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Abstract  14 
Understanding how cortical circuits generate complex behavior requires investigating the cell 15 
types that comprise them. Functional differences across pyramidal neuron (PyN) types have been 16 
observed within cortical areas, but it is not known whether these local differences extend 17 
throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are 18 
considered. We used genetic and retrograde labeling to target pyramidal tract (PT), 19 
intratelencephalic (IT) and corticostriatal projection neurons and measured their cortex-wide 20 
activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scale. 21 
Cortical activity and optogenetic inactivation during an auditory decision task also revealed 22 
distinct functional roles: all PyNs in parietal cortex were recruited during perception of the 23 
auditory stimulus, but, surprisingly, PT neurons had the largest causal role. In frontal cortex, all 24 
PyNs were required for accurate choices but showed distinct choice-tuning. Our results reveal 25 
that rich, cell-type-specific cortical dynamics shape perceptual decisions. 26 

Introduction 27 
The neocortex is organized into discrete layers that form a vertically-arranged microcircuit motif. 28 
This core circuit is largely conserved across cortical areas with each layer consisting of distinct 29 
excitatory and inhibitory cell types that can be categorized based on genetic markers, cell 30 
morphology, anatomical projections or developmental lineage1. The precise interplay between 31 
these cell types is crucial for accurate cortical circuit function and their respective functional 32 
roles are the subject of intense study. Tremendous progress has been made particularly for 33 
cortical interneurons, where the availability of specific mouse driver lines has revealed the 34 
functional arrangement of inhibitory circuit motifs2–4, e.g. for network synchronization5–7 and 35 
state-dependent sensory processing8–11. However, the roles of glutamatergic pyramidal neuron 36 
(PyN) types are less well established, although PyNs comprise ~80% of all cortical neurons and 37 
form almost all long-range projections that enable the communication between local cortical 38 
circuits and other brain areas. 39 

While often treated as a monolithic group, PyNs appear to be far more diverse than interneurons 40 
with at least one hundred putative subtypes indicated by RNA sequencing12. These molecular 41 
signatures are critical for categorizing PyNs and go far beyond layer identity as different 42 
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subtypes are often intermingled within the same layers13–17. PyNs can also be classified based on 43 
their projection target. Long-range projection neurons are broadly categorized into two major 44 
types: intratelencephalic (IT) neurons, projecting to other cortical structures and the striatum, and 45 
pyramidal tract (PT) neurons, projecting to subcortical structures, such as the superior colliculus 46 
(SC), thalamus, the pons and the striatum. Furthermore, PT and IT neurons differ in their 47 
electrophysiological properties, dendritic morphology, local connectivity, and responsiveness to 48 
sensory stimulation15–17. Recent studies in sensory cortex also showed that only PT but not IT 49 
neurons are important for active perception of tactile or visual stimuli, suggesting that PT and IT 50 
neurons encode separate streams of information18,19. Similar results have been found in 51 
secondary motor cortex (M2), where specific PT neurons are involved in motor generation13,20. 52 
This suggests that the functional divergence of PyN types could be key for understanding cortical 53 
microcircuits, with PT and IT neurons forming functionally-distinct, parallel subnetworks that 54 
independently process different information. However, the functional tuning of individual PyNs 55 
in frontal cortex is still best predicted by cortical area location instead of laminar location or 56 
projection type21. Since PyN subtype activity has only been studied in single areas, it is therefore 57 
not known whether PyN-specific subcircuits exist throughout the cortex or only in a subset of 58 
cortical regions. 59 

An ideal method to address this question is widefield calcium imaging, which allows measuring 60 
neural activity across the dorsal cortex with cell-type specificity22–24. Interneuron-specific 61 
widefield imaging revealed clear differences in the spatiotemporal dynamics of different 62 
inhibitory cell types during an odor detection task25. However, cortex-wide studies of different 63 
PyN types are lacking, in part due to the limited availability of PyN-specific driver lines26–28. 64 
Here, we used two novel knock-in mouse driver lines targeting PT or IT neurons26 and 65 
performed widefield Ca2+ imaging to measure PyN subtype-specific activity while animals 66 
performed a perceptual decision-making task. Moreover, we developed a retrograde labeling 67 
approach to selectively measure the activity of corticostriatal projection (CStr) neurons 68 
throughout the dorsal cortex. Dimensionality-reduction and clustering analyses revealed unique 69 
cortex-wide dynamics for each PyN subtype, suggesting the existence of specialized subcircuits. 70 
Cortical dynamics of different PyNs were further segregated based on their role in decision-71 
making, with encoder and decoder approaches revealing the strongest stimulus- and choice-72 
related modulation in sensory, parietal and frontal cortices. This was confirmed by PyN-type-73 
specific inactivation experiments. In parietal cortex, PT neurons were most important for sensory 74 
processing while all PyN types in frontal cortex were needed for choice formation and retention. 75 
Taken together, our results demonstrate that different PyN-types exhibit functionally distinct, 76 
cortex-wide neural dynamics with separate roles during perceptual decision-making. 77 

Results 78 
To monitor PyN-type specific neural activity throughout the dorsal cortex, we used two knock-in 79 
inducible CreER lines that target developmentally-distinct classes of excitatory cortical neurons: 80 
Fezf2-CreER targeting PT neurons and PlexinD1-CreER targeting IT neurons26. For PyN-type 81 
specific GCaMP6s expression, both lines were crossed with the Ai162 reporter line29 and CreER 82 
activity was induced at four weeks of age. In each mouse line, GCaMP expression was restricted 83 
to specific cortical layers and PyN types (Fig 1a,b). In Fezf2 mice, expression was concentrated 84 
in layer 5b (Fig. 1a). We observed axonal projections to multiple subcortical regions, such as 85 
striatum and the corticospinal tract, confirming that Fezf2 is a reliable marker for corticofugal PT 86 
neurons. In PlexinD1 mice, GCaMP expression was restricted to layer 2/3 and layer 5a and 87 
axonal projections were visible in the corpus callosum and the striatum (Fig. 1b). These results 88 
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are in agreement with earlier reports26, confirming that PlexinD1 is a reliable marker for 89 
intracortical and corticostriatal IT neurons. 90 

After confirming non-overlapping expression patterns of PT and IT neurons, we measured cell-91 
type-specific cortical activity with widefield calcium imaging. All imaging data was aligned to 92 
the Allen Common Coordinate Framework v3 (CCF)25,30 to compare activity across individuals 93 
and PyN types. Both lines yielded robust GCaMP-dependent fluorescence and we observed rich 94 
neural dynamics throughout the dorsal cortex (Supp. Movies 1-3). We first used retinotopic 95 
mapping to assess sensory responses of different PyN types and the resulting spatial arrangement 96 
of visual areas. Both PT and IT neurons robustly responded to visual stimulation and we could 97 
construct retinotopic maps that reliably indicated the location of known visual areas (Fig. 1c)31. 98 
Retinotopic maps were similar to those observed in an Ai93D;Emx-Cre;LSL-tTA mouse line 99 
(EMX) that expressed GCaMP6f in all excitatory cortical neurons32, suggesting that the 100 
functional architecture of visual areas is comparable across PyN types. However, clear 101 
differences were apparent in the modulation of cortical regions in the absence of visual 102 
stimulation (Fig. 1d, same individual mice as in 1c). For example, the total variance of cortex-103 
wide activity was largest in parietal and frontal regions in PT neurons (Fig. 1d, left) while 104 
variance was highest in visual and somatosensory regions of IT neurons (Fig. 1d, center). This 105 
was comparable to variance in EMX mice, which showed additional modulation in retrosplenial 106 
(RS) cortex (Fig. 1d, right). These different patterns were also highly consistent across individual 107 
mice of the same PyN type (Supp. Fig. 1). 108 

 109 

Figure 1. Knock-in mouse lines enable PyN subtype-specific recordings of cortex-wide neural activity. 110 
a) GCaMP6s expression in Fezf2-CreER;Ai162 mice. Cortical labeling is largely confined to layer 5b. Axonal 111 
projections were found in multiple subcortical regions such as the striatum and the corticospinal tract. (Scale bars: 112 
100 µm). b) GCaMP6s expression in PlexinD1-CreER; Ai162 mice is widespread throughout the cortex and 113 
restricted to superficial layers 2/3 and layer 5a. Axonal projections were found in striatum and corpus callosum but 114 
absent in the corticospinal tract. c) Visual sign maps from retinotopic mapping experiments. IT and PT populations 115 
showed clear retinotopic responses in primary and secondary visual areas where boundaries largely resembled 116 
known areas that were also observed in nonspecific PyNs (EMX mice). d) Total variance maps from same mice as 117 
in c), showing most modulated cortical regions in each PyN type. 118 

The observed differences in variance could indicate general differences in the spatiotemporal 119 
dynamics of cortex-wide activity across PyN types. To describe such differences, we performed 120 
semi-nonnegative matrix factorization (sNMF), reducing the imaging data to a small number of 121 
spatial- and temporal components that capture nearly all variance (>99%)23,33. Here, 122 
dimensionality (the number of required components) is a measure of the overall complexity of 123 
cortical dynamics. Surprisingly, PT neurons had much lower dimensionality compared to IT 124 
neurons (Fig. 2a), suggesting that PT neurons are more functionally-homogeneous. This was also 125 
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seen in the correlations between cortical regions, which were consistently highest for PT neurons 126 
(Supp. Fig. 2). A potential reason for this difference could be that IT neurons encompass a larger 127 
number of specialized subtypes than PT neurons and may thus support a wider range of 128 
functions34. 129 
 130 

 131 
 132 
Figure 2. PyN subtypes exhibit unique cortical activity patterns. 133 
a) Number of sNMF components accounting for 99% of cortical variance in each PyN type. Violin plots show 134 
individual mice, dots represent individual sessions. b) Examples of spatial sNMF components. Components from 135 
different mice from the same PyN subtype (colored rectangles) strongly resembled each other. c) UMAP embedding 136 
of spatial sNMF components for EMX (red), IT (green) and PT (blue) mice. Maps show example spatial 137 
components for each type and their respective UMAP locations. Different markers denote individual mice. Blow-138 
ups show examples of PT-specific regions. Additional clustering for individual mice is sometimes evident (top left 139 
region), but was generally weaker than PyN-specific clustering. d) Accuracy of a PyN type classifier based on 140 
neighbor identity of individual components in UMAP space. Each data point represents the mean classification 141 
accuracy over all components in one session. e) Map of seed regions used for LocaNMF analysis. Example spatial 142 
components are compact and mostly confined to the appropriate seed region. f) Number of LocaNMF components, 143 
accounting for 99% of cortical variance in each PyN type. Conventions as in (a). g) UMAP projection embedding of 144 
spatial LocaNMF components. Conventions as in (c). Left: UMAP shows clustering of LocaNMF components from 145 
similar regions (same 24 regions as shown in e). Right: Components within individual regions are further divided for 146 
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different PyN types. Maps show example LocaNMF components (I-III). h) Accuracy of a PyN type classifier, based 147 
on individual LocaNMF components. Conventions as in (d). i) Top: Peak normalized distributions of area size for 148 
PyN-type-predictive (blue) versus unspecific (red) LocaNMF components. PyN-predictive components are smaller 149 
than unspecific components (PyN-predictive: median = 0.59 mm2, n = 6317 components, nonspecific: median = 150 
0.68mm2, n = 18938 components; ranksum test: p < 10-10). Bottom: Examples of PyN-predictive (I, II) and 151 
unspecific (III) components in right parietal cortex.  152 

Since PT neurons are a subset of EMX neurons, their lower dimensionality could indicate that 153 
PT components are also a subset of EMX components. We therefore quantified to which extent 154 
components from different PyN types are linearly overlapping or independent from each other. 155 
For each PyN type, we computed the amount of variance that could be explained with 156 
components from other mice of either the same or different PyN type (Supp. Fig. 3a). For all 157 
groups, components from a similar PyN type explained significantly more variance (ΔR2) than 158 
the maximal amount that could be explained by other types (EMX, mean ΔR2 = 3.3%, t-test: p < 159 
10-10; IT, mean ΔR2 = 1.5%, p < 10-10; PT, mean ΔR2 = 1.2%, p < 10-10). Each group therefore 160 
contains additional PyN-type-specific variance that is independent from other types. This was 161 
also visible in reconstructed data: PT components captured larger fluctuations in IT activity 162 
(Supp. Movie 4) but failed to represent spatial details in the cortical activity patterns (Supp. Fig. 163 
3b). Despite the similar dimensionality of IT and EMX activity (Fig. 2a), EMX ΔR2 was also 164 
similar for IT and PT components (ΔR2EMX-IT = 3.4%, ΔR2EMX-PT = 3.3%, p = 0.1), demonstrating 165 
that EMX data was not largely dominated by either IT or PT neurons. 166 

To directly compare spatial activity patterns, we then focused on spatial sNMF components. 167 
Spatial components represent cortex-wide maps of positively correlated areas and we wondered 168 
whether these correlation patterns would differ between PyN subtypes. Indeed, individual spatial 169 
components from different mice of the same PyN subtype often strongly resembled each other 170 
but differed from other PyN subtypes (Fig. 2b). To assess if most spatial components (or only a 171 
small subset) was PyN-type-specific, we performed a UMAP projection of the first 20 172 
components from all recordings and PyN types, non-linearly embedding the pixels of each 173 
component in a 2-dimensional space (Fig. 2c)35. If neural activity in PT, IT and EMX mice 174 
tended to exhibit similar correlation patterns, these spatial components would be mixed together. 175 
Instead, in agreement with the notion that components of the same PyN type resembled each 176 
other, we found that components formed clusters that were largely dominated by either PT or IT 177 
neurons (green/blue markers). EMX neurons formed a third set of non-overlapping clusters, 178 
likely reflecting the combined cortical dynamics from diverse PyN types beyond PT and IT 179 
neurons that were contained in this larger group (red markers). A simple classifier reliably 180 
identified each group, based on the nearest neighbors in a UMAP projection that was exclusively 181 
based on data from other animals. Remarkably, prediction accuracy was high even when the 182 
classification was based on just a single spatial component (Fig. 2d). The presence of such clear 183 
clusters is striking given that the spatial components used in the analysis were pooled over many 184 
sessions and mice. This confirms that UMAP clusters reflect consistent PyN-type-specific 185 
activity patterns, rather than idiosyncratic differences within individual sessions or mice. Taken 186 
together, these results clearly demonstrate that PyN types differ in the complexity of cortical 187 
dynamics, contain independent variance, and exhibit unique cortex-wide correlation patterns. 188 

An important concern is that variations in the density of Cre expression in each mouse line could 189 
result in non-uniform GCaMP expression patterns which might contribute to PyN-specific spatial 190 
components. However, GCaMP-related fluorescence was largely uniform across cortex in all 191 
mice and we observed no clear relationship between raw widefield fluorescence patterns and 192 
PyN-specific spatial components (Supp. Fig. 4a, b). Moreover, despite some fluctuations in the 193 
density of Cre-expressing neurons across areas in both mouse lines, Cre-expression patterns did 194 
not account for spatial components or specific differences between PyN types (Supp. Fig. 4c, d). 195 
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Nevertheless, particularly distinct activity of each PyN type in specific cortical areas could lead 196 
to cortex-wide correlation patterns that are either dominated by highly active areas or where 197 
inactive areas are ‘missing’. In this case, the relatively low dimensionality of PT neurons might 198 
be due to a lower number of active cortical areas. We therefore used a localized form of sNMF 199 
(LocaNMF)33 which extracts components that are dense and spatially restricted to a specific 200 
cortical “seed” region (Fig. 2e). Analyzing LocaNMF components therefore allowed us to reveal 201 
if PyN-specific differences mostly occur on a cortex-wide level (reflecting the interactions 202 
between cortical areas) or further extend to the local level of individual cortical areas (e.g. due to 203 
PyN-specific differences in the shape and localization of cortical areas). 204 
 205 
First, we again compared the number of components required to explain at least 99% of the 206 
variance in each PyN type. As expected, the number of components was greater than sNMF and, 207 
interestingly, was also more similar across PyN subtypes (Fig. 2f). This shows that PyN-type-208 
specific differences in cortex-wide correlation patterns are not due to a lack of activity in some 209 
cortical areas (which would have resulted in a lower number of required components, e.g. in PT 210 
mice) and instead result from PyN-type specific differences in the coordinated activation of 211 
multi-area cortical networks. Moreover, as with sNMF components, LocaNMF components from 212 
mice of the same PyN type explained more variance than components from other types (Supp. 213 
Fig. 3c). 214 
 215 
Repeating the UMAP embedding for these local components also uncovered PyN-type-specific 216 
clustering (Fig. 2g), which could be used to accurately identify each PyN type (Fig. 2h). 217 
Classification accuracy was high across most cortical regions (Supp. Fig. 4d). Specificity of 218 
LocaNMF components could either be due to the presence of specific ‘subregions’, where PyN 219 
types are most active in smaller parts of a given cortical area, or larger ‘superregions’, where the 220 
activity of a specific PyN type extends across known area borders. We therefore compared the 221 
size of LocaNMF components that accurately predicted their respective PyN type (classifier 222 
accuracy > 99%) versus nonspecific components. Interestingly, PyN-predictive clusters were 223 
significantly smaller than nonspecific clusters (Fig. 2i), suggesting that different PyNs might be 224 
most active in distinct subregions instead of larger multi-area components. This indicates that 225 
smaller, PyN-specific subregions may reside within the coarser, traditionally-defined cortical 226 
areas. 227 

We next assessed how cortical dynamics of PyN subpopulations are related to decision-making 228 
by imaging PyN subtype activity in animals trained on an auditory decision-making task (Fig. 229 
3a)36. Mice initiated trials by touching small handles, which triggered the simultaneous 230 
presentation of sequences of clicking sounds to their left and right side. After a short delay 231 
period, mice reported decisions by licking one of two water spouts and were rewarded for 232 
choosing the side where more clicks were presented. To reduce temporal correlations between 233 
task events, such as trial initiation and stimulus onset, the durations of the initiation, stimulus and 234 
delay periods were randomly varied across trials. In all mice, decisions varied systematically 235 
with stimulus strength (Fig. 3b) and were equally affected by click sounds throughout the 236 
stimulus period (Supp. Fig. 5). 237 

As with spatial components, trial-averaged temporal sNMF and LocaNMF components showed 238 
pronounced clustering, suggesting that different PyN-types also exhibit distinct task-related 239 
temporal dynamics (Supp. Fig. 6). Correspondingly, we found clear differences in trial-averaged 240 
neural activity between PyN subtypes, especially during stimulus presentation (Fig. 3c). Here, 241 
cortical activity was uniformly suppressed in EMX mice, partially suppressed in somatosensory 242 
and visual areas in IT mice, and uniformly increased in PT mice (Fig. 3d). In all PyN types, 243 
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activity was largely symmetric across the left and right hemispheres, even when only analyzing 244 
trials where stimuli were presented on the left side and the animal made a corresponding leftward 245 
choice (Fig. 3c; Supp. Fig. 7). Moreover, responses to sensory stimuli were much weaker than 246 
movement-related responses, such as trial initiation or licking (Fig. 3d, gray bar versus dashed 247 
lines). A potential explanation is that lateralized, task-related activity is obscured by cortical 248 
activity due to animal movements32,37–39.  249 

 250 

 251 

Figure 3. An auditory decision-making task reveals distinct functional activity patterns in each PyN type. 252 
a) Auditory discrimination task structure of an example trial. Mice touched paw handles to initiate randomized click 253 
sequences on the left and/or right side. After a delay period, a lick response on the correct side was rewarded with 254 
water. The episode duration was randomly varied in individual trials. b) Psychometric functions fit to behavioral 255 
data from the discrimination task in (a) of individual EMX (red), IT (green) and PT (blue) mice. c) Trial-averaged 256 
response maps for all correct, leftward trials in different PyN types. Shown are averages for the ‘Initiation’, 257 
‘Stimulus’, ‘Delay’ and ‘Response’ periods shown in (a). d) Averaged activity in auditory (left) and frontal cortex 258 
(right) for each PyN type. Averages were separately aligned to each of the four trial periods, indicated by short gaps. 259 
Left dashed line: time of initiation, gray box: stimulus presentation, right dashed line: animal’s response. Traces 260 
show standard deviation units (SDU). White dashed circles in (c) show respective area locations. Colors as in (b). 261 
Shading shows s.e.m.; n = 4 EMX/IT mice and 5 PT mice. 262 

To isolate task-related activity from movements we used a linear encoding model32. The model 263 
combines many task- and movement-variables to predict single-trial fluctuations in cortical 264 
activity (Fig. 4a, top). Task variables were related to the learned behavior, and included past and 265 
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current choices, and the presentation of a sensory stimulus. Movement variables included licking 266 
and touching the handles, alongside facial movements (whisking or nose movements) obtained 267 
from two video cameras of the animal’s face and body (a complete list of all task- and movement 268 
variables is shown in Supp. Table 1). All variables were combined into a single design matrix 269 
and we used ridge regression to fit the model to the imaging data. This produced a time-varying 270 
event kernel for each variable, allowing us to isolate how specific task variables (e.g. the sensory 271 
stimulus, Fig. 4a, bottom) are related to neural activity while separating them from the impact of 272 
other factors, such as licking movements, which are captured by other model variables. 273 

To assess how well the model predicts cortical activity, we first computed the tenfold cross-274 
validated R2 (cvR2). For all PyN types, the model successfully captured a large fraction of single-275 
trial variance throughout the cortex (Fig. 4b), confirming the validity of our approach. Predicted 276 
variance was higher in IT and PT mice compared to EMX mice, with over 90% explained 277 
variance in frontal cortex of PT mice. Consistent with earlier results32,37, movements consistently 278 
captured more variance than task variables across all PyNs (Fig. 4c). The impact of movements 279 
was also apparent when computing the unique contributions from movement or task variables by 280 
removing either set of variables from the full model, demonstrating that movements are an 281 
important driver of cortex-wide activity in all PyN types (Supp. Fig. 8a). Interestingly, unique 282 
contributions of many task variables were higher for IT, further indicating that they might be 283 
more functionally diverse than PT neurons (Supp. Fig. 8b). 284 

 285 
Figure 4. An encoding model uncovers task-specific differences across PyN types. 286 
a) Schematic of the encoding model. Top: Task- and movement-variables account for fluctuations in cortical 287 
activity. Bottom: Weights for each variable define a spatiotemporal event kernel, revealing cortical activity in 288 
response to a specific event (example shows right stimulus kernel in EMX mice). b) Average maps of cvR2. The 289 
model accurately predicted cortical variance for all PyNs. c) cvR2 from two models, using only movement 290 
(‘Movement’) or task variables (‘Task’). In all groups, movements were more predictive than task variables and 291 
accounted for the majority of the full models explained variance (dashed lines). Circles denote sessions. d) 292 
Contributions of movements, stimulus and choice to the model’s total explained variance. Although movements 293 
contributed the most, stimulus and choice also made sizable contributions. 294 

To gain insight into the cortical dynamics related to stimulus and choice, we focused on their 295 
respective event kernels learned by the model for each PyN type. To ensure that both task 296 
variables still accounted for a sizable amount of the observed neural activity (instead of all 297 
variance being explained by movements), we first computed how much variance the stimulus 298 
and choice kernels contribute to the full model compared to the sum of all movement variables 299 
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(Fig. 4d). Here, although the combined movement variables made the largest contributions 300 
(~60% of the model’s total explained variance), both stimulus and choice also made sizable 301 
contributions to the model (10-20% explained variance in all PyN types). This demonstrates that 302 
stimulus and choice remain important for understanding cortical activity patterns and can be 303 
leveraged to selectively isolate task-related activity. 304 

We then focused on cortical responses to the auditory stimulus. In contrast to trial averages of 305 
ΔF/F (Fig. 3c), the stimulus kernels in EMX mice uncovered clear sensory-locked and lateralized 306 
responses in auditory, parietal and frontal cortex (Fig. 4a, bottom; Fig. 5a, top). Other areas, such 307 
as somatosensory and visual cortex, were inhibited. Sensory-locked responses were also present 308 
in auditory, parietal and frontal cortices of PT and IT mice (Fig. 5a, center and bottom). 309 
However, the cortex-wide response patterns were not identical: for instance, no inhibition was 310 
apparent in PT mice. Sensory responses were particularly distinct in the parietal cortex (Fig. 5b). 311 
Responses in EMX and IT mice were more anterolateral in parietal area A while PT responses 312 
were surprisingly prominent and more posteromedial at the border between area AM and RS. 313 

 314 
Figure 5. PyN-specific differences are evident in the location and specificity of cortical stimulus responses. 315 
a) Left: Response kernels for contralateral stimuli over all EMX (red), IT (green), and PT mice (blue), averaged 316 
between 0 and 200 ms. Right: Stimulus-evoked activity in auditory (blue), parietal (red), and frontal cortex (yellow). 317 
Dashed circles in the left stimulus maps show locations of respective cortical areas. b) Magnified view on parietal 318 
regions of the stimulus maps in (a). PyNs differed in the location of sensory responses. Arrows show location of 319 
parietal areas A, AM and the RS. c) Side-specific stimulus responses, computed as the difference between contra- 320 
and ipsilateral stimulus kernels. Conventions as in (a). d) Magnified view on parietal regions of side-specific maps 321 
in (c). IT neurons show clear, side-specific responses that were weaker in EMX and absent for PT neurons. 322 

PyN types also differed in their response dynamics following the sensory stimulus. While some 323 
cortical areas, such as auditory cortex, preferentially responded to contralateral stimuli, PT 324 
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neurons in parietal cortex were activated bilaterally in response to ipsi- or contralateral stimuli. 325 
To assess such side-specificity, we computed the difference between the contra- and ipsilateral 326 
stimulus kernels (Fig. 5c, colors indicate regions for which responses differed for contra- versus 327 
ipsilateral stimulus kernels). In EMX mice, we found lateralized responses in auditory, frontal, 328 
and to a lesser extent, parietal cortex (Fig. 5c,d). Lateralized IT activity was found in auditory 329 
and parietal but not frontal cortex. In contrast, PT mice showed clear side-specific responses in 330 
auditory and frontal but not in parietal cortex. Such differences in unilateral versus bilateral 331 
responses in PT and IT neurons may also reflect different functional roles, with unilateral 332 
responses encoding the spatial location of sensory information and bilateral responses signaling 333 
its importance for guiding subsequent decisions. 334 

Having identified PyN-type dependent activity for sensory stimuli, we then examined choice-335 
dependent activity and again observed clear differences across PyN types. In EMX mice, a 336 
number of regions showed choice-related activity, particularly in the frontal cortex, while 337 
sensory and parietal regions were only weakly modulated (Fig. 6a). We also found choice signals 338 
in somatosensory areas of the whiskers and nose that slowly increased over the course of the 339 
trial, even before the stimulus onset (Supp. Fig. 9a). These signals could indicate that mice used 340 
their whiskers to probe the location of the spouts or performed subtle, choice-predictive facial 341 
movements throughout the trial40. In contrast, choice-specific activity in frontal cortex strongly 342 
increased after stimulus onset and remained elevated as the decision progressed from sampling 343 
the stimulus to the subsequent delay period (Fig. 6a, yellow trace). We found equally prominent 344 
choice signals in frontal cortex of PT mice while little choice-predictive activity was seen in IT 345 
mice (Fig. 6b, Supp. Fig. 9b,c). In EMX and PT mice, positive signals for contralateral choices 346 
were concentrated in the medial part of secondary motor cortex (M2) while parts of the primary 347 
motor cortex (M1) were inhibited. This could indicate accumulation of sensory evidence and 348 
motor preparation in M2, and inhibition in parts of M1 when early lick responses must be 349 
witheld41. 350 

Although the choice kernels revealed differences between PyN types, choice-related activity only 351 
accounted for a small amount of the total neural variance (Fig. 4d, Supp. Fig. 8). Since the 352 
encoding model is designed to capture as much variance as possible, we hypothesized that this 353 
approach might miss subtle choice signals that are specific but low in magnitude. The linear 354 
model’s ridge penalty also enforces choice-related variance to be distributed over all correlated 355 
model variables, which might ‘diffuse’ weaker choice-related activity from the choice to other 356 
model kernels. 357 

To selectively isolate all choice-related activity, we therefore built a decoding model, using a 358 
logistic regression choice classifier with L1 penalty (see Methods). In contrast to the encoding 359 
model, this decoder approach isolates the cortical signals that are best suited to predict the 360 
animal’s choices, regardless of their magnitude. For all PyN types, the decoder predicted the 361 
animal’s choices with high accuracy, confirming that cortical activity reliably reflects trial-by-362 
trial choices (Supp. Fig. 10a). When analyzing the decoder weights, we found comparable 363 
patterns to the encoding model’s choice kernels but with much clearer separation of cortical 364 
areas (compare top row ‘Delay’ in Fig. 6c to Fig. 6a, left). Here, positive decoder weights denote 365 
areas that are most predictive for contralateral choices but, importantly, this does not suggest that 366 
these areas are necessarily the most active. For all PyN types, we found significant choice signals 367 
in multiple areas of the anterior cortex that evolved during decisions (Fig. 6c, Supp. Figs. 10, 368 
11). In EMX and PT mice (top and bottom rows), large parts of M2 were again highly choice 369 
predictive, including the anterior lateral motor cortex (ALM) and the medial motor cortex 370 
(MM)21. M2 choice weights strongly increased immediately after stimulus onset and remained 371 
elevated during the subsequent delay period (Fig. 6c,d). Cortical choice signals also persisted 372 
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after removing movement-related activity from the data, suggesting that they are not explained 373 
by choice-predictive animal movements but instead reflect the formation of sensory-driven 374 
decisions in frontal cortex (Supp. Fig. 12). 375 

 376 
Figure 6. The temporal dynamics of choice-related activity differ across PyN types. 377 
a) Left: Averaged choice kernels for EMX mice during the delay period. Positive weights indicate increased activity 378 
for contralateral choices, negative weights indicate choice-related reduction in activity. Right: Choice-related 379 
activity in auditory (blue), parietal (red), and frontal cortex (yellow). Traces are re-aligned to the initiation, stimulus, 380 
delay and response periods, indicated by gaps in weight traces. b) Zoomed-in map for frontal choice kernels of 381 
EMX, IT and PT mice during the delay period. c) Cortical maps of contralateral choice weights for different trial 382 
episodes. Several areas in anterior cortex showed clear choice signals. d) Baseline-corrected decoder weights in 383 
parietal (left) and frontal cortex (right) throughout the trial. Conventions as in (a). Dashed circles in the delay maps 384 
of (c) show the parietal and frontal locations that were used to compute the traces. e) Zoomed-in map for frontal 385 
decoder weights of EMX, IT and PT mice during the delay period. Dashed circle shows location of ALM. 386 
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Surprisingly, we also found a mild ipsilateral choice-preference for M2 in IT mice, despite strong 387 
bilateral activation of frontal cortex during the delay period (Fig. 3c; Supp. Fig. 7). This 388 
ipsilateral choice signal evolved more slowly during the stimulus and delay period (Fig. 6c,d) 389 
and was more spatially restricted to ALM (Fig. 6e). In line with our previous results, no choice 390 
signals were seen in parietal cortex of any PyN type (Fig. 6d, left), suggesting that parietal cortex 391 
is mostly involved in sensory processing instead of choice formation or motor execution42,43. 392 

Compared to the encoding model, the decoding model recovered more finely structured choice 393 
maps, especially in the frontal regions (compare Fig. 6e to 6b), revealing strong contralateral 394 
choice signals in PT and ipsilateral choice signals in IT mice. One possible cause of this 395 
unexpected inversion may be different choice-selectivity of specific IT-subtypes: intracortical 396 
versus corticostriatal (CStr) projection neurons. Earlier work suggested an even distribution of 397 
ipsi- and contralateral choice selectivity in frontal intracortical projection neurons20,21, and we 398 
thus hypothesized that our observed IT choice selectivity is due to the activity of CStr neurons. 399 
To address this directly, we used an intersectional approach that exclusively labels large 400 
populations of CStr neurons by performing multiple bilateral striatal injections of a retrograde 401 
virus expressing Cre (CAV2-Cre) in GCaMP6s reporter mice (Fig. 7a), inducing widespread 402 
expression in CStr neurons (Fig. 7b). As expected, GCaMP6 expression in CStr neurons was 403 
largely confined to layer 5 with sparse expression in deeper layers.  404 

We then used widefield calcium imaging to selectively measure activity from CStr neurons. As 405 
with PT and IT mice, we observed robust fluorescence signals throughout the dorsal cortex 406 
(Supp. Movie 5) and identified visual areas using retinotopic mapping (Supp. Fig. 13a). sNMF 407 
showed that the dimensionality of CStr mice was intermediate between PT and IT activity, and 408 
that the spatial components did not strongly overlap with other PyN types (Supp. Fig. 13b,c). 409 
This clear difference between IT and CStr mice strongly suggests that imaging signals from IT 410 
mice are not solely dominated by IT-positive CStr neurons but represent a mixture of 411 
intracortical- and corticostriatal-projecting IT neurons with distinct activity patterns. 412 

We then trained CStr mice in the auditory discrimination task. Trial-averaged dynamics partially 413 
resembled IT mice, for example in frontal cortex, but also showed clear differences, such as a 414 
lack of pre-stimulus suppression in sensory cortex (Fig. 7c,d; orange versus gray traces). 415 
Differences between CStr and IT mice were also visible in the stimulus kernels from the 416 
encoding model. In CStr mice, stimulus-related activity in parietal cortex was stronger than in 417 
sensory and frontal cortex but the activated parietal regions were more medial than in IT mice 418 
(Fig. 7e). Interestingly, these stimulus-driven parietal regions (Fig. 7f, top) closely resembled 419 
cortical areas that form anatomical and functional connections to the dorsomedial striatum44,45. 420 
As with PT neurons (Fig. 5b,d), parietal CStr responses equally responded to contra- and 421 
ipsilateral stimulation (Fig. 7f, bottom). 422 

To determine whether CStr activity contributed to ipsilateral-preferring IT choice signals, we 423 
repeated the choice decoder analysis. The decoder predicted animals’ choices with equally high 424 
accuracy as for PT and IT mice (Supp. Fig. 13d). We then extracted choice weights for each task 425 
episode. Here, CStr activity was overall similar to that of IT mice, with an even stronger 426 
ipsilateral-choice preference in frontal cortex that started after stimulus onset and lasted 427 
throughout the delay and response periods (Fig. 7g, right). As in IT mice, this inversion from 428 
contra- to ipsilateral choice preference was prominent in area ALM but did not extend to MM, 429 
strongly suggesting that ipsilateral choice preference is driven by IT-CStr neurons. 430 
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 431 

Figure 7. An intersectional approach to measure cortex-wide activity of CStr neurons. 432 
a) Schematic of the retrograde labeling approach. Multiple bilateral injections of retrograde CAV2-Cre virus in 433 
reporter mice robustly induced expression of GCaMP6s in CStr neurons. b) Left: GCaMP6s-expression was robust 434 
throughout the dorsal cortex. Scale bars are 100 µm. Right: Brain slices show robust cortex-wide expression. c) 435 
Cortical dynamics of CStr neurons in the auditory discrimination task. Shown are trial-averages over all correct, 436 
leftward trials in different trial episodes. No clear lateralization was observed in trial averages. d) Averaged activity 437 
in auditory (left) and frontal cortex (right) for CStr (orange) and IT (gray) mice. Dashed lines show times of 438 
initiation and response periods, gray areas the stimulus period. Traces show standard deviation units (SDU). e) Left: 439 
Contralateral stimulus kernel, averaged over all CStr mice, between 0 and 200 ms after stimulus onset. Right: 440 
Colored traces show changes in sensory (blue), parietal (red) and frontal cortex (yellow). Locations for each area are 441 
indicated by dashed circles in the weight map. f) Top: Weight map from (e), zoomed in on parietal cortex. Bottom: 442 
Difference of contra- versus ipsilateral stimulus kernels. g) Left: Cortical weight map from choice decoder during 443 
the delay period, averaged over all CStr mice.  Right: Baseline-corrected decoder weights in parietal (left) and 444 
frontal cortex (right) for CStr (orange) and IT mice (gray). Traces are re-aligned to the initiation, stimulus, delay and 445 
response periods, indicated by gaps in weight traces. h) Weight map from (g), zoomed in on frontal cortex. i) 446 
Example field-of-view from two-photon imaging. Left panel: GCaMP6s-expression in all PyNs (green). Center 447 
panel: retrogradely-labeled CStr neurons, expressing tdTomato (red). Right panels: zoomed-in maps for both 448 
channels and a merged image. j) Left: Overview of significantly choice-tuned neurons in ALM (top) and MM 449 
(bottom), imaged between 200-400 µm. Orange line shows CStr neurons, gray lines are unlabeled PyNs. AUC 450 
values below 0.5 indicate stronger responses for ipsilateral choices. Right: Trial-averaged activity for all choice-451 
selective neurons, separated for ipsi- (red) versus contralateral choices (blue). CStr neurons in ALM (top right) show 452 
higher activity for ipsilateral choices. k) Fraction of cells responding selectively for ipsi- versus contralateral 453 
choices. Top: A higher fraction of CStr neurons in ALM are ipsi-selective (CStrIpsi: 20.4%, CStrContra: 15.5%, 454 
binomial test: p = 0.0018) while unlabeled neurons are more contra-selective (UnlabeledIpsi: 14.3%, UnlabeledContra: 455 
17.2%, binomial test: p = 3.5x10-10). Bottom: The majority of CStr as well as unlabeled neurons in MM are selective 456 
for contralateral choices (CStrIpsi: 10.2%, CStrContra: 19.1%, binomial test: p = 2.7x10-8; UnlabeledIpsi: 9.3%, 457 
UnlabeledContra: 19.6%, binomial test: p < 1x10-10). 458 
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To confirm these results on a single-cell level, we then used two-photon calcium imaging in 459 
Camk2α-tTA;G6s2 mice and labeled CStr neurons through striatal injections of a retrograde 460 
adeno-associated virus (AAVrg-tdTomato) (Fig. 7i). This allowed us to compare the activity of 461 
all PyNs in frontal cortex with tdTomato-labeled CStr neurons in the same animal. Comparing 462 
the choice-tuning of CStr and unlabeled PyNs revealed a specific difference in ipsi- versus 463 
contralateral choice preference in ALM (Fig. 7j). Here, significantly more choice-selective CStr 464 
neurons preferred ipsilateral choices, whereas unlabeled PyNs were mildly contra-selective (Fig. 465 
7k). In agreement with our widefield results, these differences were only seen in ALM but not 466 
MM. Interestingly, this ipsilateral choice preference was also restricted to superficial IT-CStr 467 
neurons at a cortical depth between 200-400 µm. Infragranular CStr neurons (400-600 µm), 468 
which are also often PT cells17, showed strong contralateral choice tuning that was similar to 469 
unlabeled cells (Supp. Fig. 14a). Lastly, we also tested if the neuropil exhibits distinct choice 470 
signals that may have masked somatic activity in our PyN-specific widefield measures (Supp. 471 
Fig. 14b). In all regions and depths, neuropil choice tuning was largely similar to somatic activity 472 
of unlabeled neurons, confirming that widefield measures indeed represented local somatic 473 
activity. Here, IT-specific widefield signals matched the mixed choice-selectivity of superficial 474 
layers, while PT-specific imaging was well-aligned with the clear contralateral choice tuning in 475 
deeper cortical layers. 476 

The observed differences between PyN types suggest that each type may drive distinct aspects of 477 
decision-making. To causally test the functional role of different PyN types, we performed PyN-478 
specific optogenetic inactivation in different cortical areas. We induced Cre-dependent 479 
expression of the inhibitory opsin stGtACR246 by injecting an AAV in the parietal and frontal 480 
cortex of Fezf2-, PlexinD1-, or EMX-Cre mice (Fig. 8a, b, Supp. Table 2). To express stGtACR2 481 
in CStr neurons, we used a combined viral receptor complementation and intersectional approach 482 
to maximize the efficiency of retrograde expression47. First, we simultaneously expressed the 483 
coxsackievirus and adenovirus receptor (CAR) and transduced Cre-dependent stGtACR2 in 484 
cortical neurons. Two weeks later, we performed retrograde-mediated stGtACR2 expression 485 
through striatal CAV2-Cre injections. CAR mediates efficient axonal uptake of CAV2 and 486 
prevents potential viral tropism in subsets of CStr neurons. The coordinates of auditory, parietal, 487 
and frontal injections and subsequent inactivation were determined from our stimulus and choice 488 
analyses (Fig. 5a, 6a; dashed circles). To test whether optogenetic effects are area-specific, we 489 
also targeted the primary visual cortex (V1) in a subset of EMX mice as controls. To simplify the 490 
behavioral task during the optogenetic inactivation experiments, we only presented unilateral 491 
stimuli in each trial and kept the stimulus duration and delay periods constant (1 and 0.5 seconds, 492 
respectively). 493 

In agreement with our imaging results, bilateral optogenetic inactivation of auditory, parietal or 494 
frontal cortex of EMX mice strongly impaired auditory decision accuracy (Fig. 8c). Performance 495 
was unaffected by V1 inactivation, confirming that these areas are selectively required for 496 
auditory decisions. We then illuminated each area for 0.5 seconds during four different task 497 
episodes: Early and late stimulus (the first and last 0.5 seconds of the stimulus period), delay and 498 
response (Fig. 8d). In agreement with our observation that auditory and parietal cortex reflects 499 
stimulus driven activity (Fig. 5a, red and blue traces), inactivation of either area strongly reduced 500 
animal’s performance, particularly during the stimulus period (Fig. 8e, f). Behavioral 501 
impairments (computed as the normalized difference between performance in non-optogenetic 502 
trials and chance) were weaker during the subsequent trial periods, indicating that these areas are 503 
most important for early processing of auditory stimuli. As expected, impairments were strongest 504 
in EMX mice where all PyNs were affected (gray trace).  505 
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In agreement with earlier work48, inhibiting CStr neurons in A1 also affected auditory decisions 506 
(Fig. 8e, orange trace). However, the effects were more transient and weaker compared to 507 
inactivation of EMX neurons, suggesting that CStr neurons were not exclusively required for 508 
accurate task performance. This was even more evident in parietal cortex where impairments 509 
were surprisingly weak when inhibiting either IT or CStr neurons (Fig. 8f, green/orange traces) 510 
while inactivating PT neurons resulted in a more robust impairment (blue trace). This suggests 511 
that the subcortical PT projection pathways in the parietal cortex have a larger causal impact on 512 
sensory processing than intracortical IT or CStr projections, pointing to a role for PT neurons 513 
that extends beyond preparation and execution of movements. 514 

 515 

Figure 8. Temporally restricted, PyN-specific inactivation of parietal and frontal cortex disrupts decisions. 516 
a) Left: Schematic of injection scheme to induce stGtACR2 expression in EMX, IT, or PT neurons. Injections were 517 
performed in auditory, parietal and frontal cortex of transgenic mice to target different PyN types. V1 injections 518 
were performed in a subset of control EMX mice. Right: Intersectional viral approach for targeting CStr neurons. 519 
AAV-DJ-hSYN-DIO-hCAR{off} induced expression of CAR in cortical neurons to promote uptake of CAV2-Cre 520 
virus from the striatum. A second cortical injection induced Cre-dependent stGtACR2 expression in all CStr 521 
neurons. b) Layer-specific expression of stGtACR2-FusionRed in EMX, PT, IT and CStr neurons. c) Behavioral 522 
performance (% correct) of EMX mice during inactivation of V1, auditory, parietal or frontal cortex. Inhibition of 523 
auditory, parietal and frontal cortex, but not V1, significantly reduced task performance. Circles indicate individual 524 
mice, error bars show the s.e.m. d) Schematic of optogenetic inactivation paradigm. 0.5-s long optogenetic 525 
inhibition was performed during the first or last part of the stimulus period, the subsequent delay or the response 526 
period. Light power ramped down after 0.3 seconds. e) Behavioral impairment (% change from control 527 
performance) with inhibition of EMX or CStr neurons in auditory cortex. Circles show mean impairments, error bars 528 
95% confidence intervals. f) Behavioral impairment with inhibition of different PyN types in parietal cortex. 529 
Conventions as in e). g) Behavioral impairment with inhibition of different PyN types in frontal cortex. Conventions 530 
as in f). Stars in all panels indicate significance (bonferroni-corrected p < 0.01, binomial test). 531 

Frontal inactivation resulted in a particularly strong impairment, especially for nonspecific PyN 532 
inactivation (EMX mice, Fig. 8g, gray trace), consistent with a role for frontal cortex in sensory 533 
integration and working memory20,43,49. IT and CStr inactivation resulted in comparable 534 
behavioral impairments during the stimulus and delay periods (Fig. 8g, green and orange traces). 535 
Choice impairments in IT mice are therefore not solely due to the disruption of intracortical 536 
processing20 but also involve alterations of CStr neurons. Inactivating PT neurons equally 537 
impaired animal performance during the stimulus and delay period but showed stronger effects 538 
during the final response period. Impairments in the response period were similar for EMX and 539 
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PT mice, suggesting that PT neurons are particularly involved in licking responses. These results 540 
show that multiple PyN types in frontal cortex are involved in the formation and maintenance of 541 
choices, despite clear differences in their respective choice tuning. Lastly, we also analyzed 542 
licking patterns to test if optogenetic inhibition broadly disrupted animal movements. Frontal 543 
inactivation in the delay period had a mild effect on response latency but did not affect response 544 
probability or licking patterns, arguing against a strong motor impairment (Supp. Fig. 15). This 545 
shows that PyN-specific inhibition selectively reduced the animals’ response accuracy rather 546 
than broadly disrupting their ability for movement initiation and execution. 547 

Discussion 548 
We measured and manipulated PyN subtypes to determine whether they play distinct roles in 549 
decision-making. Cortex-wide activity patterns were PyN subtype-specific, each reflecting 550 
distinct neural dynamics at multiple spatial scales. Functional specificity across PyN subtypes 551 
was also evident during auditory decision-making: activity of each PyN subtype exhibited unique 552 
cortical localization and spatial specificity associated with stimulus and choice. These response 553 
patterns were not seen when imaging from PyNs nonspecifically. Optogenetic inactivation 554 
confirmed that PyN types in parietal and frontal cortex have distinct functional roles, 555 
highlighting the importance of subcortical projection pathways for sensory processing and choice 556 
formation. Taken together, our results suggest that different PyN types form parallel subnetworks 557 
throughout the cortex, are functionally-distinct, and perform separate roles during auditory 558 
decision-making. 559 

Dimensionality reduction of cortical dynamics33,50,51 revealed that nearly all spatial components 560 
were also PyN-subtype-specific. Differences between PyNs are therefore not only present within 561 
parcellated cortical regions18–20 but also evident in large-scale activity patterns. This has 562 
important implications for studies of cortex-wide neural dynamics, which are often based on 563 
indirect measures of neural activity52,53 or pooled activity from all PyNs22,25,54,55. Earlier work 564 
revealed intricate circuit motifs and functional modules that span the entire cortex50,54–57 and 565 
largely follow intracortical connectivity patterns58,59. Our results point to the existence of 566 
additional circuit motifs when specific PyN population are isolated, especially subcortical 567 
projection types, such as PT or CStr neurons. Furthermore, most PyN-specific LocaNMF 568 
components consisted of spatially precise subregions that were smaller than Allen CCF areas. 569 
Detailed analysis of PyN-specific activity might therefore reveal more detailed cortical structures 570 
than could be observed with nonspecific measures. For future studies, a particularly promising 571 
approach to achieve this goal would be to combine large-scale measures of multiple PyN types 572 
with multi-color widefield imaging24,60 and directly observe interactions between PyN-specific 573 
cortical dynamics within the same animal. 574 

Sensory responses were pronounced in auditory, parietal and frontal cortices42,43,61,62 and 575 
revealed unique response patterns for each PyN type. This functional segregation is in line with 576 
recent results from primary sensory areas, such as somatosensory18,63 and visual cortex19, and 577 
strongly suggests that different PyN types play separate roles during sensory processing. 578 
Moreover, the clear differences in magnitude, localization, and lateralization of sensory 579 
responses in parietal and frontal cortex demonstrate that the functional specialization of different 580 
PyN subtypes is a general feature of cortical circuit function.  581 

We selectively inactivated different PyN types across cortical areas to directly test their 582 
involvement in the behavioral task. In agreement with earlier work, inhibiting CStr neurons in 583 
auditory cortex impaired task performance48, suggesting that projections from cortex to striatum 584 
are important for accurate auditory decisions. Moreover, inactivation of parietal cortex also 585 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2021.09.27.461599doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.27.461599
http://creativecommons.org/licenses/by-nc/4.0/


 17 

caused strong behavioral impairments, especially during sensory stimulation. Surprisingly, 586 
inactivation of CStr or IT neurons caused only weak behavioral effects. This shows that the 587 
importance of CStr projections does not generalize from auditory to parietal cortex and also 588 
argues against models in which task-relevant sensory information is directly transmitted from 589 
parietal to frontal cortex to promote decision formation42,62,64. Instead, inactivation of parietal PT 590 
neurons during the stimulus presentation strongly disrupted eventual decisions, highlighting the 591 
importance of subcortical projection pathways for auditory performance. A likely subcortical 592 
target is the SC, which receives inputs from PT neurons18,26 and has been implicated with 593 
somatosensory18 and visual65,66 perception, and decision-making39,67,68. 594 

The strong behavioral effects with inactivation of parietal cortex are at odds with earlier studies 595 
in rats that showed very little or no impact of parietal inactivation in auditory task 596 
performance69,70. Conversely, other work in head-fixed mice had found robust behavioral effects 597 
in visual43,71–73 and auditory62 task performance. While a potential reason for these contradictory 598 
results could be species differences between rats and mice, the precise location of parietal 599 
inactivation most likely plays an important role. Different sensory modalities are processed along 600 
a mediolateral gradient in parietal cortex, emphasizing the need to precisely target specific 601 
parietal areas to obtain a modality-specific behavioral effect62. We also found that parietal 602 
responses of PT and CStr neurons were located more medially than IT neurons, further 603 
emphasizing the need for precise localization. Another important factor is the specific behavioral 604 
task. Our task design required accumulation of sensory evidence and working memory which 605 
engage a wider range of cortical regions72 and might therefore explain the involvement of 606 
parietal cortex for accurate auditory decisions.  607 

The accumulation and memory requirements of the decisions we studied might also explain why 608 
we found clear cortical choice signals, especially in frontal cortex, whereas recent cortex-wide 609 
studies reported little choice-selectivity39,74. The lack of side-specific choice tuning in IT 610 
population data is consistent with earlier work, showing that intracortical projection neurons in 611 
frontal cortex include an equal amount of contra- and ipsilateral choice-preferring cells20,21. In 612 
contrast to other PyNs, CStr neurons were more selective for ipsilateral choices. Using two-613 
photon imaging, we confirmed that this ipsilateral choice preference was also present in 614 
individual CStr neurons but not in unlabeled IT neurons. This confirms that our PyN-specific 615 
widefield results indeed reflect selective somatic activity and not just superficial neuropil signals, 616 
in line with earlier findings that widefield signals are strongly correlated to spiking of cortical 617 
neurons44. Ipsilateral choice signals in CStr neurons were restricted to superficial layers of area 618 
ALM, which is mostly implicated in movement generation13,49. A recent study showed that CStr 619 
projections from the anterior cingulate cortex can inhibit striatal activity and motor behavior75. A 620 
potential reason for the reduced activity of CStr neurons during the response period could 621 
therefore be to disinhibit striatal circuits and release a targeted licking response.  622 

In agreement with our imaging results, frontal inactivation strongly impaired animal behavior 623 
during the stimulus and delay period, suggesting an important role for the translation of sensory 624 
inputs into behavior21,74,76–78. Impairments were largely similar for all frontal PyN types, which 625 
appear to be equally required for choice formation and retention. Frontal PyNs may thus be more 626 
reliant on each other to maintain accurate function than in sensory areas18,19,48. As the only 627 
exception, PT neurons were more important during the response period, consistent with a 628 
specific role of brainstem-projecting PT neurons for motor execution13. 629 

Our work offers a new perspective on cortex-wide dynamics by viewing them through the lens of 630 
different PyN types and strongly supports the view that cortical circuits perform parallel 631 
computations, even within the same cortical layer13,18,19,79. Future work to reveal the circuit logic 632 
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of cortex-wide activity patterns in different behavioral contexts should therefore include PyN 633 
type information to resolve the functional heterogeneity that is often encountered when studying 634 
cortical decision circuits. A powerful tool to achieve this goal are novel mouse lines, such as our 635 
temporally inducible knock-in lines that allowed us to reliably target PT and IT neurons with 636 
high specificity. These new mouse lines also overcome several known problems of earlier 637 
transgenic approaches, unstable expression patterns across cortical areas or mixtures of cell types 638 
due to interactions with surrounding genetic elements26,80. Future studies could explore PyN type 639 
function at even higher granularity by using more specific mouse lines, such as the Cux1-line to 640 
selectively isolates intracortical projection neurons26. Moreover, combining genetic mouse lines 641 
with retrograde labeling will enable the targeting of specific PyN subtypes, such as projection-642 
specific PT neurons12,13, that might serve a large array of functions from sensory processing, to 643 
working memory and motor function13,18. 644 
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Methods 657 

Mouse lines 658 

All surgical and behavioral procedures conformed to the guidelines established by the National 659 
Institutes of Health and were approved by the Institutional Animal Care and Use Committee of 660 
Cold Spring Harbor Laboratory. Experiments were conducted with male mice between the ages of 661 
8 to 25 weeks. No statistical methods were used to pre-determine sample sizes but our sample sizes 662 
are similar to those reported in previous publications22,25. All mouse strains were acquired from 663 
the Jackson Laboratory, the Allen Brain Institute, or generated at Cold Spring Harbor Laboratory. 664 
Transgenic strains crossed to generate double- and triple-transgenic mice used for imaging: Emx-665 
Cre (JAX 005628), LSL-tTA (JAX 008600), Ai93D (JAX 024103), Ai162 (JAX 031562), TRE-666 
GCaMP6s (G6s2, JAX 024742) and H2B-eGFP (JAX 006069). EMX mice, used for calcium 667 
imaging, were bred as Ai93D;Emx-Cre;LSL-tTA. To avoid potential aberrant cortical activity 668 
patterns, EMX mice were on a doxycycline-containing diet (DOX), preventing GCaMP6s 669 
expression until they were 6 weeks or older22,25.  670 

For widefield imaging of PT and IT neurons, inducible knock-in drivers Fezf2-2A-CreER and 671 
PlexinD1-2A-CreER (Supp. Table 2), respectively, were crossed with Ai162 reporter mice to drive 672 
cortex-wide GCaMP6s expression. Cre activity was induced through two doses of intra-peritoneal 673 
injections of tamoxifen (200 mg/kg; 20 mg/ml solution dissolved in corn oil) at P28 and P32. 674 
Histologic characterization revealed pyramidal neuron expression patterns consistent with prior 675 
reports26. For widefield imaging of corticostriatal neurons, we first crossed Ai162 with G6s2 to 676 
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create a new double-transgenic reporter strain Ai162;G6s2 with two hemizygous copies of 677 
GCaMP6s under tetO control. Since LSL-tTA is incorporated in-tandem to the reporter gene in 678 
the Ai162 strain29, this hybrid reporter line permits Cre-dependent expression of GCaMP6s at 679 
higher levels than Ai162 hemizygotes while avoiding potential leaky reporter gene expression that 680 
is sometimes found in Ai162 homozygotes. Next, to achieve widespread GCaMP6s expression in 681 
corticostriatal neurons, we performed striatal injections of retrograde virus (CAV2-Cre) in the 682 
hybrid Ai162;G6s2 reporter line (see section: viral injections). 683 

For two-photon imaging experiments, GCaMP6s expression in pyramidal neurons were generated 684 
using the hybrid strain Camk2α-tTA;G6s2.  685 

General surgical procedures 686 

All surgeries were performed under 1-2% isoflurane in oxygen anesthesia. After induction of 687 
anesthesia, 1.2 mg/kg of meloxicam was injected subcutaneously and sterile lidocaine ointment 688 
was applied topically to the skin incision site. After making a midline cranial incision, the skin 689 
was retracted laterally and fixed in position with tissue adhesive (Vetbond, 3M). We then built an 690 
outer wall using dental cement (C&B Metabond, Parkell; Ortho-Jet, Lang Dental) along the lateral 691 
edge of the dorsal cranium (frontal and parietal bones) to maximize the area of exposed skull. A 692 
custom titanium skull post was then attached to the dental cement. For skull clearing, debris and 693 
periosteum were thoroughly cleaned from the skull followed by the application of a thin layer of 694 
cyanoacrylate (Zap-A-Gap CA+, Pacer technology). 695 

To prepare mice for two-photon imaging, a circular craniotomy (ø = 3 mm) centered over the right 696 
frontal cortex (1.75 mm lateral to midline and 1.75 mm rostral to bregma), was made using a 697 
biopsy punch. A circular coverslip (ø = 3 mm) was then lowered to the surface of the brain and 698 
Vetbond and Metabond were used to seal the window to the skull. Lastly, a titanium skull post 699 
was implanted as described above. 700 

Viral injections 701 

After induction with isoflurane anesthesia, animals were placed in a stereotaxic frame (David Kopf 702 
Instruments). The skull was leveled along the rostral-caudal and medio-lateral axis, allowing for 703 
accurate and reproducible targeting. All injections were made using a programmable nanoliter 704 
injector (Nanoject III, Drummond Scientific, PA). For widefield imaging of CStr mice, widespread 705 
corticostriatal GCaMP6s expression was generated in Ai162;G6s2 reporter mice by performing 706 
bilateral stereotaxic injections of CAV-2-Cre (at 3-4 weeks of age) into the dorsal striatum at three 707 
targets per hemisphere spanning the rostro-caudal axis. The target coordinates (relative to bregma 708 
and dura, in mm) are (1) RC +0.75, ML ±1.8, DV 3.0; (2) RC 0, ML ±2.2, DV 3.1; (3) RC -0.75, 709 
ML ±2.9, DV 3.1. For each striatal target, a burr hole was created using a small dental burr 710 
followed by injection of 1.8×109 purified particles (pp) of CAV-2-Cre using pipettes with long 711 
taper tips pulled from borosilicate capillaries (3.5” Drummond # 3-000-203-G/X, Drummond 712 
Scientific, PA). For two-photon imaging experiments, CStr neurons were labeled through striatal 713 
injections of AAV-2-retro-CAG-tdTomato (using the same approach and coordinates as described 714 
above) in Camk2α-tTA;G6s2 mice. 715 

For cell type-specific optogenetic silencing experiments, we performed bilateral injections in 716 
frontal, parietal, and auditory cortex (coordinates relative to bregma, in mm: frontal cortex: RC 717 
+2.5, ML ±1.5; parietal cortices: RC -1.7, ML ±2.5; auditory cortex: RC -2.5, ML ±4.6) to 718 
induce expression of Cre-dependent stGtACR2 (AAV1-hSyn-SIO-stGtACR2-FusionRed, Upenn 719 
Vector Core, Supp. Table 2). Cortical injections were performed in P42 to P56 Fezf2-2A-CreER 720 
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(PT), PlexinD1-2A-CreER (IT), and EMX-Cre (nonspecific PyNs) reporter mice. In mice with 721 
ligand-dependent Cre recombinase activity, intraperitoneal tamoxifen was administered one 722 
week after viral injections. Injections were made at two depths (300 and 600 µm) per cortical 723 
target. In two EMX-Cre mice, bilateral injections were performed in the frontal and visual cortex 724 
(RC -4, ML ±2.5). To express stGtACR2 in CStr neurons, viral injections were performed in 725 
C57BL/6J mice in two stages. In stage one, we utilized a viral receptor complementation 726 
strategy47 by injecting both AAV-DJ-hSYN-DIO-hCAR{off} and AAV1-SIO-hSyn1-727 
stGtACR2-FusionRed in different cortical locations (targets as described above) in P21-P28 728 
mice.  In stage two, we performed bilateral striatal CAV-2-Cre injections 6 weeks after the initial 729 
cortical injections (see above). hCAR is expressed in all transfected neurons in a Cre-OFF 730 
manner, meaning that Cre expression stops expression of hCAR while inducing expression of 731 
stGtACR2. 732 

Optical fiber implantation  733 

For optogenetic silencing, we expressed the soma-targeted anion-conducting channelrhodopsin 734 
stGtACR2 in target neuronal populations46. Optical fibers (NA = 0.36, ø = 0.4mm, FT400UMT, 735 
Thorlabs) were glued into metal or ceramic ferrules (ø = 1.25 mm, Thorlabs) and secured above 736 
the cortex following viral injections at each target. Ferrule-enclosed optical fiber implantations 737 
immediately followed cortical AAV injections in Fezf2, PlexinD1, and Emx mice and striatal 738 
CAV-2-Cre injections in CStr mice. One polished end of the optical fiber was positioned extradural 739 
to the site of cortical injections and interfaced with thinned skull using cyanoacrylate. Next, the 740 
fiber was fixed to the skull using light-cured glass ionomer (Vitrebond, 3M). Additional layers of 741 
dental cement and dental acrylic (Lang Dental Jet Repair Acrylic; Part#1223MEH) were applied 742 
around the fiber implant and the skull to reinforce for durability and long-term stability. After all 743 
layers were cured, a final outer coating of cyanoacrylate and nail polish were applied. 744 

Behavioral training 745 

The behavioral setup was controlled with a microcontroller-based (Arduino Due) finite state 746 
machine (Bpod r0.5, Sanworks) using custom Matlab code (2015b, Mathworks) running on a 747 
Linux PC. Servo motors (Turnigy TGY-306G-HV) and touch sensors were controlled by 748 
microcontrollers (Teensy 3.2, PJRC) running custom code. Fifty-four mice were trained on a 749 
delayed, spatial discrimination task. Mice initiated trials by placing their forepaws on at least one 750 
of the two handles, which were mounted on servo motors that rotated out of reach during the inter-751 
trial period. Upon trial initiation, animals placed their forepaws on the handles and, after a variable 752 
duration of 0.25-0.75 seconds of continuous contact, the auditory stimulus was presented. Auditory 753 
stimuli consisted of a sequence of Poisson-distributed, 3-ms long auditory click sounds36, 754 
presented from either a left and/or right speaker for a variable duration between 1 and 1.5 seconds. 755 
The stimulus period was followed by a variable delay of up to 1 second, then the servo motors 756 
moved two lick spouts into close proximity of the animal’s mouth. If the animal licked twice on 757 
the side where more clicks were presented, a drop of water reward was dispensed. The amount of 758 
water rewarded per trial (typically 1.5 to 3 µl) was constant within a single session but was 759 
sometimes adjusted daily based on the animal’s body weight. After one spout has been licked 760 
twice, the contralateral spout moved out of reach to force the animal to commit to its decision. 761 

All trained mice were housed in groups of two or more under reverse light cycle (12- hour dark 762 
and 12-hour light) and trained during their active dark cycle. Animals were trained over the course 763 
of approximately 30-60 days. After 2-3 days of restricted water access, animals began habituation 764 
to head fixation and received water from spouts in the behavior chamber. During these sessions, 765 
unilateral auditory stimuli were presented followed by a droplet of water dispensed freely from the 766 
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ipsilateral water spout. After several habituation sessions, animals were then required to touch the 767 
handles to trigger stimulus presentation. Once mice could reliably reach for the handles, the 768 
required touch duration was progressively increased up to 0.75 seconds. During the next stage of 769 
training, self-performed trials, where both spouts moved within reach of the animal following 770 
stimulus presentation, were progressively introduced. An animal was considered trained when its 771 
detection performance across two or more sessions was above 80%. 772 

Behavioral monitoring 773 

Data was collected from multiple sensors in the behavioral setup to measure different aspects of 774 
animal movement. Touch sensors using a grounding circuit on handles and lick spouts detected 775 
contact with the animal’s forepaws and tongue, respectively. A piezo sensor (1740, Adafruit LLC) 776 
below the animal’s trunk was used for monitoring body and hindlimb movements. Two webcams 777 
(C920 and B920, Logitech) were used for video recording of animal movements. Cameras were 778 
positioned to capture the animal’s face (side view) and the ventral surface of the body (ventral 779 
view).  780 

Widefield imaging 781 

Widefield imaging was done as reported previously23,32,81 using an inverted tandem-lens 782 
macroscope in combination with an sCMOS camera (Edge 5.5, PCO) running at 30 fps. The top 783 
lens had a focal length of 105 mm (DC-Nikkor, Nikon) and the bottom lens 85 mm (85M-S, 784 
Rokinon). The field of view was 12.5 x 10.5 mm2 and the imaging resolution was 640 x 540 pixels 785 
after 4x spatial binning, resulting in a spatial resolution of ~20 μm per pixel. To capture GCaMP 786 
fluorescence, a 525 nm band-pass filter (#86-963, Edmund optics) was placed in front of the 787 
camera. Using excitation light at two different wavelengths, we isolated Ca2+-dependent 788 
fluorescence and corrected for intrinsic signals (e.g., hemodynamic responses)22,25. Excitation light 789 
was projected on the cortical surface using a 495 nm long-pass dichroic mirror (T495lpxr, Chroma) 790 
placed between the two macro lenses. The excitation light was generated by a collimated blue LED 791 
(470 nm, M470L3, Thorlabs) and a collimated violet LED (405 nm, M405L3, Thorlabs) that were 792 
coupled into the same excitation path using a dichroic mirror (#87-063, Edmund optics). We 793 
alternated illumination between the two LEDs from frame to frame, resulting in one set of frames 794 
with blue and the other with violet excitation at 15 fps each. Excitation of GCaMP at 405 nm 795 
results in non-calcium dependent fluorescence82, allowing us to isolate the true calcium-dependent 796 
signal by rescaling and subtracting frames with violet illumination from the preceding frames with 797 
blue illumination. All subsequent analysis was based on this differential signal. The imaging data 798 
was then rigidly aligned to the Allen common coordinate framework (CCF), using four anatomical 799 
landmarks: the left, center and right points where anterior cortex meets the olfactory bulbs, and 800 
the medial point at the base of retrosplenial cortex. Retinotopic visual mapping experiments31,83 801 
confirmed accurate CCF alignment and showed high correspondence between functionally 802 
identified visual areas and the CCF across PyN types (Fig. 1c). 803 

Two-photon imaging 804 

We used a two-photon resonant scanning microscope (Moveable Objective Microscope, Sutter 805 
Instruments) for session-long, continuous image acquisition at 30.9 Hz. A 16X, 0.8 NA Nikon 806 
objective lens was used for single-plane imaging with a 512x512 pixels (575 µm x 575 µm) fields 807 
of view. Mode-locked illumination at 930 nm was delivered using a Ti:Sapphire laser (Ultra II, 808 
Coherent). Imaging frames were aligned with behavior control events synchronized acquisition of 809 
analog galvanometric and Bpod output signals. Depth of focal planes was 200-400 µm below the 810 
dura. Emission was collected using band-pass red (670/50 nm) and green (525/50 nm) filters 811 
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(Chroma Technologies). MScan software (Sutter Instruments) was used for image acquisition. 812 
Recordings were performed in ALM (2.5 mm rostra and 1.5 mm lateral to bregma) or MM (1.5 813 
mm anterior and 1 mm lateral to bregma) in randomized order across mice. Across imaging 814 
session, we selected planes that differed from those of prior sessions in order to maximize the 815 
number of unique neurons by. 816 

Raw images were processed using the Suite2P package84 which performed motion correction, 817 
model-based ROI detection, correction for neuropil contamination, and spike deconvolution. 818 
Somatic and non-somatic (neuropil) ROI identification was performed through a combination of 819 
pre-trained classifier and manual curation. Somata with tdTomato expression were identified in a 820 
two-step process. First, potential green channel bleed-through was subtracted from the red channel 821 
using non-rigid regression with individual channels being divided into smaller blocks. Next, all 822 
sessions were then manually inspected to identify a conservative red fluorescence threshold, which 823 
was subsequently applied to all sessions. Analyses of neural activity were based on deconvolved 824 
values (“inferred spiking activity”). Since the deconvolved values do not represent absolute firing 825 
rates, we performed z-score normalization for each neuron before computing trial-averages across 826 
cells. The total number of recorded neurons per session was 396 ± 105 (mean ± standard deviation). 827 

Optogenetic inactivation 828 

Photostimulation was performed using a 470 nm high-power LED (M470F3, Thorlabs) with a 829 
power density of 25 mW/mm2. Stimuli consisted of a square wave stimulus that ramped down in 830 
power for 200 milliseconds, to avoid an excitatory post-illumination rebound due to sudden release 831 
of inhibition85. To prevent animals’ visual detection of photostimulation, either through external 832 
leakage from light-insulated mating sleeves or transmission to the retina across the brain, an 833 
external LED with matching wavelength placed at the center of the animal’s visual field was 834 
flashed throughout the duration of every trial. Photoinhibition was performed in 20% of total trials 835 
and randomly interleaved between light-off trials. During each session, only bilateral frontal, 836 
parietal or visual cortex inhibition was performed. Once an animal was habituated and able to 837 
complete detection behavior trials with > 90% accuracy, optogenetic inactivation trials were 838 
introduced. During these initial sessions, optogenetic inhibition was performed from the beginning 839 
of the stimulus epoch until the end of the delay epoch. Additionally, we performed 0.5-second 840 
inhibition during four pre-defined epochs of the detection behavior trials: (1) first half of the 841 
stimulus, (2) second half of the stimulus, (3) delay, (4) response. 842 

Immunohistology, microscopy and image analysis 843 

For a given animal, after all experiments were concluded, we performed transcardial perfusion 844 
with PBS followed by fixation with 4% PFA in 0.1 M PB. Brains were post-fixed in 4% PFA for 845 
an additional 12-18 hours at 4°. Prior to sectioning, brains were rinsed three times in PBS and 846 
embedded in 4% agarose-PBS. Slices 50 μm in thickness were made using a vibrating microtome 847 
(Leica, VT100S). Sections were then suspended in blocking solution (10% Normal Goat Serum 848 
and 0.1% Triton-X100 in 1X PBS) for 1 hour followed by overnight incubation at 4°C with the 849 
primary antibody. Next, sections were washed with PBS, incubated for 1 h at room temperature 850 
with the secondary antibody at 1:500 dilution. For visualization of GCaMP6s, we used primary 851 
goat polyclonal anti-GFP antibody (Abcam) and secondary donkey anti-goat Alexa Fluor 488 852 
(Abcam). Sections were then dry-mounted on slides using Vectashield (Vector Labs, H1000) prior 853 
to imaging. No immunostaining was performed for the visualization of FusionRed or tdTomato. 854 
Imaging was performed using upright fluorescence macroscope and microscope (Olympus BX61). 855 
Images were acquired using Ocular Scientific Image Acquisition Software (Teledyne Imaging) 856 
and visualization and analysis were performed using ImageJ/FIJI software packages. 857 
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Quantification cortex-wide gene expression 858 

Quantification of cell counts across the dorsal cortex was performed using publicly available serial 859 
two-photon tomography (STPT) datasets. (http://www.brainimagelibrary.org/)26. Cre expression 860 
patterns for IT and PT neurons were characterized with data from eight mice, expressing either 861 
Cre-dependent GFP (PlexinD1-2A-CreER;Snap25-LSL-2A-EGFP) or tdTomato (Fezf2-2A-862 
CreER;Ai14), respectively. Cell counting was then performed via automated soma detection, using 863 
a trained convolutional neural network86. STPT datasets were then registered to the Allen CCF v3 864 
using the elastix toolbox87. To obtain the density of Cre-expressing neurons for individual cortical 865 
areas, we used the area outlines from the Allen CCF and computed the average sum of detected IT 866 
or PT neuron in each area, normalized by its surface area. 867 

Preprocessing of neural data 868 

We first performed motion correction on each imaging frame, using a rigid-body image 869 
registration method implemented in the frequency domain88 that aligned each frame to the median 870 
over all frames in the first trial. To reduce the computational cost of subsequent analyses, we then 871 
computed the 200 highest-variance components using singular value decomposition (SVD). These 872 
components accounted for at least 95% of the total variance in each recording, whereas computing 873 
500 components accounted for little additional variance (~0.15%). SVD reduces the raw imaging 874 
data Y to a matrix of ‘spatial components’ U (of size pixels by components), ‘temporal 875 
components’ VT (of size components by frames) and singular values S (of size components by 876 
components) to scale temporal components to the original data. The resulting decomposition has 877 
the form Y = USVT. All subsequent analysis in the time domain (such as the encoder and decoder 878 
models described below) were then performed on the product SVT and the respective results were 879 
later multiplied with U, to recover results for the original pixel space. To avoid slow drift in the 880 
imaging data, SVT was high-pass filtered above 0.1 Hz using a zero-phase, second-order 881 
Butterworth filter. 882 

To compute trial averages and perform choice decoder analysis (see below), imaging data in 883 
individual trials were aligned to the four trial periods, each marked by a specific event. This was 884 
required because the duration of different trial events was randomized to reduce temporal 885 
correlations, e.g. between trial initiation, the stimulus presentation and subsequent lick responses. 886 
The first period (Initiate) was aligned to the time when animal initiated a trial by touching the 887 
handles, the second (Stimulus) was aligned to the stimulus onset, the third (Delay) to the end of 888 
the stimulus sequence, and the fourth (Response) to the time when spouts were moved in to allow 889 
a lick response. After alignment, the total trial duration was 2 seconds and durations of respective 890 
trial episodes were 0.5 (Initiate), 1 (Stimulus), 0.2 (Delay), and 0.3 seconds (Response). 891 

Spatial clustering and classification 892 

To obtain more interpretable spatial components and assess the dimensionality of cortical activity 893 
in different PyN types, we used semi-nonnegative matrix factorization (sNMF). As with SVD, 894 
sNMF also creates spatial and temporal components for each session and for each mouse but 895 
enforces spatial components to be strictly positive. The reason why temporal components were not 896 
also enforced to be non-negative is that our hemodynamic correction resulted in temporal 897 
dynamics that can be either positive or negative, relative to baseline. We used the LocaNMF 898 
toolbox by Saxena et al33 (https://github.com/ikinsella/locaNMF) to transform the spatial and 899 
temporal components U and SVT into two corresponding matrices A and C, where A is a matrix 900 
of non-negative spatial components (of size pixels by components) and C the corresponding 901 
temporal components (of size components by frames). In addition to regular sNMF, the LocaNMF 902 
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toolbox can be initialized with spatial constraints that are based on the Allen CCF. To obtain 903 
spatially restricted localized LocaNMF components, we constructed a map of larger seed regions 904 
by merging several smaller areas in the Allen CCF together (Fig. 2e). This region map is then used 905 
to enforce that each component in A is sparse outside the boundary of a given region. The amount 906 
of possible overlap between regions is specified by a localization threshold which specifies the 907 
percentage of a given component that is constrained to be inside a single region’s boundary. To 908 
obtain dense spatial components that were mostly driven by the local correlations between pixels 909 
and could also lie at the border between seed regions, we used a localization threshold of 50%. To 910 
obtain unconstrained sNMF spatial components, we also used the LocaNMF toolbox but only 911 
provided a single region that spanned the entire cortex. This resulted in cortex-wide components, 912 
similar to vanilla sNMF, while ensuring that all other analysis steps were done identically for 913 
sNMF and LocaNMF components. In both cases, we determined how many components in A and 914 
C were needed to explain 99% of the variance of Y (with Y=AC) after the initial SVD. 915 

To compare spatial sNMF and LocaNMF components from different PyN types, we embedded 916 
them in a 2-dimensional space, using Uniform Manifold Approximation and Projection (UMAP) 917 
analysis (Fig. 2c,g). UMAP analysis was performed with the UMAP toolbox by McInnes et al.35 918 
(https://github.com/lmcinnes/umap). For each recording, the first 20 spatial components in A 919 
(either from sNMF or region-constrained LocaNMF) were downsampled by a factor of 2, 920 
smoothed with a 2-D gaussian filter (5 x 5 pixels, 2 pixel standard deviation) and peak-normalized. 921 
Components from all recordings and animals were then combined into a larger matrix (of size 922 
pixels by components) and we used UMAP to project the first (pixel) dimension into two, 923 
maximally separating non-linear dimensions. Each point in the two dimensional space (Fig. 2c,g) 924 
therefore reflects a single component from one animal in a given imaging session. 925 

The same UMAP approach was used for temporal sNMF and LocaNMF components. Before the 926 
UMAP projection, we first computed the trial-averaged and z-scored activity of each component 927 
to achieve temporal dynamics that are comparable across sessions and individual mice.  928 

To identify PyN types based on individual spatial components (Fig. 2d, h), we performed a separate 929 
UMAP projection for each mouse. Each of these projections excluded all components from the 930 
test animal, ensuring that the UMAP projection was not shaped by potential noise patterns or other 931 
unknown features of the test components that could affected the classifier result. We then tested 932 
the first 20 components of each session of the test animal with 100 repetitions per component. In 933 
every repetition, 1000 components from each PyN type were randomly selected from the pre-934 
computed UMAP space and we then assigned the PyN type of the test component based on the 935 
identity of its 10 nearest neighbors in UMAP space. For LocaNMF components, we performed the 936 
same procedure but additionally ensured to use an equal number of components from each seed 937 
region and PyN type to prevent PyN types with a larger number of components in a given region 938 
from biasing the classifier result. Classifier accuracy for each session (Fig. 2d,h) was then 939 
computed as the mean probability over all repetitions to accurately identify the PyN type. 940 

To determine the size of PyN-predictive LocaNMF components, we selected all spatial 941 
components that achieved a classification accuracy of 99% percent or higher (all other components 942 
were assigned as non-specific) and thresholded each component above 0.2 to obtain a binary 943 
image. The size of each component was then computed as the square root of the sum of all pixels 944 
and converted to square millimeters. 945 

Linear encoding model 946 
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The linear encoding model was based on a combination of task- and movement-related variables, 947 
as described previously32. Each variable consisted of multiple regressors that were combined into 948 
a larger design matrix. Binary regressors contained a single pulse that signaled the occurrence of 949 
specific events, such as the stimulus onset, and additional regression copies that were shifted 950 
forward or backward in time to account for changes in cortical activity before or after the respective 951 
event. For auditory stimuli, the time-shifted copies spanned all frames from the onset of the 952 
auditory sequence until the end of the trial. Individual click sounds were also captured by an 953 
additional regressor set that spanned the 2 seconds after click onset. For motor events, like licking 954 
or whisking, the time-shifted copies spanned the frames from 1 s before until 2 s after each event. 955 
Lastly, for some variables, such as the previous choice, the time-shifted copies spanned the whole 956 
trial. Other variables were analog, such as measures from the piezo sensor or the pupil diameter, 957 
and also contained the 200 highest temporal components of video information from both cameras 958 
(using SVD as described above). This ensured that the model could account for animal movements 959 
and accurately isolate task-related activity. Movement and task variables were additionally 960 
decorrelated due to the variable durations of the initiation, stimulus and delay period. The model 961 
was fit using ridge regression to allow for similar contributions from different correlated variables. 962 
To determine the regularization penalty λ for each column of the widefield data, we used marginal 963 
maximum likelihood estimation (MLE)89. MLE expresses the encoding model as a Bayesian linear 964 
model and determines the ridge penalty λ by maximizing the marginal likelihood π(D | λ) of the 965 
model, given data D. This was done iteratively by testing different λ values to determine a global 966 
minimum for the negative log-likelihood −log π(D | λ). The main advantage of this approach is 967 
that λ can be determined without computationally expensive cross-validation procedures, resulting 968 
in a ~50-fold decrease in required compute time on a regular work station. Moreover, the faster 969 
MLE approach allows adjusting λ values for individual widefield data components which results 970 
in higher cross-validated explained variance of the encoding model, compared to a regular cross-971 
validation approach (Supp. Fig. 16). 972 

Variance analysis 973 

Explained variance (cvR2) was obtained using 10-fold cross-validation. This was done by fitting 974 
the model weights to a continuous 90%-large section of the imaging data and then computing the 975 
explained variance in the remaining 10% of the data. The procedure was repeated for 10 times, 976 
while shifting the training and test data to ensure that each part of the recording was used in the 977 
test data in one of the folds. To assess unique explained variance by individual variables (ΔR2), 978 
we created reduced models in which all regressors of a specific variable were shuffled in time. 979 
Shuffling of each regressor was done within individual trials to account for a potential impact of 980 
very slow temporal correlations due the kinetics of the calcium indicator. The difference in 981 
explained variance between the full and the reduced model yielded the unique contribution ΔR2 of 982 
that model variable that could not be explained by other variables in the model. The same approach 983 
was used to compute unique contributions for groups of variables, i.e., ‘Movements’ and ‘Task’. 984 
Here, all variables that corresponded to a given group were shuffled at once.  985 

Decoding model 986 

To predict animal’s left/right choices from widefield data, we trained logistic regression decoders 987 
with an L1 penalty on the temporal component matrix SVT in each session. The L1 penalty was 988 
defined as the inverse of the number of observations in the test dataset during cross-validation, 989 
which yielded a good balance between the cross-validated prediction accuracy of the decoder and 990 
the number of non-zero model regressors. When decoding choice, we randomly removed trials 991 
until there was an equal amount of correct and incorrect trials where mice chose the left and the 992 
right side. By balancing left/right choice sides and correct/incorrect trials, we ensured that the 993 
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decoder would not predict choices due to corresponding sensory information or would be 994 
influenced by potential side biases. The logistic regression model was implemented in Matlab 995 
using the ‘fitclinear’ function and run repeatedly for each time point in individual trials after re-996 
aligning them to trial periods as described above. In each session, all decoder runs were performed 997 
with the same amount of trials (at least 250 trials) and we used 10-fold cross-validation to compute 998 
decoder accuracy at each time point in the trial. Beta weights were averaged from all models 999 
created during cross-validation and convolved with the spatial component matrix U to create 1000 
cortical maps of the choice decoder weights. 1001 

Receiver operating characteristic (ROC) analysis  1002 

We computed the area under the ROC curve (AUC) to quantify choice preference of single neurons 1003 
obtained from two-photon imaging. AUCs were computed by comparing the mean neural activity 1004 
during the stimulus and delay period in all trials with ipsilateral versus contralateral choices. AUC 1005 
values denote the specificity of the neural activity to ipsi- or contralateral choices, with values 1006 
below 0.5 signifying ipsilateral choice-selectivity and AUC values above 0.5 contralateral choice-1007 
selectivity. To identify statistically significant choice-selective neurons, AUC values were also 1008 
computed for shuffled trial labels (randomly assigning ipsi- and contralateral choices across trials) 1009 
for each neuron. This procedure was repeated 100 times to create a distribution of shuffled AUC 1010 
values for each neuron. A neuron’s choice selectivity was then deemed significant if the probability 1011 
of obtaining the actual AUC from the shuffled AUC distribution was less than 0.05. 1012 

 1013 

Code availability statement: Code for preprocessing (e.g., hemodynamic correction and 1014 
dimensionality reduction) is available here: 1015 
https://github.com/churchlandlab/WidefieldImager/tree/master/Analysis. 1016 
A cloud-based option for many of these steps is available at Neurocaas: http://neurocaas.org. To 1017 
simplify the interaction with the online platform, a graphical user interface, dedicated to 1018 
launching analysis and retrieving results from the NeuroCAAS platform is available here: 1019 
(https://github.com/churchlandlab/wfield).  Code for the ridge regression used in the encoding 1020 
model is available on the lab’s GitHub page: https://github.com/churchlandlab/ridgeModel. 1021 

Data availability statement: We will make preprocessed datasets from all animals available at 1022 
time of publication. As in previous publications, we will also include a “readme” statement that 1023 
explains how the data are stored. An example dataset has already been shared (DOI: 1024 
10.5281/zenodo.5834513) on Zenodo to demonstrate the feasibility of this pipeline: 1025 
https://zenodo.org/record/5834513#.Yd3jHViZPX8. 1026 

1027 
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Supplementary Table 1: Overview of different model variables 1028 
 1029 
 Variable name  Description  Variable type  Category  
Hindlimb  Piezo sensor below the 

animal  
Analog + Event kernel  Movement  

Handles (Left / Right)  Touch events from handle 
sensors  

Event kernel  Movement  

Licks (Left / Right)  Lick events from spout 
sensors  

Event kernel  Movement  

Pupil  Pupil diameter, extracted 
from face camera  

Analog + Event kernel  Movement  

Nose  Nose movements, 
extracted from face camera  

Analog + Event kernel  Movement  

Whisking  Whisker movements, 
extracted from face camera  

Analog + Event kernel  Movement  

Body  Average motion energy 
across all body camera 
pixels  

Analog + Event kernel  Movement  

Video  Video dimensions from 
both cameras (SVD)  

Analog  Movement  

Video ME  Video dimensions from 
motion energy in both 
cameras  

Analog  Movement  

Choice (Left / Right) All frames in either a left- or 
a rightward choice trial  

Event kernel  Task  

Previous choice  Every trial after a leftward 
choice trial  

Event kernel  Task  

Previous modality  Every trial after a visual 
trial  

Event kernel  Task  

Previous success  Every trial after a 
successful trial  

Event kernel  Task  

Success  All successful trials  Event kernel  Task  
Water given  All frames after a water 

reward was given  
Event kernel  Task  

Auditory stimulus (Left / 
Right)  

All frames after a left- or 
rightward auditory stimulus  

Event kernel  Task  

Visual stimulus (Left / 
Right)  

All frames after a left- or 
rightward visual stimulus  

Event kernel  Task  

 1030 

Supplementary Table 2: Number of mice included for each experiment 1031 

 Optogenetics Widefield Two-photon 
Emx 9 4  - 
CStr 9  4 - 
Fezf2 8  5 - 
PlexinD1 8  4 - 
Camk2α-tTA;G6s2 - - 3 

  1032 
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Supplementary Table 3: Resources 1033 

Reagent/resource Source Identifier 
Antibodies 
Goat polyclonal anti-GFP Abcam ab6673 
Donkey Anti-Goat Alexa Fluor 488 Abcam ab150129 
Viral strains 
CAV-2-Cre Plateforme de 

Vectorologie de 
Montpellier 

N/A 

AAV1-hSyn1-SIO-stGtACR2-FusionRed Penn Vector Core 105677-
AAV1 

AAVrg-CAG-tdTomato Penn Vector Core 59462-
AAVrg  

AAV-DJ-hSYN-DIO-hCAR{off} 
(Titer: 5.7e12 vg/ml) 

Laboratory of Adam 
Kepecs 

 

Experimental Models 
Mouse: Emx1-IRES-Cre: Emx1tm1(cre)Krj The Jackson Laboratory JAX#005628 
Mouse: ROSA:LNL:tTA: 
Gt(ROSA)26Sortm1(tTA)Roos 

The Jackson Laboratory JAX#008600 

Mouse: Camk2α-tTA: Tg(Camk2a-tTA)1Mmay The Jackson Laboratory JAX#003010 
Mouse: Ai93(TITL-GCaMP6f)-D (Ai93D): 
Igs7tm93.1(tetO-GCaMP6f)Hze 

The Jackson Laboratory JAX#024103 

Mouse: Ai162(TIT2L-GC6s-ICL-tTA2)-D 
(Ai162D): Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze 

H. Zeng, Allen Institute 
for Brain Science 

JAX#031562 

Mouse: TRE-GCaMP6s (G6s2): Tg(tetO-
GCaMP6s)2Niell 

The Jackson Laboratory JAX#024742 

Mouse: H2B-eGFP: Tg(HIST1H2BB/EGFP)1Pa The Jackson Laboratory JAX#006069 
Mouse: Fezf2-2A-CreER: Fezf2tm1.1(cre/ERT2)Zjh The Jackson Laboratory JAX#036296 
Mouse: PlexinD1-2A-CreER: Plxnd1tm2.1(flpo)Zjh The Jackson Laboratory JAX#036295 
Software 
MATLAB 2018B Mathworks  
Python 3.6.10 Python Software 

Foundation 
 

Other 
Bpod State Machine r0.5 Sanworks N/A 

 1034 

  1035 
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