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Abstract 

Age-related skeletal muscle atrophy or sarcopenia is a significant societal problem that is 
becoming amplified as the world’s population continues to increase. A critical contributor to 
sarcopenia is the loss in the number and function of muscle stem cells, which maintain tissue 
homeostasis and regenerate damage. The molecular mechanisms that govern muscle stem cell 
aging encompass changes across multiple regulatory layers and are integrated by the three-
dimensional organization of the genome. To quantitatively understand how hierarchical chromatin 
architecture changes during muscle stem cell aging, we generated 3D chromatin conformation 
maps (Hi-C) and integrated these datasets with multi-omic (chromatin accessibility and 
transcriptome) profiles from bulk populations and single cells. We observed that muscle stem 
cells display static behavior at global scales of chromatin organization during aging and extensive 
rewiring of local contacts at finer scales that were associated with variations in transcription factor 
binding and aberrant gene expression. These data provide insights into genome topology as a 
regulator of molecular function in stem cell aging. 
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INTRODUCTION 

The growing population over the age of 65 presents significant healthcare challenges1 
including reduced mobility and increased frailty, which is nominally associated with declines in 
the volume, health and repair of skeletal muscle. Skeletal muscle is regenerated by a population 
of resident muscle stem cells (MuSCs)2,3 that decrease in number and function with age4,5. The 
molecular mechanisms that govern MuSC dysfunction in old age encompass changes across 
multiple inter-connected molecular systems6–8 which collectively converge to drive aberrant 
chromatin packaging and three-dimensional folding of the genome9. 3D genomic packaging of 
chromatin plays a primary role in regulating cellular functions by physically contacting distal 
regulatory elements such as enhancers with genes10, facilitating changes in transcription11, yet 
how this architecture is modified in MuSCs in old age remains unknown12.  

To probe how old age induces changes in nuclear organization in MuSCs, we performed 
in situ chromosome conformation capture followed by sequencing (Hi-C) on MuSCs isolated from 
young and aged skeletal murine muscles. We integrated the Hi-C maps with gene expression 
(RNA-seq), chromatin modifications associated with promoters (H3K4me3), and chromatin 
accessibility (ATAC-seq)5 profiles, and observed stable chromatin architecture at the level of 
chromatin compartments. These results contrasted with topologically associated domains (TADs) 
and chromatin loops that displayed dynamic restructuring and encompassed genes associated 
with cell cycle regulation, maintenance of quiescence, and cellular stress. To increase the 
resolution of our approach, we generated single-cell ATAC-seq profiles of young and aged 
MuSCs and integrated these datasets with age-matched single-cell RNA-seq datasets. This 
approach revealed extensive rewiring within chromatin hubs at the level of enhancer-promoter 
contacts that was linked to alterations in gene expression. Together, this work represents a rich 
multi-omic framework that provides insights into the regulation of pathological gene expression 
programs that attenuate MuSC regenerative potential in old age. 

RESULTS 

Profiling of Global 3D Genome Organization in Muscle Stem Cells During Aging  
To understand how MuSC genome organization is modified in aging, hind limb muscles 

(tibialis anterior, gastrocnemius, extensor digitorum longus, quadriceps) were isolated from young 
(3 months) and aged (24-26 months) mice. Fluorescent activated cell sorting (FACS) with both 
negative (Sca-1-, CD45-, Mac-1-, Ter-119-, CD31-) and positive surface markers (CXCR4+, β1-
integrin+) was used to isolate MuSCs13,14 and genome-wide chromatin interactions were profiled 
through in situ Hi-C15 in biological duplicates (Figure 1A). The resulting proximity dataset 
replicates were processed with Juicer16, yielding highly reproducible contact maps (>0.98 
Pearson correlation, Supp. Figure 1A-B). Pooled replicates comprised ~1.86x108 chromosomal 
contacts for young MuSCs and ~1.56x108 chromosomal contacts for aged MuSCs, of which ~63% 
were long-range (>20 kb) intra-chromosomal cis-interactions (Supp. Figure 1C). The Hi-C 
matrices exhibited sufficient sequencing depth to reveal chromatin structures such as 
topologically associated domains (TADs) and chromatin loops with up to 5 kb resolution under 
visual inspection in JuiceBox17 (Figure 1B). The contact maps were segmented into ~1 Mb regions 
associated with euchromatic (A) and repressive (B) chromatin compartments by analyzing the 
first eigenvector of the Pearson correlation matrices at 100 kb resolution18 (Supp. Figure 1D). This 
analysis partitioned the genome into ‘A’ and ‘B’ compartments in a 52.5/47.5 ratio in both young 
and aged MuSCs (Supp. Figure 1E) with similar compartmentalization strengths19 as measured 
by the average contact enrichment within and between compartments (Supp. Figure 1F). We 
observed minimal re-arrangement of A/B compartments, with <5% of the genome transitioning 
between compartments (Figures 1C-D). Consistent with previous findings, ‘A’ compartments 
displayed increased chromatin accessibility5 (ATAC-seq20, Figure 1E) and activating H3K4me3 
signals21 compared to repressive ‘B’ compartments, and aged MuSCs displayed increased 
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chromatin accessibility within static ‘A’ compartments (Supp. Figure 1G). RNA-seq datasets5 of 
age-matched MuSCs agreed with ‘A’ and ‘B’ chromatin compartment assignments, whereby 
genes within ‘A’ compartments showed increased expression relative to genes within ‘B’ 
compartments (2,059 differentially expressed genes in ‘A’; 154 in ‘B’, Figure 1F). In addition, gene 
expression within each compartment group displayed only subtle changes with aging apart from 
the static ‘A’ compartment, which showed a significant decrease in expression in aged MuSCs. 
Annotation of differentially expressed static ‘A’ genes revealed upregulation of transcripts in young 
MuSCs associated with cell-cycle checkpoints22 (Cenpn, Ccne1, Cdc23), SUMOylation of 
chromatin organizing proteins23 (Pias1/2, Satb2, Rnf2), and metabolism supportive of 
quiescence24, including fatty acid beta-oxidation (Mecr, Hadha/b, acyl-CoA dehydrogenase 
family) and the citric acid cycle (Pdk1/2, Ldha, Pdha1). In contrast, aged MuSCs showed 
increased expression in electron transport chain activity24 (NADH:ubiquinone oxidoreductase 
family) and response to interferon-beta (Ifnar2, Igtp, Irf1) (Supp. Figure 1H). Differentially 
expressed genes in the static ‘B’ compartment showed upregulation of G-protein coupled receptor 
(GPCR) activity (Plppr1, Npy, Adra1b) in aged MuSCs, which has been linked to stem cell fate 
regulation25, while genes expressed in young MuSCs were related to Rho GTPase activity26,27 
(Arhgap28/44, Pik3c3, Fgd4) and cell migration (Cdh13, Actc1, Vegfc). Summing these results 
shows minimal plasticity in global chromatin architecture during MuSC aging, suggesting that 
changes in MuSC expression with old age may be conferred through altered local interactions in 
open chromatin compartments.  

Local Chromatin Architecture is Altered During Muscle Stem Cell Aging 
To investigate local changes in chromatin topology, we characterized TADs in 40 kb-

resolution normalized contact matrices using HiCExplorer28. We identified 2,824 and 2,709 TADs 
in young and aged MuSCs, respectively (Figure 2A, Supp. Figure 2A). Integration of ATAC-seq 
and H3K4me3 signals revealed enrichments within TAD domains in an ‘A’ compartment-
dependent manner (Figure 2B-C, Supp. Figure 2B). Consistent with previous reports29, TAD 
boundaries were enriched for CTCF motifs (Supp. Figure 2C), gene promoters, and transcription 
termination sites (Supp. Figures 2D-E), and expression of housekeeping genes was enriched at 
stable TAD boundaries (Supp. Figure 2F). TAD boundaries that were lost or gained with age were 
observed to rarely switch compartments from AB or BA (Figure 2D), and displayed reductions 
in both insulation strength (i.e. increased TAD separation scores) (Supp. Figures 2G-H) and gene 
expression (Supp. Figure 2I) relative to stable boundaries. TADs showed extensive restructuring 
with age, and re-arrangements were classified into shifts, splits, merges, and indeterminate 
rearrangements comprising some combination of the previous three classifications (Figures 2C,E-
F). While these rearrangements showed no clear association with changes in gene expression 
within TAD domains or at TAD boundaries, we observed that boundaries that were gained with 
age (unique in aged MuSCs) were repositioned further from all nearby gene promoters compared 
to stable boundaries (Fisher’s test p-value < 2.2e-16, Supp. Figure 2J). Stable boundaries and 
those that were lost with age (unique in young MuSCs) were stationed at similar distances to gene 
promoters, indicating that TADs are potentially restructured during aging to create more space 
within TAD domains for regulatory interactions. 

To further understand age-dependent changes within TADs, we quantified the degree to 
which each TAD associates with itself by calculating intra-TAD connectivity, the mean number of 
reads per intra-TAD interaction as a fraction of reads for all cis-interactions with flanking TADs11,30 
(Supp. Figure 2K). Intra-TAD connectivity complements TAD separation scores by assessing TAD 
compartmentalization rather than inter-TAD insulation. Intra-TAD connectivity was enriched in 
open ‘A’ compartments (Supp. Figure 2L), was positively correlated with activating chromatin 
features in both young and aged MuSCs (Supp. Figure 2M), and increased with age (Supp. Figure 
2N). Increased intra-TAD connectivity was also strongly associated with increased gene 
expression in young MuSCs, but showed decreased association with age (Figure 2G). For 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 21, 2022. ; https://doi.org/10.1101/2022.09.21.508601doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508601
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

example, genes related to cell cycle regulation (Anapc1/4, Cdc25a, Mcm6, Prim2) and lipid 
metabolism (Acly, Ipmk, Sgms2, Aasdh, Pik3c3, Pi4k2b) were encompassed by TADs with strong 
intra-TAD connectivity (top 20%) in both young and aged MuSCs but showed significantly 
upregulated gene expression in young MuSCs compared to aged. These results further suggest 
that in aged MuSCs, TADs self-interact in a stronger manner and alter TAD boundaries31 to 
facilitate increased interactions.  

Chromatin Loops Form Differential Gene Regulatory Units With Age 
 The changes within TADs during aging suggest that interactions between gene promoters 
and their cognate enhancers may be altered in aged MuSCs. To further explore contact domains 
between genes and their regulatory elements, we called chromatin loops using Hi-C 
Computational Unbiased Peak Search (HiCCUPS)15. We identified 3,478 and 2,877 chromatin 
loops in young and aged MuSCs (Supp. Figure 3A), respectively. High-scoring aggregate peak 
analysis (APA) plots confirmed the accuracy of the loop calls and revealed similar aggregate 
contact strengths across age (Figure 2H). ~90% of chromatin looping was constrained within 
individual TADs across aging (Figure 2I-J) and annotation of the loop anchors revealed 
enrichments for promoters, distal regulatory elements, and CTCF motifs (Supp. Figure 3B-D), 
with distal regulatory elements frequently connected at one anchor with a promoter or another 
regulatory element at the other (Supp. Figure 3E). Additionally, H3K4me3 levels and chromatin 
accessibility at promoters were enhanced when connected to distal regulatory elements enriched 
with the same chromatin features (Supp. Figure 3F). Gene expression within loop domains was 
also upregulated in young and aged MuSCs (Supp. Figure 3G), in line with previous observations 
that chromatin looping within TADs forms insulated neighborhoods that protect gene expression 
patterns from aberrant promoter-enhancer contacts that may form due to heightened intra-TAD 
connectivity32. To characterize the factors underlying expression changes associated with 
looping, we inferred differential binding of expressed transcription factors (TFs) at accessible sites 
within loop anchors using TF footprinting33 (Figure 2K, Supp. Figure 3H). We observed that young 
loop anchors were enriched for Notch-related TFs (Hes1) and multiple members of the Krüppel-
like factors (Klf) and Specificity Factors (Sp) families, which have been shown to contribute to 
quiescence, chromatin organization, and regulation of proliferation34–37. In contrast, aged loop 
anchors showed enrichments for CTCF, Zic4, and TFs that regulate the circadian clock (Nr1d1/2, 
Rora/c, Dbp), which synchronizes pathways that are critical for MuSC homeostasis such as 
autophagy and responses to cell stress38, and have been recently shown to modulate chromatin 
topology39,40. Summing these results suggest aged MuSCs lose chromatin loops and TF binding 
that are associated with pathways that participate in maintenance of quiescence and cellular 
stress.  

Single Muscle Stem Cell Multi-Omic Sequencing Shows Variation in Chromatin Hubs 
During Aging  

Recent evidence suggests that cohesin-based extrusion of chromatin loops is short-lived41 
and significant cellular heterogeneity exists at the level of promoter-enhancer contacts42. To 
increase the resolution of our analysis and further understand patterns of co-accessible sites 
within TADs, we performed single-cell ATAC-seq43 on mononucleated cells isolated from young 
(3 months) and aged (28-29 months) hind limb muscles (Figure 3A). We collected 15,263 cells 
(10,705 in young and 4,558 in aged) that passed quality control and filtering thresholds (Supp. 
Table 1, Supp. Figure 4A-C). Using a matrix of contiguous genomic tiles, we projected the 
datasets into low-dimensional space by iterative latent semantic indexing44, integrated them using 
Harmony45, and clustered the cells using the ArchR package46. We annotated each cluster by 
calculating gene-activity scores47, a metric derived from chromatin accessibility proximal to genes, 
and comparing scores at cell type marker genes with integrated single-cell transcriptomes from 
young and aged MuSCs that we previously generated48 and age-matched Tabula Muris Senis49 
datasets (Supp. Figure 4D-G). This joint marker-based identification approach revealed similar 
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cell types observed in other single-cell skeletal muscle atlases50,51 with differentially accessible 
sites in each cell type (Figure 3B, Supp. Figure 4H).  For example, cells in the MuSC cluster were 
strongly enriched for gene activity scores and integrated gene expression for Pax7 and MyoD 
compared to other cell types (Figures 3C, Supp. Figure 4D,G).  

To identify putative distal regulatory elements, we called peaks in each cell type cluster 
using MACS252 and iteratively created a union set of 48,842 peaks in ArchR. Most peaks lay 
within promoters (46%), with 21% and 24% laying in distal and intronic regions, respectively 
(Supp. Figure 5A). The MuSCs were then separately clustered (Supp. Table 1, Supp. Figure 4B-
C) and MuSC-specific gene regulatory networks were identified by linking variation in chromatin 
accessibility at gene-distal sites with differences in local gene expression. This analysis revealed 
38,445 significant peak-to-gene linkages with positive regulatory effects representing potential 
enhancer-gene interactions involving 14,240 peaks and 8,696 genes across young and aged 
MuSCs (FDR<1e-4, correlation>0.45) (Figure 3D). Clustering these linkages via k-means 
clustering revealed distinct cis-regulatory interactions between young and aged MuSCs with 
varying peak annotations (Supp. Figure 5A). Clustered linkages regulated molecular processes 
that we previously identified in the static ‘A’ chromatin compartment. For example, clusters 1 and 
2 contained linkages enriched in aged MuSCs that regulated mitochondrial translation 
(Mitochondrial ribosomal protein families), respiratory electron transport (mitochondrial ATP 
synthase and NADH:ubiquinone oxidoreductase families), and DNA repair, while clusters 4 and 
5 were dominated by young MuSCs and showed strong enrichment for genes that participate in 
chromatin organization (Max and Myc53, Histone lysine demethylase family), regulation of TP53 
activity (Mdm2, Atm, Trp53ka/b), and SUMOylation of proteins (Figure 3D). All clusters contained 
linkages that regulate cell cycle checkpoints, and clusters 1 and 3 contained regulatory networks 
that both promoted (Dhh, Smo, Gas1) and inhibited (Ptch1, Gli2, Gsk3) Hedgehog signaling, 
which has been recently shown to support the regenerative capacity of MuSCs and is attenuated 
with aging54. Additionally, all linkages were predominantly confined to an individual TAD, 
indicating that these positive regulatory interactions between distal elements and their target 
genes are spatially restricted (Figure 3E, Supp. Figure 5B). 

Next, we investigated whether transcriptional differences between young and aged 
MuSCs could be explained by differences in connectivity with cis-regulatory networks. We 
identified patterns of cis-co-accessibility between distal regulatory elements and promoters using 
Cicero47, yielding 27,015 and 31,512 pairs of co-accessible sites in young and aged MuSCs, 
respectively (Supp. Figure 5C). Consistent with previous reports47,55,56, co-accessible sites were 
more likely to be linked within the same TAD across co-accessibility thresholds compared to 
distance-matched peaks in separate TADs (Supp. Figure 5D). Similarly, we observed that >62% 
of sites within the average peak-to-gene linkage were co-accessible with each other, providing 
additional evidence that the linkages are part of spatially distinct networks. For example, linkages 
regulating differentially expressed genes, including Hes1, a downstream target of Notch signaling 
that was significantly upregulated in young MuSCs and differentially marked young chromatin 
loop anchors, showed differences in co-accessibility patterns, highlighting how variability in cis-
regulatory networks can drive differential gene expression (Figure 3E). 

To identify co-regulated chromatin hubs, we clustered the co-accessible sites into cis-co-
accessibility networks (CCANs), yielding 1,648 and 1,922 CCANs in young and aged MuSCs, 
respectively. CCANs were primarily constrained within individual loops (30.3% in young, 33.2% 
in aged) and TADs (65.2% in young, 65.7% in aged, Figures 3F-G). We next applied a maximum 
weighted bipartite matching algorithm47 that identified 1,067 pairs of stable CCANs during aging. 
These CCANs accounted for >82% of all co-accessible sites in each dataset (Supp. Figure 5E) 
and encompassed >50% of all differentially expressed genes. Furthermore, we observed that the 
average matched CCAN shared only 36.9% of its constituent sites between young and aged 
MuSCs (Supp. Figure 5F) and that differential gene expression within these networks was 
significantly upregulated in young (Supp. Figure 5G). These results indicate that age-dependent 
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expression changes are driven by co-accessible sites leaving or joining chromatin hubs. For 
example, the matched CCANs containing Mta2, a core member of the nucleosome remodeling 
and deacetylase (NuRD) complex57 that was enriched in young peak-to-gene linkages, and 
Ndufc1, a member of the NADH:ubiquinone oxidoreductase family upregulated in aged MuSCs, 
revealed altered connectivity with each gene body (Supp. Figure H-I). Together, these findings 
reveal extensive rewiring of connections between promoters and distal regulatory elements within 
chromatin hubs during aging that produce changes in gene expression. Changes in these 
interaction networks occurred primarily within individual TADs, which concentrate chromatin 
features that are supportive of gene expression, and chromatin loops, which insulate interactions 
and are associated with distinct TF networks. 

DISCUSSION 
Aging encompasses declines in the functionality of multiple pathways58,59, yet how these 

different systems converge to modify genome organization in tissue resident stem cells has not 
been explored. To address this knowledge gap, we used a multi-omic approach to evaluate each 
level of chromatin architecture in young and aged MuSCs. We first gleaned how global genome 
structure is largely static in old age, and >95% of A/B compartments are invariant between young 
and aged MuSCs. These results are consistent with hematopoietic and neural development60,61, 
whereby stem cells display strong differences in phenotype but highly similar chromosomal 
compartments. In contrast, multiple types of TAD re-arrangements, increased inter-TAD 
interactions, and altered enhancer-promoter contacts within open TADs were observed in aged 
MuSCs. Many of these observed alterations displayed minimal impacts on gene expression, 
which is in line with previous studies that showed global loss of TAD boundaries through CTCF 
and/or cohesin deletion produced only mild perturbations to global gene expression62–65. Given 
that different systems such as in-vitro stem cell differentiation11 and acquisition of fibroblast 
senescence66,67 also show similar principles of stable global chromatin architecture, our results 
suggest that local alterations in genome folding within TADs are the primary drivers of changes 
in MuSC gene expression and associated age-related dysfunction. 

Chromatin looping plays a key role in regulation of gene expression and occurs through a 
cohesin-based extrusion process that is stalled by DNA-bound CTCF proteins positioned in a 
‘convergent’ orientation15,41. We detected a decrease in the number of chromatin loops in aged 
MuSCs and analysis of TF motifs at loop anchors revealed a loss in Notch-related and Krüppel-
like TFs68 that are associated with MuSC quiescence and chromatin stability34–37. Notch has 
previously been demonstrated to regulate targets by repositioning enhancers69 and promoting 
increased interactions in enhancer ‘cliques’, which is consistent with our results in which cell cycle 
inhibitors and quiescence-related genes display enhanced contacts. The loss of these TF 
interactions in old age and enriched CTCF binding suggest that aging may promote alterations in 
the formation and stability of extruded loops. While a greater understanding of loop stability is 
needed, our results suggest MuSCs in old age may prematurely activate to generate ATP70 to 
maintain or recreate lost loop domains. As a consequence of loop dysregulation in old age, 
interactions between promoters and their concomitant regulatory elements are modified, driving 
alterations in TF binding and the affinity of distal regulatory elements for their target genes and 
associated expression levels.  

Developmental maturation of stem cells has been shown to be driven by the combinatorial 
action of multiple enhancers, resulting in increased enhancer–promoter interactions of specific 
genes61 and variations in TF binding71. Our results are consistent with this stem cell continuum, 
showing that old age results in alterations of promoter-enhancer elements with accessible sites 
frequently leaving or joining chromatin hubs that maintain chromatin organization and quiescence. 
Our findings show that rewiring of chromatin within TADs and loops underpins aberrant gene 
expression programs associated with pathological aging. Future work in this area will resolve 
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additional structural features such as TAD stripes70 and interactions with other nuclear structures 
such as speckles and nucleoli. 
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Materials & Methods 

 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 
Dispase II (activity ≥0.5 units/mg solid) Sigma D4693-1G 
Collagenase Type II Life Technologies 17101015 
DMEM, high glucose, pyruvate Life Technologies 11995065 
Ham's F-10 Nutrient Mix Life Technologies 11550043 
HBSS, no calcium, no magnesium, no phenol 
red 

Life Technologies 14175145 

Saline Phosphate Buffered Gibco PBS 
(Phosphate Buffered Saline) Solution pH 7.4 
No phenol red no sodium pyruvate 

Thermo Fisher 10010023 
 

Fetal Bovine Serum Life Technologies 10437028 
Digitonin Fisher Scientific BN2006 
Trizma Hydrochloride Solution, pH 7.4 Sigma Aldrich T2194 
Sodium Chloride Solution, 5 M Sigma Aldrich 59222C 
Magnesium Chloride Solution, 1 M Sigma Aldrich M1028 
Nonidet P40 Substitute Sigma Aldrich 492018-50ML 
Sigma Protector RNase Inhibitor Sigma Aldrich 3335402001 
DL-DTT Sigma Aldrich 646563 
7-AAD Biolegend 420403 
MACS BSA Stock Solution Miltenyi 130-091-376 
New England Biolabs, Inc.Supplier Diversity 
Partner BSA-Molecular Biology Grade - 12 mg 

Fisher Scientific NC0506695 
 

Tween-20 BioRad 1662404 
0.5M EDTA Qiagen 79306 
Formaldehyde, 37% by Weight (With 
Preservative/Certified ACS) 

Fisher Chemical F79-500 

KAPA HiFi HotStart Library Amplification Kit 
with Primer Mix 

Fisher Scientific 50-196-5224 
 

Agencourt AMPure XP  Beckman Coulter A63881 
Qubit dsDNA HS Assay Kit Thermo Fisher Q32851 
   
Antibodies 
APC anti-Mouse Ly-6A/E (Sca-1), clone: D7, 
isotype: Rat IgG2a, κ  

BioLegend 108112 

APC anti-Mouse CD45, clone: 30-F11, isotype: 
Rat IgG2b, κ 

BioLegend 103112 

APC anti-Mouse/Human CD11b, clone: M1/70. 
Isotype: Rat IgG2b, κ 

BioLegend 101212 

APC anti-Mouse TER-119, clone: TER-119, 
isotype: Rat IgG2b, κ 

BioLegend 116212 

PE anti-Mouse/Rat CD29, clone: HMβ1-1, 
isotype: Armenian Hamster IgG 

BioLegend 102208 

Biotin Rat Anti-Mouse CD184, clone: 
2B11/CXCR4 (RUO), isotype: Rat IgG2b, κ, lot 
# 6336587 

BD Bioscience 551968 

Streptavidin PE-Cyanine7, lot # 4290713 eBioscience 25-4317-82 
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4’,6-Diamidino-2-Phenylindole, Dihydrochloride 
(DAPI), FluoroPureTM grade 

Invitrogen D21490 

PC anti-mouse Ly-6A/E (Sca-1), clone: 
D7, isotype: Rat IgG2a, κ 

Biolegend BioLegend 108112; 
RRID:AB_313349 

   
Critical Commercial Assays 
Arima Hi-C+ Kit Arima Genomics 202012-1415  
Accel-NGS® 2S Plus DNA Library Kit Swift Biosciences 21024 
2S Set A Single Indexed Adapters  Swift Biosciences 26148 
Chromium Next GEM Single Cell ATAC 
Reagent Kit (v1.1) 

10x Genomics PN-1000175 

   
Experimental Models: Organisms/Strains 
Pax7CreER/+;Rosa26dTomato/+ mice (24-29 
months) 

University of Michigan Jackson stock 017763 
crossed with stock 
007676 

Pax7CreER/+;Rosa26dTomato/+ mice (3-4 months) University of Michigan Jackson stock 017763 
crossed with stock 
007676  

   
Deposited Data 
Aging Muscle Stem Cell ATAC-seq and RNA-
seq Datasets 

Shcherbina et al., Cell 
Reports (2020)5 

https://www.ncbi.nlm.nih.g
ov/geo/query/acc.cgi?acc
=GSE121589 

Aging Muscle Stem Cell Single Cell RNA-seq 
Datasets 

Larouche et al., eLife 
(2021)48 

https://www.ncbi.nlm.nih.g
ov/geo/query/acc.cgi?acc
=GSE165978 

Tabula Muris Senis Single Cell Droplet RNA-
seq Datasets 

Almanzar et al., 
Nature (2020)49 

https://www.ncbi.nlm.nih.g
ov/geo/query/acc.cgi?acc
=GSE149590 

Aging Muscle Stem Cell Hi-C Datasets This Manuscript GSEXXXXXX 
   
Software 
Gene Annotation https://www.gencodeg

enes.org/mouse/relea
se_M25.html 

Gencode vM25 

Juicer Durand et al., 201616 Juicer Tools v1.22.01 
Juicebox Durand et al., 201617 Juicebox v1.11.08 
FAN-C Kruse et al., 202072 FAN-C v0.9.21 
HiCExplorer Wolff et al., 202028 HiCExplorer v3.7.2 
pyGenomeTracks Ramirez et al., 201873; 

Lopez-Delisle et al. 
,202174 

pyGenomeTracks v3.6 

Plotgardener Kramer et al., 202275 Plotgardener v1.2.10 
TOBIAS Bentsen et al., 202033 TOBIAS v0.13.3 
Cell Ranger ATAC 10x Genomics Cell Ranger ATAC v2.1.0 
Seurat Stuart et al., 201976; 

Bioconductor 
Seurat v4.1.1 
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DoubletFinder McGinnis et al., 
201977 

DoubletFinder v2.0.3 

MACS2 Zhang et al., 201852 MACS2 v2.1.1 
GenomicInteractions Harmston et al., 

201578; 
Bioconductor 

GenomicInteractions 
v1.28.0 

GenomicRanges Lawrence et al., 
201379; 
Bioconductor 

GenomicRanges v1.46.1 

JASPAR TF Motifs Castro-Mondragon et 
al., 202280 

JASPAR CORE 2022 

ArchR Granja et al., 202146 ArchR v1.0.2 
Cicero Pliner et al., 201847 Cicero v1.3.6 
WebGestalt Liao et al., 201981 WebGestalt 2019 
ChIPseeker Yu et al., 201582 ChIPseeker v1.30.3 
 
Hi-C Library Preparation and Sequencing 
Animals 
Young (4 months) and aged (24-26 months) Pax7CreER/+;Rosa26TdTomato/+ female mice were 
obtained from a breeding colony at the University of Michigan (UM). All mice were fed normal 
chow ad libitum and housed on a 12:12 hr light-dark cycle under UM veterinary staff supervision. 
All procedures were approved by the University Committee on the Use and Care of Animals at 
UM and were in accordance with the U.S. National Institute of Health (NIH). 
 
Isolation and crosslinking of muscle stem cells 
MuSCs were isolated by FACS as previously described5. In brief, hind limb muscles were 
harvested from mice using sterile surgical tools. Muscle tissue was minced and digested in 20 mL 
of a digestion solution (2.5 U/mL Dispase II and 0.2% [~5500 U/mL] Collagenase Type II in 
Dulbecco’s modified Eagle medium [DMEM]). Samples were incubated at 37°C for 60 min. Once 
the digestion was complete, 20 mL of F10 media containing 20% heat inactivated FBS was added 
into each sample to inactivate enzyme activity. The solution was then filtered through a 70 µm 
cell strainer into a new 50 mL conical tube and centrifuged at 350× g for 5 min. Subsequently, the 
protocol for crosslinking low input mammalian cells was followed, as written in the Arima-HiC kit 
workflow provided by Arima Genomics Inc (San Diego, CA). Briefly, the pellets were re-
suspended in 1X PBS and 37% formaldehyde was added to obtain a final concentration of 2% 
formaldehyde. The samples were inverted and incubated at RT for 10 mins. Arima-Hi-C Stop 
Solution 1 was added to samples, and they incubated for an additional 5 mins. The samples were 
then placed on ice to incubate for 15 mins. Cells were pelleted by centrifugation for 5 min at 500 
× g, the supernatant was discarded, and cells were resuspended in staining media (2% heat-
inactivated FBS, 2 mM EDTA in Hank’s buffered salt solution) and antibody cocktail containing 
Sca-1:APC (1:400), CD45:APC (1:400), CD11b:APC (1:400), Ter119:APC (1:400), CD29/β1-
integrin:PE (1:200), and CD184/CXCR-4: BIOTIN (1:100) and incubated for 30 min on ice in the 
dark. Cells and antibodies were diluted in 3 mL of staining solution, centrifuged at 350× g for 5 
min, and supernatants discarded. Pellets were re-suspended in 200 µL staining solution 
containing PECy7:STREPTAVIDIN (1:100) and incubated on ice for 20 min in the dark. Again, 
samples were diluted in 3 mL staining solution, centrifuged, supernatants discarded, and pellets 
re-suspended in 200 μL staining buffer. Samples were filtered through 70 μm cell strainers before 
the FACS.  
 
Preparation of Hi-C Libraries & Sequencing  
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In situ Hi-C was performed using the Arima-HiC Protocol. Approximately 75,000-100,000 sorted 
muscle cells were crosslinked, permeabilized and chromatin digested as specified by the 
manufacturer in biological replicates. Restriction fragment ends were then labeled with 
biotinylated nucleotides and proximal DNA ligated, followed by reversal of cross-links. The DNA 
was then sheared using Diagenode’s Bioruptor sonicator for 4 cycles of 15 sec on, 90 sec off, 
then briefly centrifuged. An additional 4 cycles of sonication were performed after centrifugation. 
The resultant DNA was size-selected using AMPure XP beads followed by verification with the 
Arima Quality Control 2 assay. Biotinylated junctions were then magnetically isolated with 
streptavidin coated beads, followed by end-repair, A-tailing, sequencing adaptor ligation and PCR 
amplification. The resultant libraries were then size-selected using AMPure XP beads and 
sequenced with 150 bp paired-end reads at a depth of 750 million reads per library on an Illumina 
NovaSeq flow cell.  
 
Hi-C Data Preprocessing 
Sequence quality metrics were checked in all samples using FastQC (v0.11.9, 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) before downstream processing. 
Read adapters were trimmed using Cutadapt83 (v2.6). Only trimmed reads >20bp were retained 
and 25 bases were trimmed from the 3’ ends. Paired-end reads for each replicate were then split 
and each mate was aligned as single-end reads to the mouse reference genome (mm10) using 
BWA aln and samse (v0.7.17-r1188). Uniquely mapped reads classified as “optimal” or 
“suboptimal” by BWA with a maximum edit distance of 3 and MAPQ>=30 were retained. Paired 
mates were then re-joined and duplicate reads removed. Each chromosome was split into 5kb 
bins and the number of interactions in each bin was counted. Interactions were eliminated if they 
occurred on the same fragment (i.e. overlapping reads on the same chromosome) or if the 
distance between the start coordinates of each read pair was <1kb. All remaining reads were kept 
if they participated in at least one interaction. The resulting paired contact maps were converted 
to .hic files using the pre command in Juicer Tools16 (v1.22.01) with a file of Arima restriction sites 
created with the generate_site_positions.py script. The .hic file was created with the following 9 
base-pair-delimited resolutions: 2.5Mb, 1Mb, 500kb, 250kb, 100kb, 50kb, 40kb, 25kb, 10kb, and 
5kb.  
 
Hi-C Quality Control 
Pairwise Pearson correlations were computed between Knight-Ruiz-normalized replicates at 
250kb-resolution with HiCExplorer28 (v3.7.2) after converting .hic files to .cool files using the 
hicConvertFormat command. All replicates showed Pearson correlations <0.98 and replicates 
were pooled for downstream processing. The fraction of inter-chromosomal interactions in pooled 
replicates was ~23% while ~63% of interactions occurred more than 20kb apart and ~14% of 
interactions occurred less then 20kb apart, indicating good quality libraries. Replicates also 
showed the same distributions of count enrichment at different genomic ranges as shown by the 
hicPlotDistVsCounts command with a maximum distance from the diagonal of 30 Mb. 
 
A/B Compartment analysis 
A/B compartments were identified from the first eigenvectors of the Pearson correlation matrices 
of 100kb-resolution contact matrices using the ‘compartments’ command in the FAN-C72 (v0.9.21) 
package. The sign of the first eigenvector was oriented by the average GC content of each domain 
such that domains with higher GC content were assigned positive signs (A compartment) while 
domains with lower GC content were assigned negative signs (B compartment). The compartment 
eigenvector BED files were then exported from FAN-C and analyzed in R to identify compartments 
that were static or shifted between young and aged MuSCs. Saddle plots were generated using 
as an additional output of the ‘compartments’ command. 
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TAD Calling and Characterization 
Identification of TADs 
TADs were called from Knight-Ruiz-normalized contact matrices at several resolutions (10kb, 
40kb, 100kb, 250kb, and 500kb) and FDR thresholds (0.1, 0.05, 0.01, 0.005, and 0.001) using 
the ‘hicFindTADs’ command in the HiCExplorer package with default parameters. The final set of 
TADs and associated boundaries (40kb resolution, FDR<0.01) was selected by visual inspection 
with pyGenomeTracks73,74 (v3.6) and comparisons of the size and number of TADs at each pair 
of parameters. Aggregate contact matrices around TAD domains were plotted using FAN-C 
aggregate.  
Calculation of Intra-TAD Connectivity  
Intra-TAD connectivity was calculated as the mean number of reads per intra-TAD interaction as 
a fraction of reads for all cis-interactions with flanking TADs. The number of contacts within TADs 
and between TADs was collected using the ‘hicInterIntraTAD’ command in HiCExplorer. 
 
Chromatin Loop Analysis 
Loop Calling 
Chromatin loops were identified using the HiCCUPS algorithm15 with default parameters for 
medium resolution maps (hiccups -m 512 -c (all chromosomes) -r 5000,10000,25000 -k KR -f 
.1,.1,.1 -p 4,2,1 -i 7,5,3 -t 0.02,1.5,1.75,2 -d 20000,20000,50000 /path/to/hic/file 
path/to/loops/files). The algorithm was run in a Google Colaboratory notebook with a GPU 
hardware accelerator. The merged loop list across all resolutions (i.e. 5kb, 10kb, 25kb) were used 
for downstream analyses.  
Aggregate Peak Analysis (APA) 
Aggregate peak analysis15 was used with default settings to evaluate focal contact enrichment at 
merged loops. We summarized the genome-wide APA analysis using the ratio of the central pixel 
to the mean of the mean of the pixels in the lower left corner. For visualization, we used the 
genome-wide normalized APA matrices at 10kb resolution. In these matrices, each submatrix was 
normalized by its mean such that the mean of the submatrix was 1. 
 
Feature Annotation and Gene Set Enrichment Analysis 
TAD boundaries and loop anchors were annotated for genomic features using ChIPseeker 
(v1.30.3)82 with a promoter region of +/-1kb. Overlapping genomic annotations were resolved in 
order of decreasing priority as follows: Promoter, 5UTR, 3UTR, Exon, Intron, Downstream, 
Intergenic. Gene ontology (GO) and Reactome term enrichments were performed using over-
representation (ORA) and gene set enrichment (GSEA) analysis84 using WebGestalt 201981. 
Tested gene sets were limited to those containing between 5 and 2000 genes. Significant term 
enrichment thresholds were set at FDR < 0.05. For GSEA, genes were ranked according to the 
signal to noise metric84. 
 
CTCF Motif Finding 
CTCF motifs were identified across the mm10 genome using scanMotifGenomeWide.pl from the 
HOMER suite85 with the following HOMER position weight matrix (PWM) for CTCF: 
>ANAGTGCCACCTGGTGGCCA CTCF(Zf)/CD4+-CTCF-ChIP-
Seq(Barski_et_al.)/Homer,BestGuess:CTCF(Zf)/CD4+-CTCF-ChIP-
Seq(Barski_et_al.)/Homer(1.000) 8.704837 -6.281855e+03 0
 15000.0,4645.0,2877.2,2765.0,0.00e+00 
0.447 0.221 0.181 0.151 
0.037037037037037 0.34034034034034 0.236236236236236 0.386386386386386 
0.499 0.061 0.33 0.11 
0.033033033033033 0.377377377377377 0.528528528528528 0.0610610610610611 
0.023023023023023 0.378378378378378 0.005005005005005 0.593593593593594 
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0.061 0.005 0.887 0.047 
0.0790790790790791 0.905905905905906 0.005005005005005 0.01001001001001 
0.002 0.994 0.001 0.003 
0.501501501501502 0.475475475475475 0.00700700700700701 0.016016016016016 
0.002 0.527 0.004 0.467 
0.003 0.995 0.001 0.001 
0.03 0.036 0.004 0.93 
0.382 0.042 0.446 0.13 
0.02 0.273 0.686 0.021 
0.047 0.039 0.014 0.9 
0.002 0.001 0.995 0.002 
0.04 0.034 0.873 0.053 
0.161161161161161 0.527527527527528 0.0610610610610611 0.25025025025025 
0.277 0.428 0.117 0.178 
0.541 0.092 0.267 0.1 
 
CTCF motifs were enumerated in 5kb windows across loop domains and in 20kb windows across 
TAD domains. Loop and TAD domains were divided into 40 bins and the average number of 
motifs was plotted within each bin. 
 
Integration with RNA-Sequencing 
Gene Expression Quantification 
Paired-end RNA-seq data from MuSCs5 was aligned to the mm10 reference genome with the 
STAR algorithm (STAR_2.5.0a)86 using default parameters. RSEM87 quantification was applied 
to the aligned reads. The full set of flags used in the STAR command is as follows: 
STAR --genomeLoad NoSharedMemory --outFilterMultimapNmax 20 --alignSJoverhangMin 8 --
alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 
0.04 --alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 1000000 --
outSAMunmapped Within --outFilterType BySJout --outSAMattributes NH HI AS NM MD --
outSAMtype BAM SortedByCoordinate --quantMode TranscriptomeSAM --sjdbScore 1 --
limitBAMsortRAM 60000000000 --twopassMode Basic --twopass1readsN -1 
Gene Expression Analysis 
Gene expression analysis between young and aged samples was performed by limma88 analysis 
in R. The Expected Counts from RSEM were transformed to counts per million using the voom89 
R package with a design formula: Count~Age, with Age={Young, Aged}. Surrogate variable 
analysis was performed with the SVA package90 using a null model of voom$E~ 1, and a design 
matrix of voom$E~Day+Age. Contributions from the surrogate variables were quantified and 
removed from the voom$E data matrix. Pairwise Pearson and Spearman correlation values were 
computed between all sva-corrected replicates. Any replicate that had r < 0.9 with other replicates 
for a given sample was excluded from further analysis. Expression analyses were performed on 
known genes filtered to those with TPM (transcript per million) values greater than 0 in at least 
one sample. Differentially expressed genes were identified as those with log2(fold-change)>1.5 
and adjusted p-values<0.05. Compartments, loop anchors, and TADs were annotated with mm10 
genes (GRCm38.p6 GENCODE M25) by identifying genes whose promoter regions (TSS +/- 1 
kb) intersected each set of regions. 
 
Integration with ATAC-seq and H3K4me3 ChIP-seq Datasets 
ATAC-seq Data Processing and Analysis 
ATAC-seq datasets from young and aged MuSCs were collected previously5. The ATAC-seq 
samples were analyzed with the ENCODE ATAC-seq processing pipeline91 
(https://github.com/ENCODE-DCC/atac-seq-pipeline, version 1.1.7). Read adapters were 
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trimmed with the cutadapt algorithm83 and aligned to the mm10 reference genome using 
Bowtie292. Duplicates were then marked using Picard (https://broadinstitute.github.io/picard/) and 
removed from the aligned reads using SAMtools93. The resulting BAM files were filtered to remove 
unmapped or unpaired reads and reads with MAPQ scores below 30. The MACS252 peak caller 
was used to call peaks from the aligned ATAC-seq samples and the naive overlap peak set from 
all replicates for a given sample was used for downstream processing. 
H3K4me3 ChIP-seq Data Processing and Analysis 
FASTQ files for H3K4me3 ChIP-seq datasets from young and aged MuSCs were obtained from 
Liu et al., 201321 and processed with the ENCODE ChIP-seq processing pipeline91 
(https://github.com/ENCODE-DCC/chip-seq-pipeline2, version 2.1.1) using the “histone” option. 
Paired-end read adapters were trimmed using Trimmomatic94 and aligned to the mm10 reference 
genome using Bowtie292. Duplicates were then marked with Picard 
(https://broadinstitute.github.io/picard/) and removed with SAMtools93. The resulting BAM files 
were filtered to remove unmapped or unpaired reads and reads with MAPQ scores below 30. 
Signal Track Coverage  
RPKM-normalized signal tracks were generated from merged ATAC-seq and H3K4me3 bam 
alignments using the ‘bamCoverage’ command in the deepTools suite (v.3.3.0)95 with a bin size 
of 1. Reads with the 780 SAM flag and mapping qualities <30 were excluded. The mean signals 
in chromatin compartment groups, TADs, and chromatin loop anchor were calculated using the 
‘multiBigWigSummary’ command in deepTools. Blacklisted regions96 were excluded from these 
calculations.  
Clustering of Signals Across TAD Boundaries By Compartment 
The mean signal of the first eigenvector of the Hi-C Pearson correlation matrix was calculated in 
10 kb-bins across 1 Mb regions flanking TAD boundaries using the ‘computeMatrix’ command in 
the deepTools suite. K-means clustering of the resulting matrices into 4 clusters using the 
‘plotHeatmap’ command partitioned the TAD boundaries into those that lay within A/B 
compartments or spanned A/B compartment switches. Matrices generated from ATAC-seq and 
H3K4me3 fold-change signals in the same regions per cluster were plotted as heatmaps. 
Pearson Correlation of ATAC-seq and H3K4me3 Signals with TADs 
Mean fold-change signals from ATAC-seq and H3K4me3 data were calculated in 1 kb bins within 
TAD domains scaled to 15 kb regions and in flanking 15 kb regions using the computeMatrix 
command. Pearson correlation between the matrix columns for each signal was calculated in R, 
producing 45x45 matrices. Heatmaps were then generated for each correlation matrix. 
Transcription Factor Footprint Analysis 
TF motifs were downloaded from the JASPAR CORE 2022 database80 and filtered to those 
expressed (TPM≥1) in our bulk RNA-seq datasets. Heterodimer motifs were considered 
expressed if at least one partner was expressed.  
 
All footprint analyses within chromatin loop anchors were performed using the TOBIAS toolkit 
(v0.13.3)33. The bam mm10 alignments from the ENCODE ATAC-seq pipeline were corrected for 
Tn5 enzymatic bias using the ‘ATACorrect’ function. Blacklisted regions96 were excluded from the 
bias estimations. To perform differential TF binding analysis, a union set of ATAC peaks was 
generated across young and aged MuSCs using the bedtools merge command. Continuous 
footprinting scores for the young and aged bias-corrected ATAC signals were then calculated 
across the union peak set using the ‘ScoreBigwig’ function. Estimates of TF binding positions 
were calculated using the ‘BINDetect’ function in the subset of union ATAC peaks that lay within 
merged loop anchors. Significant TFs were identified as those above the 95th percentile or below 
the 5th percentile of differential binding scores or those above the 95th percentile of -log10(p-
values).  
 
Generation and Processing of Skeletal Muscle Single Cell ATAC and RNA Datasets 
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Single Cell RNA Datasets 
Single cell RNA libraries (10x Genomics) from FACS-isolated MuSCs were previously generated 
from uninjured young (2-3 months) and aged (22-24 months) hindlimb muscles48. We downloaded 
a pre-processed droplet single-cell RNA dataset from limb muscle generated by the Tabula Muris 
Senis (TMS) atlas49 and converted it to a Seurat (v4.1.1)97 object. 3-month and 24-month data 
from the TMS object were used for downstream analyses.  
 
TMS datasets were considered pre-processed and exempt from further quality control filtering. 
Our previously generated MuSC datasets were filtered to retain high-quality cells expressing >500 
unique molecular identifiers (UMIs), between 300 and 4,000 genes, <10% mitochondrial reads, 
and gene complexities (log10(# genes) / log10(# UMIs)) > 0.8.  
Integration of Single Cell RNA Datasets 
All datasets were separately log-normalized and scaled to 10,000 using the ‘NormalizeData’ 
function, and feature selection was performed using the “vst” method in the 
‘FindVariableFeatures’ function with the number of top variable features set to 2,000. 
Contributions from the number of UMIs per cell were regressed out. We additionally regressed 
out contributions from the percentage of mitochondrial reads in our previously generated datasets. 
We performed doublet analysis using DoubletFinder (v.2.0.3)98 with a 4.8% expected doublet rate 
and found no clear evidence of doublets in any dataset. The datasets were then integrated using 
the canonical correlation analysis (CCA) implementation in Seurat with default parameters. 
 
The integrated dataset was re-scaled and principal component analysis (PCA) was performed on 
the 2,000 most variable genes. The number of PCs used to represent the dataset was 
quantitatively determined by identifying the minimum between the last PC where the change in 
variation was more than 0.1% and the last PC associated with <5% of variation that also 
accounted for >90% of the cumulative variation in the dataset (33 PCs). These PCs were used to 
compute the nearest neighbor graph (FindNeighbors) and were visualized using the ‘uwot’ 
implementation of Uniform Manifold Approximation and Projection (UMAP)44 with min.dist=0.5, 
n.neighbors=30, and the ‘cosine’ distance metric. Cells were clustered using the Louvain 
clustering algorithm implemented by Seurat’s ‘FindCluster’ function with a resolution of 0.1.  
Single Cell RNA Cell Type Annotation 
Differentially expressed genes between clusters in the integrated dataset were identified using 
the ‘FindAllMarkers’ function in Seurat with a Wilcoxon test to compare genes with >0.25 log2(fold-
change) that were expressed in >10% of cells in each cluster. Clusters were annotated by cell 
type according to differentially expressed marker genes. Expression of marker genes was verified 
in each dataset within the integrated object using the ‘FindConservedMarkers’ function with the 
same parameters. 
Skeletal Muscle Nuclei Extraction and Preparation of Single Cell ATAC Libraries 
Young (3 months old) and aged (28-29 months old) Pax7CreER/+;Rosa26TdTomato/+  female mice 
were obtained from a breeding colony at UM. All mice were fed normal chow ad libitum and 
housed on a 12:12 hour light-dark cycle under UM veterinary staff supervision. All procedures 
were approved by the University Committee on the Use and Care of Animals at UM and the 
Institutional Animal Care and Committee and were in accordance with the U.S. National Institute 
of Health (NIH).  
 
Mouse hindlimb muscles were extracted and placed into separate petri dishes containing ice-cold 
PBS. Using surgical scissors, muscle tissues were minced and placed into 20mL of digestion 
buffer (DMEM with Collagenase type II (0.2%) and Dispase II (2.5U/mL)) per mouse. Samples 
were placed on a shaker in a 37˚C incubator for 1.5 hours and mixed by pipette every 30 minutes. 
The enzymes were then inactivated by addition of 20mL 20% heat-inactivated fetal bovine serum 
(HI-FBS) in Ham’s F10 media. The solution was passed through a 70um cell strainers, 
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centrifuged, washed in PBS containing 3% BSA, and nuclei isolation was performed according to 
10x Demonstrated Protocol CG000375 Revision B starting at step 1.1c. Nuclei from two age-
matched mice were pooled prior to sorting, at step 1.1n, and 7-AAD+ nuclei were sorted on a 
Sony MA900 or MoFlo Astrios 3. Sorted nuclei were then permeabilized according to the same 
protocol. 10,000 permeabilized nuclei were loaded onto the 10x Genomics Chromium single cell 
controller and single nuclei were captured into nanoliter-scale gel bead-in-emulsions (GEMs). 
Single nuclei ATAC library constructions were performed using the ATAC-seq NextGEM kit (10x 
Genomics). All libraries were submitted for 51x51bp paired-end sequencing on a NovaSeq 6000 
with 50,000 targeted reads per cell. 
Single Cell ATAC Processing 
Raw sequencing data were demultiplexed and converted to FASTQ files using the ‘bcl-convert’ 
command (Illumina, v3.9.3) and aligned to the mm10 reference genome (refdata-cellranger-arc-
mm10-2020-A-2.0.0) using the ‘cellranger-atac count’ command (10x Genomics, cellranger-atac-
2.1.0).  
 
scATAC fragment files from all samples were processed simultaneously using the ArchR package 
(v1.0.2). Low-quality cells were removed based on transcription start site (TSS) enrichment (>4) 
and the minimum number of unique fragments per cell (>1,000). Doublets were filtered using the 
‘addDoubletScores’ and ‘filterDoublets’ functions with default parameters (5.5% of total cells 
removed). Next, a cell-feature matrix of 500bp genome-wide tiles was used to create a low-
dimensional representation of the dataset through an iterative latent semantic indexing (LSI) 
approach (‘addIterativeLSI’ function; 3 iterations; 30 LSI dimensions; 25,000 variable features; 
0.05 and 0.1 clustering resolutions). Batch effects were corrected using Harmony (‘addHarmony’ 
with default parameters)45 and LSI dimensions that were highly correlated with sequencing depth 
were excluded from downstream analyses (Pearson correlation>0.75). Cells were visualized 
using the ‘uwot’ implementation of UMAP44 embeddings using Harmony-corrected dimensions 
with the cosine metric, nNeighbors=30, and minDist=0.3 (‘addUMAP’), and cells were clustered 
using the FindClusters function in Seurat (v4.1.1)76 with resolution 0.4 (‘addClusters’).  
Single Cell ATAC Cell Type Annotation and Imputed Gene Expression 
Prior to labeling scATAC clusters with scRNA annotations, gene activity scores were inferred from 
scATAC data using the ‘addGeneScoreMatrix’ function in ArchR. These scores predict gene 
expression levels based on the accessibility of nearby regulatory elements. We identified marker 
genes for each scATAC cluster based on gene activity scores using a Wilcoxon test with the 
‘getMarkerFeatures’ function. A suitable null background for this analysis was corrected for biases 
from TSS enrichment and the log10(# of unique fragments) per cell. Cell types were tentatively 
assigned to clusters based on these marker genes (FDR≤0.01, log2(fold-change)≥1.25), including 
MuSCs, which were marked by high Pax7 and Myod1 gene activity scores. To visualize these 
scores on UMAP embeddings, we smoothed gene activity scores across neighboring cells using 
MAGIC (Markov affinity-based graph imputation of cells) imputation99. We then used Seurat’s 
CCA implementation to assign the most similar scRNA cell to each scATAC cell by comparing the 
scATAC gene activity and scRNA gene expression matrices (‘addGeneIntegrationMatrix’), 
effectively transferring scRNA cell type labels to the scATAC cells. Gene expression profiles from 
scRNA cells were assigned to the corresponding scATAC cells. This integration was constrained 
to ensure that the putative scATAC MuSC cluster aligned with the scRNA MuSC cluster. scATAC 
clusters were then merged according to cell type annotation. 
Single Cell ATAC Peak Calling 
To overcome the sparsity of scATAC data, we generated pseudo-bulk replicates for each cell type 
cluster (‘addGroupCoverages’) and pseudo-bulk peak calling was performed using MACS252 
(‘addReproduciblePeakSet’). Peaks were merged into a union set in ArchR to create a single 
peak matrix (‘addPeakMatrix’) for the entire scATAC dataset. Differential peak accessibility 
(FDR≤0.1, log2(fold-change)≥1) across cell types was verified using the ‘getMarkerFeatures’ 
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function with the same parameters as the analysis performed for gene activity scores. A heatmap 
of marker peaks was plotted using the ‘plotMarkerHeatmap’ function.  
 
Multi-omic Profiling of Muscle Stem Cells 
Reclustering of MuSCs 
The MuSC cluster of the scATAC dataset with linked scRNA expression was isolated and 
reclustered using the same iterative LSI procedure described previously (‘addIterativeLSI’) with 2 
iterations and 500bp genome-wide tiles. Harmony batch correction was not necessary for these 
cells. Pseudo-bulk replicates were generated for young and aged MuSCs and a unified pseudo-
bulk peak set was identified using MACS252 and the ArchR merging procedure.  
Identification and Clustering of Peak-to-Gene Linkages  
Peak-to-gene correlation analysis was performed to identify putative gene-enhancer regulatory 
linkages from scATAC and scRNA data. This was accomplished with the ‘addPeak2GeneLinks’ 
function in ArchR with the first 30 LSI dimensions and a maximum distance between gene 
promoters and the center of accessible sites of 500kb. This function requires the generation of 
low-overlapping cell aggregates to overcome the sparsity of scATAC data. We slightly modified 
the cell aggregation step of ArchR’s implementation such that aggregates were composed solely 
of young or aged MuSCs. This modification allowed us to compute peak-to-gene correlations 
across the MuSC cluster while retaining age-specific contributions. The resulting linkages were 
filtered (correlation>0.45, FDR<1e-4) for downstream analyses. Linkages were clustered into 5 k-
means clusters and visualized using the ‘plotPeak2GeneHeatmap’ function. Groups of linkages 
dominated by aged or young MuSCs could thus be visually identified. 
Gene Set Annotation of Peak-to-Gene Linkages 
Enriched GO and Reactome terms for linked genes in each cluster were analyzed using over-
representation analysis in WebGestalt 201981 with a FDR threshold of 0.1. Gene sets were limited 
to those containing between 5 and 2000 genes. Unique genes in representative enriched 
Reactome terms per cluster were aggregated and shown as heatmap annotations (Figure 3D). 
The selected terms were related to chromatin organization (R-MMU-4839726, R-MMU-3247509), 
SUMOylation of proteins (R-MMU-4570464, R-MMU-2990846), cell cycle regulation (R-MMU-
69206, R-MMU-1640170, R-MMU-69278, R-MMU-69275, R-MMU-174184, R-MMU-69231, R-
MMU-68882), Hedgehog signaling (R-MMU-5358351, R-MMU-5610787, R-MMU-5632684, R-
MMU-5635838), and mitochondrial activity (R-MMU-5389840, R-MMU-611105, R-MMU-163210, 
R-MMU-8949215). 
Generation of cis-co-accessibility networks (CCANs) 
We used the Cicero47 package (v1.3.6) to generate cis-co-accessibility maps of regulatory 
elements and gene promoters. Young and aged MuSCs were separately reclustered using the 
peak matrix from the MuSC cluster and UMAP embeddings were generated for each group. The 
peak matrix for each group was binarized and converted to cell_data_set objects using the 
‘make_atac_cds’ function in Cicero. Peaks containing at least one Tn5 insertion were identified 
and size factors were estimated using the ‘detect_genes’ and ‘estimate_size_factors’ functions in 
Monocle3100. The resulting objects were combined with the previously determined UMAP 
coordinates to create CDS objects for Cicero using the ‘make_cicero_cds’ function in Cicero. The 
number of cells per aggregate (‘k’ parameter) was selected as the maximum number of cells such 
that the median number of cells shared between aggregates was 0 and no more than 10% of cells 
were shared between paired aggregates on average (k=35 for young, k=20 for aged). This yielded 
232,035 and 321,502 pairs of accessible sites with positive co-accessibility scores in young and 
aged MuSCs, respectively, which we filtered using a co-accessibility score of 0.1. Next, we 
generated the cis-co-accessibility maps using the ‘run_cicero’ function with window=5e5 and 
sample_num=100. Linked sites were annotated for genomic features using the ChIPseeker 
package (v1.30.3)82. We identified cis-co-accessibility networks (CCANs) in young and aged 
maps using the ‘generate_ccans’ function with a co-accessibility cutoff of 0.1, which maximized 
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the number of CCANs across both maps. We used the maxmatching package (v0.1.0) in R to 
identify stable CCANs such that the total number of co-accessible elements between pairs of 
CCANs was maximized. To identify differences in connectivity within matched CCANs, we found 
CCANs in merged young and aged datasets (k=50) with the same parameters and found CCANs 
that matched CCANs matched between young and aged datasets. 
Enrichment of CCANs within TADs 
Pairs of cis-co-accessible sites were grouped by the distance between them into bins of 25kb. 
We calculated the fold enrichment of sites within TADs per distance bin as the ratio between the 
number of pairs within an individual TAD and the number of pairs that lay in different TADs. A null 
background comparison was performing this same analysis on sites that were shuffled in each 
distance bin and chromosome such that links were randomly assigned between sites. This 
procedure was repeated 100 times per distance bin. 
Visualization of Peak-to-gene Linkages and Cicero Connections 
Integrated visualizations of single cell ATAC tracks, peak-to-gene linkages, and cis-co-accessible 
sites were made using the Plotgardener75 package (v1.2.0). ATAC signal tracks were normalized 
to the number of reads in TSS regions to account for differences in sequencing depth and sample 
quality. The heights of linkages and cis-co-accessible sites are scaled to the distance between 
anchors.   
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Figure and Table Captions 
 
Figure 1. Global changes in 3D genome organization are largely static during muscle stem 
cell aging. A) Schematic of experiment. B) Normalized contact heatmaps of Young (lower 
triangle) versus Aged (upper triangle) MuSCs for chr1 at 250 kb resolution. A zoomed-in region 
is shown at 5 kb resolution. The maximum color map value for pixels is shown in the bottom left 
corner of each heatmap. C) Representative A/B compartment signal showing changes between 
young and aged MuSCs at 100 kb resolution. Compartment switches are highlighted in green. D) 
Quantification of 100 kb bins that switch compartments (Young to Aged). E) Distribution of ATAC-
seq peaks in A and B compartments. F) Gene expression in log2(TPM) per A/B compartment in 
young and aged MuSCs.   
 
Figure 2. Muscle stem cells exhibit age-dependent changes in Topologically Associated 
Domains (TADs) and chromatin loops. A) Aggregate contact heatmaps at 40 kb resolution over 
a 5 Mb region centered on contact domains (TADs). B) Distributions of ATAC-seq and H3K4me3 
signals (RPKM) across a 1 Mb region centered on TAD boundaries. K-means clustering (4 
clusters) of the A/B compartment signal classified the boundaries by whether they fell within A/B 
compartments or divided compartment switching regions. C) Representative contact heatmaps 
log1p(observed/expected), TAD separation score tracks, A/B compartments (A, blue; B, gray), 
TAD domains, TAD boundaries (vertical lines and triangles), chromatin loops, ATAC-seq and 
H3K4me3 fold-change signal tracks, and gene expression in RPKM for young and aged MuSCs. 
TAD domains are colored by TAD rearrangement type. D) Distribution of TAD boundaries gained 
in aged and lost in young across A/B compartment groups. E) Cartoon showing definitions of 
rearranged TAD types in young MuSCs (top) relative to aged MuSCs (bottom). F) Proportions of 
TAD rearrangements. G) Gene expression (mean +/- SEM) in log2(TPM) against binned intra-
TAD connectivity percentiles. H) Aggregate Peak Analysis (APA) of chromatin loops. I) Diagram 
and J) quantitation of chromatin loops classifications. K) Volcano plot of inferred binding activity 
of expressed (TPM>1) transcription factors (TFs) in sites of accessible chromatin at loop anchors. 
The top 5% differentially bound TFs are colored in red (aged) and blue (young).  
 
Figure 3. Single-cell multi-omic analysis of gene regulatory dynamics during muscle stem 
cell aging. A) Schematic of single-cell ATAC-seq (scATAC-seq) dataset generation and 
integration with single-cell RNA-seq (scRNA-seq) datasets. B) scATAC UMAP embeddings 
colored by cell type and age. C) scATAC UMAP embeddings colored by Pax7 gene activity scores 
and linked gene expression from integrated scRNA datasets. The identified MuSC cluster was 
reclustered and colored by age. D) Row-scaled heatmaps of statistically significant peak-to-gene 
linkages. Each row represents either chromatin accessibility at a distal site (left) or expression of 
the target gene (right). The columns represent cell aggregates colored by age. K-means clustering 
(5 clusters) reveals distinct regulatory networks between young and aged MuSCs. Heatmaps of 
representative Reactome pathways enriched in each cluster are shown to the right (see Methods). 
E) scATAC signal tracks, peaks, and peak-to-gene linkages (P2G) for Hes1 colored by correlation 
scores. Cicero co-accessibility scores for the distal sites involved in these linkages are shown 
below colored by co-accessibility scores. Expression from integrated single cell RNA datasets are 
shown as violin plots. F) and G) Histograms of the number of CCANs constrained within individual 
F) TADs and G) loops.  
 
Supplementary Figure 1. Quality control assessments of Hi-C datasets from young and 
aged muscle stem cells. A) Pairwise Pearson correlation scatterplots of observed/expected 
counts in young and aged replicates at 250 kb resolution. B) Number of contacts at 250 kb 
resolution between loci of increasing genomic distance for each young and aged replicate 
compared with the merged replicates. C) Pie chart of the number of reads that map to inter- and 
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intra-chromosomal interactions at 100 kb resolution. Long-cis and short-cis interactions refer to 
interactions on the same chromosome between loci separated by >20 kb and <20 kb, 
respectively. D) Overlapped first principal components of the Pearson correlation matrix of young 
and aged MuSC contact maps. E) Sizes of A/B compartments in young and aged MuSCs in 
log10(bases). F) Saddle plots of genome-wide A/B compartment enrichment. Eigenvector 
percentiles used to calculate compartment enrichment are shown below. G) Average RPKM 
signals per compartment switching region of ATAC-Seq and H3K4me3 datasets between aged 
and young MuSCs. H) Enriched GO and Reactome terms for genes in chromatin compartment 
groups identified through GSEA. 
 
Supplementary Figure 2. Definition and annotation of Topologically Associated Domains 
in young and aged muscle stem cells. A) Optimization of the contact map resolution and FDR 
parameter used in HiCExplorer (hicFindTads) for finding TADs. B) Pearson correlation matrices 
of ATAC and H3K4me3 signals inside and within 15 kb of TAD domains. C) Distribution of CTCF 
motif enrichment across TAD domains. D) Comparison of the distribution of TAD boundaries 
across gene bodies. E) Annotation of TAD boundaries. F) Representative GO and Reactome 
terms for housekeeping genes enriched at shared TAD boundaries. G) Aggregate contact maps 
at lost, gained, and shared TAD boundaries in log2(observed/expected) counts. H) TAD 
separation scores and I) gene expression at lost, gained, and shared TAD boundaries. J) 
Distance in basepairs of TAD boundaries to the nearest expressed TSS. A vertical line is drawn 
at 1kb, representing the defined region for promoters. K) Diagram of intra-TAD connectivity. The 
mean read counts per intra-TAD interaction are divided by the sum of mean read counts for all 
interactions per TAD. Intra-TAD regions are highlighted in green while inter-TAD regions are 
highlighted in purple. L) Comparison of intra-TAD connectivity by compartment. M) ATAC and 
H3K4me3 signals in RPKM (mean +/- SEM) against binned intra-TAD connectivity percentiles. 
Statistical comparisons are pairwise Mann-Whitney comparisons between each percentile bin 
against the mean of all bins within each signal type and age group. (p-values: *<0.05, **<1e-2, 
****<1e-3, ****<1e-4). N) Comparison of intra-TAD connectivity between unique and shared TADs. 
All statistical comparisons are unpaired Mann-Whitney U-tests. 
 
Supplementary Figure 3. Characterization of genomic interactions and chromatin loop 
domains in young and aged muscle stem cells. A) Venn diagram of chromatin loops. B) 
Comparison of the distribution of loop anchors across gene bodies. C) Annotation of loop anchors. 
D) Distribution of CTCF motif enrichment between loop anchors. E) Classification of loop anchors 
across loop types. F) H3K4me3 and ATAC-seq signal strengths in RPKM (mean +/- SEM) at 
anchors of promoter-distal loops. Statistical comparisons are unpaired Mann-Whitney U-tests 
between age groups within each bin. G) Comparison of gene expression between or outside of 
chromatin loop anchors. Statistical comparisons are unpaired Mann-Whitney U-tests. H) 
Hierarchical clustering of inferred differentially bound transcription factors by overlap of TF binding 
sites. Motif names are colored by the direction of enrichment (Young—blue; Aged—red).  
 
Supplementary Figure 4. Quality assessments of single young and aged muscle stem cell 
multi-omic datasets. A) QC plots of TSS enrichment against the log10(number of unique 
fragments) per cell across samples. B) and C) Density plots of B) fragment size and C) 
enrichment of insertion sites around TSS sites. Insets show data specific for MuSCs. D) Dot plots 
of gene activity scores (top) and integrated single cell RNA (scRNA) gene expression (bottom) 
for marker genes in identified cell type clusters. E) QC plots of previously collected MuSC scRNA 
datasets and age-matched datasets from Tabula Muris Senis (TMS). F) UMAP embeddings of 
scRNA data colored by cell type and split by dataset. G) Dot plot of marker gene expression in 
integrated scRNA datasets. H) Row-scaled heatmap of differentially accessible peaks in each cell 
type cluster. 
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Supplementary Figure 5. Mapping gene expression regulatory networks in single young 
and aged muscle stem cells. A) Annotation of union MuSC peakset and peaks in each peak-to-
gene cluster. B) Histogram of the number of TADs per peak-to-gene linkage. C) Scatter plot of all 
identified co-accessible sites using Cicero. The minimum co-accessibility score threshold (0.1) 
used to filter sites is shown in red. D) Intra-TAD enrichment (log2 odds ratio) of linked peaks 
compared to randomly linked distance-matched peaks across TADs across different co-
accessibility thresholds. E) Numbers of sites in matched and unmatched CCANs. F) Average 
fractions of CCAN members that leave, join, or remain in matched CCANs during aging. G) 
Expression of differentially expressed genes in matched CCANs. H) and I) Representative plots 
showing altered connectivity within young and aged CCANs relative to CCANs identified in 
merged young and aged data for the H) Mta2 and I) Ndufc1 loci. The top group of plots shows 
the CCAN containing each gene. The bottom group shows zoomed-in connections in each CCAN 
that lie in each gene body which is marked by a green rectangle. 
 
Supplementary Table 1. Quality assessment metrics of single cell ATAC datasets.  
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