the 432 

axis does not largely affect the entire morphological output of the ENS (Fig. 6E and F). 433 

Future studies are required for elucidating how these differentially-expressed transcripts 434 
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controlled by the IP6K2-IP7 axis individually affect ENS development and functioning. 435 

Developmental and functional ENS defects often result in fatal congenital disorders 436 

(Furness, 2012; Wright et al, 2021), but IP6K2-/- mice do not show such severe 437 

phenotypic defects: IP6K2-/- mice are born at Mendelian ratio and grow normally, 438 

similar to WT mice (Rao et al, 2014). Thus, the IP6K2-IP7 axis might serve as a 439 

fine-tuning factor for the developmental and functional regulation of the ENS, although 440 

we could not exclude the possibility that IP6K1, another major IP6K isoform, 441 

compensates for the loss of IP6K2. It will be meaningful to see whether ENS-specific 442 

inhibition of IP6K2 and/or IP6K1 influences gastrointestinal pathophysiologies and 443 

development of CNS diseases. Taken together, our observations provide valuable 444 

insights into the field of PP-IP biology and neurogastroenterology. 445 

Since dysregulation of IP7 metabolism links to various human diseases including 446 

neurodegenerative diseases, studying IP7 metabolism in human organs provides 447 

essential knowledge from the clinical point of view. The refined HILIC-MS/MS 448 

protocol we described in this study is capable of detecting IP6 and IP7 not only in rodent 449 

organs but also in human postmortem organs dissected after forensic intervention (Fig. 450 

S5). Unlike in rodents, IP7 level and IP7/IP6 ratio in the human proximal GITs 451 

(esophagus, greater curvature and lesser curvature of the stomach) were less abundant 452 

compared with those in human CNS. This is probably due to the high turnover rate of 453 

PP-IPs and the delay in dissecting human postmortem organs. Forensic intervention and 454 

subsequent organ dissection take hours after death The presence of the intestinal flora 455 

may also facilitate the decomposition of these molecules in the GITs (Musshoff et al, 456 

2011). Thus, care should be taken to assess IP7 metabolism in human GITs. Although 457 

the refined HILIC-MS/MS protocol can detect both IP7 and IP8, this protocol failed to 458 
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detect endogenous IP8 in all rodent and human organs examined in this study, even in 459 

mouse GIT where IP7 was explicitly abundant. This fact suggested that 460 

mammalian-derived IP8 is far less abundant than IP7, and its quantitative evaluation 461 

requires sample pooling or a more sensitive analytical protocol such as CE-MS (Qiu et 462 

al, 2020). In any case, we demonstrated that our novel protocol was able to evaluate IP7 463 

metabolism in human organs. Therefore, we foresee the diagnostic potential of our new 464 

analytical technique for analyzing IP6 and IP7 levels in clinical biopsy.  465 

In conclusion, we investigated the distribution of PP-IPs in mammalian organs using 466 

a refined HILIC-MS/MS protocol and demonstrated that IP6K2-dependent IP7 467 

metabolism was enhanced in the ENS of the proximal GIT. This finding was 468 

corroborated by the observation that impairment of IP6K2-dependent IP7 metabolism 469 

significantly altered certain neurotranscriptome profiles involved in ENS development 470 

and functioning. Further studies are needed to dissect molecular mechanisms underlying 471 

IP6K2-IP7 axis-mediated neurotranscriptional regulation in the ENS, the role of IP7 in 472 

neurogastroenterology, and processes involving the gut-brain axis. We believe that these 473 

findings shed new light on the physiological significance of the mammalian PP-IP 474 

pathway as well as the regulatory mechanisms of ENS functioning, which might 475 

contribute to a better understanding of human diseases associated with altered PP-IP 476 

metabolism. 477 

 478 

  479 
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STAR Methods 507 

Key resources table 508 

Reagent or resource Source Identifier 

Antibodies 

Rabbit polyclonal 

anti-IP6K1 

Sigma-Aldrich Cat# HPA040825 

RRID: AB_10960426 

Goat polyclonal 

anti-IP6K2 (4F10) 

Santa Cruz 

Biotechnology 

Cat# sc-130012 

RRID: AB_2127544 

Rabbit polyclonal 

anti-IP6K2 

Abcam Cat# ab179921 

 

Mouse monoclonal 

anti-β-actin (clone 

AC-15) 

Sigma-Aldrich Cat# A5441 

RRID: AB_476744 

Mouse monoclonal 

anti-HuC/D (clone 

16A11) 

Thermo Fisher 

Scientific 

Cat# A-21271 

RRID: AB_221448 

Mouse monoclonal 

anti-βIII-tubulin (clone 

TUJ1) 

Biolegend Cat# 801201 

RRID: AB_2313773 

Rabbit immunoglobulin 

fraction (solid-phase 

absorbed) 

Dako Cat# X0936 

 

Mouse IgG2a (isotype 

control) 

R&D systems Cat# MAB003 

Mouse IgG2b (isotype 

control) 

Dako Cat# X0944 

F(ab')2-Goat anti-Mouse 

IgG (H+L) 

Cross-Adsorbed 

Secondary Antibody, 

Alexa Fluor 594 

Thermo Fisher 

Scientific 

Cat# A-11020 

RRID: AB_2534087 
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F(ab')2-Goat anti-Rabbit 

IgG (H+L) 

Cross-Adsorbed 

Secondary Antibody, 

Alexa Fluor 488 

Thermo Fisher 

Scientific 

Cat# A-11070 

RRID: AB_2534114 

Target Retrieval Solution Dako Cat# S1699 

Chemicals, peptides, and recombinant proteins 

LC-MS grade 

acetonitrile 

Honeywell  Cat# 349672.5 

LC-MS grade 

ammonium bicarbonate 

Honeywell  Cat# 40867-50G 

Ultrapure water Wako Pure 

Chemical  

Cat# 210-01303 

Ultrapure–grade 

ammonium hydroxide 

Kanto Chemical Cat# 01266-3B 

InfinityLab deactivator 

additive 

Agilent 

Technologies 

Cat# 5191-3940 

Inositol 

hexakisphosphate (IP6) 

Sigma-Aldrich Cat# 68388 

Sodium fluoride (NaF) Sigma-Aldrich Cat# S7920 

Hexadeutero-myo-inosit

ol trispyrophosphate 

(ITPP-d6) 

Toronto 

Research 

Chemical 

Cat# I666022 

Diphosphoinositol 

pentakisphosphate (IP7) 

This manuscript N/A 

Bisdiphosphoinositol 

tetrakisphosphate (IP8) 

This manuscript N/A 

HILICpak VG50 2D 

analytical column 

Shodex Cat# F7630300 

HILICpak VG50G 2A 

guard column 

Shodex Cat# F6711200 

Titansphere TiO2 bead GL Science Cat# 5020-75000 

Standard diet: CE-2 Clea Japan https://www.clea-japan.com/ 

Purified diet: iVid-neo Oriental Kobo https://www.oyc.co.jp/en/ 

Purified diet: 70% casein Clea Japan https://www.clea-japan.com/ 
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TRIzol reagent Thermo Fisher 

Scientific 

Cat# 15596026 

TruSeq Stranded mRNA 

Kit 

Illumina Cat# 20020594 

KAPA SYBR Fast qPCR 

kit 

Kapa 

Biosystems 

Cat# KK4602 

Immobilon Western 

Chemiluminescent HRP 

Substrate 

Millipore Cat# WBKLS0500 

Deposited data 

Human embryonic 

intestinal cell scRNA-seq 

datasets 

Fawkner-Corbet

t et al, (2021) 

Human Fetal Gut Atlas 

(https://simmonslab.shinyapps.io/FetalAtlasDataPortal/) 

Mouse embryonic enteric 

nerve cell scRNA-seq 

datasets 

Morarach et al, 

(2021) 

GEO: GSE149524 

Mouse embryonic 

intestinal epithelial cell 

scRNA-seq datasets 

Haber et al, 

(2017) 

GEO: GSE92332 

RNA-seq data This manuscript DDBJ: DRA014733 

Experimental models: Cell lines 

HCT116  RIKEN RCB2979 

RRID: CVCL_0291 

Experimental models: Organisms/strains 

Mouse: C57BL/6J Clea Japan C57BL/6JJcl 

Mouse: IP6K2-/- 

(B6;129S-Ip6k2tm1Snyd/J) 

Laboratory of 

Solomon H. 

Snyder, Jackson 

Laboratory 

Rao et al, (2014) 

Stock# 036426 

RRID: IMSR_JAX:036426 

Rat: Sprague-Dawley Clea Japan Jcl:SD 

Oligonucleotides 

Primers for qPCR: please 

see Table S3 

This manuscript N/A 

Software and algorithms 
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LCMS solution (version 

5.99) 

Shimadzu https://www.shimadzu.com 

Seurat R package version 

4.0.0 

Butler et al, 

2018 

http://satijalab.org/seurat/ 

RRID: SCR_007322 

Trim Galore (version 

0.6.7) 

Babraham 

institute 

https://www.bioinformatics.babraham.ac.uk/projects/trim_g

alore/ 

HISAT2 (version 2.1.1) Kim et al, 2019 https://github.com/DaehwanKimLab/hisat2 

MarkDuplicates module 

of the Picard package 

Broad Institute http://broadinstitute.github.io/picard/ 

TPMCalculator (version 

0.0.3) 

Vera Alvarez et 

al, 2019 

https://github.com/ncbi/TPMCalculator 

EdgeR module of the 

TCC software (version 

1.30.0) 

Sun et al, 2013 http://bioconductor.org/ 

The Molecular 

Signatures Database 

(version 7.5.1) 

Liberzon et al, 

2015 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp 

DAVID Gene Ontology 

Analysis (version 6.8) 

Huang da et al, 

2009 

http://david.abcc.ncifcrf.gov/ 

RRID: SCR_001881 

Other 

LCMS-8050 mass 

spectrometer 

Shimadzu https://www.shimadzu.com 

NextSeq500 sequencer Illumina https://www.illumina.com/ 

LSM 880 microscope Carl Zeiss https://www.zeiss.com/ 

EzCapture MZ 

chemiluminescent 

detector 

ATTO https://www.attoeng.site/ 

StepOne Plus Real-Time 

PCR system 

Applied 

Biosystems 

https://www.thermofisher.com/ 

4150 TapeStation 

System 

Agilent 

Technologies 

https://www.agilent.com 

NanoDrop 8000 

spectrophotometer 

Thermo Fisher 

Scientific 

https://www.thermofisher.com/ 

 509 

RESOURCE AVAILABILITY 510 
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Lead contact 511 

Further information and requests for resources and reagents should be directed to and 512 

will be fulfilled by the Lead Contact, Eiichiro Nagata (enagata@is.icc.u-tokai.ac.jp) or 513 

Masatoshi Ito (masa104-ito@tokai-u.jp). 514 

Materials availability 515 

Requests for materials generated in this study should be directed to the Lead Contact. 516 

The availability of these materials may be limited because their chemical synthesis 517 

requires multiple laborious and costly processes. 518 

Data and code availability 519 

The raw RNA-seq data have been deposited at the DNA Data Bank of Japan (DDBJ) 520 

and are publicly available as of the date of publication (accession number DRA014733). 521 

Raw GSEA data shown in Fig. 7C are available in the Data S1 file. Other individual 522 

datasets and corresponding files generated in this study are available upon reasonable 523 

request from the Lead Contact. 524 

 525 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 526 

Cell culture 527 

HCT116 cells were cultured in DMEM (Nacalai Tesque, Kyoto, Japan) supplemented 528 

with 10% FBS in 5% CO2. Cells prepared at 60% confluence in 10 cm dishes were 529 

incubated for 1 h with or without 50 mM sodium fluoride (Sigma-Aldrich, St. Louis, 530 

MO, USA). After washing twice with PBS, the cells were lysed in cell lysis buffer 531 

(0.01% Triton X-100, 1 mM EDTA, 20 mM Tris-HCl). A small aliquot was set aside for 532 

protein quantitation, and the rest was used for purification of IPs. 533 

 534 
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Mouse organs 535 

All experiments involving animals were performed in accordance with protocols 536 

approved by institutional animal care guidelines (Tokai University School of Medicine). 537 

Male C57 BL/6J mice and Sprague–Dawley rats obtained from Clea Japan (Tokyo, 538 

Japan) were maintained on a standard diet (CE-2; Clea Japan) or purified diet (iVid-neo; 539 

Oriental Kobo, 70% casein; Clea Japan). Some mice fed a standard diet or purified diet 540 

were fasted for 48 h before sacrifice. IP6K2-/- and WT mice maintained on a standard 541 

diet were switched to the purified diet for a week and subsequently fasted for 48 h 542 

before sacrifice. During fasting, mouse cages were changed to clean ones with new 543 

bedding every 24 h to reduce coprophagy. Mice and rats were anesthetized using 544 

isoflurane and then sacrificed by whole blood withdrawal from the left atrium. Before 545 

dissection of the organs, the animals were perfused transcardially with ice-cold PBS to 546 

wash out the residual blood and prevent the detection of IPs derived from blood cells. 547 

GIT organs (stomach, duodenum, small intestine, and colon) were cut open to remove 548 

feces and then extensively rinsed with PBS to wash out any dietary residuals. The 549 

duodenum, small intestine, and colon were harvested by cutting a 5 cm (mouse) or 10 550 

cm (rat) segment from the distal end of stomach, between 10 and 15 cm (mouse) or 20 551 

and 30 cm (rat) away from the duodenum and from the anus, respectively. The 552 

harvested organs were frozen until further use.  553 

 554 

Isolation of muscularis externa from mouse GITs 555 

The muscularis externa containing myenteric plexuses was prepared from mouse 556 

GITs as previously described with some modification (Fujita et al, 2018; Ahrends et al, 557 

2022). For HILIC-MS/MS, mouse GIT segments were cut open along the attachment 558 
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line of the mesentery and then placed onto a cold surface with the muscularis externa 559 

facing up. The muscularis externa of the GIT segments was isolated by gently scraping 560 

the outer layer with watchmaker tweezers under a binocular stereomicroscope. For 561 

whole-mount immunostaining, the mouse duodenum was cut open along the mesentery 562 

line, pinned onto a rubber plate, and then fixed with 4% paraformaldehyde (PFA) 563 

overnight at 4 °C. The muscularis layer was then gently separated from the GIT 564 

segment using watchmaker tweezers and a cotton swab under a binocular 565 

stereomicroscope. For RNA extraction, mouse GITs were immersed in saturated 566 

ammonium sulfate solution containing 20 mM EDTA and 25 mM sodium citrate 567 

(pH5.2) to inhibit RNA degradation. The muscularis externa of the segments was placed 568 

over a glass rod and then peeled away using a cotton swab along the attachment line of 569 

the mesentery under a binocular stereomicroscope as described previously (Smith et al, 570 

2013). Isolated muscularis externa was stored in saturated ammonium sulfate solution 571 

and then frozen until further use.  572 

 573 

Human postmortem organs 574 

The human study was approved by the Ethics Committee of Tokai University 575 

(institutional review board number: 20I-02), and the study protocol conformed to the 576 

ethical guidelines of the 1975 Declaration of Helsinki (World Medical Association, 577 

2013). Written informed consent, allowing the experimental use of the organ samples, 578 

was obtained from the relatives of all subjects. Human postmortem organs were 579 

obtained at autopsies from three donated bodies (two men and one woman; mean age, 580 

62.3 ± 22.8 years; average body mass index, 26.4 ± 6.6). Some anomalies, such as 581 

cardiac hypertrophy, were observed in their bodies by a forensic pathologist. To 582 
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minimize organ decomposition, organ sampling was confined to cases where the death 583 

date and ambient temperature were explicit and the accumulated degree–days [ADD; 584 

environmental temperature (°C) × postmortem interval (day)] value—an index for 585 

evaluating the quality of forensic samples (Pittner et al, 2016)—of all three bodies were 586 

very low (close to or less than 20). The harvested organ samples (approximately 400 587 

mg) were frozen until further use. 588 

 589 

METHOD DETAILS 590 

Gel electrophoresis of synthetic PP-IPs 591 

IP7 and IP8 were synthesized from myo-inositol using fluorenylmethyl phosphoramidite 592 

chemistry as described previously (Pavlovic et al, 2016). The synthetic PP-IPs were 593 

validated using polyacrylamide gel electrophoresis as previously described (Losito et al, 594 

2009). Briefly, synthetic PP-IPs samples mixed with orange G and bromophenol blue 595 

loading buffer were applied onto 35% polyacrylamide/Tris-borate-EDTA gel. The 596 

samples were electrophoresed overnight at 4 °C at 600 V and 6 mA until the orange G 597 

and bromophenol blue had run through two-thirds of the gel. Gels were stained with 598 

toluidine blue and scanned using a computer scanner. 599 

 600 

Purification of IPs 601 

IPs in biological samples were purified as described previously (Wilson et al, 2015), 602 

with some modification. Frozen organs, diets, and feces samples were homogenized 603 

using a Shake Master Neo (Bio Medical Science, Tokyo, Japan) in 500 μL of ultrapure 604 

water. Feces samples were air-dried overnight before homogenization for accurate 605 

comparison of IP6 and IP7 concentrations with those in the diet. Crude lysate was mixed 606 
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with an equal volume of 2 M perchloric acid (PCA), incubated on ice for 30 min, and 607 

centrifuged to remove tissue debris. After spiking with 3 nmol of ITPP-d6 as an internal 608 

control, 5 mg of TiO2 beads (GL Sciences, Tokyo, Japan) were added to each sample. 609 

The beads were incubated at 4 °C for 30 min and washed twice with 1 M PCA, and then 610 

200 μL of 10% ammonium hydroxide was added for IP elution. The elution step was 611 

repeated to maximize recovery. The total eluate was dried using a SpeedVac 612 

concentrator (Thermo Fisher Scientific, Waltham, MA, USA) and reconstituted in 125 613 

μL of 100 mM ammonium carbonate/40% acetonitrile buffer, 50 μL of which was used 614 

for LC-MS. 615 

 616 

HILIC-MS/MS analysis for PP-IPs 617 

Chromatographic experiments were performed using a Nexera UHPLC instrument 618 

(Shimadzu, Kyoto, Japan). HILIC-based chromatographic separation of IP6, IP7, IP8, 619 

and the internal control ITPP-d6 was achieved using a modified version of a previously 620 

described procedure (Ito et al, 2018). The mobile phase was composed of 300 mM 621 

ammonium bicarbonate buffer (pH 10.5) containing 0.1% InfinityLab deactivator 622 

additive (Agilent Technologies) as the aqueous mobile phase (eluent A), and 90% 623 

acetonitrile containing 10 mM ammonium bicarbonate buffer (pH 10.5) and 0.1% 624 

InfinityLab deactivator additive as the organic mobile phase (eluent B). Eluent B 625 

included more than 10% aqueous solvent to prevent polymeric aggregation of the major 626 

constituent (medronic acid) in the additive. In the entire LC system, chromatographic 627 

stainless steel tube was treated with 0.5% phosphoric acid in 90% acetonitrile overnight 628 

before analysis to block undesirable adsorption of analytes on the surface of the inner 629 

wall of the tube, while paying attention not to run the solvent into the mass spectrometer. 630 
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The total flow rate of the mobile phase was 0.4 mL/min. Linear gradient separation was 631 

achieved as follows: 0–2 min, 75% B; 2–12 min, 75%–2% B; 12–15 min, 2% B.  632 

 633 

RNA extraction and quantitative PCR analysis 634 

GIT segments and their muscularis externa were carefully collected and subjected to 635 

RNA extraction, as previously described (Augereau et al, 2016). Total RNA was 636 

extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). RNA concentration 637 

and quality were determined using a NanoDrop 8000 spectrophotometer (Thermo 638 

Fisher Scientific) and the 4150 TapeStation system (Agilent Technologies), respectively. 639 

Complementary DNA was generated using the High-Capacity Reverse Transcription Kit 640 

(Applied Biosystems). qPCR was performed using the KAPA SYBR Fast qPCR kit 641 

(Kapa Biosystems, Wilmington, MA, USA) and a StepOne Plus Real-Time PCR system 642 

(Applied Biosystems, Foster City, CA, USA). The primer sequences used in this study 643 

are listed in Table S3. 644 

 645 

RNA sequencing 646 

Total RNA samples of WT and IP6K2-deficient duodenal muscle externa with around 647 

7.0 of RNA integrity number were subjected to RNA-seq analysis. RNA sequencing 648 

libraries were prepared using TruSeq Stranded mRNA Kit (Illumina, San Diego, CA, 649 

USA) according to the manufacturer’s instructions. Each library was sequenced in 1 × 650 

75 bp of single read mode using a NextSeq 500 platform (Illumina). Adapter sequences 651 

are removed from sequencing reads using Trim Galore (version 0.6.7; 652 

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Sequence reads were 653 

aligned to mouse genome (mm10) by HISAT2 (version 2.1.1) (Kim et al, 2018). 654 
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Duplicate reads were removed using the MarkDuplicates module of the Picard package 655 

(version 2.27.3; http://broadinstitute.github.io/picard/). The following genes were 656 

excluded before processing for the expression data analysis: highly expressing mucosal 657 

digestive enzyme genes (Amy2a1, Amy2a2, Amy2a3, Amy2a4, Amy2a5, Amy2b, Amy1, 658 

Try4, Try5, Try10) contaminated during the muscularis isolation, mitochondrial genes, 659 

and long non-coding RNAs. Expression levels of genes annotated in GENCODE 660 

(version M25) were quantitated by TPMCalculator (version 0.0.3) (Vera Alvarez et al, 661 

2019). The software described above was run with the default parameters. Differentially 662 

expressed genes were identified by the EdgeR module of the TCC software (version 663 

1.30.0) (Sun et al, 2013). GSEA was performed as described previously (Subramanian 664 

et al, 2005). Gene sets used in this study were retrieved from The Molecular Signatures 665 

Database (version 7.5.1; http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (Liberzon 666 

et al, 2015). Pathway enrichment analysis was performed using the online database 667 

DAVID (http://david.abcc.ncifcrf.gov) (Huang da et al, 2009). 668 

 669 

Western blot analysis 670 

Western blot analysis was performed as previously described (Nagata et al, 2011). 671 

Membranes were incubated with anti-IP6K1 (Sigma-Aldrich), anti-IP6K2 (Santa Cruz 672 

Biotechnology, Dallas, TX, USA) and anti-β-actin (Sigma-Aldrich) primary antibodies 673 

overnight at 4�°C. After rinsing 3 times in PBS containing 0.05% Tween-20, the 674 

membranes were incubated with the appropriate secondary antibodies conjugated with 675 

horseradish peroxidase (HRP) (donkey anti-rabbit IgG, HRP-linked F(ab’)2 fragment or 676 

sheep anti-mouse IgG, HRP-linked F(ab’)2 fragment; GE Healthcare, Buckinghamshire, 677 

UK). The immunoreactivities of the primary antibodies were visualized with Immobilon 678 
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Western Chemiluminescent HRP Substrate (Millipore, Billerica, MA, USA) and 679 

recorded using an Ez-Capture Analyzer (ATTO, Tokyo, Japan).  680 

 681 

Immunohistochemistry 682 

Preparation of formalin-fixed, paraffin-embedded (FFPE) sections was described 683 

previously (Nagata et al, 2016). After deparaffinization and rehydration, the mouse 684 

tissue sections were incubated with Target Retrieval Solution (Dako, Glostrup, 685 

Denmark) at 98 °C for 10 min. Thereafter, the sections were washed thrice with 0.05% 686 

Tween-20 in Tris-buffered saline (TBS), blocked using 5% normal goat serum for 15 687 

min, and then incubated with primary antibodies against IP6K2 (1:100, ab179921, 688 

Abcam, Cambridge, MA, USA) or HuC/D (1:100, A-21271, Thermo Fisher Scientific) 689 

overnight at 4�°C. Rabbit immunoglobulin (Dako) and mouse IgG2b isotype control 690 

(Dako) were used to evaluate non-specific binding. After rinsing thrice with 0.05% 691 

Tween-20 in TBS, the sections were incubated with secondary goat anti-rabbit IgG 692 

Alexa 488 (1:350, A-11070, Thermo Fisher Scientific) and goat anti-mouse IgG Alexa 693 

594 (1:350, A-11020, Thermo Fisher Scientific) antibodies for 30 min at room 694 

temperature. The sections were then washed thrice with 0.05% Tween-20 in TBS and 695 

mounted using anti-fading medium (12.5 mg/mL DABCO, 90% glycerol, pH 8.8 in 696 

PBS). Confocal fluorescence images were obtained using a LSM 880 microscope (Carl 697 

Zeiss, Jena, Germany).  698 

 699 

Whole-mount immunostaining 700 

Immunostaining of duodenal muscularis externa was performed as previously described 701 

with minor modifications (Fujita et al, 2018; Ahrends et al, 2022). Briefly, duodenal 702 
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muscularis externa isolated from WT and IP6K2-/- mice were blocked with 3% BSA 703 

blocking solution containing the corresponding isotype control antibodies for 2 days 704 

after fixation with 4% PFA overnight. The muscle layers were then washed with PBS 705 

containing 0.05% Triton X-100 and incubated with diluted primary antibodies against 706 

HuC/D (Thermo Fisher Scientific) or βIII-Tubulin (Biolegend, San Diego, CA, USA) 707 

for 3 days. After rinsing thrice with 0.05% Triton X-100 in PBS, the muscularis externa 708 

were then incubated with secondary goat anti-mouse IgG Alexa 594 (1:350, A-11020, 709 

Thermo Fisher Scientific) for 3 h at room temperature. The samples were then washed 710 

thrice with 0.05% Triton X-100 in PBS and mounted using anti-fading medium (12.5 711 

mg/mL DABCO, 90% glycerol, pH 8.8 in PBS). Fluorescence images were obtained 712 

using a LSM 880 confocal microscope (Carl Zeiss).  713 

 714 

Computational analysis of scRNA-seq datasets 715 

Publicly available human embryonic intestine scRNA-seq processed data 716 

(Fawkner-Corbett et al, 2021) and mouse embryonic ENS matrix data (Morarach et al, 717 

2021) were downloaded from the Human Fetal Gut Atlas 718 

(https://simmonslab.shinyapps.io/FetalAtlasDataPortal/) and the GEO database 719 

(identifier: GSE149524), respectively. Mouse embryonic intestinal epithelial cell data 720 

(Haber et al, 2017) were obtained from the GEO database (identifier: GSE92332). The 721 

above datasets were analyzed using the R package Seurat version 4.0.0 (Butler et al, 722 

2018) to perform dimensionality reduction by uniform manifold approximation and 723 

projection and/or generate dot plots showing the relative expression of IP6Ks across 724 

different clusters.  725 

 726 
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QUANTIFICATION AND STATISTICAL ANALYSIS 727 

Data are expressed as the mean�±�SD. Differences between two or more groups were 728 

analyzed using two-tailed Student’s t-test or one-way analysis of variance (ANOVA) 729 

followed by Bonferroni-type post-hoc test, respectively. In RNA-seq analyses, P values 730 

were determined using the corresponding analytical tools. Statistical significance was 731 

set at P < 0.05.  732 

 733 

  734 
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Figure titles and legends 1037 

Figure 1. Refined HILIC-MS/MS analysis for IP6 and PP-IPs 1038 

A. Effect of InfinityLab deactivator additive as a mobile phase modifier on SRM 1039 

chromatograms of IP6 and IP7 before and after biological sample injection. 100 pmol of 1040 

each synthetic analyte were injected.  1041 

B. Effect of InfinityLab deactivator additive as a mobile phase modifier on the detection 1042 

of low amounts of synthetic PP-IP. 10 and 20 pmol of IP7 standard were injected.  1043 

C. Chemical structure of IP7 and IP8.  1044 

D. Product ion spectrum of IP8 (singly deprotonated precursor, left panel; doubly 1045 

deprotonated precursor, right panel). Characteristic fragment ions generated by loss of 1046 

water (H2O, 18�Da) and phosphoric acid (H3PO4, 80�Da) are also shown.  1047 

E. Gel electrophoretic results (left panel) and SRM chromatograms (right panel) of 1048 

synthetic IP6, IP7, and IP8 standard. The PolyP ladder was used as an electrophoresis 1049 

standard. 500 pmol of each standard were injected for LC-MS.  1050 

F. Representative SRM chromatograms of IP6, IP7, and IP8 in untreated (left panel) and 1051 

NaF-treated (right panel) HCT116 cell samples. The three best transitions per molecule 1052 

are shown for the peak identification of each compound. Arrows indicate the SRM peak 1053 

of corresponding analytes.  1054 

 1055 

Figure 2. The mammalian gastrointestinal tract (GIT) contains high levels of 1056 

PP-IPs 1057 

A-C. The concentrations of IP6 (A) and IP7 (B) and IP7/IP6 ratios (C) in the 15 organs of 1058 

standard diet-fed C57BL/6J mice. The values shown are expressed as pmol per mg of 1059 

organ weight (n = 4).  1060 
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D. Representative SRM chromatograms of IP7 and IP8 in stomach and small intestine 1061 

samples of standard diet-fed C57BL/6J mice. The three best transitions per molecule are 1062 

shown for the peak identification of each compound. The arrows indicate the SRM 1063 

peaks of the corresponding analytes.  1064 

E. Representative SRM chromatograms of IP7 in CNS samples of standard diet-fed 1065 

C57BL/6J mice.  1066 

F. Photographs (left) and SRM chromatograms of IP6, IP7, and IP8 (right) of standard 1067 

diet (CE-2) and the two different purified diets (iVid-neo and 70% casein).  1068 

G. Relative concentrations of IP6 and PP-IPs in the standard and purified diets. The 1069 

values shown represent the mean�±�standard deviation (SD) of three independent 1070 

experiments and are expressed relative to those of the standard diet. Asterisks indicate 1071 

statistical significance (P�<�0.05, Student’s t-test) compared with the standard diet. 1072 

H. Representative SRM chromatograms of IP6 and IP7 in the feces of standard diet-fed 1073 

C57BL/6J mice.  1074 

I. Relative concentrations of IP6 and IP7 in the feces of standard diet-fed C57BL/6J 1075 

mice. The values shown are expressed relative to those of the standard diet (n = 3). 1076 

Asterisks indicate statistical significance (P�<�0.05, Student’s t-test) compared with 1077 

the standard diet. 1078 

J. IP7/IP6 ratio in standard diet and feces of standard diet-fed C57BL/6J mice (n = 3). 1079 

n.s., not significant (Student’s t-test).  1080 

 1081 

Figure 3. Enhanced IP7 metabolism is retained in the proximal GIT of rodents 1082 

under conditions of depleted dietary IP6 and PP-IP supply 1083 

A. Schematic illustration of the experimental workflow. C57BL/6J mice were fed a 1084 
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standard diet (n = 3) or purified diet (iVid-neo) for 2 months (n = 4) or fasted for 48 h (n 1085 

= 4).  1086 

B, C. The concentrations of IP6 (B) and IP7 (C) in the CNS, testes, and GIT of 1087 

C57BL/6J mice under the three different conditions. The values shown are expressed as 1088 

pmol per mg of organ weight.  1089 

D. Representative SRM chromatograms of IP7 in the GIT of C57BL/6J mice fed with 1090 

purified diet (left panel) or under fasting conditions (right panel). Arrows indicate the 1091 

SRM peak of IP7.  1092 

E. IP7/IP6 ratios in the CNS, testes, and GIT of C57BL/6J mice under the three different 1093 

conditions. Asterisk indicates statistical significance (P�<�0.05, one-way ANOVA, 1094 

Bonferroni-type post-hoc test) compared with the standard diet-fed mice. 1095 

F. Graphical scheme of the experiment. Sprague–Dawley rats were fed a standard (n = 1096 

3) or purified diet (70% casein) for 1 month (n = 3).  1097 

G-I. Concentrations of IP6 (G), IP7 (H) and IP7/IP6 ratios (I) in the CNS, testes, and GIT 1098 

of the rats under the two different conditions. The values shown are expressed as pmol 1099 

per mg of organ weight.  1100 

 1101 

Figure 4. Enteric neurons highly express IP6K2 in the mammalian GIT 1102 

A. Expression analysis of IP6K1-3 in intestinal cell subsets using publicly available 1103 

scRNA-seq datasets. Relative expression (log scale) of IP6K1-3 among human 1104 

embryonic enteric cells (left) and their neural cell subsets (right), obtained by analysis 1105 

of human embryonic intestinal cells scRNA-seq datasets are shown (Fawkner-Corbett et 1106 

al, 2021). The size and color of the dots represent the percentage of cells which express 1107 

IP6K1-3 mRNA and their average abundances within a cluster, respectively.  1108 
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B. UMAP-based unsupervised clustering of recently reported mouse embryonic (E18.5) 1109 

ENS data (Morarach et al, 2021) (upper panel). Assignment of cell identities was based 1110 

on the expression of signature genes as described in the literature: Sox10 (Progenitor), 1111 

Ascl1 (Neuroblast), Elavl4 (Neuron), Plp1 (Enteric glia) and Dhh (SCP). Relative 1112 

expression (log scale) of IP6K1-3 among the ENS clusters (lower panel) are shown. 1113 

ENS, enteric nervous system; SCP, Schwann cell precursor; E, embryonic day; UMAP, 1114 

uniform manifold approximation and projection.  1115 

C. Immunohistochemical analysis of IP6K2 expression in the duodenal muscularis 1116 

externa of C57BL/6J mice. Three different areas of confocal microscopy images are 1117 

shown. The neuronal marker HuC/D was also detected to identify enteric neurons in the 1118 

myenteric plexuses. Open arrowheads indicate double-positive cells. DIC images were 1119 

overlaid onto the respective merged fluorescent images to identify cell contours. DIC, 1120 

differential interference contrast. Scale bar = 10 μm.  1121 

 1122 

Figure 5. IP6K2-/- mice show significant impairment of IP7 metabolism in the 1123 

proximal GIT 1124 

A. Schematic depiction of the IP6K2 genomic locus in IP6K2-/- and WT mice (upper 1125 

panel) and the experimental workflow (lower panel). IP6K2 exons and introns are 1126 

represented as boxes and lines, respectively.  1127 

B. IP6K2 mRNA levels in the CNS and GIT of IP6K2-/- and WT mice (upper left panel). 1128 

The values shown are normalized with 18S rRNA level and expressed as copies per μg 1129 

RNA (n = 3). Electrophoretic gel images of qPCR products (lower left panel) and PCR 1130 

primer location in the IP6K2 genomic locus (right panel) was also depicted. W, WT; K, 1131 

IP6K2-/-; n.d., not detected; *, non-specific band.  1132 
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C. Representative Western blot image of IP6K1 and IP6K2 expression in the cerebrum 1133 

of IP6K2-/- and WT mice. β-actin was used as the internal control.  1134 

D-F. The concentrations of IP6 (D) and IP7 (E), and IP7/IP6 ratios (F) in the CNS, GIT, 1135 

and other organs of IP6K2-/- and WT mice. The values shown represent the 1136 

mean�±�SD of five independent experiments and are expressed as pmol per mg of 1137 

organ weight. Asterisks indicate statistical significance (P�<�0.05, Student’s t-test) 1138 

compared with WT mice.  1139 

G, H. Representative SRM chromatograms of IP6 (upper panel) and IP7 (lower panel) in 1140 

the stomach (G) and duodenum (H) of IP6K2-/- and WT mice. The three best transitions 1141 

per molecule are shown for peak identification of each compound. Arrows indicate the 1142 

SRM peak of each analyte.  1143 

 1144 

Figure 6. IP6K2-dependent enhanced IP7 metabolism exists in the gut and 1145 

duodenal muscularis externa where the myenteric plexus is located 1146 

A. Schematic illustration of the experimental workflow. C57BL/6J mice were fed a 1147 

standard diet, or fasted for 48 h. These mice were sacrificed to collect four stomach and 1148 

3 consecutive 5-cm segments of the proximal GIT (duodenum, jejunum, ileum). The 1149 

muscularis externa containing myenteric plexus as well as total tissues in the proximal 1150 

GITs were subjected to HILIC-MS/MS analysis.  1151 

B-D. The concentrations of IP6 (B), IP7 (C), and IP7/IP6 ratios (D) in the muscularis 1152 

externa and total tissue of four proximal GIT segments of C57BL/6J mice under the two 1153 

different conditions. The values shown represent the mean�±�SD of four independent 1154 

experiments and are expressed as pmol per mg of organ weight.  1155 

E. Whole mount immunostaining of WT and IP6K2-/- duodenal muscularis externa 1156 
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using anti-neuronal markers antibodies. Two different areas of confocal microscopic 1157 

images of each neuron marker are shown. The neuronal markers HuC/D and 1158 

βIII-tubulin were detected to identify enteric neuronal somas and enteric nerve fibers in 1159 

the myenteric plexuses, respectively. Scale bar = 50 μm. 1160 

F. The concentration of enteric neurons in WT and IP6K2-/- duodenal muscularis externa. 1161 

The values shown represent the mean ±�SD of three independent experiments and are 1162 

expressed relative to those of WT mice. n.s., not significant (Student’s t-test). 1163 

G. Schematic illustration of the experimental workflow. IP6K2-/- and WT mice fasted 1164 

for 48 h were sacrificed to collect four proximal GIT segments (stomach, duodenum, 1165 

jejunum, ileum), which were then subjected to isolate muscularis externa.  1166 

H-J. The abundances of IP6 (H) and IP7 (I), and IP7/IP6 ratios (J) in the muscularis 1167 

externa of the four GIT segments of IP6K2-/- and WT mice. The values shown represent 1168 

the mean�±�SD of four independent experiments and are expressed relative to those 1169 

for WT mice. Asterisks indicate statistical significance (P�<�0.05, Student’s t-test) 1170 

compared with WT mice.  1171 

 1172 

Figure 7. IP6K2-IP7 axis is crucial for certain neurotranscriptome profile 1173 

associating with ENS development and functioning 1174 

A. Transcript levels of two different neuronal genes (Ddr5 and Cckbr) in the CNS and 1175 

GIT of IP6K2-/- and WT mice. Data were normalized to 18S rRNA level. The values 1176 

shown represent the mean�±�SD of three (CNS of IP6K2-/-, and CNS and GIT of WT 1177 

mice) and five (GIT of IP6K2-/- mice) independent experiments and are expressed 1178 

relative to those of WT mice. Asterisks indicate statistical significance (P�<�0.05, 1179 

Student’s t-test) compared with WT mice.  1180 
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B. Schematic illustration of the experimental workflow. IP6K2-/- and WT mice were 1181 

sacrificed to collect the duodenal muscularis externa. High-quality total RNAs isolated 1182 

from these tissues (each n =3) were subjected to whole transcriptome analysis by 1183 

high-throughput RNA sequencing.  1184 

C. Gene Set Enrichment Analysis (GSEA) of the enriched gene signature in IP6K2-/- 1185 

duodenal muscularis externa. Cell type signature gene sets (C8 in The Molecular 1186 

Signatures Database ver7.5.1; http://www.gsea-msigdb.org/gsea/msigdb/index.jsp) were 1187 

used for this analysis. Horizontal dashed line indicates nominal P-value 0.05, and 1188 

vertical lines indicate normalized enriched score (NES)�± 1.2 cutoff. Gene sets 1189 

assigned to neural progenitor cells and oligodendrocyte progenitor cells (source data is 1190 

derived from Zhong et al, 2018), neural stem cells and glial cells (Fan et al, 2018), and 1191 

mature neurons (inhibitory neurons, Cao et al, 2020; GABAergic and dopaminergic 1192 

neurons, La Manno et al, 2016) with nominal P < 0.05 and NES > 1.2 or < -1.2 are 1193 

labeled in colored dots.  1194 

D. Representative GSEA plots of the gene sets enriched among up-regulated (inhibitory 1195 

neurons, GABAergic neurons, dopaminergic neurons) or down-regulated (neural 1196 

progenitor cells, neural stem cells, glial cells) genes by genetic ablation of IP6K2 in the 1197 

duodenal muscularis externa.  1198 

E. Normalized expression levels (transcripts per million, TPM) from RNA-seq data for 1199 

7 neuronal genes prominently and significantly (P < 0.05, Student’s t-test) accumulated 1200 

or depleted in IP6K2-/- duodenal muscularis externa compared with WT counterparts (n 1201 

= 3). 1202 

F. Validation of RNA-seq results by qPCR. Data were normalized to β-actin level. The 1203 

values shown represent the mean�±�SD of six independent experiments and are 1204 
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expressed relative to those for WT mice. Asterisks indicate statistical significance 1205 

(P�<�0.05, Student’s t-test) compared with WT mice. 1206 

G. Transcript levels of three different neuronal genes (Ddr5, Cckbr and Npy4r) in the 1207 

duodenal muscularis externa of IP6K2-/- and WT mice. Data were normalized to β-actin 1208 

level. The values shown represent the mean�±�SD of six independent experiments and 1209 

are expressed relative to those for WT mice. Asterisks indicate statistical significance 1210 

(P�<�0.05, Student’s t-test) compared with WT mice. 1211 

 1212 

 1213 
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Fig 2.  Ito et al.
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Fig 4.  Ito et al.
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Fig 5.  Ito et al.
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Fig 6.  Ito et al.
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Fig 7.  Ito et al.
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