Temporally resolved kinase regulatory networks control endothelial barrier integrity

Ling Wei, Selasi Dankwa, Kamalakannan Vijayan, Joseph D. Smith, and Alexis Kaushansky

1 Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
2 Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
3 Department of Global Health, University of Washington, Seattle, WA 98105, USA
4 Lead contact

*Correspondence: alexis.kaushansky@seattlechildrens.org (A.K.), joseph.smith@seattlechildrens.org (J.D.S.)
SUMMARY

Breakdown of the blood-brain barrier is triggered by a range of physiological and pathological stimuli and is detrimental for brain function. Yet, the underlying signaling networks regulating barrier integrity are incompletely understood. Here, we present a novel and generalizable tool, Temporally REsolved KInase Network Generation (TREKING), that combines machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We investigated kinase-driven pathways that modulate barrier permeability in brain endothelial cells in the presence of inflammatory stimuli. Our results reveal that >100 kinases are functional during barrier insult and provide time-resolved molecular insights into the differential networks that drive barrier disruption and recovery. The resulting models suggest a multi-layered rewiring of thrombin-induced barrier disruption following TNFα priming, including the timing of common signaling pathways, condition-specific phosphosignaling networks, and a skewing at major signaling hubs towards barrier-weakening activities. TREKING provides a novel tool for dissecting temporal phosphosignaling networks in biological systems.

Keywords: Endothelial barrier permeability, thrombin, TNFα, kinase regression, self-organizing map, phosphosignaling network
INTRODUCTION

Homeostasis of the central nervous system (CNS) is tightly regulated by the blood-brain barrier (BBB). Dysregulation of the BBB can cause ions, neurotoxic plasma components, pathogens and immune cells to enter the CNS, which leads to massive disruption and degeneration (Daneman and Prat, 2015). BBB derangements are associated with the pathogenesis of a variety of diseases, including infectious causes such as cerebral malaria and non-infectious causes such as multifactorial neurodegenerative diseases (Miller et al., 2013; Zhao et al., 2015).

The permeability of endothelial barriers is tightly regulated via cell-cell junctions and focal adhesions. These points of cell-cell and cell-substrate contact are controlled by contractile mechanisms, whose functions are heavily regulated by phosphosignaling (Mehta and Malik, 2006). Kinases, via phosphorylation, can rapidly (on the scale of seconds to minutes) alter cellular states in response to barrier-disruptive stimuli and can promote long-term regulatory functions during barrier recovery (Kuppers et al., 2014). Whereas kinases that mediate barrier function have been intensively explored, work to date has largely focused on characterizing specific molecular mediators of barrier perturbation, without evaluating their complex network-level connectivity with other functional modules (Dankwa et al., 2021; Komarova et al., 2017; Kuppers et al., 2014; Mehta and Malik, 2006). Moreover, there is limited understanding of the phosphosignaling pathways involved in restoration of barrier integrity. Understanding the temporal dynamics of barrier regulation is critical for designing successful targeted therapeutic interventions.

During infection or disease, endothelial cells must integrate complex inflammatory signals. For instance, both thrombin, a multi-functional enzyme, and TNFα, an inflammatory cytokine, can promote morphological remodeling of the endothelium that leads to the loss of barrier integrity (Marcos-Ramiro et al., 2014; Oldenburg and de Rooij, 2014). TNFα exacerbates thrombin-induced barrier disruption (Anrather et al., 1997; Liu et al., 2004; Tiruppathi et al.,...
which strongly indicates that endothelial signaling pathways and/or their kinetics are altered by combined inflammatory stimuli. High-resolution and time-resolved phosphoproteomic analyses have cataloged phosphorylation events that occur in response to thrombin or TNFα-induced endothelial activation (Beguin et al., 2019; van den Biggelaar et al., 2014). Separate efforts have developed computational tools and modeling approaches that use -omics data for network generation, including logic modeling such as Boolean logic models and logic ordinary differential equations (ODEs), and enrichment-based approaches such as kinase-substrate enrichment analysis (KSEA) (Casado et al., 2013; Schafer et al., 2019; Vaga et al., 2014). However, these computational tools typically rely on large-scale phosphoproteomics data that can typically not be collected with fine temporal resolution. Furthermore, proteomics only indirectly assesses kinase functionality, as inferred by phosphorylation states. Given these limitations, existing network-generation tools have not yet been applied to elucidating the time-resolved molecular functional underpinnings of endothelial barrier integrity.

Kinase regression (KiR) combines a chemical screen with elastic net regression to broadly interrogate the function of hundreds of kinases in a cellular phenotype (Arang et al., 2017; Dankwa et al., 2021; Gujral et al., 2014). We have previously shown that kinase inhibitors have dramatically different effects on endothelial barrier permeability and their effects exhibit temporal features in barrier disruption and barrier recovery phases (Dankwa et al., 2021), suggesting that different sets of kinase regulators are functional at different stages of barrier perturbation. Here, we develop a novel approach, Temporally RESolved Kinase Network Generation (TREKING), to investigate phosphosignaling in disrupted endothelial monolayers induced by thrombin in the presence or absence of TNFα pre-conditioning. TREKING allows 1) assessment of time-resolved kinase functionality associated with barrier regulation, 2) construction of phenotype-driving kinase-mediated phosphosignaling networks that recapitulate signaling events at different stages of barrier perturbation, and 3) systematic comparison of
phosphosignaling between conditions. Our results reveal commonalities and divergences of kinase signaling in response to classic pro-inflammatory stimuli, and insight into signaling pathways with barrier-weakening or barrier-strengthening activity. This novel approach is easily generalizable to other biological systems and will be particularly useful in deconvolving condition-specific, temporally resolved signaling mechanisms important for many phenotypes of interest.

RESULTS

**TNFα pre-conditioning alters kinase determinants of thrombin-induced barrier perturbations**

In monolayers of human brain microvascular endothelial cells (HBMECs), TNFα pre-conditioning exacerbated thrombin-induced barrier disruption, as demonstrated by the increased maximum barrier permeability and prolonged barrier recovery (Fig. 1A). While this finding is consistent with previous reports (Tiruppathi et al., 2001), the molecular networks that regulate these differences remain unknown.

Here, we introduce TREKING, a generalizable methodology that leverages temporal KiR to build time-resolved networks of kinase signaling from temporal datasets (Fig. S1). First, to identify kinases involved in barrier integrity, a KiR screen was conducted with 28 kinase inhibitors for their impact on barrier permeability in monolayers of HBMECs treated with thrombin (-/+TNFα pre-conditioning) (Dankwa et al., 2021). Kinase inhibitors were added six minutes after thrombin treatment and barrier permeability was assessed in real time using xCELLigence. Different kinase inhibitors blunt, have minimal effect, or exacerbate thrombin-induced barrier disruption and exhibit temporal features during the 6-hour time window (Fig. 1B) (Dankwa et al., 2021).
We reasoned that if identical kinases control the barrier integrity in the two inflammatory conditions, we expect perfect correlation between the activities of the 28 kinase inhibitors in thrombin alone and TNFα pre-conditioned settings. If entirely different kinases control the barrier integrity in the two conditions, we would expect little correlation between the activities of the kinase inhibitors. Thus, the correlation between kinase inhibitor activities serves as an indirect assessment of the similarity of the underlying barrier regulatory phosphosignaling networks across conditions. Using area under the curve (AUC) of the normalized cell index as the metric, we compared the barrier permeability between +thrombin and TNFα pre-conditioning +thrombin conditions across the following time windows: maximum barrier disruption (0-10 minutes), early barrier recovery (25-35 minutes), late barrier recovery (115-125 minutes for +thrombin condition, 235-245 minutes for TNFα pre-conditioning +thrombin condition). The correlation was the lowest within the first ten minutes of kinase inhibitor treatment (Pearson’s r = 0.72) and increased during early barrier recovery (Pearson’s r = 0.90 to 0.91) (Fig. 1C-D). This suggests that phosphosignaling networks are more divergent during barrier disruption, whereas more similar phosphosignaling networks regulate barrier restoration. The correlation reduced in the late barrier recovery phase (Pearson’s r = 0.85 to 0.77) (Fig. 1C-D), perhaps suggesting that a subset of different kinase networks regulate the transition to barrier homeostasis after injury.

This analysis is consistent with a model that TNFα pre-conditioning alters kinase regulatory networks that dictate the extent and kinetics of thrombin-induced barrier disruption and recovery in brain endothelial cells.

Time-resolved predictions of barrier-weakening and barrier-strengthening kinases between the two inflammatory conditions

Previously, we predicted 29 and 25 kinases that regulate the HBMEC barrier in response to thrombin treatment with or without TNFα pre-conditioning, respectively. Fifteen kinases were shared between the two conditions (Dankwa et al., 2021). However, these KiR predictions were
based on the full AUC (6-hour time window, post-thrombin treatment), and did not take into account when a kinase was functionally active (i.e., a “functional window”). To address this lack of temporal resolution, we performed a temporal KiR (tKiR), using a sliding window analysis; a 5-minute sliding time window was applied to the normalized cell index data, which slides at 1-minute steps for the first two hours after kinase inhibitor treatment and at 5-minute steps afterwards (Fig. 2A). Among the 300 protein kinases used for tKiR (STAR Methods), the number of functional kinases increased to 120 and 108 in HBMECs treated with thrombin +/-TNFα pre-conditioning, respectively (Fig. 2A, Table S1). The higher resolution of tKiR is because the sliding window analysis allows for the detection of kinases whose activity is brief or sporadic. In total, 159 kinases (~30% of the human kinome) were predicted to regulate barrier function within the 6-hour timeframe, with 69 kinases being common to the two conditions (Fig. 2A).

As a further refinement, the elastic net models were used to predict the direction of barrier activity (weakening or strengthening) in a time-resolved manner (Fig. 2B-C, Fig. S1). For HBMECs not pre-conditioned with TNFα, 53 and 60 kinases were predicted to play a barrier-weakening and barrier-strengthening roles, respectively (Fig. 2B). In addition, seven kinases were predicted to play both barrier-weakening and barrier-strengthening roles during different time windows; we termed these “switch kinases” (Fig. 2B). For HBMECs pre-conditioned with TNFα, 58 and 47 kinases were predicted respectively to be barrier-weakening and barrier-strengthening, and 3 switch kinases were predicted (Fig. 2C). Overall, a greater number of barrier-weakening kinases were predicted early during the time course, whereas barrier-strengthening kinases were predominant during late barrier recovery and plateau phases (Fig. 2D). Nevertheless, multiple barrier-strengthening kinases were identified at the earliest time windows following thrombin treatment, indicating that cells propagate both types of barrier activities concurrently (Fig. 2D).
The tKiR predictions of kinase activity recapitulate the canonical signaling pathways involved in barrier regulation

Assessing position of predicted kinases within canonical signaling pathways is one way to evaluate the integrity of tKiR. For instance, if kinase A phosphorylates kinase B, we would expect kinase A to be active at earlier time points than kinase B. Previous work has established that mitogen-activated protein kinase (MAPK) cascades are involved in thrombin signaling, including the extracellular signal-regulated kinases (ERKs), Jun N-terminal kinases (JNKs) and p38 MAPKs (Mehta and Malik, 2006; Minami et al., 2004; Radeva and Waschke, 2018). The topology of MAPKs is well-established; cell surface receptors such as receptor tyrosine kinases (RTKs) provide a link between extracellular stimuli and the cascade (Morrison, 2012). After activation, most MAPK pathways have a four-tier kinase architecture (MAP3K-MAP2K-MAPK-MAPKAPK) (Pimienta and Pascual, 2007). Given the strict directionality of the network, we reasoned that RTKs would be predicted to regulate the barrier during the earliest time points after thrombin treatment, followed sequentially by MAP3Ks, MAP2Ks, MAPKs and then MAPKAPKs.

The ERK, JNK, and p38 pathways were all implicated in thrombin signaling, with multiple kinases in each signaling cascade predicted by tKiR (Fig. 3). The predicted kinases could be assembled into pathways that were consistent with known information flow through the MAPK cascade. Overall, the ERK and JNK pathways were associated with barrier-weakening activity and the p38 pathway had a mixture of barrier-weakening and barrier-strengthening activities mediated by different p38 family members (Fig. 3). For example, within the ERK pathway, all the predicted kinases were barrier-weakening, and their activity profiles followed the expected order of MAP2Ks preceding MAPKs, which preceded four downstream MAPKAPKs (Fig. 3). Likewise, a mid-to-late acting barrier-strengthening p38 pathway could be assembled from known components (Fig. 3).
The same MAPK pathways were predicted with TNFα pre-conditioning (Fig. 3). However, the timing and duration of the ERK and JNK pathways were shifted earlier and shortened for most kinases. We also observed a second wave of barrier-weakening activity by MAPK1/ERK2, and multiple additional kinases in the JNK pathway were predicted, consistent with previous work indicating that combined TNFα and thrombin treatment alters the magnitude and duration of JNK phosphorylation activation marks in endothelial cells (Liu et al., 2004). Furthermore, the p38 pathway became nearly entirely barrier-strengthening with TNFα pre-conditioning and MAPKAPK2/MK2 was no longer predicted to be a switch kinase with dual barrier-weakening and barrier-strengthening activities. Consequently, this analysis suggests that core MAPK signaling pathways involved in thrombin-induced barrier disruption remain intact after TNFα pre-conditioning, but the timing, duration, and importance of specific MAPKs are altered.

To experimentally assess the model, we evaluated kinase phosphorylation of a subset of tKiR predicted kinases in ERK, JNK and p38 pathways via western blot. HBMECs (+/−TNFα pre-conditioning) were treated with thrombin for 0, 5, 15, 30, 60, 120, 180, 240 or 360 minutes. In each experimental condition, the level of phosphorylated kinase after thrombin treatment was compared to its phosphorylation at basal level (media only). By western blot, increased levels of activated kinases were detected in each of the three MAPK pathways at different time frames during barrier disruption and barrier recovery (Fig. 4A). In both +thrombin and TNFα pre-conditioning +thrombin conditions the activity of MAP2K1/2 (MEK1/2) peaked at an earlier time point compared to its downstream targets MAPK1/ERK2 and MAPK3/ERK1, which supports the tKiR model predictions of early barrier-weakening functionality of these MAPKs (Fig. 4A). Results from western blot also showed that the activity of MAPK9/JNK2 increased upon thrombin treatment and remained higher than the basal level six hours after thrombin treatment, at which point the barriers were mostly recovered (Fig. 4A). Similarly, the activity of p38 MAPKs
was increased shortly after thrombin treatment, and in both +thrombin and TNFα pre-
conditioning +thrombin conditions an early (barrier disruption phase) and a late (late barrier
recovery phase) activity peak were detected. Overall, in most cases there was increasing
phosphorylation immediately preceding or overlapping corresponding time windows of predicted
barrier activity for all three canonical MAPK pathways (Fig. 4B).

Construction of phosphosignaling networks that mediate barrier disruption

To investigate how endothelial cells propagate phosphosignals to and from key kinase
regulators beyond canonical linear cascades, we reconstructed kinase phosphosignaling
networks by first using self-organizing maps (SOMs), a dimensionality reduction method that
can capture the topographic relationships of time series data (Kohonen, 1982). Kinases of
similar temporal functionality were clustered into one neuron, and neurons having similar mean
temporal functionality are more closely located on the SOM (Fig. 5A, Fig. S2A-C). To generate
the SOMs, we used a grid size of 6×6 (resulting in a maximum of 36 neurons). In +thrombin
condition, we obtained 30 neurons and each neuron contained between 1 and 11 kinases (Fig.
5A, Fig. S2D, Table S2). After TNFα-preconditioning, we obtained 35 neurons and each neuron
contained between 1 and 9 kinases (Fig. S2A, D, Table S2).

Since kinases assigned to the same neuron exhibit similar temporal barrier functionality,
we reasoned that they are more likely to act within a connected signaling module. To build
phosphosignaling pathways and investigate systems-level interconnections, we built TREKING
models of barrier phosphosignaling networks (Fig. S1, Fig. S2E). For each neuron a local
phosphosignaling network was built to describe the paths through which phosphosignals may
propagate, using the kinase-substrate phosphorylation database PhosphoSitePlus® to predict
upstream and downstream kinases and to infer intermediate kinases in the pathways (Fig. S2E)
(Hornbeck et al., 2015). We were able to build 26 local networks from the 30 neurons generated
in +thrombin condition, and 27 local networks from the 35 neurons generated in TNFα pre-
conditioning +thrombin condition (Table S2). The remaining neurons included only a single kinase that does not self-phosphorylate or multiple unconnected kinases. The size and topology of the phosphosignaling networks varied across neurons. In +thrombin condition, most networks have a maximum node-to-node shortest path length below 10 kinases, while the deepest networks built from neurons (0,0) and (3,3) have a maximum shortest path length of 14 kinases (Fig. S2E). In TNFα pre-conditioning +thrombin condition, most networks have a maximum shortest path length ranging from 3 to 9 kinases, except for the network built from neuron (2,4) that has a maximum shortest path length of 16 kinases (Fig. S2E).

The SOM analysis revealed substantial interconnections between MAPK and NF-κB signaling pathways in both barrier-weakening and barrier-strengthening activities. For instance, in +thrombin condition, the barrier-weakening neurons (0,0) and (1,0) include a mixture of ERK, JNK, and canonical NF-κB signaling pathways with MAPK3/ERK1, CHUK/IKKα and MAPKAPK3/MK3 in neuron (0,0) and MAPK1/ERK2 and MAPK8/JNK1 in neuron (1,0) (Fig 5A-B, Table S2). Likewise, a mid-to-late barrier-strengthening neuron (5,5) contained the switch kinase MAPKAPK2/MK2 in a p38 pathway (MAP3K20/ZAK-MAPK14/p38α-MAPKAPK2/MK2), CSK (C-terminal Src kinase; a negative regulator of Src-family kinases (SFKs)), and two members of non-canonical NF-κB signaling pathways (MAP3K14/NIK and IKBKB/IKKβ) (Fig. 5C-D). Therefore, MAPK and NF-κB interconnections were implicated in both barrier disruption and barrier recovery phases. Notably, with TNFα pre-conditioning, this barrier-strengthening pathway shrunk to MAP3K20/ZAK-MAPK14/p38α (p38 pathway) and MAP3K14/NIK (NFκB signaling pathway). Overall, 77 of the 120 predicted kinases in +thrombin condition and 61 of the 108 predicted kinases in TNFα pre-conditioning +thrombin condition could be assembled by TREKING into signaling pathways of two or more kinases that acted with similar temporal kinetics and identified potential network-level interconnections between individual barrier signaling pathways within the broader signaling networks.
TNFα pre-conditioning alters the landscape of kinase regulators and associated pathways in the barrier disruption and barrier recovery phases

To further investigate the phosphosignaling networks associated with thrombin-induced barrier perturbation, and how these networks were altered in response to TNFα pre-conditioning, we decided to investigate barrier disruption and barrier recovery phases separately. To investigate networks that led to barrier disruption, we first built the composite phosphosignaling networks important for barrier regulation during the barrier disruption phase (Fig. S6, Fig. S7).

Specifically, networks built from neurons that were functional within the first 30 minutes after thrombin treatment (-/+TNFα) were combined to form a composite network that illustrates the connections between functional kinases in the barrier disruption phase. Interestingly, the composite networks reveal overlapping kinase nodes within barrier-weakening and barrier-strengthening pathways, illustrating nexuses where specific kinases have the capacity to lead to both phenotypes (Fig. S6, Fig. S7).

In the first 30 minutes after thrombin treatment, more kinases were predicted to be barrier-weakening in TNFα pre-conditioning +thrombin condition (40 kinases) than in +thrombin condition (33 kinases), and eighteen barrier-weakening kinases were shared, including multiple members of the MAPK family (Fig. S3A). Among the twenty-two kinases uniquely predicted in TNFα pre-conditioning +thrombin condition were all three members of the Janus kinase (JAK) family (JAK1, JAK2 and JAK3) (Fig. S3A), which are known to be activated by TNFα (Guo et al., 2016).

At the network level, pre-conditioning with TNFα led to a multi-layered rewiring of phosphosignaling including a larger fraction of barrier-weakening signaling pathways, which is manifested both as more barrier-weakening kinase regulators (Fig. S3A) and more barrier-weakening kinase connections (Fig. S6, Fig. S7) in the barrier disruption phase. For instance, the connectivity (in/out-degrees of freedom) of kinase nodes is skewed towards barrier-
weakening connections with TNFα pre-conditioning (Fig. S3B). Moreover, the ratio of barrier
signaling activities shifted at major signaling hubs. For example, AKT1 is the most highly
connected kinase in the composite networks. Whereas a mixture of signals flow through AKT1
under both inflammatory conditions, barrier-weakening connections predominate with TNFα pre-
conditioning (Fig. S3C). This suggests that connectivity of AKT1 is rewired to associate with
factors that promote barrier disruption when cells are pre-conditioned with TNFα. Similarly,
MAPK1 is balanced between barrier-weakening and barrier-strengthening connections when
thrombin is treated alone but skewed towards barrier-weakening connections in the context of
TNFα pretreatment (Fig. S6, Fig. S7). Thus, TREKING describes network-level mechanisms by
which barrier-weakening activities might be favored after TNFα pre-conditioning.

In addition to repurposing the phosphosignaling network towards barrier-weakening
activities in the barrier disruption phase, TNFα priming also altered the network during the
barrier recovery phase (Fig. 1). We reasoned that barrier-strengthening signaling activities may
begin prior to the repair phase, so we constructed composite networks for the full 6-hour time
course (Fig. S8, Fig. S9). At the network level, pre-conditioning with TNFα led to a reduction in
the fraction of barrier-strengthening pathways over the entire 6-hour time course. There were
several notable differences between the barrier-strengthening networks that might describe the
delayed recovery in the presence of TNFα. In the absence of TNFα, networks involving
megakaryocyte-associated tyrosine kinase (MATK/CTK) and CSK, both negative regulators of
SFKs, are engaged (Fig. S8). During early barrier recovery, the MATK pathway (EPHA1-
MATK/CTK-ABL1-FYN-PDGFRA-ARAF) was predicted to be functional, then later the CSK
pathway (CSK-MAPK14/p38α-MAPKAP2/MK2) was predicted to drive barrier recovery (Fig.
5D, Fig. S8). Together, these pathways were predicted to be functional throughout barrier
recovery and drive a robust and sustained repair in the absence of TNFα pre-conditioning. In
contrast, when cells are pre-conditioned with TNFα, the activity of the CSK pathway is lost (Fig.
S9), providing one hypothesis of why the kinetics of late barrier recovery is distinct after TNFα pre-conditioning. Taken together, this analysis suggests that TNFα pre-conditioning both enhances the number of barrier-weakening networks and re wires barrier-strengthening regulators to alter the magnitude and duration of barrier disruption.

**TREKING predicts barrier-specific kinase functionality with temporal resolution**

The TREKING model (Fig. S1) predicts activity windows for kinases and the networks through which phosphosignals propagate with temporal resolution. To systematically evaluate the accuracy of the networks predicted to underlie the barrier functionality in response to thrombin, we first used the TREKING model to generate time-resolved predictions of the activation states of kinases in response to thrombin (+/−TNFα pre-conditioning). By considering all the signaling connections that a kinase is associated with, we can comprehensively explore its role in barrier regulation over time. To assess the barrier function of a kinase at a particular time point, a 10-minute time window centered at that time point was applied (Fig. S5A). If any of the signaling pathways that the kinase is associated with are active within the time window, the model predicts the kinase to be functionally active within that time window; otherwise, the model predicts the kinase to be functionally inactive within the time window (Fig. S5A).

To evaluate the accuracy of the TREKING model for predicting kinase activity, we treated HBMECs with thrombin in the presence or absence of TNFα pre-conditioning. We collected cellular lysates at nine time points and evaluated activation of the 14 kinases using western blot (Table S3). TREKING predicted 78 instances of active barrier function across all time points in the absence of TNFα; 61 differential phosphorylation events were observed by western blot (Fig. 6A, Fig. S5B). TREKING predicted 71 instances of active barrier function across all time points after thrombin treatment with TNFα pre-conditioning; we detected 47 differential phosphorylation events by western blot (Fig. 6A, Fig. S5B). These data suggest that TREKING outperforms random models (STAR Methods, Fig. 6B, Fig. S5C-D).
highlights many examples of altered kinase functionality after TNFα pre-conditioning (Fig. 6A, Fig. S4). For instance, PTK2/FAK was predicted to have sustained activity in the absence of, but not in the presence of TNFα pre-conditioning. PTK2/FAK also exhibits reduced connectivity after TNFα pre-conditioning (Fig. 6A, Fig. S4). The western blot data were consistent with the model predictions that without TNFα pre-conditioning the activity of PTK2/FAK was different from non-treated HBMECs at all time points assessed, while in TNFα pre-conditioned cells a significant reduction in phosphorylation was detected only in the barrier disruption phase (Fig. 6A, Fig. S4).

For highly connected kinases, such as SRC, p38 MAPK, PDPK1, and AKT1, TREKING predicted that upon thrombin treatment (-/+TNFα pre-conditioning) they actively participate in barrier regulation throughout the time course, although the kinases and/or signaling pathways that they interact with are altered with TNFα pre-conditioning (Fig. S8, Fig. S9). Overall, the accuracy of TREKING predictions vary by specific kinase. For example, active SRC, p38 MAPK and PDPK1 were observed by western blot at most time points predicted by TREKING, but TREKING failed to make predictions on AKT1 in the presence of TNFα, perhaps due to the complexity of cell signaling through this extensively connected kinase (Fig. S5B).

Most previous and ongoing research has focused on certain stages of barrier perturbation or sampled sparsely during a time course. We therefore asked how TREKING predictions compared to the existing literature in their breadth and temporal resolution. To do this, we visualized portions of the phosphosignaling network that had been described in the literature to regulate the endothelial barrier in response to thrombin (STAR Methods, Table S4). We then performed the same visualization with kinases that had been predicted by tKiR, and finally, by TREKING. When comparing to the literature, TREKING substantially increased the number of kinases associated with thrombin-induced barrier regulation and was able to assemble most predicted kinases into a time-resolved phosphosignaling network (Fig. 7).
highlights the power of TREKING to broadly dissect the functionally important phosphosignaling, with high temporal resolution, in barrier regulation.

**DISCUSSION**

Kinase signaling pathways are highly implicated in endothelial barrier regulation (Komarova et al., 2017; Kuppers et al., 2014; Mehta and Malik, 2006) and consequently kinase inhibitors are being explored for treatment of vascular injury (Aman et al., 2012; Botros et al., 2020; Rizzo et al., 2015). However, a lack of resolution that describes the barrier activity of specific kinase signaling networks and their importance in barrier disruption and repair has hindered therapeutic applications. Here, we introduce TREKING, which uses kinase regression to broadly interrogate kinase signaling pathways involved in barrier regulation with temporal resolution and to study their interconnectedness in signaling networks.

In agreement with previous work (Mehta and Malik, 2006), our results using tKiR implicated multiple MAPK signaling pathways in thrombin-induced barrier changes. Because of the systematic nature of the tKiR, it was possible to assign barrier functions to specific MAPK pathways with ERK and JNK pathways involved in early barrier disruption and the p38 pathway in a mid-to-late acting barrier restoration. In each case, multiple kinases within each pathway were predicted and the barrier phenotypes followed the expected flow of phosphosignaling in the linear cascade, and kinase activation by western blots was consistent with these predictions. Beyond MAPKs, our findings highlight the complexity of endothelial barrier regulation with over 100 kinases were predicted to regulate thrombin-induced change of barrier integrity. With tKiR, “druggable windows” of the key kinase regulators mediating barrier permeability can be identified, which provides valuable insight into designing therapeutic interventions to block barrier leakage and restore barrier functionality, or in some circumstances, to temporarily disrupt the barrier for controlled drug delivery into the brain (Hashimoto et al., 2020; Luo and Shusta, 2020; Yanagida et al., 2017).
Kinase activity is frequently inferred by assessing phosphorylation via western blot or mass spectrometry. However, kinase activity is distinct from function and many kinases play multiple distinct biological roles by targeting different sets of substrates with different kinetics. While this behavior was coined “moonlighting”, suggesting there was one “main” kinase function with other ancillary activities, our data suggests that instead kinases can have multiple, equally important, and sometimes opposing functions in regulating the barrier. Since TREPING predicts functionality, rather than enzymatic activity, our work highlights these higher-order, complex activities of kinases. By reconstructing networks with temporal resolution, TREPING enables us to systematically dissect the “functional windows” of the kinases associated with barrier regulation.

We termed a subset of kinases “switch kinases”, as TREPING predicted their functionality to be barrier-weakening and barrier-strengthening during different kinetic windows. As one example of a switch kinase, MAPKAPK2/MK2 was predicted to be barrier-weakening during barrier disruption and then to switch to barrier-strengthening during late barrier recovery. MAPKAPK2/MK2 is phosphorylated and activated by MAPK14/p38α upon activation of the p38 pathway. Activation of MAPKAPK2/MK2 leads to phosphorylation of LIMK1 and heat shock protein beta-1 (HSPB1), both of which regulate actin filament dynamics in endothelial cells (Gorovoy et al., 2005; Rada et al., 2021). Together, this suggests that the p38 pathway may regulate cytoskeleton remodeling during both barrier disruption and repair through different signaling pathways. The temporal functionality of kinases in the MAP3K20/ZAK-MAPK14/p38α-MAPKAPK2/MK2 axis of the p38 pathway is coherent in response to thrombin alone, as highlighted by our SOM analysis, where all three kinases were predicted to be barrier-strengthening during mid-to-late barrier recovery. In contrast, with TNFα pre-conditioning, MAPKAPK2/MK2 no longer promotes barrier strengthening but retains its early barrier-weakening function. In parallel, we no longer observe MAPKAPK2/MK2 signaling through p38.
pathway in this setting. Interestingly, our identifying of switch kinases could explain reports of kinases having contradictory activities. For instance, Src has been described to have both barrier-weakening and barrier-strengthening properties (Birukova et al., 2013; Garcia et al., 2001; Han et al., 2013; Klomp et al., 2019; Knezevic et al., 2009; McVerry and Garcia, 2004; Vouret-Craviari et al., 2002). Our model suggests that these disparate reports might simply be describing different barrier signaling activities that are kinetically resolved.

Several examples illustrate additional molecular and kinetic details that can be obtained from TREKING in contrast to traditional, less systematic approaches, including shifts in the timing of core MAPK signaling pathways (ERK/JNK pathways), condition-specific phosphosignaling networks (e.g., MAPKAPK2/MK2 switch kinase), and a skewing of barrier signaling activities at the major signaling hubs (e.g., AKT1) that alters the biological function of a key regulatory kinase. TREKING also highlights functional kinetics of cascades that are altered in TNFα pre-conditioned cells, suggesting how long-term inflammatory signals may alter the phosphosignaling network topology towards different barrier tolerances. These differences are often buried by conventional investigations that use tools such as genetic knockdown or knockout, which respond on the time scale of days rather than minutes. This highlights the importance of developing tools to systematically study the molecular details of kinase-driven signaling and to capture the differences in cell signaling between conditions.

The global, time-resolved and mechanistic details revealed by TREKING have ramifications beyond our fundamental understanding of phosphosignaling during inflammation. Beyond controlling the vasculature, TREKING is broadly generalizable to other cellular systems, and could be applied towards developing a molecular, kinetically resolved picture of any cellular phenotype.

Limitations of the study
Despite its power to elucidate kinase signaling with temporal resolution, TREKING is not without limitations. Firstly, the kinase-compound biochemical data used for KiR contains information only on a subset of the human kinome (300 of 518 kinases) (Anastassiadis et al., 2011). To partially overcome this limitation, TREKING reconstructs phosphosignaling networks and reveals functional kinases not predicted by tKiR and therefore can fill in missing gaps by leveraging kinase proteomic datasets. As additional biochemical data is available, these models can be refined. Secondly, PhosphoSitePlus®, the knowledgebase used for building the phosphosignaling networks, despite being the most comprehensive catalog available to us, does not cover the complete kinase-substrate phosphorylation interactions in human cells, nor is it specific to endothelial cells.

ACKNOWLEDGEMENTS

We would like to thank Mary-Margaret Dols for experimental guidance. This work was funded by National Institutes of Health (NIH) grants R01 AI148802 and R61 HL154250 (to J.D.S. and A.K.).

AUTHOR CONTRIBUTIONS


DECLARATION OF INTERESTS

The authors declare no competing interests.
Figure 1. Pre-conditioning with TNFα exacerbated thrombin-induced barrier disruption.

(A) Left: representative xCELLigence data showing barrier response to thrombin with or without TNFα pre-conditioning. Right: Quantification of the maximum change and time to 50% recovery for data on left. P-values from student’s t-test are shown. (B) Graphic of KiR screen conducted with 28 kinase inhibitors for their impact on barrier permeability in thrombin treated HBMECs (+/−TNFα pre-conditioning). Monolayers of HBMECs were treated with thrombin followed at 6 minutes by kinase inhibitor treatment and barrier permeability was measured in real time using xCELLigence system. (C) Correlations of the 28 kinase inhibitors between +thrombin and TNFα pre-conditioning +thrombin conditions at different stages of barrier perturbation. Kinase inhibitors had similar but distinct impact on barrier permeability in response to thrombin with or without TNFα pre-conditioning. Area under the corresponding permeability curve (AUC) within representative time windows (10-minute) is displayed as scatter plots (blue circle: DMSO-treated; black circles: kinase inhibitor-treated; black solid line: linear fitting line excluding DMSO control; black dashed line: identity line). The time windows corresponding to the scatter plots are indicated in (A) with lavender shading. (D) Pearson correlation coefficients between AUC in +thrombin and TNFα pre-conditioning +thrombin conditions. See also Figure S1.

Figure 2. Using kinase regression to inform kinases important for barrier regulation with temporal resolution. (A) Left: schematic describing analysis of using temporal KiR (tKiR) to predict kinases important for barrier regulation. A 5-minute sliding time window was applied to the normalized cell index data from the xCELLigence assay conducted with the 28 kinase inhibitors. The elastic net regularization algorithm predicted barrier “active” kinases within the corresponding time window, based on area under the curve (AUC). Right: Venn diagram showing the total number of kinases predicted in each condition across all time windows. (B)-(C) Left: time-resolved barrier activity profiles of predicted kinases in (B) +thrombin and (C) TNFα pre-conditioning +thrombin conditions. Blue and red colors represent barrier-weakening and
barrier-strengthening functionality, respectively. Predicted kinases are hierarchically clustered using Euclidean distance metric. Right: number of kinases predicted to be barrier-weakening, barrier-strengthening, or of dual functionality across the time course (“switch kinases”). (D) Venn diagrams showing the number of kinases predicted to be barrier-weakening or barrier-strengthening at different stages of barrier perturbation. See also Table S1.

**Figure 3. Temporal KiR recapitulates the phosphosignaling events in canonical MAPK pathways.** Members of three canonical MAPK pathways (ERK, JNK, and p38) were predicted to regulate barrier function in thrombin treated HBMECs with or without TNFα pre-conditioning. Kinases were mapped onto the corresponding signaling cascades along with their temporal functionality profiles, where blue and red shadings represent barrier-weakening and barrier-strengthening activity, respectively. Solid arrows represent direct phosphorylation interactions reported previously and dashed arrows represent indirect or inferred interactions. See also Table S1.

**Figure 4. MAPK pathways are activated in response to thrombin treatment.** (A) HBMECs were stimulated with TNFα (10 ng/ml) for 21 hours. A separate set of cells was left unstimulated. Cells were then treated with thrombin (5 nM) for the indicated times. Phosphorylation of members in three canonical MAPK pathways (ERK, JNK, and p38) was probed by western blot. Cells pre-conditioned with TNFα but not treated with thrombin are labeled “0-T”. Data was normalized to non-treated, media only condition (“0-M”). GAPDH was used as loading control. Arrows in ERK pathway indicate the maximum phosphorylation level among all the time points investigated in this study. (B) Comparison of western blot measurements and tKiR predictions. For each kinase, the top row is the mean fold change of its phosphorylation with respect to basal level (“0-M”), where the arrows represent the direction (↑: increase; ↓: decrease) and magnitude of the rate of fold change from the previous time point (fold change/minute) in log scale (the fold change is set to 1 if it is not considered different from the basal level); the bottom
row is the tKiR predictions on the temporal barrier activity of kinases, with blue and red representing barrier-weakening and barrier-strengthening functionality, respectively. White indicates the kinase was not predicted by tKiR. “NE” stands for “not evaluated” by tKiR, since kinase inhibitors were added six minutes after thrombin treatment and no model predictions were done within that time window. Purple represents instances where different p38 kinases with barrier-weakening or barrier-strengthening functionality were predicted at that time point.

See also Figure S4 and Table S3.

**Figure 5. Building local phosphosignaling networks that describe thrombin-mediated barrier regulation.** (A) Self-organizing map (SOM) of kinases predicted in response to thrombin without TNFα pre-conditioning (30 neurons). In each neuron, the black line is the mean functionality of all the kinases within that neuron, with “+1” indicating all kinases are barrier-strengthening and “-1” indicating all kinases are barrier-weakening. Blue and red shadings represent barrier-weakening and barrier-strengthening functionality, respectively. (B) A representative barrier-weakening neuron containing barrier-weakening kinases of similar temporal barrier kinetics. (C) A representative barrier-strengthening-dominant neuron containing barrier-strengthening kinases of similar temporal barrier kinetics, as well as a switch kinase (MAPKAPK2/MK2). (D) The local phosphosignaling network reconstructed from neuron (5,5). Kinases predicted by tKiR are labeled in orange. Kinases and connections associated with MAPK signaling, Src-family signaling and NF-κB signaling are highlighted in pink, yellow and cyan, respectively. See also Figure S2 and Table S2.

**Figure 6. TREKING predicts kinase regulators and kinase-mediated signaling pathways functionally important for barrier regulation.** (A) Left: comparison of western blot measurements, tKiR predictions and TREKING predictions on a subset of kinases involved in thrombin-induced barrier regulation. For each kinase, the top row is the mean fold change of its phosphorylation with respect to basal level (non-treated, media only), where the arrows
represent the direction (↑: increase; ↓: decrease) and magnitude of the rate of fold change from the previous time point (fold change/minute) in log scale (the fold change is set to 1 if it is not considered different from the basal level); the middle and bottom rows are the tKiR and TREKING predictions on the temporal barrier activity of kinases, with black representing being predicted by the models to be functional (barrier-weakening, barrier-strengthening, or dual functionality) and white representing not being predicted by the models. "NE" stands for "not evaluated". Right: connectivity (in/out-degrees of freedom) of kinases in the composite TREKING network. Light orange and orange represent in- and out-degrees of freedom in +thrombin condition, respectively; light red and red represent in- and out-degrees of freedom in TNFα pre-conditioning +thrombin condition, respectively. (B) Overall prediction accuracy of TREKING compared to random models. Pink: correct predictions; gray: incorrect predictions.

See also Figures S4 and S5, Tables S1, S2 and S3.

Figure 7. tKiR and TREKING expand the current understanding of kinases and associated phosphosignaling in barrier regulation. The reported time points in the literature were expanded to 6-minute time windows (3 minutes before/after the reported time points) to account for any experimental variations. The background network in gray includes all kinase-kinase phosphorylation interactions from the kinase-substrate phosphorylation database PhosphoSitePlus®. Blue and red nodes are the kinases reported by literature or predicted by tKiR to have barrier-weakening and barrier-strengthening functionality, respectively; purple nodes are the kinases having conflicting literature reports. Blue and red edges are the interactions predicted by TREKING that are associated with only barrier-weakening and barrier-strengthening activity, respectively; purple edges are the interactions associated with both barrier-weakening and barrier-strengthening activities. The "combined" panel in the bottom is the composite literature reports or model predictions across all time points. See also Table S4 and Supplemental file 1.
STAR METHODS

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alexis Kaushansky (alexis.kaushansky@seattlechildrens.org).

Materials available

This study did not generate new unique reagents.

Data and code availability

Codes and data generated in this study are included in supplemental information.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

Primary human brain microvascular endothelial cells (HBMECs; Cell Systems Cat# ACBRI 376) were cultured on collagen (5 µg/cm²; Corning Cat# 354236) in HBMEC culture media (Lonza Cat# CC-3202) at 37°C and 5% CO₂. HBMECs were used until passage 9.

METHOD DETAILS

xCELLigence data acquisition

The kinetic data in this study are published and were acquired from xCELLigence assays (Dankwa et al. 2021), which are described here in brief. HBMECs were grown to confluency in xCELLigence e-plates. On the day of the assay, HBMECs were equilibrated in serum-free culture media for 1-2 hours, and thrombin was added at 5 nM. To capture thrombin-induced barrier disruption, the cell index was measured every minute for 6 minutes, after which kinase inhibitors were added in triplicate at 0.5 µM. The cell index was then measured every minute for
2 hours and thereafter, every 5 minutes for 4 hours. The assays with TNFα pre-conditioning were performed identically except that HBMECs were activated with 10 ng/ml TNFα for ~22 hours before media equilibration. Data analysis was performed as described previously (Dankwa et al. 2021) with some modifications. The cell index was normalized to baseline (0) at the time point prior to addition of thrombin and area under the curve (AUC) was determined for each kinase inhibitor treatment. For this study, the AUC was determined within 5-minute sliding windows over the 6-hour time course. AUC values were normalized by subtracting the AUC of cells treated with thrombin+DMSO or TNFα pre-conditioning +thrombin+DMSO. These values were then linearly transformed, with the most negative normalized AUC value within a 5-minute window being set to 0 and the normalized value for the control sample being set to 100.

**Lysate preparation**

HBMECs were seeded in 6-well plates at 55,000 cells/well and grown for 3 days. Cells were then activated with 10 ng/ml TNFα for 21 hours or kept in fresh media for the same period. On the day of lysate preparation, cells were equilibrated in serum-free culture media for 1 hour and then treated with thrombin at a final concentration of 5 nM for 5, 15, 30, 60, 120, 180, 240, 360 minutes. After the indicated incubation periods, cells were washed twice with ice-cold phosphate buffered saline (PBS) and lysed in sodium dodecyl sulfate (SDS) lysis buffer (50 mM Tris-HCl, 2% SDS, 5% glycerol, 5 mM ethylenediaminetetraacetic acid, 1 mM sodium fluoride, 10 mM β-glycerophosphate, 1 mM phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 1 mM dithiothreitol, supplemented with a cocktail of protease inhibitors (Roche Cat# 4693159001) and phosphatase inhibitors (Sigma-Aldrich Cat# P5726)). Cell lysates were clarified in filter plates at 3500 rpm for 30 minutes, after which they were stored at -80°C until use.

**Western blot**

All the gel electrophoresis was performed using Bolt™ 4-12% Bis-Tris mini protein gels. Proteins were transferred to PVDF membranes using iBlot 2 dry blotting system (Thermo Fisher...
Primary antibodies were used at concentrations recommended by the vendor (see Table S3 for antibody dilutions). Antibody to GAPDH (Cell Signaling Technology Cat# 97166) was used as loading control at 1:2000 dilution. Blots were imaged using Bio-Rad ChemiDoc imaging system and signals were quantified using ImageJ2 (version 2.3.0). Background correction was done for each band by subtracting background signals nearby the band. The signals from proteins of interest were first normalized to the signals from GAPDH, and then the signals at each time point were normalized to the signals at time zero for the fold change of phosphorylation from basal level.

**Elastic net regularization**

The elastic net regularization algorithm used for this study was published previously (Dankwa et al. 2021). For each time window, the algorithm was applied on the normalized AUC values and kinases with non-zero coefficients were predicted to be informative for barrier permeability. The sign of the coefficients indicates the functionality of the kinases in regulating barrier integrity, with kinases having positive and negative coefficients being informed to have barrier-strengthening and barrier-weakening function, respectively.

**Self-organizing map**

The NumPy-based SOM implementation MiniSom (https://github.com/JustGlowing/minisom) was used to cluster the tKiR predicted kinases by their temporal characteristics. Grid size of 6×6 was used to generate SOMs.

**Path search**

Search for the shortest paths between kinases was done using NetworkX (https://github.com/networkx/networkx), a Python package for analyzing complex network structures.

**Generation of random models**
The random models were generated following the TREKING pipeline. During each iteration, a random background phosphosignaling network was generated using the configuration model function in NetworkX package, which creates random directed graphs with given degree sequences. The random network contains 518 nodes, corresponding to the total number of human protein kinases, and the in- and out-degree sequences followed the same distribution as the background phosphosignaling network used in TREKING. All the kinases were shuffled and randomly assigned to each of the nodes in the random network. At each time point, kinases of barrier-weakening or barrier-strengthening functionality were randomly selected from the 300 kinases used for KiR, with probabilities the same as in the TREKING model at the corresponding time point. The random sampling of kinases was performed at all time points corresponding to the TREKING model. Each of the kinases selected at any time point during the time course was randomly assigned to one of the 36 clusters, corresponding to the total number of neurons generated by SOMs. For each cluster the phosphosignaling network was reconstructed by searching for the shortest paths between any pair of kinases within the cluster, using the random phosphosignaling network generated during the iteration as the background network. In total, 100 random models were generated and used to compare with TREKING predictions.

**Literature search**

To compare the scope of previous research with the current study, a comprehensive literature search on protein kinases reported to regulate barrier function was done using the free search engine PubMed (https://pubmed.ncbi.nlm.nih.gov). The search terms were “endothelial barrier thrombin” plus kinase gene names, and the search results were filtered so that only articles published on or after year 2000 were shown. The search was done on each of the 518 human protein kinases. The search was not restricted to studies on HBMECs; instead, studies on thrombin-induced barrier disruption using endothelial cell lines, primary endothelial cells isolated
from different organs, or *in vivo* studies using mice or rats, were all included. To compare with our work, studies or data beyond a 6-hour time window (after thrombin treatment) were excluded.

**Visualization**

Schematics were created with BioRender.com. Phosphosignaling networks were visualized using Cytoscape ([https://cytoscape.org](https://cytoscape.org)), with the hierarchic layout from yFiles layout algorithms ([https://www.yworks.com/products/yfiles-layout-algorithms-for-cytoscape](https://www.yworks.com/products/yfiles-layout-algorithms-for-cytoscape)).

**QUANTIFICATION AND STATISTICAL ANALYSIS**

**Statistical analysis**

Student’s t-test was used to evaluate the difference of kinase activity between non-treated and thrombin-treated conditions. SciPy statistical package was used to perform the t-tests. At each time point, both *p*-value and fold change of phosphorylation with respect to non-treated cells were reported to determine if the two sets of data are different from each other. A *p*-value below 0.05 or all biological replicates reporting a fold change increasing/decreasing by at least 20% compared to non-treated cells indicates that the kinase activity is different between non-treated and thrombin-treated conditions.
**SUPPLEMENTAL INFORMATION**

**Figure S1. Workflow for building TREKING models from tKiR predictions, related to STAR**

**Methods.** Top: temporal kinase functionality was predicted using the elastic net regularization algorithm. Kinase inhibitor screen data (Dankwa et al., 2021) and kinase-compound biochemical data (Anastassiadis et al., 2011) were used for tKiR. Temporal AUC was calculated within a 5-minute sliding time window that slides at 1-minute steps for the first 2 hours of kinase inhibitor treatment and at 5-minute steps afterwards. The direction of barrier activity of kinases (barrier-weakening or barrier-strengthening functionality) was predicted at each time window indicated above based on the slope of the 28 kinase inhibitors AUC values versus the residual kinase activity from the Anastassiadis et al dataset. Middle: workflow for building TREKING networks to describe kinase phosphosignaling in thrombin-activated barriers. Self-organizing maps (SOMs) were used to identify kinases with similar time-resolved barrier activity across the 6-hour timeframe following thrombin treatment. Local phosphosignaling networks for each neuron were built by searching for the shortest paths between any pair of kinases within that neuron using the kinase-kinase phosphorylation database on PhosphoSitePlus® as the background network. Bottom: for a subset of kinases in the tKiR and TREKING models, their phosphorylation levels were measured by western blot at multiple time points in the barrier disruption and barrier recovery phases. Western blot measurements were used to evaluate if tKiR and TREKING correctly predicted the functional associations of these kinases in thrombin-induced barrier perturbation.

**Figure S2. Build local phosphosignaling networks based on kinase functional kinetics, related to Figure 5.** (A) Self-organizing map (SOM) of kinases predicted in TNFα pre-conditioning +thrombin condition (35 neurons). In each neuron, the black line is the mean functionality of all the kinases within that neuron, with “+1” indicating all kinases are barrier-strengthening and “-1” indicating all kinases are barrier-weakening. Blue and red shadings
represent barrier-weakening and barrier-strengthening functionality, respectively. (B)-(C)

Distance maps of SOM clustering in (B) +thrombin and (C) TNFα pre-conditioning +thrombin conditions. Each cell is the normalized sum of the Euclidean distances between a neuron and its neighboring neurons. (D) Distribution of the number of kinases assigned to the SOM neurons. (E) Left: example of how a local phosphosignaling network was built for each neuron by searching for the shortest paths between any pair of kinases within that cluster using the kinase-kinase phosphorylation database on PhosphoSitePlus® as the background network. Right: the maximum path length in the local phosphosignaling networks.

**Figure S3.** TNFα pre-conditioning altered the key kinase regulators and skewed the signaling networks towards barrier-weakening activities in the barrier disruption phase. (A) Venn diagram showing the tKiR predicted barrier-weakening kinases during the barrier disruption phase (6-30 minutes after thrombin treatment). (B) Connectivity (in/out-degrees of freedom) of kinases functional in the barrier disruption phase in +thrombin (top) and TNFα pre-conditioning +thrombin (bottom) conditions. Blue and red represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray represents connections associated with both barrier-weakening and barrier-strengthening activities. (C) Left: network connections to and from AKT1 in the barrier disruption phase in +thrombin (top) and TNFα pre-conditioning +thrombin (bottom) conditions. Blue and red represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray represents connections associated with both barrier-weakening and barrier-strengthening activities. Right: connectivity of AKT1 in the TREKING network reconstructed in the barrier disruption phase.

**Figure S4.** Summary of western blot measurements performed in this study, related to Figures 4 and 6. The kinases are ordered according to their network connectivity (low to high). Left: functionality profiles predicted by TREKING. For each kinase of interest, the mean
functionality profiles of all the associated neurons in the composite TREKING network were pooled and displayed on the same graph (orange: +thrombin condition; red: TNFα pre-conditioning +thrombin condition). Middle: fold change of phosphorylation in +thrombin condition; right: fold change of phosphorylation in TNFα pre-conditioning +thrombin condition. GAPDH was used as loading control.

Figure S5. Evaluate the accuracy of TREKING predictions using western blot, related to Figure 6. (A) For each kinase, the mean functionality profiles of all the associated neurons in the composite TREKING network were pooled. Within a 10-minute time window centered at the designated time point, the kinase is functionally active if TREKING predicts its activity in any of the neurons or associated networks within the time window. In each experimental condition, the kinase phosphorylation after thrombin treatment was compared to its phosphorylation at basal level (media only) to determine if the kinase is activated in response to thrombin. If TREKING predicted the kinase to be functional at a given time, and the kinase activity as measured by western blot is different from cells not treated with thrombin (i.e., higher or lower than basal level), the model made correct predictions on its functionality in barrier regulation; otherwise, the model failed to make predictions on its functionality at the corresponding time point. (B) Summary of model validations in +thrombin (left) and TNFα pre-conditioning +thrombin (right) conditions. Pink indicates that TREKING correctly predicted the kinase functionality in barrier regulation and grey indicates incorrect predictions. Kinase connectivity (in/out-degrees of freedom) in the composite TREKING network is shown to the right of the panel. Light orange and orange represent in- and out-degrees of freedom in +thrombin condition, respectively; light red and red represent in- and out-degrees of freedom in TNFα pre-conditioning +thrombin condition, respectively. (C)-(D) Comparison of TREKING and random models in (C) +thrombin and (D) TNFα pre-conditioning +thrombin conditions. Top: accuracy of model predictions for
each kinase across the time course; bottom: accuracy of model predictions at each time window for kinases evaluated in this study.

**Figure S6.** Composite TREKING network for the barrier disruption phase in +thrombin condition. Kinases predicted by tKiR are labeled in blue (barrier-weakening) and red (barrier-strengthening). Blue and red lines represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray lines represent connections associated with both barrier-weakening and barrier-strengthening activities.

**Figure S7.** Composite TREKING network for the barrier disruption phase in TNFα pre-conditioning +thrombin condition. Kinases predicted by tKiR are labeled in blue (barrier-weakening) and red (barrier-strengthening). Blue and red lines represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray lines represent connections associated with both barrier-weakening and barrier-strengthening activities.

**Figure S8.** Composite TREKING network for the entire 6-hour time course in +thrombin condition. Kinases predicted by tKiR in the barrier disruption phase are labeled in blue (barrier-weakening) and red (barrier-strengthening); kinases predicted by tKiR in the barrier recovery and plateau phases are labeled in light blue (barrier-weakening) and light red (barrier-strengthening); switch kinases are labeled in gray. Blue and red lines represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray lines represent connections associated with both barrier-weakening and barrier-strengthening activities.

**Figure S9.** Composite TREKING network for the 6-hour time course in response to TNFα pre-conditioning +thrombin. Kinases predicted by tKiR in the barrier disruption phase are labeled in blue (barrier-weakening) and red (barrier-strengthening); kinases predicted by tKiR in the barrier recovery and plateau phases are labeled in light blue (barrier-weakening) and light
red (barrier-strengthening); switch kinases are labeled in gray. Blue and red lines represent connections associated with only barrier-weakening and barrier-strengthening activities, respectively; gray lines represent connections associated with both barrier-weakening and barrier-strengthening activities.

**Table S1.** Predicted temporal kinase functionality in +thrombin and TNFα pre-conditioning +thrombin conditions, related to Figure 2. This is a Microsoft Excel workbook containing two spreadsheets.

**Table S2.** SOM assignment of tKiR predicted kinases and edges of phosphosignaling networks built in +thrombin and TNFα pre-conditioning +thrombin conditions, related to Figure 5. This is a Microsoft Excel workbook containing four spreadsheets.

**Table S3.** Antibody information and western blot results on the kinases validated in this study, related to Figures 4 and 6. This is a Microsoft Excel workbook containing 14 spreadsheets.

**Table S4.** Literature search on protein kinases reported to regulate endothelial barrier integrity in response to thrombin, related to Figure 7. PubMed ID of the article is followed by the barrier functionality reported in the corresponding article (“-1”: barrier-weakening; “1”: barrier-strengthening). This is a Microsoft Excel workbook containing one spreadsheet.

**Supplemental file 1.** Movie comparing literature reported with tKiR and TREKING predicted kinases and signaling pathways important for barrier regulation. This is an MPEG-4 movie file.

**Supplemental file 2.** Jupyter notebook containing the scripts for tKiR, SOM generation and network construction. Also including the scripts for making frames for the supplemental movie (Supplemental file 1) and random model generation.
REFERENCES


novel cross-modulation mechanisms between two signaling pathways in yeast. Mol Syst Biol 10, 767.


Figure 1: Graphical representation of the experiment results.

A. Time course of baseline normalized cell index for different treatments.

B. Schematic representation of the experimental setup.

C. Correlation plots showing the relationship between AUC values over different time intervals.

D. Pearson coefficient plots over time for different treatments.
Weakening

Strengthening

Switch

Number of kinases

0 20 40 60

Weakening Strengthening Switch

BioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508598; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Figure 2
Figure 3
**ERK pathway**

- MAPK1/ERK2
- MAPK3/ERK1

**JNK pathway**

- p-JNK2

**p38 pathway**

- p-p38

**Additional Information**

- TP53, JNK, p38 MAPK, p-MEK, GAPDH
- Time (min): 0, 5, 15, 30, 60, 120, 180, 240, 360
- Fold change

**Legend**

- +thrombin
- TNF pre-conditioning

**Note**

- Figure 4

BioRxiv preprint doi: https://doi.org/10.1101/2022.09.19.508598; this version posted September 20, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
+thrombin

TNF pre-conditioning +thrombin

RPS6KB1/S6K1 (p70 isoform)
RPS6KB1/S6K1 (p85 isoform)
PTK2/FAK
PRKCD/PKCδ
BRAF/B-Raf
RAF1/c-Raf

MAPK3/ERK1
MAPK1/ERK2
CHEK1/CHK1
MAPK2K1/2 / MEK1/2
SRC/c-Src
p38 MAPK
PDPK1/PDK1
AKT1/PKBα

TREKING Random TREKING Random

Time (min) 0 15 30 60 120 180 240 360

Fold change

Connectivity

TREKING Random TREKING Random

Time (min) 0 15 30 60 120 180 240 360

Figure 6
Elastic net regularization

Anastassiadis et al. kinase-compound biochemical dataset

Kinase-substrate phosphorylation database

{Kinases A, B, C}

Path search

PhosphoSitePlus®

{TREKING} models of barrier phosphosignaling networks

Build phosphosignaling networks of associated kinases

Kinase inhibitor screen

The

Real time permeability measurements

Calculate temporal AUC

5-min sliding time window

Step = 1, 3, N

Kinases (Kinases A, B, C)

Thrombin

HBMEC

± TNF-⍺ pre-conditioning

Thrombin

TNF-⍺ pre-conditioning

Thrombin

Kinase inhibitors

xCELLigence

Monolayer

AUC

Predict temporal kinase functionality

Residual activity

Barrier-strengthening

Barrier-weakening

Residual activity

Time

Kinases

Elastic net regularization

Alter phenotype

No effect

It's a "hit!"

Anastassiadis et al. kinase-compound biochemical dataset

178 small molecule kinase inhibitors

300 recombinant kinases

Comparison of western blot, tKiR functionality, and TREKING barrier phosphosignaling networks

Western blot

Cultured HBMECs

Collect cell lysates

Probe with selected antibodies

Gel electrophoresis

Test model predictions

TREKING
Figure S2