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ABSTRACT 1 

Non-pathogenic bacteria can largely contribute to plant health by mobilizing and supplying 2 

nutrients and by providing protection against pathogens and resistance to abiotic stresses. Yet, 3 

the number of GWAS reporting the genetic architecture of the response to individual members 4 

of the beneficial microbiota remains limited. In this study, we established a GWAS under field 5 

conditions to estimate the level of genetic variation and the underlying genetic architecture, 6 

among 162 accessions of Arabidopsis thaliana originating from 54 natural populations located 7 

south-west of France, in response to 13 strains of seven of the most abundant and prevalent 8 

non-pathogenic bacterial species isolated from the leaf compartment of A. thaliana in the same 9 

geographical region. Using a high-throughput phenotyping methodology to score vegetative 10 

growth-related traits, extensive genetic variation was detected within our local set of A. thaliana 11 

accessions in response to these leaf bacteria, both at the species and strain levels. The presence 12 

of crossing reaction norms among strains indicates that declaring a strain as a plant-growth 13 

promoting bacterium is highly dependent on the host genotype tested. In line with the strong 14 

genotype-by-genotype interactions, we detected a complex and highly flexible genetic 15 

architecture between the 13 strains. Finally, the candidate genes underlying the QTLs revealed 16 

a significant enrichment in several biological pathways, including cell, secondary metabolism, 17 

signalling and transport. Altogether, plant innate immunity appears as a significant source of 18 

natural genetic variation in plant-microbiota interactions and opens new avenues for better 19 

understanding the ecologically relevant molecular dialog during plant-microbiota interactions. 20 
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INTRODUCTION 21 

Both wild plant species and crops are consistently challenged by pathogens, making infectious 22 

disease often the major selective agent in nature [1–5]. In wild species, pathogen attacks can  23 

significantly decrease the number of offspring, which in turn affects host population growth 24 

rate [6–8]. Yield losses resulting from pathogen attacks can reach several tens of percent in 25 

crops [9–12], thereby threatening global food security [10, 13]. A major challenge in plant 26 

breeding and in ecological genomics is therefore to characterize the genetic architecture of 27 

response to pathogen attacks [14, 15]. Identifying the genetic and molecular bases for natural 28 

variation in response to pathogen attacks might lead to fundamental insights in the prediction 29 

of evolutionary trajectories of natural populations [16–19] and have enormous practical 30 

implications by increasing crop yield and quality [20–22].  31 

Over the last decade, whole-genome sequencing made possible through the development of 32 

cutting-edge next-generation sequencing (NGS) technologies, combined with the development 33 

of increasingly sophisticated statistical methods in quantitative genetics [23, 24], led to a burst 34 

in the number of genome-wide association studies (GWAS) that were successful in both wild 35 

and cultivated plants. This allowed detecting genomic regions associated with natural variation 36 

of response to experimental inoculation with, in most cases, individual pathogenic strains [15, 37 

25–27]. GWAS in plants revealed that the genetic architecture of response to pathogen attacks 38 

was highly polygenic [15], highly dependent on the abiotic environment [28, 29] and dynamic 39 

along the infection stages [28, 30]. In addition, the functional validation of few quantitative trait 40 

loci (QTLs) combined with transcriptomic analyses revealed both the involvement of a broad 41 

range of rarely considered molecular functions in plant immunity [17, 31, 32] as well as a new 42 

biomolecular network of the signaling machineries underlying disease resistance [33–35]. 43 

However, the entire set of microbial pathogens - also called pathobiota - represent only a small 44 

fraction of the entire set of microbes inhabiting plants, the so-called plant microbiota [14, 36, 45 
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37]. For instance, in the leaf compartment of 163 natural populations of Arabidopsis thaliana 46 

located in the south-west of France and characterized for bacterial communities using a 47 

metabarcoding approach allowing distinguishing pathogenic bacteria from other bacterial 48 

species [38], the relative abundance of pathobiota in microbiota was on average 1.6% in 49 

asymptomatic plants and 4.5% in plants with visible disease symptoms [38]. Furthermore, 50 

microbiota can largely contribute to plant health by (i) providing direct (production of 51 

antimicrobial components, niche competition) or indirect (triggering immune defense) 52 

protection against pathogens, (ii) mobilizing and provisioning nutrients, and (iii) providing 53 

resistance to abiotic stresses (such as drought) [37, 39–46]. Yet, the number of GWAS reporting 54 

the genetic architecture of the response to experimental inoculation with individual members 55 

of the beneficial microbiota remains limited in comparison to the number of GWAS on response 56 

to pathogens. In addition, despite the fact that the phyllosphere represents 60% of the total 57 

biomass on Earth and concentrating 1026 bacteria (Vorholt, 2012), most GWAS conducted in 58 

response to non-pathogenic bacteria focused on symbiotic bacteria or non-symbiotic plant-59 

growth promoting bacteria (PGPB) at the below-ground level and in laboratory controlled 60 

conditions [47–52]. 61 

In this study, we established a GWAS under field conditions to estimate the level of genetic 62 

variation and the underlying genetic architecture, among 162 whole-genome sequenced 63 

accessions of A. thaliana originating from 54 natural populations located south-west of France, 64 

in response to 13 strains of seven of the most abundant and prevalent bacterial species isolated 65 

from the leaf compartment of A. thaliana in the same geographical region [53]. To do so, we 66 

first developed a high-throughput phenotyping methodology to score vegetative growth-related 67 

traits on tens of thousands of plants. We then combined GWA mapping derived from a Bayesian 68 

hierarchical model (BHM) [54], with a local score (LS) approach [55] to fine map QTLs down 69 

to the gene level, a combination that was successfully applied to detect and/or functionally 70 
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validate QTLs involved in biotic interactions in A. thaliana [28, 30, 55, 56]. We finally 71 

identified the main biological pathways associated with all the candidate genes and discussed 72 

the function of the main candidate genes. 73 

 74 

MATERIAL AND METHODS 75 

Plant material 76 

A total of 54 populations (each represented by three accessions) were chosen to represent both 77 

the genomic and ecological diversity identified among a set of 168 natural populations of A. 78 

thaliana located southwest of France [57, 58] (Supplementary Table S1). Seeds from maternal 79 

plants sampled in natural populations were collected in June 2016. Differences in the maternal 80 

effects among the 162 seed lots were reduced by growing one plant of each accession for one 81 

generation (Supplementary Text). 82 

 83 

Bacterial material 84 

We considered two strains of seven (i.e. OTU2, OTU3, OTU4, OTU5, OTU6, OTU13 and 85 

OTU29) out of the 12 most abundant and prevalent non-pathogenic leaf bacterial OTUs 86 

identified across the 168 natural populations of A. thaliana [38], with the exception of OTU4 87 

for which only one strain was available [53]. Based on whole-genome sequencing, the closest 88 

taxonomic classification for OTU2, OTU3, OTU4, OTU5, OTU6, OTU13 and OTU 29 was 89 

Paraburkholderia fungorum, Oxalobacteraceae bacterium, Comamonadaceae bacterium, 90 

Pseudomonas moraviensis, Pseudomonas siliginis, Methylobacterium sp. and 91 

Sphingomonadaceae bacterium, respectively [53]. For the purpose of another study, we also 92 

included the strain JACO-CL of the bacterial pathogen Pseudomonas viridiflava (OTU8), 93 

which is with Xanthomonas campestris the most abundant and prevalent bacterial pathogen 94 

across the 168 natural populations of A. thaliana [58]. 95 
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Experimental design and growth conditions  96 

A field experiment of 15,552 plants was set up at the INRAE center of Auzeville-Tolosane 97 

using a split-plot design arranged as a randomized complete block design (RCBD) with 16 98 

treatments nested within six experimental blocks (Figure S1). The 16 treatments correspond to 99 

two mock treatments and the individual inoculation of 14 bacterial strains, namely 100 

OTU2_Pfu_1, OTU2_Pfu_2, OTU3a_Oxa_1, OTU3a_Oxa_2, OTU4_Com_1, OTU5_Pmo_1, 101 

OTU5_Pmo_2, OTU6_Psi_1, OTU6_Psi_2, OTU13_Msp_1, OTU13_Msp_2, OTU29_Sph_1, 102 

OTU29_Sph_2 and OTU8_JACO-CL. Each block was represented by 48 trays of 54 individual 103 

bottom-pierced wells (Ø4.7 cm, vol. ~70 cm²) (SOPARCO, reference 4920) filled with 104 

PROVEEN® Semi-Bouturage 2. In each block, each treatment corresponded to three trays 105 

stuck to each other and containing 162 plants, with one replicate per accession (54 populations 106 

* 3 accessions). Randomization of accessions was kept identical among treatments within a 107 

block, but differed among the six blocks. Randomization of the 16 treatments differed between 108 

the six blocks, with the exception of the two mock treatments that were kept at the same position 109 

(Supplementary Figure S1). 110 

All seeds were sown on March 18th 2021, with several seeds sown in each well. Two weeks 111 

after sowing, seedlings were thinned to one per well, keeping the seedling the closest to the 112 

center of the well. During the entire growing period, the plants were watered as needed, i.e. 113 

manual watering morning and evening on hot and dry days and no watering on rainy days. A 114 

molluscicide (Algoflash® Naturasol) was regularly applied around the trays.  115 

 116 

Inoculation procedure 117 

Bacterial strains were grown on solid medium in Petri dishes (TSA for OTUs 5, 6 and 8, TSB 118 

for OTU2, R2A for OTUs 3, 4 and 29, R2A for OTU13). The day of inoculation, bacterial 119 

colonies were resuspended in sterile deionized water and bacterial solutions were diluted to 120 
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reach an OD600 nm of 0.1. To facilitate the penetration of bacteria cells into plant organs, the 121 

Tween® 20 surfactant was added to each bacterial solution at a final concentration of 0.01%. 122 

Inoculation was performed 27 days after sowing (April 14, 2021), when most plants reached a 123 

5-6 leaf stage. Using a Multipette® with a Combitips advanced® 50 mL, a volume of 1 mL of 124 

inoculum was dispensed on each rosette. A volume of 1mL of sterile water with a Tween® 125 

concentration of 0.01% was dispensed on each rosette of the plants of the two mock treatments. 126 

In order to increase relative humidity, plants were watered with a water mist spray system the 127 

seven days following the inoculation.  128 

 129 

Phenotyping 130 

Following [59], a non-destructive imaging approach (Supplementary Figure S2) was used to 131 

measure each plant for nine traits related to vegetative growth (Supplementary Data Set 1): 132 

projected rosette surface area measured at 1day before inoculation (dbi) (area-1dbi), 5 days 133 

after inoculation (dai) (area-5dai) and 9 dai (area-9dai); rosette perimeter measured at 1 dbi 134 

(perimeter-1dbi), 5 dai (perimeter-5dai) and 9 dai (perimeter-9dai); maximal rosette 135 

diameter measured at 1 dbi (diameter-1dbi), 5 dai (diameter-5dai) and 9 dai (diameter-9dai). 136 

To estimate plant growth relative to size, three relative growth rates (RGR) were estimated 137 

based on the rosette surface area: RGR between 5 dai and 1 dbi (RGR-5dai-1dbi), RGR 138 

between 9 dai and 5 dai (RGR-9dai-5dai) and RGR between 9 dai and 1 dbi (RGR-9dai-1dbi). 139 

The procedure and methodologies are detailed in Supplementary Text. 140 

 141 

 142 

Data analyses 143 

For the purpose of this study, the strain JACO-CL (OTU8, P. viridiflava) was not considered 144 

in any data analysis. 145 
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Investigation of the extent of natural genetic variation 146 

To test the homogeneity of plant growth across the field trial and the presence of genetic 147 

variation for the three vegetative growth related traits measured before inoculation, data from 148 

the two mock treatments were pooled and the following mixed model (PROC MIXED 149 

procedure in SAS v. 9.4, SAS Institute Inc., Cary, NC, USA) was then used: 150 

𝑌𝑖𝑗𝑘𝑙𝑚𝑛 =  µ𝑡𝑟𝑎𝑖𝑡 + 𝐵𝑙𝑜𝑐𝑘𝑖 + 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗  + 𝐵𝑙𝑜𝑐𝑘𝑖 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘 +151 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑘 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝐿𝑖𝑛𝑒𝑙(𝑇𝑟𝑎𝑦𝑛) + 𝐶𝑜𝑙𝑢𝑚𝑛𝑚(𝑇𝑟𝑎𝑦𝑛) +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛 (Model 1) 152 

where Y is one of the three phenotypic traits measured before inoculation (i.e. area-1dbi, 153 

perimeter-1dbi and diameter-1dbi), µ is the overall mean of the phenotypic data,  ‘Block’ 154 

accounts for differences in micro-environmental conditions among blocks, ‘Line(Tray)’ and 155 

‘Column(Tray)’ accounts for difference in micro-environmental conditions within 54-well 156 

trays, ‘Treatment’ tests for difference among the 14 treatments (i.e. mock treatment and 13 157 

treatments with non-pathogenic bacterial strains), ‘Population’ corresponds to the genetic 158 

differences among the 54 populations, ‘Population*Treatment’ tests whether the rank among 159 

the 54 populations differs among the 14 treatments, and ‘ε’ is the residual term.  160 

While the terms ‘Treatment’ and ‘Population*Treatment’ were not significant, we detected a 161 

highly significant ‘Population’ effect (Supplementary Table S2), thereby indicating that the 162 

level of significant genetic variation observed among the 54 populations was homogeneous 163 

across the field trial before inoculation.  164 

To estimate the natural genetic variation of the response of the 162 accessions nested within 54 165 

populations to the 13 non-pathogenic bacterial strains, the following mixed model (PROC 166 

MIXED procedure in SAS v. 9.4, SAS Institute Inc., Cary, NC, USA) was used for each of the 167 

15 treatments:  168 

𝑌𝑖𝑗𝑘𝑙𝑚 =  µ𝑡𝑟𝑎𝑖𝑡 + 𝐵𝑙𝑜𝑐𝑘𝑖 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗 + 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑘(𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗) + 𝐿𝑖𝑛𝑒𝑙(𝑇𝑟𝑎𝑦𝑖)169 

+ 𝐶𝑜𝑙𝑢𝑚𝑛𝑚(𝑇𝑟𝑎𝑦𝑖) +  𝜀𝑖𝑗𝑘𝑙𝑚 (Model 2) 170 
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where Y corresponds to one of the nine traits (area-5dai, area-9dai, perimeter-5dai, perimeter-171 

9dai, diameter-5dai, diameter-9dai, RGR-5dai-1dbi, RGR-9dai-5dai and RGR-9dai-1dbi). All 172 

the terms are identical to the ones described in Model (1), with the exception of ‘Accession’ 173 

that accounts for mean genetic differences among the three accession within populations.  174 

For each of the 126 ‘phenotypic trait * treatment’ combinations (i.e. nine traits *14 treatments), 175 

genotypic values of the 54 populations were estimated by calculating least-squares (LS) mean 176 

values of the term ‘Population’ by the following linear model (PROC MIXED procedure in 177 

SAS v. 9.4, SAS Institute Inc., Cary, NC, USA) was used: 178 

𝑌𝑖𝑗𝑘𝑙 =  µ𝑡𝑟𝑎𝑖𝑡 + 𝐵𝑙𝑜𝑐𝑘𝑖 + 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑗 + 𝐿𝑖𝑛𝑒𝑘(𝑇𝑟𝑎𝑦𝑙) + 𝐶𝑜𝑙𝑢𝑚𝑛𝑙(𝑇𝑟𝑎𝑦𝑙) +  𝜀𝑖𝑗𝑘𝑙 (Model 3) 179 

For each of the nine phenotypic traits, the estimated genotypic values (Supplementary Data Set 180 

2) were then used to (i) compare phenotypic variation among the 14 treatments, (ii) estimate 181 

the level of ‘Population*Treatment’ interactions by calculating pairwise non-linear correlation 182 

coefficients (Spearman’s rho) among the 14 treatments, and (iii) run GWA analyses (see 183 

below). 184 

To estimate broad-sense heritability values (H²) for each of the 126 ‘phenotypic trait * 185 

treatment’ combinations, the following linear model (PROC MIXED procedure in SAS v. 9.4, 186 

SAS Institute Inc., Cary, NC, USA) was used: 187 

𝑌𝑖𝑗𝑘𝑙 =  µ𝑡𝑟𝑎𝑖𝑡 + 𝐵𝑙𝑜𝑐𝑘𝑖 + 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑜𝑛𝑗 + 𝐿𝑖𝑛𝑒𝑘(𝑇𝑟𝑎𝑦𝑙) + 𝐶𝑜𝑙𝑢𝑚𝑛𝑙(𝑇𝑟𝑎𝑦𝑙) +  𝜀𝑖𝑗𝑘𝑙 (Model 4) 188 

After considering the effects of the terms ‘Line(Tray)’ and ‘Column(Tray)’, the percentage of 189 

phenotypic variance explained by each other term of Model 4 was estimated by the PROC 190 

VARCOMP procedure (REML method, SAS v. 9.4, SAS Institute Inc., Cary, NC, USA). 191 

Following [33], H² values were estimated using the following formula: 192 

𝐻𝑇𝑟𝑎𝑖𝑡
2  =  

𝑉𝐹

𝑉𝐹 +
𝑉𝑅
𝑁

 193 

where ‘VF’ corresponds to the genetic variance among the 162 accessions, “VR” is the residual 194 

variance, and ‘N’ is the mean number of biological replicates per accession (N = 6 in this study). 195 
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18 

In Models 1, 2, 3 and 4, all factors were treated as fixed effects. For calculating F-values, terms 196 

were tested over their appropriate denominators. A correction for the number of tests was 197 

performed to control the False Discover Rate (FDR) at a nominal level of 5%. 198 

 199 

Combining GWA mapping with a local score approach (GW-LS) 200 

Based on a Pool-Seq approach, a representative picture of within-population genetic variation 201 

was previously obtained for 168 natural populations of A. thaliana located southwest of France 202 

[58], leading to the estimation of standardized allele frequencies corrected for the effect of 203 

population structure within each population for 1,638,649 SNPs across the genome [57, 58]. 204 

For the purpose of this study, standardized population allele frequencies were retrieved for the 205 

54 populations. Then, for each of the 126 ‘phenotypic trait * treatment’ combinations, a genome 206 

scan was first launched by estimating for each SNP Spearman’s rho and associated p values 207 

between standardized allele frequencies and population genotypic values. Thereafter, to 208 

increase (i) the resolution in fine mapping genomic regions associated with genetic variation in 209 

response to bacterial strains, and (ii) the identification of QTLs with small effects, we followed 210 

[28, 30, 55, 56] by implementing a local score approach (with tuning parameter ξ = 2) on these 211 

p values. Finally, significant SNP-phenotype associations were identified by estimating a 212 

chromosome-wide significance threshold for each chromosome [55]. 213 

 214 

Enrichment in biological processes 215 

A custom script written under the R environment [56] was used to retrieve the candidate genes 216 

underlying detected QTLs for each of the 126 ‘phenotypic trait * treatment’ combinations. For 217 

each of the 14 treatments, we merged the lists of candidate genes of the nine phenotypic traits 218 

and removed duplicates. For each of the 13 treatments with a non-pathogenic bacterial strain, 219 

only candidate genes not found in the mock treatment were kept. To identify biological 220 
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pathways significantly over-represented (P < 0.01), each of the 14 resulting lists of unique 221 

candidate genes were submitted to the classification SuperViewer tool on the university of 222 

Toronto website (http://bar.utoronto.ca/ntools/cgibin/ntools_classification_superviewer.cgi) 223 

using the MAPMAN classification.  224 

 225 

RESULTS 226 

Genetic variation of Arabidopsis thaliana in response to non-pathogenic bacterial strains 227 

in field conditions  228 

In agreement with previous experiments conducted in in vitro conditions [53], no disease 229 

symptoms were observed in our field conditions. For each of the 14 treatments (mock treatment 230 

and 13 treatments with a non-pathogenic bacterial strain), highly significant genetic variation 231 

was detected both between the 54 populations (Figure 1, Supplementary Figure S3, 232 

Supplementary Table S3) and between the 162 accessions (Supplementary Table S4) for each 233 

of the nine phenotypic traits, with the exception of (i) the rosette perimeter at 9 dai in presence 234 

of OTU3a_Oxa_1 at the population level (Supplementary Table S3), and (ii) the rosette area at 235 

9 dai in presence of OTU5_Pmo_1 and OTU6_Psi_1 at the accession level (Supplementary 236 

Table S4). Across the 126 ‘phenotypic trait * treatment’ combinations, the mean broad-sense 237 

heritability (H²) estimate was 0.49 (median = 0.56, quantile 5% = 0.16, quantile 95% = 0.70). 238 

These results indicate that a non-negligible fraction of phenotypic variance was explained by 239 

genetic variation among populations and accessions (Supplementary Table S4).  240 

A significant variation was observed among the 14 treatments for each phenotypic trait (Figure 241 

1, Supplementary Figure S3). However, significant differences between the response to any 242 

bacterial strain and the mock treatment were only observed for three traits (i.e. area-9dai, 243 

diameter-9dai and RGR-5dai-1dbi) (Figure 1, Supplementary Figure S3). For instance, the 244 

rosette area at 9 dai was on average bigger and smaller in response to 245 
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OTU2_Pfu_1/OTU3a_Oxa_2 and OTU29_Sph_2 than in the mock treatment, respectively 246 

(Figure 1a). The relative growth rate between 5 dai and 1 dbi was significantly higher in 247 

response to OTU5_Pmo_2 than in seven treatments, including the mock treatment (Figure 1b).  248 

More importantly, for each phenotypic trait, we observed a strong genetic variation among the 249 

54 populations in their response to each of the 13 non-pathogenic bacterial strains (Figure 2, 250 

Supplementary Figure 4). Indeed, values of genetic correlations between the mock treatment 251 

and each treatment with a bacterial strain were largely deviating from 1, in particular at 9 dai 252 

(Figure 2a), with the exception of relative growth rate for with lower values of genetic 253 

correlations were observed within 5 dai than within 9 dai (Figure 2b, Supplementary Figure 254 

S4). In addition, the response of the 54 populations greatly varied among the 13 bacterial strains, 255 

even between two strains belonging to the same bacterial species (Figure 2, Supplementary 256 

Figure 4). For instance, while most populations present either a positive, neutral or negative 257 

response to either OTU13_Msp strain (i.e. presence of crossing reaction norms), the direction 258 

and/or the strength of response of given population can largely differ between the two 259 

OTU13_Msp strains, as illustrated by the populations FERR-A and LUZE-B (Figure 3).  260 

 Altogether, the presence of (i) genetic variation at the population and accession levels for most 261 

‘phenotypic trait * treatment’ combinations, (ii) crossing reaction norms between the mock 262 

treatment and each treatment with a bacterial strain, and (ii) crossing reaction norms among the 263 

13 treatments with a bacterial strain, suggests a genetic architecture that largely differs among 264 

the 14 treatments, whatever the phenotypic trait considered.   265 

 266 

A genomic map of local adaptation to prevalent and/or abundant leaf bacterial species  267 

Based on the allele frequencies of 1,638,649 SNPs obtained by a Pool-Seq approach for each 268 

of the 54 populations (Frachon et al., 2018), a GWA mapping analysis combining a Bayesian 269 

hierarchical model with a local score approach (BMH-LS) was conducted to characterize the 270 
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genetic architecture of response to the 13 non-pathogenic bacterial strains. Across the 126 271 

‘phenotypic trait * treatment’ combinations, we detected 2,064 QTLs with a mean length of 272 

QTL interval equal to ~837bp (quantile 5% ~ 38bp, quantile 95% = 3.12kb) (Supplementary 273 

Data Set 3). The number of QTLs per ‘phenotypic trait * treatment’ combination ranged from 274 

6 to 34 (mean =16.4), suggesting a polygenic architecture for the response to members of the 275 

most prevalent and/or abundant non-pathogenic bacterial species of the leaf compartment of A. 276 

thaliana located south-west of France (Figure 4a).  277 

In agreement with the level of genetic correlations observed among the 14 treatments (mock 278 

treatment and 13 treatments with a non-pathogenic bacterial strain) and the presence of crossing 279 

reaction norms (Figures 2 and3, Supplementary Figures S3 and S4), the genetic architecture 280 

was highly flexible between the mock treatment and treatments with bacterial strains, as well 281 

as among treatments with bacterial strains at the interspecific and intraspecific levels, as 282 

illustrated for the rosette area at 9 dai (Figure 5). For instance, most candidate genes underlying 283 

detected QTLs and not shared with the mock treatment were specific to a given treatment with 284 

a bacterial strain (Figure 4b, Supplementary Figure 5, Supplementary Data Set 4), in particular 285 

at 9 dai (Figure 4b, Supplementary Figure 5). For instance, for the maximal rosette diameter, 286 

while the percentage of candidate genes specific to a given treatment with a bacterial strain 287 

ranged from 57.7% to 86.1% (mean = 75.2%) at 9 dai, it ranged from 26.9% to 81.1% (mean = 288 

46.0%) at 5 dai (Supplementary Figure 5).  289 

 290 

Identification of enriched biological processes and candidate genes associated with the 291 

response to prevalent and/or abundant leaf bacterial species  292 

The first approach to identify relevant candidate genes involved in the response to the 13 non-293 

pathogenic bacterial species was to focus on candidate genes underlying the most pleiotropic 294 

QTLs. Here, we focused on QTLs detected for the response in more than six bacterial strains, 295 
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but not detected for the mock treatment. We identified seven such pleiotropic QTLs 296 

encompassing 17 candidate genes (Table 1, Supplementary Data Set 5). In agreement with the 297 

highly flexible genetic architecture observed between strains within a bacterial species (Figure 298 

4b, Supplementary Figure 5), the high level of pleiotropy observed for these QTLs was more 299 

dependent on the identity of the bacterial strains than the identity of the bacterial species (Table 300 

1). Among the 17 candidate genes, eight genes have functions in relation with plant 301 

development and organ growth, i.e. At2g40650 [60], At2g40670 [61, 62], At2g44710 [63], 302 

At2g47190 [64–66], At4g14713 [67–70], At4g14716 [71], At4g14720 [72] and At5g42360 [73]. 303 

Interestingly, three genes have a link with plant immunity, i.e. the genes MEMB12 (At5g50440) 304 

that is silenced by a microRNA during Pseudomonas syringae bacterial infection [74], ARR16 305 

(At2g40670) that is repressed by Botrytis cinerea fungal infection [75], and  TIFY4B/ PEAPOD 306 

2 (At4g14720) that interacts with the begomovirus AL2 transcriptional activator protein, an 307 

inhibitor of plant basal defense [76].  308 

Based on the lists of unique candidate genes identified for each treatment and the list of unique 309 

candidate genes identified across the 13 treatments with a bacterial strain, the second approach 310 

was to identify biological processes significantly over-represented in frequency compared to 311 

the overall class frequency in the A. thaliana MapMan annotation. When considering both the 312 

14 treatments individually and the 13 treatments with a bacterial strain altogether, we identified 313 

19 significantly enriched classes, among which five were also enriched in the mock treatment, 314 

i.e. ‘development’, ‘hormone metabolism’, ‘lipid metabolism’, ‘protein’ and ‘RNA’ (Figure 6a, 315 

Supplementary Data Set 5). Amongst the 14 over-represented classes not detected in the mock 316 

treatment, most of them were highly dependent on the identity of the bacterial strain, suggesting 317 

the involvement of diverse pathways in response to representative members of the non-318 

pathogenic microbiota down to the intraspecific level (Figure 6a). We nonetheless identified  319 

four classes that were significantly over-represented for at least three treatments with a bacterial 320 
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strain and when considering the 13 treatments with a bacterial strain altogether, i.e. ‘cell’, 321 

‘secondary metabolism’, ‘signalling’ and ‘transport’ (Figure 6a). Interestingly, amongst the 99 322 

‘signalling’ genes, we identified (i) 54 kinase-related genes including 24 leucine-rich repeat 323 

(LRR) kinases, 8 cysteine-rich receptor-like kinases (CRK) and 6 MAP kinases, and (ii) 23 324 

genes associated with calcium signalling, in particular for the two strains of P. fungorum 325 

(OTU2), the two strains of Oxalobacteraceae bacterium (OTU3) and one strain of P. siliginis 326 

(OTU6) (Figure 6b). 327 

 328 

DISCUSSION 329 

Extensive genetic variation within a local set of A. thaliana accessions in response to non-330 

pathogenic leaf bacteria at the species and strain levels  331 

Extensive genetic variation was previously observed in two worldwide collections of A. 332 

thaliana, each challenged at the root level in in vitro conditions with a single PGPB strain 333 

isolated on another plant species than A. thaliana, i.e. the strain Pseudomonas simiae WCS417r 334 

isolated from the rhizosphere of wheat [47] and the strain Bacillus pumilus TUAT-1 isolated 335 

from rice roots [49]. In this study, in line with the need to bring evolutionary and ecological 336 

functional genomics from the lab to the wild [23, 77–79], the ecological realism of plant-337 

microbiota interactions was increased by phenotyping in field conditions, the rosette growth 338 

response of A. thaliana accessions collected south-west of France to non-pathogenic bacterial 339 

strains isolated from the leaf compartment of A. thaliana in the same geographical region.  340 

In agreement with previous observations with bacterial pathogens [15, 31, 80], the extent of 341 

genetic variation of response to non-pathogenic bacterial strains was more dependent on the 342 

identity of the bacterial strain than the identity of the bacterial species. In addition, the presence 343 

of crossing reaction norms indicates that declaring a strain as a PGPB is highly dependent on 344 

the host genotype tested. Whether the genotype-dependent plant-growth promoting effect of a 345 
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particular strain on aboveground vegetative growth is also observed at the below-ground level 346 

would deserve investigation, for instance by estimating root growth and root/shoot biomass 347 

ratios [81, 82].   348 

Interestingly, while genetic variation in response to bacterial strains was observed within few 349 

days after inoculation in field conditions, such a genetic variation was mainly observed after 350 

several weeks in in vitro conditions [53]. Since the bacterial strains used in this study have been 351 

isolated from complex microbiota they used to interact and/or coevolve with in the native 352 

habitats of A. thaliana. Hence, the effect of bacterial strains may require the presence of 353 

additional microbiota members in the plant, a prerequisite not achieved in germ-free plants in 354 

in vitro conditions [53].  355 

 356 

A complex and highly flexible genetic architecture underlies adaptive plant-microbiota 357 

interactions 358 

So far, the five GWAS [83–86] and the single genome-environment association study  (GEAS) 359 

(Roux et al. 2022) conducted on the leaf compartment and using bacterial community 360 

descriptors as phenotypic traits, revealed a polygenic architecture controlling microbiota 361 

assembly, which is in line with the small percentage of variance explained by the phenotyping 362 

of individual mutant lines [87]. In agreement with those association genetic studies and the two 363 

GWAS conducted on A. thaliana in response to a PGPB strain [47, 49], we identified a complex 364 

genetic architecture for the response of A. thaliana to 13 non-pathogenic bacterial strains. In 365 

addition, this polygenic architecture was highly flexible among the 13 bacterial strains, with the 366 

detection of a few number of highly pleiotropic QTLs. Similar results were observed in recent 367 

GWAS conducted both in crops and wild species in response to experimental inoculation with 368 

individual pathogenic bacterial strains [88]. For instance, challenging 130 natural accessions of 369 

A. thaliana with 22 strains of the bacterial pathogen Xanthomonas arboricola revealed a clear 370 
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host-strain specificity in quantitative disease resistance [80]. The complex genetic interactions 371 

observed between A. thaliana and the main members of its leaf microbiota should maintain 372 

high levels of diversity at the candidate genes, which in turn should result in complex co-373 

evolutionary dynamics [16]. 374 

Beyond the question of the effects of strong genotype-by-genotype (GxG) interactions on the 375 

nature and strength of footprints of natural selection on the genome of A. thaliana, whether the 376 

genetic architecture underlying the response of A. thaliana to co-inoculation corresponds to the 377 

sum of QTLs that are specific to the response to mono-inoculations and/or to the emergence of 378 

new QTLs, remains on an open question in the research area of plant-microbe interactions. 379 

Experimental studies on plant-plant interactions demonstrated that the genetic architecture of 380 

the response of A. thaliana in a plurispecific neighborhood was not predictable from the genetic 381 

architecture of the response of A. thaliana in the corresponding bispecific neighborhoods [56, 382 

57] 383 

 384 

Plant innate immunity is a significant source of natural genetic variation in plant-385 

microbiota interactions  386 

The candidate genes underlying the most pleiotropic QTLs have functions mainly related to 387 

plant development and/or stresses (biotic or abiotic stresses). Nevertheless, a more global 388 

approach identified four biological classes that were significantly and specifically over-389 

represented for at least three bacterial strains but not with the mock, i.e. ‘cell’, ‘secondary 390 

metabolism’, ‘signalling’ and ‘transport’. These four classes were also over-represented in a 391 

GEAS performed on 163 natural populations of A. thaliana located south-west of France 392 

(including the 54 populations considered in this study) (Roux et al. 2022) and characterized in 393 

situ for bacterial communities in the leaf and root compartments using a metabarcoding 394 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 21, 2022. ; https://doi.org/10.1101/2022.09.19.508615doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.19.508615
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

approach [38],  thereby strengthening the importance of these four classes in mediating host 395 

response to the 13 bacterial strains tested here. 396 

Strikingly, we found a clear enrichment for signalling genes underlying QTLs in response to 397 

the 13 bacterial strains tested in this study. Signalling genes have been extensively described as 398 

being involved in plant-microbe interactions. Of particular note, we identified 8 genes 399 

belonging to the CRK family, which represents one of the largest group of RLKs with 44 400 

members in A. thaliana [89, 90]. Some CRKs are involved in the regulation of plant 401 

developmental processes, while others are involved in stress and pathogen response [89]. 402 

Interestingly, by assessing host transcriptional and metabolic adaptations to 39 bacterial strains 403 

in the leaf compartment of A. thaliana, a core set of 24 genes consistently induced by the 404 

presence of most strains was identified and thereby referred as a molecular process called 405 

general non-self-response (GNSR) [91]. Importantly, one gene of this core set (CRK6) was also 406 

identified as a candidate genes in our GWAs, reinforcing the importance of CRKs in plant-407 

microbiota interactions.  408 

Another interesting result is that while few classical R genes involved in specific recognition of 409 

microbial effectors have been identified in this study, we highlighted many candidate genes 410 

related to pattern-triggered immunity (PTI), including receptor-like kinases (RLKs) and 411 

receptor-like proteins (RLPs). PTI relies on the perception of specific molecular patterns such 412 

as microbe- or pathogen-associated molecular patterns (MAMPs/PAMPs), or self-molecules 413 

(damage-associated molecular patterns, DAMPs) [92]. In particular, we identified a main actor 414 

of PTI as a candidate gene, the FLS2 gene in response to the two strains of OTU6 and one strain 415 

of OUT 13 (Supplementary Data Set 6), the best-characterized pattern-recognition receptor 416 

(PRR) gene, encoding an LRR-RLK protein that acts as a receptor for flg22 bacterial PAMP 417 

[92, 93]. Moreover, it was previously shown that CRK6 and CRK36 are part of the PRR FLS2 418 

protein complex, modulating PTI response through an association with FLS2 [94]. Two recent 419 
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works dissected the interplay between FLS2 and numerous flg22 variants, studying how A. 420 

thaliana association with different evolved flg22 variants from bacterial microbiota 421 

differentially fine-tune the balance between bacterial motility and defense activation [95, 96]. 422 

PTI response is also characterized by the production of reactive oxygen species (ROS) and by 423 

the activation of the mitogen-activated protein kinases (MAPKs) cascade [97]. In our study, we 424 

identified four NADPH oxidase RBOH genes, among them RBOHD that is required for 425 

microbiota homeostasis in leaves [98]. Another candidate gene is MPK4, a main actor of PTI 426 

signalling (Bazin et al., 2020). Even if few mutant lines related to signalling and PTI have been 427 

tested for their effect on microbiota assembly [87, 98, 99], our results strengthen the need for a 428 

deeper investigation of some of our most promising candidate genes in relationship with the 13 429 

strains used in this study. Importantly, the de-novo whole-genome sequence of the 13 strains 430 

tested in this study have been recently obtained with long-read sequencing technology [53]. 431 

Comparative genomics, and notably for their PAMP sequences (i.e. flagelline, EF-TU), may 432 

bring very informative data on their potential recognition by the plant, thereby making a link 433 

between plant-microbiota recognition and plant innate immunity. This is directly in line with a 434 

recent study that nicely shows how root commensal bacteria modulate host susceptibility to 435 

pathogens by either eliciting or dampening PTI responses [100]. 436 
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FIGURE LEGENDS 719 

Figure 1. Phenotypic variation of the response to the mock treatment and the 13 bacterial strains 720 

in field conditions. a Box-plots illustrating the variation among the 14 treatments for the trait 721 

‘area-9dai’. b Box-plots illustrating the variation among the 14 treatments for the trait ‘RGR-722 

5dai-1dbi’. For each treatment, each dot corresponds to the genotypic value of one of the 54 723 

populations of A. thaliana. For each trait, different letters indicate different groups according 724 

to the treatments after a Ryan-Einot-Gabriel-Welsh (REGWQ) multiple-range test at P = 0.05. 725 

dai: days after inoculation, dbi: day before inoculation. 726 

 727 

Figure 2. Genetic variation of 54 natural populations of A. thaliana in response to the 13 728 

bacterial strains in field conditions. a Box-plots illustrating the range of genetic correlations 729 

between each treatment with a bacterial strain and the remaining 13 treatments for the traits 730 

‘area-5dai’ and ‘area-9dai’. b Box-plots illustrating the range of genetic correlations between 731 

each treatment with a bacterial strain and the remaining 13 treatments for the traits ‘RGR-5dai-732 

1dbi’ and ‘RGR-9dai-1dbi’. Red triangle: genetic correlation with the mock treatment, black 733 

dots: genetic correlations with other treatments with a bacterial strain (ggplot2 library 734 

implemented in the R environment). dai: days after inoculation, dbi: day before inoculation. 735 

Treatments are ranked according to their mean genetic correlation with other treatments. 736 

 737 

Figure 3. Interaction plots illustrating the reaction norms observed at the population level 738 

between the mock treatment and the treatment with OTU13_Msp_1 (left panel) and 739 

OTU13_Msp_2 (right panel). Each dot corresponds to the genotypic value of one of the 54 740 

populations of A. thaliana. Each line corresponds to the response of one of the 54 populations 741 

to the inoculation with either OTU13_Msp strain. The blue and red lines correspond to two 742 

populations FERR-A and LUZE-B, respectively, with an opposite response to the strain 743 
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OTU13_Msp_2. Pictures illustrate representative plants of the two populations highlighted in 744 

blue and red for the mock treatment and the treatment with either OTU13_Msp strain. 745 

 746 

Figure 4. Genetic architecture of the response of 54 natural populations of A. thaliana to the 13 747 

bacterial strains in field conditions. a Number of QTLs per treatment for each of the nine 748 

phenotypic traits. b An UpSet plot illustrating the flexibility of genetic architecture among the 749 

13 treatments with bacterial strains for the trait ‘area-9dai’ (upset library implemented in the R 750 

environment). ‘Number of genes’: Total number of candidate genes underlying detected QTLs 751 

and not shared with the mock treatment. A single dot indicates the number of candidate genes 752 

specific to a given treatment. Candidate genes shared between two or more treatments are 753 

represented by a line connecting two or more dots.  754 

 755 

Figure 5. Manhattan plots of the Lindley process for the trait ‘area_9dai’ for the mock treatment 756 

and the treatments with the bacterial strains OTU13_Msp_2, OTU5_Pmo_1 and OTU5_Pmo_2. 757 

The x-axis corresponds to the physical position of 1,638,649 SNPs on the five chromosomes. 758 

The dashed lines indicate the minimum and maximum of the five chomosome-wide significance 759 

thresholds. 760 

 761 

Figure 6. Enriched biological processes in response to the 13 bacterial strains in field 762 

conditions. a Enriched biological processes for the list of unique candidate genes for each of 763 

the 14 treatments and for the list of unique candidate genes from the combined 13 bacterial 764 

strains (‘All strains’), obtained with the MapMan classification superviewer tool. The color of 765 

the dots corresponds to the level of significance. b Number of candidate genes belonging to the 766 

different sub-categories of the enriched ‘signalling’ biological process for each treatment with 767 
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a bacterial strain. LRR: leucine rich repeat, CRK: cystein-rich receptor-like kinase, MAP: 768 

mitogen-activated protein. 769 
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SUPPLEMENTARY FIGURES AND TABLES 770 

Supplementary Figure S1. Experimental design of the field experiment. 771 

Supplementary Figure S2. Phenotyping of three traits related to vegetative growth by imaging 772 

(AREA, PERIMETER and DIAMETER). 773 

Supplementary Figure S3. Phenotypic variation of the response to the 13 bacterial strains in 774 

field conditions. 775 

Supplementary Figure S4. Box-plots illustrating the range of genetic correlations between 776 

each treatment with a bacterial strain and the remaining 13 treatments for the traits ‘perimeter-777 

5dai’, ‘perimeter-9dai’, ‘diameter-5dai’, ‘diameter-9dai’ and ‘RGR-9dai-5dai’. 778 

Supplementary Figure S5. UpSet plots illustrating the flexibility of genetic architecture 779 

among the 13 treatments with bacteria strains for the traits ‘area-5dai’, ‘perimeter-5dai’, 780 

‘perimeter-9dai’, ‘diameter-5dai’, ‘diameter-9dai’, ‘RGR-5dai-1dbi’, ‘RGR-9dai-5dai’ and 781 

‘RGR-9dai-1dai’. 782 

Supplementary Table S1. Names and GPS coordinates (expressed in degrees) of the 54 783 

populations used in this study. 784 

Supplementary Table S2. Homogeneity of plant growth across the field trial and presence of 785 

genetic variation for the three resource acquisition traits measured on the plants before 786 

inoculation. 787 

Supplementary Table S3. Genetic variation of nine traits related to resource acquisition among 788 

the 162 accessions nested within 54 populations of A. thaliana for each of the 14 treatments.789 
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SUPPLEMENTARY DATA SETS 790 

Supplementary Data Set 1. Raw data for the 12 phenotypic traits scored on 14,580 plants in a 791 

field experiment conducted at INRAE Toulouse (France).   792 

Supplementary Data Set 2. Genotypic values of the 54 natural populations of A. thaliana for 793 

the nine traits ‘area-5dai’, ‘area-9dai’, ‘perimeter-5dai’, ‘perimeter-9dai’, ‘diameter-5dai’, 794 

‘diameter-9dai’, ‘RGR-5dai-1dbi’, ‘RGR-9dai-5dai’ and ‘RGR-9dai-1dai’ for each of the 14 795 

treatments. 796 

Supplementary Data Set 3. Genetic architecture of the 126 ‘phenotypic trait * treatment’ 797 

combinations. 798 

Supplementary Data Set 4. List of all candidate genes identified for each of the 126 799 

‘phenotypic trait * treatment’ combinations. 800 

Supplementary Data Set 5. List of unique candidate genes identified for each trait of each 801 

treatment with a bacterial strain. 802 

Supplementary Data Set 6. List of the 1,962 candidate genes unique to the treatments with a 803 

bacterial strain. The pleiotropic level corresponds to the number of treatments with a bacterial 804 

strain for which the candidate gene was detected by GWA mapping.805 
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Table 1. List of pleiotropic candidate genes associated with more than six bacterial strains but not detected in the mock treatment. Colored squares 

indicate the strains for which the candidate genes were identified. The different colors correspond to the seven QTLs in which the pleiotropic QTLs 

are located. 

 

 

ATG number Annotation

At2g40640 PUB62 (Plant U-box type E3 ubiquitin ligase)

At2g40650 PRP38

At2g40660 Nucleic acid-binding, OB-fold-like protein

At2g40670 ARR16 (ARABIDOPSIS THALIANA RESPONSE REGULATOR 16)

At2g44710 HNRNP R-LIKE PROTEIN, HRLP

At2g44730 Alcohol dehydrogenase transcription factor Myb/SANT-like family protein

At2g44735 transmembrane protein

At2g47180 ATGOLS1, GALACTINOL SYNTHASE 1

At2g47190 ATMYB2, MYB DOMAIN PROTEIN 2

At2g47250 RNA helicase family protein

At4g14713 PEAPOD 1, PPD1, TIFY4A

At4g14716 ACIREDUCTONE DIOXYGENASE 1, ARD1, ATARD1, SGB3, SUPPRESSOR OF G BETA 3

At4g14720 PEAPOD 2, PPD2, TIFY4B

At5g42360 CFK2, COP9 SIGNALOSOME INTERACTING F-BOX KELCH 2

At5g42370 Calcineurin-like metallo-phosphoesterase superfamily protein

At5g50440 ATMEMB12, MEMB12, MEMBRIN 12

At5g50450 HCP-like superfamily protein with MYND-type zinc finger
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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