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Abstract
When fields lack consensus standards and ground truths for their analytic methods, reproducibility can
be more of an ideal than a reality. Such has been the case for functional neuroimaging, where there
exists a sprawling space of tools for constructing processing pipelines and drawing interpretations. We
provide a critical evaluation of the impact of differences across five independently developed minimal
preprocessing pipelines for functional MRI. We show that even when handling identical data,
inter-pipeline agreement was only moderate. Critically, this highlights a dependence of downstream
analyses on the chosen processing pipeline, and sheds light on a potentially driving factor in prior
reports of limited reproducibility across studies. Using a densely sampled test-retest dataset, we show
that limitations imposed by inter-pipeline agreement mainly become appreciable when the reliability of
the underlying data is high, which is increasingly the case as the field progresses into an era of
unprecedented data quality and abundance. We highlight the importance of comparing analytic
configurations, as both widely discussed (e.g., global signal regression) and commonly overlooked
(e.g., MNI template version) decisions were found to lead to marked variation. We provide
recommendations for incorporating tool-based variability in functional neuroimaging analyses and a
supporting infrastructure.
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Introduction
As the neuroscience community intensifies its efforts to characterize the neural bases of individual differences
in brain and behavior, recent years have witnessed a growing appreciation of the importance of measurement
reliability1–4. Theoretical and empirical studies have emphasized reliability as an upper bound for validity5, as
well as a determinant of statistical power, observable effect sizes, and sample size requirements6,7. This
increased focus on quantifying and optimizing reliability is particularly impacting the functional magnetic
resonance imaging (fMRI) literature, where it is serving to improve the scientific and eventual clinical utility of
functional connectivity mapping — a primary technique for non-invasively mapping brain organization8,9.
Specifically, a multitude of studies have pointed to the ability to dramatically improve measurement reliability by
increasing the amount of fMRI data obtained per individual (i.e., 25+ minutes vs. the more traditional 5–10
minutes10) and/or adopting alternative data acquisition (e.g., multiecho fMRI11) or analytic strategies (e.g.,
bagging, multivariate modeling12,13).

However, multiple forms of reliability exist. Most prior efforts in neuroimaging have focused on test-retest
reliability8,14, which is a critical prerequisite for any laboratory test that aims to quantify individual differences in
a stable trait. Another important form of reliability is inter-rater reliability (or agreement), which can refer to
reliability across data acquisition instruments (e.g., MRI scanners), or processing and analytic techniques (e.g.,
pipelines). Although less commonly evaluated, inter-pipeline agreement (IPA) (i.e., the similarity of derived data
generated by independent processing pipelines when handling the same data) is critical, as it ensures the
suitability of data for comparison and/or aggregation across studies. IPA is particularly important for fMRI
analysis, where there are many independently developed tools that perform conceptually similar, though not
identical, operations.

The presence of a common set of minimal preprocessing steps is assumed to reduce analytic variability and
promote reproducibility. However, a growing number of studies suggest that differences in the implementation
of these processing steps or how they are “glued together” can yield notably different outcomes. Studies
systematically comparing specific preprocessing steps such as segmentation15, motion correction16, and
registration17–19 have reported substantial variation in outputs generated across independently developed
packages when applied to the same data. In the analysis of task fMRI data, end-to-end pipelines built using
different software packages have been found to produce marked variation in the final results20–23. Most recently,
seventy teams independently analyzed the same dataset with their preferred preprocessing and statistical
analysis methods, and reported inconsistent hypothesis test results24. While these findings collectively highlight
that analytical variability can have substantial effects on the scientific conclusions of neuroimaging studies,
there remains a conspicuous lack of clarity regarding the sources of these differences.

Here, we perform a systematic evaluation, replication, and source localization of differences that emerge
across fMRI preprocessing pipelines through the lens of functional connectomics. First, we extended the
literature examining pipeline implementation-related variation in fMRI by comparing the results generated using
minimal preprocessing in five distinct and commonly used pipelines for functional connectivity analysis —
Adolescent Brain Cognitive Development fMRI Pipeline (ABCD-BIDS)25, Connectome Computational System
(CCS)26, Configurable Pipeline for the Analysis of Connectomes default pipeline (C-PAC:Default)27, Data
Processing Assistant for Resting-State fMRI (DPARSF)28 and fMRIPrep Long-Term Support version
(fMRIPrep-LTS [volume-based pipeline])29. As indicated in Table 1, while the minimal processing pipelines are
generally aligned with respect to their fundamental steps, the specifics of implementation are notably different.
To aid in the interpretation of this table, in Supplemental Section S1 we have included a table summarizing the
conceptual differences and similarities across pipeline pairs. Second, we demonstrated the role that pipeline
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replication can play as a means of exploring analytic variation and assessing the robustness of findings. To this
end, we leveraged and extended the flexibility of C-PAC to replicate non-MATLAB dependent minimal
processing pipelines (ABCD-BIDS, CCS, fMRIPrep-LTS) in a single platform. Third, we put pipeline-related
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variation into context with more widely studied sources of variability in the imaging literature — namely scan
duration (i.e., quantity of data per subject) and global signal regression30. We demonstrated IPA as an upper
bound on reliability that will become increasingly apparent as the field: i) improves data acquisition to optimize
test-retest reliability for measurements of individual differences, and ii) makes advances to processing
techniques, and ultimately seeks to evaluate how methods evolution impacts the field. Finally, we evaluated the
origins of differences among pipelines, showing that the specific causes of compromises in IPA can vary
depending on the pipelines being examined, and raising cautions about the potential impact that seemingly
innocuous decisions can have on IPA (e.g., MNI brain template version, write-out resolution). We provide
recommendations for improving IPA as the field continues its evolution into a reproducible science and
establishes itself as a model for other areas of neuroscience focused on the advancement of individual
difference research.

Results
Distinct minimal preprocessing pipelines show moderate inter-pipeline agreement.
We processed the Hangzhou Normal University (HNU) dataset (29 subjects, 10 sessions, each session has
10-min single-band resting state fMRI per subject, TR = 2000 ms, see Methods for more details), made
available through the Consortium of Reliability and Reproducibility (CoRR)31, using each of five different
pipelines in widely-used packages for fMRI preprocessing (ABCD-BIDS, CCS, C-PAC:Default, DPARSF,
fMRIPrep-LTS). Consistent with prior work22,24, we found significant variation in functional connectivity
estimates produced using minimally processed data — even when using data from the same session
(Kolmogorov-Smirnov test pcorrected < 0.001 for all pairs). Findings were robust to the assessment measure
(individual-level matrix Pearson correlation, the edge-wise intra-class class correlation coefficient (ICC), the
image intraclass correlation coefficient (I2C2)32, discriminability33) and atlas (Schaefer 200, 600, 100034) used.
As depicted in Figure 1, among the pipelines, CCS, C-PAC:Default, and fMRIPrep-LTS exhibited the highest
degree of IPA with one another, regardless of whether looking at univariate or multivariate perspectives (e.g.,
Schaefer 200, matrix correlation: 0.811-0.861; ICC: 0.742-0.823; I2C2: 0.785-0.840; discriminability: 1.000).
Importantly, across all comparisons, IPA consistently decreases as the dimensionality of the network increases,
defined by the number of parcellation units (paired t-test pcorrected < 10-5 for all pairwise comparisons). The
results shown in Figure 1 can be viewed on the brain surface and within connectivity matrices directly in
Supplemental Section S2, and the impact of these variations on downstream extraction of graph theoretic
measures or analytic applications can be found in Supplemental Sections S3 and S4. Specifically, we highlight
in our supplementary materials that when handling the same exact data i) pipeline variation leads to significant
variation in the sorting of individuals based on graph theoretic measures (e.g., difference in ranks across
pipeline pairs was 8.5 positions, of a maximum 14.5, on average across all measures; S3), and ii) variations in
networks and their statistics led to inconsistent predictions across individuals in age-regression (e.g., model
error varies by 23.7% across pipelines; S4) and sex-classification tasks (e.g., inconsistent sex predictions for
62.1% of subjects; S4). It is important to note that, in all cases, the pipelines compared here do not differ in
conceptual approach or design — i.e., global signal regression and other denoising statuses are consistent, —
making all variation in both the measures themselves and downstream modeling efforts due to unintended
package-related variation.

In looking at specific packages, DPARSF showed the lowest similarity to the others (e.g., Schaefer 200, matrix
correlation: 0.639-0.729; ICC: 0.504-0.612; I2C2: 0.641-0.713; discriminability: 0.990-1.000). We interpreted
this as a result of DPARSF being the only SPM/MATLAB-based tool encompassing fundamentally distinct
algorithms, methods, and codebase with respect to the others. ABCD-BIDS, which is based on the HCP
Pipelines35, showed modest IPA with the other pipelines (e.g., Schaefer 200, matrix correlation: 0.667-0.757;
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ICC: 0.563-0.651; I2C2: 0.642-0.732; discriminability: 0.995-1.000). On the one hand this may reflect the fact
that ABCD-BIDS is also the most conceptually distinct, including extra denoising and alignment steps for brain
extraction. Though, on further examination, we noted that ABCD-BIDS uniquely doesn’t use boundary-based
registration (BBR) unless paired with distortion correction, as prior work suggests that BBR with uncorrected
images can lead to misregistration36. As discussed later, when we explored sources of variation, repetition of
ABCD-BIDS processing using BBR (Supplemental Section S5) yields IPA comparable to that of other
non-MATLAB pipelines. To identify the impact of data quality on the above findings, we replicated this
exploration using comparably sized low- (n = 29) and high-motion (n = 29) cohorts from the Healthy Brain
Network (HBN)37, which makes use of the state-of-the-art multiband fMRI sequence from the NIH ABCD Study
(5-min resting state fMRI per subject, TR = 800 ms). We found that, consistent with our findings with the single
band HNU sample, the two HBN cohorts showed unacceptably low levels of IPA (e.g., Schaefer 200, average
ICC = 0.832), with IPA only being slightly higher for the low-motion cohort. For the phenotypic prediction tasks,
the proportion of model error that varied across pipelines during age regression dropped to 18.3%, and the sex
inconsistency rate across pipelines dropped to 34.5%. Further details can be found in Supplemental Sections
S4 and S6.

Replicated minimal preprocessing pipelines achieve high inter-pipeline agreement.
We investigated minimal preprocessing pipeline differences (Table 1) and expanded the configurable options
in C-PAC to generate minimal preprocessing pipelines harmonized to match each of the three additional
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non-MATLAB-based pipelines (ABCD-BIDS, CCS, fMRIPrep-LTS; see Methods for details). A primary goal of
the replication process was to improve the IPA across pipelines to commonly accepted standards (i.e., ICC >
0.9)38. Figure 2 shows the outcome of the replication process, and demonstrates that median ICC values
exceed 0.98 in all three cases using Schaefer 200 parcellation. Similarly high agreement was obtained using
other outcome measures (e.g., Schaefer 200, matrix correlation: 0.990–0.997; I2C2: 0.982-0.990;
discriminability: 1.000). See Supplemental Section S7 for the similarity of intermediate derivatives following
replication. It is important to note that these replications did not involve the modification of the original
pipelines, so high IPA after replication indicates a faithful replication within C-PAC.

Session variation overshadows pipeline differences when scan duration is short.
Putting the above findings of pipeline-related variability in the context of known sources of variability is
essential when adding these variations to the evolving mental-models of experimental variation. In this regard,
scan duration has emerged as one of the important determinants of test-retest reliability in the literature. In
Figure 3A we show that the reliability both within and across pipelines was markedly lower for test-retest data
than when evaluated with identical data, as would be expected (Kolmogorov-Smirnov test pcorrected < 0.001 for
all pairwise comparisons). As higher quantities of data per subject were used (i.e., 10 minutes vs 50 minutes)
test-retest reliability across sessions dramatically increased both within and across pipelines, from a median
edge-wise ICC of 0.227 to 0.611 in the intra-pipeline setting and from 0.152 to 0.428 in the inter-pipeline setting
(pcorrected < 0.001). In contrast, the IPA did not change significantly as the scan duration increased when
considering identical data processed by two distinct pipelines (pcorrected > 0.1) — this makes sense, as the
test-retest reliability for duplicate data is perfect. Taken together, these findings highlight the reality that as the
test-retest reliability approaches optimal levels for laboratory measurement, pipeline implementation
differences will impose an inherent upper bound on the agreement of preprocessed data. These findings also
underscore that 10 minutes of data, which has been common in the field until at least recent years, are
insufficient for producing results that are reliable enough to reveal substantive pipeline-related variation.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2021.12.01.470790doi: bioRxiv preprint 

https://paperpile.com/c/qb3Yd2/thmW
https://doi.org/10.1101/2021.12.01.470790
http://creativecommons.org/licenses/by/4.0/


6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2021.12.01.470790doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.01.470790
http://creativecommons.org/licenses/by/4.0/


Mismatch in decision to include global signal regression is more impactful than minimal processing
pipeline differences.
Next, we focused on a preprocessing step that similar to scan duration is known to be impactful on test-retest
reliability and vary across studies — namely, global signal regression (GSR)30. We compared how results with
varying GSR settings affect intra- and inter-pipeline agreement. As shown in Figure 3B, when using the same
exact 10 minute session data, minimal processing pipeline, and GSR status (i.e., either both "on" or both "off"),
perfect agreement was observed; however, median ICC decreased from 1 to notably below the previously
mentioned 0.9 threshold when comparing across pipelines — consistent with our findings reported above. A
mismatch in GSR (i.e., one pipeline with GSR and the other without) was highly impactful. First, when data and
pipelines were matched, a mismatch in GSR resulted in dramatic reductions in IPA (see Figure 3B, Panel III),
with median ICCs falling below 0.6 (pcorrected < 0.0001). In contrast, when using test-retest data (see Figure 3B,
Panel IX), GSR mismatch effects were more subtle, though still detectable (pcorrected < 0.001), with
session-related variation being the dominant factor. Relevant to the suggestions of prior work30,39,40, IPA was
marginally greater when comparing pipelines that both used GSR than pipelines that did not — only reaching
significance for 3 out of the 6 inter-pipeline comparisons (Mann-Whitney U test puncorrected = 0.025 – 0.24).

Spatial normalization workflows typically serve as the biggest source of inter-pipeline variation across
minimal processing pipelines.
Harmonized implementations of the different pipelines in the C-PAC framework afforded us the opportunity to
examine which step(s) led to the most variability across pipelines. For each pipeline (C-PAC:Default and
C-PAC harmonized versions of ABCD-BIDS, CCS, and fMRIPrep-LTS), we generated a set of pipelines that
were each systematically varied by one key processing step across four categories: anatomical mask
generation, anatomical spatial normalization, functional mask generation and functional co-registration.
Minimal effects were observed when varying denoising pipelines (e.g., non-local means filtering41, N4 bias field
correction42), so this step was merged with mask generation and registration in our evaluation. Each
perturbation moved pipelines in the direction of one of the other core pipelines by one component, ultimately
producing a space of 48 configurations. As can be seen in Figure 4, the specific steps that impact the IPA vary
as a function of the specific pairing of pipelines being examined and the interaction of these components.

Interestingly, each processing step led to impactful differences in at least one pair of pipelines. However,
anatomical spatial normalization and functional co-registration emerged as being among the most consistently
impactful (Kolmogorov-Smirnov test pcorrected < 0.001 for both spatial normalization steps; pcorrected > 0.5 for both
mask generation steps). This finding is consistent with the results presented in Figure 1, which illustrate how
greater variability is observed across tools at higher-resolutions, namely, that finer-grained parcellations are
more acutely affected by registration differences. Importantly, no single step was able to bridge the gap across
two pipelines entirely. This is likely a reflection of the complexity of interactions among steps in the pipelines,
as well as the possibility that one or more steps other than those examined in this analysis may also be driving
findings, such as differences in how spatial transformations are applied to the functional time series (e.g.
single-step versus concurrent). For the three pipelines that were closest to one another from the outset (CCS,
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C-PAC:Default, fMRIPrep-LTS), the anatomical spatial normalization workflow was the biggest determinant of
variation. A subtle but important detail of this analysis was that matching of normalization workflows, for
example, was not just a matter of matching the registration algorithm, but parameters such as the template
resolution, template version, and denoising workflows as well. In addition, matching the functional
co-registration step in the ABCD-BIDS pipeline to other pipelines significantly improved the IPA (see
Supplemental Section S5). It demonstrates that the BBR option is the biggest source of variation between
ABCD-BIDS and other pipelines. Evaluations of the impact of motion correction are shown in Supplemental
Sections S8. Of note, increasing the component-wise similarity doesn’t improve the agreement of results in
some cases. For example, the correlation decreased when changing the anatomical spatial normalization tool
in fMRIPrep-LTS from ANTs to FSL used in CCS. This finding illustrates the complexity of the processing
pipelines and shows how their interactions influence pipeline performance.
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Selection of template version and write-out resolution has considerable impact, even within packages.
Throughout the pipeline comparison and replication process, we were challenged to consider various
parameter decisions made by users that are not commonly discussed or changed from a pipeline's default
behavior. Of particular note were differences in the specific version of the nearly ubiquitous MNI template and
the final write-out resolution of 4D time series, both of which are rarely reported in the literature43. In this
regard, fMRIPrep-LTS was most disparate, as the default behavior is to write-out using the native image
resolution of the fMRI time series (as opposed to 2 or 3 mm-isotropic used by others), and to use the more
sharply defined MNI152NLin2009cAsym44 template (here referred to as: MNI2009) for reference (as opposed
to the MNI152NLin2006Asym45 used by most others; here referred to as: MNI2006). To quantify the effects of
these seemingly innocuous decisions, even within a pipeline package, we systematically varied them within
fMRIPrep-LTS (results were replicated in the CPAC:fMRIPrep pipeline). As demonstrated in Figure 5, while the
MNI152Lin46 (here referred to as: MNI2001) and 2006 versions of the MNI template generally lead to
consistent results, especially when matching output resolution, the 2009 template was markedly distinct. The
best case when comparing results generated with the 2009 template and native write-out resolution (default
fMRIPrep configuration) and another template were achieved with either the 2001 or 2006 template at a 2 mm
isotropic write-out resolution. However, this combination still achieved only a median ICC of 0.89 using the
Schaefer 200 parcellation, while the best comparison between the 2001 and 2006 templates maintained an
ICC of 1.00. From one perspective, these findings are not surprising given the widespread use of nonlinear
registration algorithms, which increase template dependencies, and decreases in parcellation fit that will occur
with a combination of more coarse data resolutions and higher parcellation resolutions. These results
nonetheless underscore the impact that even seemingly minor differences in the parameter choices can have
substantial implications for intra-pipeline agreement, and would be expected to cascade when considering IPA.
One possible limitation of this analysis could be in the quality of transformation of the originally surface-based
Schaefer parcellations to the 2009 template47; to combat this, we evaluated the correlation of voxelwise time
series produced using each possible pairing of templates, yielding highly similar pattern of differences
(Supplemental Section S9).

Discussion
The present work highlights marked variation in individual-level estimates of functional connectivity based on
outputs from widely-used functional MRI pipelines. Consistent with prior work20,22,24, our comparison of minimal
preprocessing outputs from five distinct fMRI preprocessing pipelines demonstrated suboptimal Inter-Pipeline
Agreement (IPA) for univariate and multivariate perspectives of full-brain functional connectivity, even when
handling identical data. Although concerning in the long-term, our analyses using test-retest data suggested
that variation arising from insufficient data volume (i.e., short scan durations), which has dominated the
literature until recent years, is a more impactful factor than pipeline-related variation at present. Similarly, the
present work noted that differences among studies, such as in whether they include global signal regression, a
highly contested step that comes after minimal preprocessing, can exacerbate pipeline related variation —
again emphasizing the need for care in synthesizing the emerging literature focused on individual differences.
Note that except global signal regression, other denoising approaches such as white matter and CSF mask
regression, respiratory and cardiac noise removal and AROMA-FIX can also potentially impact preprocessing
results. The justification for exploring GSR here was not to imply that it is the solely significant denoising step
in processing pipelines, but to provide a known and widely recognized benchmark for variation across tools,
that could be used to situate the observed variation across processing pipelines. Even the most commonly
understated of decisions, including the version of the widely used MNI standard space, and write-out
resolution, were found to have the potential to pose real limits to intra-pipeline agreement, and more acutely
IPA. No one minimal preprocessing component was found to be the dominant source of variation across all
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pairs of pipelines; instead, the specific steps that most contributed to differences were found to vary depending
on which pipelines were being compared. Despite such a broad space of sources for divergence, we
demonstrated that variation observed across pipelines can be overcome through careful replication of all steps.

The variations in results arising from pipeline implementation differences in the present work represent an
underappreciated bound on the reliability or consistency of results across studies. The impact of
implementation differences on IPA were prominent in our analyses, regardless of which pipelines were being
compared. Not surprisingly, DPARSF, which is the most distinct with respect to the algorithms and codebase
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used in its implementation (i.e., SPM/MATLAB-based components), consistently had the lowest IPA across all
tested comparisons. Importantly, we show that due to data quality issues, most studies have not yet been
limited by the bound imposed by low IPA. Through these experiments we have attributed variability to tool
selections. It is likely that imperturbable components (e.g., optimization engine) may play a significant role in
differences, but as these components cannot be changed by users directly, they are considered intrinsic to the
tools themselves for the purposes of this study. In fact, compromises in measurement reliability, such as the
undersampling associated with traditional (short) scan durations, can go so far as to mask implementation
differences entirely. Our results demonstrate how pipeline implementation differences will become the next
hurdle towards generating findings which can be reproduced across studies as the measurement reliabilities
for data collection are optimized — whether through increased scan duration or improved data quality.

It is important to note that greater agreement across pipelines does not necessarily imply greater validity or
quality of the results. For example, the DPARSF pipeline uses SPM's DARTEL registration tool, which is known
to be a high quality and reliable tool for spatial normalization17. While the present work focused on measures of
reliability for its evaluation, which is a critical prerequisite for usage of tools, future work would benefit from
using validity as a target (e.g., predictive accuracy, or explanatory power). This is a logical order of examination
for these two constructs, as reliability, either across measurements or methodological choices, places an upper
bound on validity or utility.

The present work also provides a reminder of the variation in findings that arise from methodological variability
even within a package. Specifically, we found that the decision of whether or not to include global signal
regression was a major source of intra-pipeline variation. This is a particularly poignant example, as inclusion
of this step has varied across labs and over time as the field has worked towards a consensus on when the
method may be more (e.g., correcting for head motion40,48 and accounting for variations in arousal), or less
useful (e.g., when studying arousal49 or other temporal dynamics50). While some scientific contexts, such as
those mentioned above, may lead to unambiguous decisions regarding the use of GSR, these decisions are
much less clear in the context of data dissemination. In these cases, the inclusion or exclusion of GSR may
vary based on the biases and preferences across processing teams, and remains an impactful source of
variation. The present work also drew attention to the impact that differences in seemingly minimal decisions,
such as write-out resolution and template version, can introduce across independent analysts — even when
using identical data and an otherwise highly prescriptive software package. While the default configuration for
the fMRIPrep-LTS package adopts the newer MNI2009 asymmetric44 template, the majority of the field uses
the 2006 asymmetric45 or 200146 templates, which are more similar to one another. Similarly, fMRIPrep-LTS
uses a native write-out resolution, while most other tools use 2 or 3 mm. The write-out resolution and template
versions were found to interact and establish tiers of agreement across results generated within fMRIPrep,
importantly demonstrating that the effect of these factors is non-uniform. For example, matching either
template version or write-out resolution alone may not lead to the highest similarity of results. The fact that
using higher resolution atlas results in lower IPA also shows the sensitivity of atlas-based connectivity analysis.
Improving registration consistency within regions of interest can be a vital step towards higher reliability, but is
of course downstream of improving registration consistency as a whole.

A potential limitation of the present work could be that it was carried out on a dataset acquired with traditional
MRI protocols of standard data quality, popular at the time of acquisition, rather than increasingly adopted but
historically inaccessible practices (e.g., inclusion of distortion field maps). Two key factors drove this decision.
First, the limited availability of high characterization, test-retest datasets that employ more modern acquisition
methods. The larger bulk of sufficiently-powered test-retest data available to date are either single band EPI
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data or do not exceed 60 minutes total per subject. While the Midnight Scan Club51 collection has higher quality
data for each individual, it is limited to a cohort of only 10 participants. Second, the data employed are
representative of, or exceed, the quality of the data employed in the majority of fMRI datasets available to most
researchers — particularly those in clinical populations (e.g., ABIDE52). Our supplementary analyses using
both a low- and high-motion cohort of participants from the Healthy Brain Network (HBN) dataset37, which
includes imaging data obtained using state-of-the-art functional MRI (i.e., multiband) and anatomical
sequences from the NIH ABCD Study53, showed similar IPA to those obtained with the HNU dataset, though
slightly improved (Supplemental Section S6). This tempers hopes that improving data quality alone will
improve agreement between differing processing pipelines, or analytic tools more broadly. While improvements
in data quality did not significantly improve overall agreement across pipelines, the results of downstream
brain-phenotype modeling may suggest some positive impact. For example, sex inconsistency rates dropped
from 62.1% to 34.5% when switching from the HNU dataset to the higher-quality HBN dataset, despite the
differences in populations that may make sex differences more difficult to identify. Though given the small
sample sizes examined in the prediction tasks were modest, as prediction was not a primary focus of the
present work, and that age-range and recruitment strategy differed across the datasets - the interpretability for
this finding is limited. Further characterizing this space at a large scale by studying the interaction between
population differences, data acquisition paradigm, signal-to-noise ratio, parcellation resolution, processing
pipeline, and ultimate phenotypic prediction is an exciting avenue we look to explore in future work.

The data and pipelines tested here represent a snapshot of those that have been or will be used in the field of
neuroimaging. Though, they also illustrate challenges to reproducibility that are likely pervasive across various
modalities of brain imaging research, and will continue to be faced as the field moves forward. We show that
modernization of techniques alone (e.g., improvement of data quality) will not overcome challenges related to
IPA and can actually amplify them (e.g., improvements in MNI template quality). In addition to these
illustrations, our findings motivate a number of considerations for how to improve reproducibility. Arguably, the
most easily actionable, is for publications to include rich and detailed specifications of all data processing
software (e.g., tool versions, parameters, templates, in-house code) to promote reproducibility, ideally, with all
code being made available through a public repository (e.g., GitHub, Zenodo). Beyond this, there is a need for
the field to increase its focus on testing of tools, and benchmarking of novel pipelines against one or more
reference pipelines (e.g., fMRIPrep-LTS, HCP Pipelines). Adopting evaluation standards consistent with
computer science and industry will not only increase the transparency of tools and their results, but provide
greater context for their relationships with one another. Until clear benchmarks and bridges between tools can
be established, one recommendation for authors is to consider repeating their analyses with a secondary or
tertiary pipeline, or by perturbing template version, write-out resolution, or other specific analytic selections
(specified prior to initiation of a research project), and reporting potential dependencies of results on the
primary pipeline. Lack of replication would not necessarily undermine the value of results obtained with the
primary pipeline, but rather draw attention to potential dependencies that can limit reproducibility if not taken
into consideration. The C-PAC framework provides an example of the ability to make the process of using
multiple pipelines relatively easy for scientists. Beyond using multiple pipelines, strategies for consolidating
results across pipelines should be identified. Depending on the analytic goals, this could involve the
aggregation of results (e.g., bagging) to generate composite findings, or the ensembling of results to improve
prediction54,55. This has been recently demonstrated in brain imaging and numerical uncertainty56,57.

Focused on the optimization of test-retest reliability over the past decade, the functional neuroimaging field
now needs to take on its next major challenge — Inter-pipeline agreement. The present work draws attention
to the substantial impact that variations in the most basic processing steps can introduce into imaging results.
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The challenges and solutions provided in the present work are not specific to neuroimaging, but instead,
representative of the process that the broader field of neurosciences will need to go through to become a
reproducible science.

Online Methods
Dataset. Analyses in the present study were carried out using the Hangzhou Normal University (HNU)
test–retest dataset made publicly available via the Consortium for Reliability and Reproducibility31 (CoRR). The
dataset consists of 300 R-fMRI scans, collected from 30 healthy participants (15 males, age = 24 ± 2.41 years)
who were each scanned every three days for a month (10 sessions per individual). Data were acquired at the
Center for Cognition and Brain Disorders at Hangzhou Normal University using a GE MR750 3 Tesla scanner
(GE Medical Systems, Waukesha, WI). Each 10-min R-fMRI scan was acquired using a T2*-weighted
echo-planar imaging sequence optimized for blood oxygenation level dependent (BOLD) contrast (EPI, TR =
2000 ms, TE = 30 ms, flip angle = 90°, acquisition matrix = 64 × 64, field of view = 220 × 220 mm2, in-plane
resolution = 3.4 mm × 3.4 mm, 43 axial 3.4-mm thick slices). A high-resolution structural image was also
acquired at each scanning session using a T1-weighted fast spoiled gradient echo sequence (FSPGR, TE =
3.1 ms, TR = 8.1 ms, TI = 450 ms, flip angle = 8°, field of view = 220 × 220 mm, resolution = 1 mm × 1 mm × 1
mm, 176 sagittal slices). Foam padding was used to minimize head motion. Participants were instructed to
relax during the scan, remain still with eyes open, fixate on a displayed crosshair symbol, stay awake, and not
think about anything in particular. After the scans, all participants were interviewed to confirm that none of them
had fallen asleep. Data were acquired with informed consent and in accordance with ethical committee review.
One subject sub-0025430 was excluded in all analyses because of its inconsistent preprocessed results
across all pipelines. For supplemental analysis on a higher quality dataset using the state of the art sequences,
we used 29 high-motion and 29 low-motion subjects of the Healthy Brain Network (HBN) dataset37; for more
information, please see the referenced publication. Importantly, as noted in a recent work58, the sample size
employed in the present work is more than sufficient to detect moderate–excellent ICC’s (e.g., 0.5 and higher)
if using two scans per subject, and well powered for notably smaller effects when using the larger number of
scans per individual.

Assessment of Inter-Pipeline Agreement. Five pipelines were used to measure IPA - ABCD-BIDS v2.0.0,
CCS version in May 2021, C-PAC:Default v1.8.1, DPARSF v4.5_190725, fMRIPrep-LTS v20.2.1. We pursued
a multifaceted assessment strategy to evaluate test-retest reliability, including: 1) Individual-level matrix
Pearson correlation of functional connectivity matrices across pipelines, 2) the edge-wise intra-class class
correlation coefficient (ICC), 3) the image intraclass correlation coefficient32 (I2C2, connection-wise index of
reliability), and 4) discriminability33 (matrix-level index of reliability). For each of these measures, we evaluated
multiple scales of spatial resolution (200, 600, 1000 Schaeffer parcellation units) to explore the relationship of
results with the number of parcels. The Schaeffer atlas was resampled to the output space using FSL FLIRT
accordingly and then parcels were extracted using AFNI 3dROIstats. IPA (matrix correlation, ICC, I2C2 and
discriminability) was evaluated for both a) across different sessions and b) across different pipeline
configurations (using identical data).

Replication Process. First, we surveyed the ABCD-BIDS, CCS, C-PAC and fMRIPrep-LTS pipelines for
differences in which steps and libraries were included. We identified preprocessing components (e.g., motion
correction as implemented by FSL59 MCFLIRT60) which were not found in C-PAC and added them to the
codebase. Key differences identified in this process are depicted in Table 1. For all replication exercises, the
C-PAC default pipeline was used as a base which was modified iteratively. While the ultimate goal of the
replication process was to achieve connectivity matrices with a correlation of 0.9 or higher across all measures,
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we examined a range of intermediates to facilitate the implementation and debugging process (see
Supplemental Section S7 for a list of intermediates, and Figure 1 for sample comparison indicator boards
generated to guide process).

Anatomical Preprocessing Differences And Replication. The major components of the C-PAC default
anatomical workflow is as follows: 1) brain extraction, via AFNI61 3dSkullStrip; 2) tissue segmentation, via FSL
FAST62; and linear and non-linear spatial normalization, via ANTs63. The ABCD-BIDS pipeline applies extensive
preprocessing prior to brain extraction, including: non-local means filtering41, N4 bias field correction42, Anterior
Commissure - Posterior Commissure (ACPC) alignment, FNIRT-based brain extraction, and FAST bias field
correction. Following these steps, FreeSurfer64 is used for brain extraction and segmentation masks are refined
prior to image alignment using ANTs. The CCS pipeline also applies non-local means filtering on raw
anatomical images and uses FreeSurfer to generate the brain and tissue segmentation masks, followed by
linear and non-linear alignment using FSL and skull-stripped images. Note that CCS is the only pipeline using
FSL for image registration. The fMRIPrep-LTS pipeline applies N4 bias field correction, followed by ANTs for
brain extraction, a custom thresholding and erosion algorithm to generate segmentation masks, and ANTs for
image registration. In the case of fMRIPrep-LTS, ANTs registration is performed using skull-stripped images,
unlike C-PAC default and ABCD-BIDS which use whole-head images. Note that we opted to use the
volume-based fMRIPrep-LTS workflows rather than surface, to increase the similarity with other pipelines,
which are primarily focused on volume-space analysis.

Functional Preprocessing Differences And Replication. The major components of the C-PAC default
functional preprocessing workflow is as follows: 1) slice timing correction, via AFNI 3dTshift; 2) motion
correction, via AFNI 3dvolreg; 3) mask generation, via AFNI 3dAutomask; 4) co-registration with mean function
volume, via FSL FLIRT60,65; 5) boundary-based registration, via FSL FLIRT; 6) time series resampling into
standard space, with ANTs. The ABCD-BIDS pipeline uniquely does not perform slice timing correction, and is
the only pipeline which does not use boundary-based alignment when no distortion map is provided. Further,
ABCD-BIDS resamples the anatomical mask to the functional resolution. The CCS pipeline implements
despiking with AFNI 3dDespike as the first functional preprocessing step, and the functional mask is generated
by further processing of the anatomical brain mask. The fMRIPrep-LTS pipeline also implements despiking with
AFNI 3dDespike as the first functional preprocessing step, and uses a hybrid AFNI-FSL brain extraction
approach for mask generation. Interestingly, there are two steps in which no two pipelines are identical: mask
generation and co-registration. In the case of mask generation, four distinct approaches are used, while for
co-registration, four different functional volumes are selected in four pipelines. At the final time series
resampling step, both ABCD-BIDS and fMRIPrep-LTS use a similar one-step resampling approach to apply
motion correction, co-registration and anatomical to standard-space registration matrices simultaneously, while
CCS and C-PAC apply transformations on the functional times series sequentially.

By replicating the key methodological choices from each of the pipelines, we were able to implement
ABCD-BIDS, CCS and fMRIPrep-LTS pipelines in C-PAC (referred to as C-PAC:ABCD-BIDS, C-PAC:CCS,
C-PAC:fMRIPrep-LTS).

Impact of Scan Duration on Intra- and Inter-Pipeline Agreement. We repeated our inter-pipeline
comparisons to evaluate the role that scan duration plays on the reproducibility of the results across minimal
preprocessing configurations. Ten comparisons were made, consisting of random samples of 10-, 30- and 50-
minutes of fMRI data per subject generated from the HNU test-retest dataset, in which each scan contains

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2022. ; https://doi.org/10.1101/2021.12.01.470790doi: bioRxiv preprint 

https://paperpile.com/c/qb3Yd2/aiWf
https://paperpile.com/c/qb3Yd2/urNB
https://paperpile.com/c/qb3Yd2/Q5Vo
https://paperpile.com/c/qb3Yd2/RrMJ
https://paperpile.com/c/qb3Yd2/z31C
https://paperpile.com/c/qb3Yd2/A8rP
https://paperpile.com/c/qb3Yd2/JOGE+0oun
https://doi.org/10.1101/2021.12.01.470790
http://creativecommons.org/licenses/by/4.0/


10-minutes of fMRI data per subject. The impact of scan duration was evaluated with respect to both the
cross-scan test-retest reliability and the IPA.

The impact of scan duration was examined under two conditions. First, the exact same data was used in each
pipeline (i.e., same subjects, same sessions). This provided a condition of perfect data test-retest reliability,
thereby allowing examination of pipeline differences in isolation of any compromises related to the data. In the
second condition, we used non-overlapping scan data from the same subjects to each pipeline, allowing us to
observe the collective compromises in reliability related to the data and the pipelines. By varying combinations
of scan and pipeline comparisons at the same time, we arrived at four distinct categories of comparisons: 1)
same scan, same pipeline; 2) same scan, different pipelines; 3) different scans, same pipeline; 4) different
scans, different pipelines.

Impact of Global Signal Regression on Intra- and Inter-Pipeline Agreement. The impact of global signal
regression (GSR) was assessed under the same conditions as evaluations of scan duration, above. The
impact of GSR was evaluated with respect to both the across-scan and inter-pipeline test-retest reliability. To
perform GSR, we used functional time series and functional brain masks in template space, ran AFNI
3dROIstats to get the mean time series, and then ran AFNI 3dTproject with quadratic detrending to get GSR
time series for each pipeline. For consistency, we repeated our inter-pipeline GSR evaluations 10 times, each
using 10- minutes of fMRI data, in each of three settings: no GSR vs no GSR, GSR vs GSR, and no GSR vs
GSR. For statistical testing across settings, the distribution of ICC scores were compared to another. A
Mann-Whitney U-test was chosen as it's a non-parametric test to say if samples from one distribution are likely
to be higher than another, i.e. if GSR ICC scores are likely to be higher than non-GSR scores.

Impact of Template Version and Write-out Resolution. In the course of our work, we noted that even the
most highly prescribed pipelines allow users to make decisions regarding template version and write-out
resolution. To evaluate the potential impact of these decisions, we examined the impact of each on estimates
of functional connectivity generated by the same package using different options. We carried these analyses
out in both CPAC:fMRIPrep and the fMRIPrep-LTS pipeline configuration without surface reconstruction (i.e.,
--fs-no-reconall configuration), using templates from TemplateFlow43. We selected three templates: the original
(linear) MNI152Lin46 (here referred to as: MNI2001), MNI152NLin2006Asym45 (here referred to as: MNI2006),
and MNI152NLin2009cAsym44 (here referred to as: MNI2009). The templates were updated in each of the
2006 and 2009 versions using improved alignment algorithms, leading to an increased detail and quality. The
2009 version is used as the default spatial-standardization reference in fMRIPrep-LTS, while the 2001 and
2006 versions are distributed with FSL and used in other pipelines. We evaluated two different write-out
resolutions — a 3.4 × 3.4 × 3.4 mm resolution matching that of the native functional images, which is used in
fMRIPrep-LTS, and a 2 × 2 × 2 mm resolution used in ABCD-BIDS. This gave us six different processing tracks
in total. We then repeated our inter-pipeline agreement measures using functional connectivity matrices from
these six processing tracks. We report the fMRIPrep-LTS findings given the widespread use of the package,
though note the CPAC:fMRIPrep-LTS findings were identical.

Sources of Variation. We utilized the configurable options in C-PAC to evaluate sources of variation among
four pipelines (C-PAC:ABCD-BIDS, C-PAC:CCS, C-PAC:Default, C-PAC:fMRIPrep-LTS). We first calculated
the matrix correlation of functional connectivity matrices using Schaefer 200 parcellation across every two
pipelines as a baseline. Each of four pipelines is used as a source pipeline and the other three pipelines are
used as target pipelines. We then varied each of the configurable options in the source pipeline to the target
pipeline’s option at four key preprocessing steps (anatomical mask generation, anatomical spatial
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normalization, functional mask generation, functional co-registration), and observed how the change of
configuration at each preprocessing step affects the final minimal preprocessing result. Pearson correlation of
functional connectivity matrices from the Schaefer 200 parcellation was used to estimate pipeline differences.

Statistical Analysis. Unless otherwise stated, when distributions of agreement measures were being
compared across settings, either a Kolmogorov–Smirnov test66 (KS test), Mann-Whitney U-test67 (MWU test),
or paired t-test were performed. In the case of comparisons where the objective was to test if two distributions
were different from one another, KS-tests were used. In contrast, for the cases where the objective was to
evaluate if samples from one distribution were more likely to be of a higher value than another, MWU-tests
were performed. In the case where comparisons were being made within a given configuration and across
parcellations, paired t-tests were used. In all cases, equivalent tests were corrected for multiple comparisons
using the highly conservative Bonferroni correction technique.

Code Availability. All software created and used in this project is publicly available. The C-PAC pipeline is
released under a BSD 3-clause license, and can be found on GitHub at:
https://github.com/FCP-INDI/C-PAC/releases/tag/v1.8.2; the ABCD-BIDS pipeline is released under a BSD
3-clause license, and can be found at: https://github.com/DCAN-Labs/abcd-hcp-pipeline/releases/tag/v0.0.3;
the CCS pipeline can be found at: https://github.com/zuoxinian/CCS; the fMRIPrep-LTS pipeline is released
under​​ Apache License 2.0 and can be found at: https://github.com/nipreps/fmriprep/releases/tag/20.2.1.
Templates were all accessed through TemplateFlow43. All analysis software, including experiments and figure
generation, can be found on GitHub at https://github.com/XinhuiLi/PipelineAgreement as well as on Zenodo at
https://zenodo.org/badge/latestdoi/415936717. The preprocessed functional connectivity data can be found on
OSF at https://osf.io/kgpu2/.
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Supplemental Sections

S1: Key conceptual differences between pipeline pairs
The conceptual differences between pipeline pairs can be classified into three categories: (1) Same approach,
same objective; (2) Different approach, same objective; (3) Different approaches, different objectives. We
compared all combinations of pipeline pairs across five packages. Conceptually different steps, such as
co-registration, also lead to significantly different preprocessed results as shown in Figure 4.

Table S1.1 | Key conceptual differences between pipeline pairs.
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S2: Inter-pipeline agreement on brain regions
Figure S2.1 shows inter-pipeline agreement based on parcellated brain regions. Each plot in the upper triangle
is the ICC heatmap, each plot in the lower triangle is the mean ICC (top) and coefficient of variation  — the
ration between the mean and the variance — of ICC scores for each region (bottom) in each brain parcel
region mapped to the parcellated brain (Schaefer 200).

Figure S2.1 | Inter-pipeline agreement on brain regions.
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S3: Impact of pipelines on subject-sorting via graph theory measures
To evaluate how function connectivity differences from different pipelines are sensitive to graph theory
measures, we measured global connectivity and degree centrality with sparsity thresholds as 90%, 95% and
97.5%, respectively, on 29 HNU subjects and 29 HBN low-motion subjects. Though none of the measures
shows significant difference in the overall sample distribution across pipelines (Figure S3.1 and Figure S3.4,
Kolmogorov-Smirnov test), the pipeline difference can be observed across individuals (Figure S3.2 and Figure
S3.5). We further sorted each type of metrics for each pipeline and compared the agreement of the ranked
subject lists across pipelines. Specifically, we counted the number of subjects that remain in the same order
between pipeline pairs and then divided by the total number of subjects (Figure S3.3 and Figure S3.6). We
calculated the average ratio across all pairs for a given measure, and defined this as the average intersection
score. The average correlation of subject ranks of global connectivity, along with degree centrality when
computed with three distinct sparsity thresholds of 90%, 95% and 97.5%, respectively, are: 0.22, 0.12, -0.03,
0.22 on the HNU dataset, and 0.45, 0.24, 0.13, 0.23 on the HBN dataset, respectively. The average
position-difference of above metrics are: 7.26, 8.67, 9.74, 8.20 on the HNU dataset and 5.82, 7.76, 8.55, 7.99
on the HBN dataset, wherein an ideal ranking difference would be 0 and the maximum average difference
would be 14.48. The result demonstrated that pipeline-related variation will result in significant differences
across individuals on graph theory measures, and subsequent downstream analyses.
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Figure S3.1 | Graph theory measures of pipelines on the HNU dataset.

Figure S3.2 | Graph theory measures of individuals on the HNU dataset.
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Figure S3.3 | The ratio of intersected subjects between pipeline pairs on the HNU dataset.
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Figure S3.4 | Graph theory measures of pipelines on the HBN dataset.

Figure S3.5 | Graph theory measures of individuals on the HBN dataset.
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Figure S3.6 | The ratio of intersected subjects between pipeline pairs on the HBN dataset.
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S4: Impact of pipelines on brain-phenotype modeling
To further evaluate the impact of pipelines on phenotype prediction, we performed an age regression task and
a sex classification task using functional connectivity matrices (Schaefer 200 atlas) i) preprocessed by 5
pipelines (ABCD-BIDS, CCS, C-PAC:Default, DPARSF, fMRIPrep-LTS) from 29 HNU subjects (age range: 21 -
30 years, mean age ± std: 24.517 ± 2.269 years; 14 females, 15 males); ii) preprocessed by 4 pipelines
(C-PAC:ABCD-BIDS, C-PAC:CCS, C-PAC:Default, C-PAC:fMRIPrep-LTS) from 29 HBN low-motion subjects
(age range: 10.022 - 20.489 years, mean age ± std: 16.048 ± 2.417 years; 11 females, 18 males). In the sex
classification task, principal component analysis (PCA) with 20 principal components was applied on the
functional connectivity matrices to reduce the feature dimension. Specifically, we trained a ridge regression
model for the age prediction task and a support vector machine classifier with a linear kernel for the sex
classification task. Considering the relatively small sample size, leave-one-out cross-validation was used to
evaluate the model performance.

The predicted age and sex results for each individual across pipelines are illustrated in Figure S4.1 and
Figure S4.2. The maximum differences of predicted ages across pipelines are greater than 0.5 year for 27
subjects, and greater than 1 year for 11 subjects on the HNU dataset. The differences are greater than 0.5 year
for 18 subjects, and greater than 1 year for 3 subjects on the HBN dataset. 18 out of 29 (62.1%) subjects have
inconsistent sex predictions across pipelines on the HNU dataset while 10 out of 29 (34.5%) subjects have
inconsistent sex predictions across pipelines on the HBN dataset. The within-pipeline and between-pipeline
model performance results for both tasks are shown in Tables S4.1–S4.4, respectively. For age regression, we
used i) the mean absolute error (MAE) to measure the absolute difference between the predicted age and the
chronological age, and ii) the mean error (ME) to reflect whether the difference leads to increased or
decreased predicted age. The ratio between the average between-pipeline MAE and within-pipeline MAE is
0.183 and 0.237, and the ratio between the average between-pipeline ME and within-pipeline ME is -0.156 and
-0.343 on the HNU and the HBN dataset, respectively. For sex classification, we measured the accuracy or
consistency and the F1 score. The average within-pipeline classification accuracy ranges from 0.483 to 0.552
across pipelines on the HNU dataset and from 0.483 to 0.655 across pipelines on the HBN dataset. The
within-pipeline F1 score ranges from 0.417 to 0.552 on the HNU dataset and from 0.286 to 0.545 on the HBN
dataset. Interestingly, the ratio between the average between-pipeline consistency and the average
within-pipeline accuracy is 1.320 and 1.434 on the HNU and the HBN dataset, respectively, indicating that the
consistency between predicted labels from two pipelines is higher than that between ground truth labels and
predicted labels from one pipeline.
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Figure S4.1 | Predicted age (year) and sex of individuals across pipelines on the HNU dataset.
(The red star indicates the ground truth.)

Figure S4.2 | Predicted age (year) and sex of individuals across pipelines on the HBN dataset.
(The red star indicates the ground truth.)
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Table S4.1 | Within-pipeline model performance in the prediction tasks on the HNU dataset.

Mean ± std ABCD-BIDS CCS C-PAC:Default DPARSF fMRIPrep-LTS

Age Regression

MAE 1.907 ± 1.366 1.947 ± 1.453 1.949 ± 1.365 1.885 ± 1.284 1.943 ± 1.385

ME -0.035 ± 2.345 0.024 ± 2.430 -0.090 ± 2.378 0.024 ± 2.281 -0.019 ± 2.386

Sex Classification

Accuracy 0.552 ± 0.497 0.517 ± 0.500 0.517 ± 0.500 0.483 ± 0.500 0.517 ± 0.500

F1 0.552 0.417 0.500 0.516 0.533

Table S4.2 | Between-pipelines model performance in the prediction tasks on the HNU dataset.
(ABCD, Default, fMRIPrep are abbreviations of ABCD-BIDS, C-PAC:Default, fMRIPrep-LTS.)

Mean
± std

ABCD
vs

CCS

ABCD
vs

Default

ABCD
vs

DPARSF

ABCD
vs

fMRIPrep

CCS
vs

Default

CCS
vs

DPARSF

CCS
vs

fMRIPrep

Default
vs

DPARSF

Default
vs

fMRIPrep

DPARSF
vs

fMRIPrep

Age Regression

MAE 0.451
± 0.322

0.399
± 0.214

0.491
± 0.305

0.412
± 0.349

0.478
± 0.374

0.541
± 0.471

0.349
± 0.274

0.449
± 0.382

0.432
± 0.297

0.557
± 0.368

ME 0.059
± 0.551

-0.055
± 0.450

0.059
± 0.575

0.017
± 0.540

-0.114
± 0.596

0.000
± 0.717

-0.042
± 0.442

0.114
± 0.578

0.071
± 0.519

-0.043
± 0.667

Sex Classification

Consist
ency

0.690
± 0.463

0.759
± 0.428

0.724
± 0.447

0.759
± 0.428

0.655
± 0.475

0.621
± 0.485

0.586
± 0.493

0.621
± 0.485

0.724
± 0.447

0.690
± 0.463
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Table S4.3 | Within-pipeline model performance in the prediction tasks on the HBN dataset.

Mean ± std C-PAC:ABCD-BIDS C-PAC:CCS C-PAC:Default C-PAC:fMRIPrep-LTS

Age Regression

MAE 2.082 ± 1.345 1.909 ± 1.247 1.888 ± 1.232 2.089 ± 1.263

ME 0.128 ± 2.475 0.062 ± 2.280 0.086 ± 2.253 0.092 ± 2.439

Sex Classification

Accuracy 0.483 ± 0.500 0.621 ± 0.485 0.517 ± 0.500 0.655 ± 0.475

F1 0.286 0.522 0.364 0.545

Table S4.4 | Between-pipelines model performance in the prediction tasks on the HBN dataset.

Mean ± std C-PAC:ABCD-
BIDS

vs
C-PAC:CCS

C-PAC:ABCD-
BIDS

vs
C-PAC:Default

C-PAC:ABCD-
BIDS

vs
C-PAC:fMRI-

Prep-LTS

C-PAC:CCS
vs

C-PAC:Default

C-PAC:CCS
vs

C-PAC:fMRI-
Prep-LTS

C-PAC:Default
vs

C-PAC:fMRI-
Prep-LTS

Age Regression

MAE 0.378 ± 0.291 0.397 ± 0.274 0.404 ± 0.296 0.311 ± 0.205 0.323 ± 0.294 0.380 ± 0.260

ME -0.066 ± 0.473 -0.042 ± 0.480 -0.036 ± 0.500 0.023 ± 0.371 0.029 ± 0.435 0.006 ± 0.461

Sex Classification

Consistency 0.793 ± 0.405 0.897 ± 0.305 0.759 ± 0.428 0.897 ± 0.305 0.759 ± 0.428 0.793 ± 0.405
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S5: Modifying C-PAC:ABCD-BIDS to use boundary-based registration
To confirm that the boundary-based registration (BBR) step is the main source of variation in the ABCD-BIDS
pipeline, we utilized the configurable option in C-PAC and turned on the BBR step in C-PAC:ABCD-BIDS to
generate the C-PAC:ABCD-BIDS BBR pipeline. We then repeated the inter-pipeline reliability measures among
five pipelines (C-PAC:ABCD-BIDS BBR, CCS, C-PAC:Default, DPARSF, fMRIPrep-LTS). Figure S5.1 indicates
that the IPA between the C-PAC:ABCD-BIDS BBR pipeline and other pipelines improves. It demonstrates that
the BBR step is the main source of variation in the ABCD-BIDS pipeline.

Figure S5.1 | Modifying C-PAC:ABCD-BIDS to use boundary-based registration.
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S6: Inter-pipeline agreement with higher quality data
A potential limitation in the implications of our presented findings is that they were generated using a functional
imaging dataset that is behind the current state-of-the-art. While the selected dataset, HNU, was essential for
our study given the large availability of test-retest measures, we replicated the cross-pipeline comparison using
29 low-motion subjects (mean FD Power: 0.118 ± 0.337 mm; mean FD Jenkinson: 0.068 ± 0.198 mm) and 29
high-motion subjects (mean FD Power: 0.681 ± 1.089 mm; mean FD Jenkinson: 0.389 ± 0.617 mm) from the
HBN dataset, which uses a modern functional imaging sequence consistent with other major initiatives, such
as the Adolescent Behavior and Cognitive Development dataset25. Shown in Figure S6.1 and Figure S6.2
below, we similarly found that inter-pipeline reliability was imperfect when looking across pipelines, even with
high quality datasets. The reliability of measures improves compared to the HNU dataset, but still doesn't meet
accepted standards of inter-rater reliability, such as an ICC > 0.9.

Figure S6.1 | Inter-pipeline agreement with higher quality data (low-motion subjects).

Figure S6.2 | Inter-pipeline agreement with higher quality data (high-motion subjects).
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S7: Replication of intermediate results
The figures below show the replication of intermediate derivatives across each of the three major harmonized
packages. The intermediate derivatives include anatomical masks, white matter masks or white matter partial
volume maps, functional masks, six motion parameters (rotation: rx, ry, rz; translation: tx, ty, tz), anatomical
images and mean functional images in the MNI template space. The "Anat/Func-MNI pipeline” indicates the
correlation between the pipeline and the standard template, e.g. “Anat-MNI ABCD-BIDS” in Figure S7.1 refers
to the correlation between the ABCD-BIDS pipeline output and the standard template; “Anat/Func-MNI”
indicates the correlation between two pipelines, e.g. “Anat-MNI” in Figure S7.1 refers to the correlation
between the ABCD-BIDS pipeline output and the C-PAC:ABCD-BIDS pipeline output. Each column indicates a
subject in the HNU dataset, and each row is an intermediate derivative. For each cell, the Pearson correlation
between the derivatives across the two tools is shown. We recognize that the Pearson correlation may not be
the most appropriate measure for some of the comparisons (e.g., aligned images), but it was used universally
a) because it can be computed on all listed stages, and b) for consistency. When considering the anatomical
images and mean functional images aligned to the MNI template, which are the primarily used derivatives in
downstream analysis, we see that the lowest correlation is 0.84, while the majority of subjects have correlation
values of above 0.97.

C-PAC:ABCD-BIDS vs ABCD-BIDS

Figure S7.1 | Reproducibility indices of intermediate derivatives for ABCD-BIDS.
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C-PAC:CCS vs CCS

Figure S7.2 | Reproducibility indices of intermediate derivatives for CCS.

C-PAC:fMRIPrep-LTS vs fMRIPrep-LTS

Figure S7.3 | Reproducibility indices of intermediate derivatives for fMRIPrep-LTS.
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S8: Comparison of motion correction tools and references
29 subjects with low motion (mean FD Power: 0.094 ± 0.190 mm; mean FD Jenkinson: 0.054 ± 0.107 mm) and
29 subjects with high motion (mean FD Power: 1.793 ± 3.414 mm; mean FD Jenkinson: 1.000 ± 1.887 mm)
were selected from the HBN dataset. We evaluated the motion corrected outputs and the final functional time
series in template space from two motion correction tools (AFNI 3dvolreg vs FSL MCFLIRT) and four motion
correction references (mean volume, median volume, the first volume, the last volume) that are implemented in
the C-PAC:Default pipeline. As shown in Figures S8.1 and S8.2, we observe greater variation in motion
corrected time series across different references using FSL MCFLIRT than those using AFNI 3dvolreg,
especially for the low-motion case. From Figure S8.3, we can see the moderate average correlation with large
variance between FD results from AFNI 3dvolreg and those from FSL MCFLIRT when using the same
reference. However, as shown in Figure S8.4, the final functional connectivity estimates are highly correlated
regardless of motion correction implementations.

Figure S8.1 | Comparison of motion correction tools and references. The top row shows AFNI 3dvolreg
Power FD correlation results while the bottom row shows FSL MCFLIRT Power FD correlation results.
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Figure S8.2 | Comparison of motion correction tools and references. The top row shows AFNI 3dvolreg
Jenkinson FD correlation results while the bottom row shows FSL MCFLIRT Jenkinson FD correlation

results.
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Figure S8.3 | Comparison of motion correction tools and references. The top row shows AFNI 3dvolreg vs
FSL MCFLIRT Power FD correlation results while the bottom row shows Jenkinson FD correlation results.
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Figure S8.4 | Comparison of motion correction tools and references. Pearson correlation of functional
connectivity matrices using Schaefer 200 unit parcellation. Each dot indicates Pearson correlation for one

subject.
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S9: Validation of impact of MNI template version and write-out resolution
We computed spatial correlation of voxel-wise time series to further validate the intra-pipeline agreement when
different MNI template versions and write-out resolution were used. We resampled the functional time series to
a common space (defined by the MNI2006 template) with matched resolution using AFNI 3dresample,
because the 2009 template has a different number of voxels from the 2001 and 2006 templates. We performed
voxel-wise spatial correlation of the time series using AFNI 3dTcorrelate, and then calculated the mean,
standard deviation, and the 5, 50, and 95th percentiles of spatial correlation across configurations using AFNI
3dBrickStat. As shown in Table S9.1, the spatial correlation of voxel-wise time series across the 2001 and
2006 versions of the MNI template show high correspondence in both write-out settings, while results from the
2009 template show significantly lower correspondence. To avoid inconsistency in data manipulations and
confounding sources of bias in this analysis, no comparisons were made with unmatched write-out resolutions
(i.e. native versus 2mm). The result here aligns with findings shown in Figure 5.

Table S9.1 | Voxel-wise time series correlation of different MNI template versions and write-out resolution

Pipeline A Pipeline B Mean ± std 5-50-95th
percentiles

Average Correlated Images

fMRIPrep
2001 2mm

fMRIPrep
2006 2mm 0.993 ± 0.017

0.978
0.996
0.999

fMRIPrep
2001 2mm

fMRIPrep
2009 2mm 0.783 ± 0.220

0.313
0.858
0.984

fMRIPrep
2006 2mm

fMRIPrep
2009 2mm 0.783 ± 0.220

0.314
0.857
0.984

fMRIPrep
2001 native

fMRIPrep
2006 native 0.963 ± 0.034

0.919
0.968
0.992

fMRIPrep
2001 native

fMRIPrep
2009 native 0.701 ± 0.245

0.203
0.768
0.966

fMRIPrep
2006 native

fMRIPrep
2009 native 0.727 ± 0.239

0.233
0.798
0.974
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