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Abstract 

 

The frequency of synonymous codons in protein coding genes is non-random and varies both 

between species and between genes within species. Whether this codon usage bias (CUBias) reflects 

underlying neutral mutational processes or is instead shaped by selection remains an open debate, 

especially regarding the role of selection for enhanced protein production. Variation in CUBias of a 

gene (be it natural synonymous mutations or biotechnological synonymous recoding) can have an 

enormous impact on its expression by diverse cis- acting mechanisms. But expression of genes with 

extreme CUBias can also lead to strong phenotypic effects by altering the overall intracellular 

translation homeostasis via competition for ribosomal machinery or tRNA depletion. In this study, we 

expressed at high levels in human cells six different synonymous versions of a gene and used matched 

transcriptomic and proteomic data to evaluate the impact of CUBias of the heterologous gene on the 

translation of cellular transcripts. Our experimental design focused specifically on differences during 

translation elongation. Response to expression of the different synonymous sequences was assessed 

by various approaches, ranging from analyses performed on a per-gene basis to more integrated 

approaches of the cell as a whole. We observe that the transcriptome displayed substantial changes 

as a result of heterologous gene expression by triggering an intense antiviral and inflammatory 

response, but that changes in the proteomes were very modest. Most importantly we notice that 

changes in translation efficiency of cellular transcripts were not associated with the direction of the 

CUBias of the heterologous sequences, thereby providing only limited support for trans- acting effects 

of synonymous changes. We interpret that, in human cells in culture, changes in CUBias can lead to 

important cis- acting effects in gene expression, but that cellular homeostasis can buffer the 

phenotypic impact of overexpression of heterologous genes with extreme CUBias. 

 

Keywords: codon usage bias, gene expression, competition for translational resources, cellular 

homeostasis, heterologous expression 
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Introduction 

 

The genetic code allows translating information stored in gene nucleotide sequences into 

protein sequences. This code is redundant because the standard twenty amino acids are encoded by 

61 codons. Codons encoding the same amino acid are called synonymous codons and amino acids can 

be encoded by up to six synonymous codons. It was early noted that synonymous codons are not used 

at random but instead certain synonymous codons are over-represented in the genome compared to 

the null expectation of uniform use. This non-random usage of synonymous codons is referred to as 

codon usage bias (CUBias). CUBias widely varies across species (Ikemura, 1982; Kanaya et al, 1999; 

Novoa et al, 2019) as well as between genes within the same genome (Gouy & Gautier, 1982; Sharp 

& Li, 1986; Duret, 2002). 

Two non-mutually exclusive hypotheses have been formulated to explain the existence of 

CUBias (Hershberg & Petrov, 2008; Plotkin & Kudla, 2011). The first one is the mutational bias 

hypothesis, which is usually conceived as a neutral explanation as it does not involve any selective 

process shaping CUBias. According to this view, the CUBias of a coding sequence simply arises because 

of local biases in the mutation spectrum during DNA replication and/or repair. Since such mutational 

biases are expected to be similar for coding and non-coding parts of the genome, CUBias should thus 

mirror the nucleotide composition of non-coding sequences nearby. This idea of CUBias being an 

epiphenomenon of mutational processes is supported by several lines of evidence. For example, GC 

composition of exons is usually similar to that of the introns in the same gene (Chamary, Parmley & 

Hurst, 2006) or to that of intergenic sequences in its vicinity (Chen et al, 2004), illustrating that 

mapping or not onto a translated region is not the major determinant of the nucleotide composition 

bias. At broader scale, evidence of such co-variation of nucleotide composition between coding and 

non-coding regions is obvious in the so-called isochores, present in the genomes of many vertebrates. 

Isochores are long chromosome stretches enriched in either AT or GC nucleotides (Caspersson et al, 

1968). This strong compositional bias along large genomic regions is maintained over evolution, so that 

the physical mapping of a gene onto a given isochore is the most important determinant of nucleotide 

composition and therefore of CUBias (Holmquist, 1989; Duret, 2002; Pouyet et al, 2017). Finally, local 

CUBias in vertebrate genomes is further influenced by the distance to recombination hotspots and 

could reflect the intensity of the GC-biased gene conversion around the considered loci (Pouyet et al, 

2017).  

In the second hypothesis, known as translational selection, synonymous mutations are 

considered subject to selection as they can provide phenotypic variation and ultimately differences in 

fitness by means of variation in protein amount and/or quality during the gene expression process, 
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mostly during translation. According to this view, selection can discriminate between synonymous 

codons either because of their different decoding speed, their different consequences on co-

translational folding of the translated protein (an effect probably mediated by local decoding speed 

itself – Pechmann & Fryman, 2013; Yu et al, 2015) or the different accuracy for codon-anticodon 

pairing (Stoletzki & Eyre-Walker, 2007; Drummond & Wilke, 2008; Drummond & Wilke, 2009; Walsh 

et al, 2020). The proposed involvement of CUBias on translational efficiency is strongly supported by 

the fact that genes preferentially using the most frequent synonymous codons are usually those 

expressed at higher levels and decoded by more abundant transfer RNAs (tRNAs). This association 

between codon frequency and tRNA abundance has been extensively reported in multiple fast 

growing, unicellular organisms such as E. coli (Ikemura, 1981; Sharp & Li, 1986; Tuller et al, 2010) or 

S. cerevisiae (Ikemura, 1982; Akashi, 2003; Tuller et al, 2010), but also in multicellular organisms such 

as C. elegans (Duret, 2000) and D. melanogaster (Duret & Mouchiroud, 1999). This association 

supports that CUBias can be shaped by selection to optimize protein production. Technical advances, 

such as ribosome profiling, confirm that synonymous mutations play a role in how efficiently genes are 

translated, and that this differential efficiency is directly linked to tRNA availability (Hia & Takeuchi, 

2021, but see Charneski & Hurst, 2013). In yeast, translation efficiency is higher when codon frequency 

matches tRNA availability (Riba et al, 2019), and decoding time of individual codons is anti-correlated 

with the availability of the corresponding cognate tRNA (Gardin et al, 2014; Weinberg et al, 2016). 

While supported in the above-cited model species, translational selection in mammalian genomes is a 

much more debated topic (Urrutia & Hurst, 2001) and if exists, its influence seems to be much weaker 

than that of mutational processes (Kanaya et al, 2001; Vogel et al, 2010). Further, the importance of 

GC-biased gene conversion and isochore compartmentation on shaping local genome composition is 

probably strong enough to blur most of the signatures left within coding sequences by selection 

(Pouyet et al, 2017).  

The translational selection hypothesis proposes that the CUBias of a gene can modulate its 

own translation efficiency, an impact usually referred to as cis-effects. But it has been proposed that 

the CUBias of a gene can exert effects on the expression and translation efficiency of other genes, by 

means of trans-effects. Indeed, translation is the most expensive individual step of the gene expression 

process (Lynch & Marinov, 2015) and the availability of the complex and costly translational machinery 

is the overall limitation for protein synthesis. The different cellular transcripts face thus a direct 

competition for finite translational resources, such as ribosomes or tRNAs (Li G et al, 2014). As a result, 

there are large differences between transcripts in their ribosomal binding ability, so that not 

necessarily the most abundant mRNAs are those that are more effective at recruiting ribosomes and 

initiating translation, resulting in loss of translation opportunity for other mRNAs (Callens et al, 2021). 

Further, when abundant and actively ribosome-recruiting mRNA species perform poorly at translation 
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elongation – because of a poor CUBias, for instance –, ribosomal pausing leads to accumulation of 

slowly proceeding ribosomes, amplifying ribosome sequestration and further reducing the pool of free 

ribosomes available for translation of other mRNAs (Shah et al, 2013; Pelechano, Wei & Steinmetz, 

2015). From a practical perspective, competition between mRNAs to access shared resources such as 

tRNAs can be considered under a perspective of cellular economy, using a supply-and-demand 

reasoning. In this perspective, the pool of transcripts exerts a demand for being translated, requiring 

their codons to be decoded by the corresponding cognate anticodons, which represent the offer 

(Gingold & Pilpel, 2011; Gingold, Dahan & Pilpel, 2012). 

Since trans-acting effects of gene overexpression can hamper translation of essential genes, it 

is conceivable that genes that require high expression levels have been selected to be encoded with a 

particular CUBias, to decrease the burden caused onto other genes arising from their high expression 

levels, or to avoid suffering from trans acting effects caused by high expression level of other genes. 

Two studies in E. coli strongly support this hypothesis of trans-acting effects mediated by competition 

between mRNAs: i) first, expressing different synonymous versions of the green fluorescent protein 

(GFP) did not result in major changes in its own translation -i.e., no cis- effects-, but instead led to 

significant trans-effects on global translation efficiency (Kudla et al, 2009); ii) second, the global 

negative effects associated with translating highly expressed genes that use rare codons can be 

reversed if the availability of the cognate tRNAs is increased to meet the demand (Frumkin et al, 2018). 

Results consistent with such trans- effects have been also communicated for yeast (Pop et al, 2014). 

In this study we aim at understanding the extent and strength of trans-acting effects by 

analyzing the different cellular changes incurred as a function of heterologous expression of genes with 

different CUBias. We use human HEK293 cells as model system and combine transcriptomic and 

proteomic data to identify patterns consistent with trans-acting effects on translation efficiency 

mediated by competition for the translation machinery. The analyses of the cis-acting effects of codon 

recoding have been the focus of a separate study (Picard et al, 2022). Here we analyze both individual 

gene translation efficiency and overall translation efficiency at the whole-cell scale. Globally our results 

show that heterologous gene overexpression triggers changes of large extent in the cellular 

transcriptome. In contrast, changes in the cellular proteome are more discrete and do not show any 

evident global trend with regards to CUBias of the heterologous genes. More importantly, our results 

suggest that cellular homeostasis can largely buffer the translational effects of gene overexpression in 

our experimental system. This study thereby provides only limited support for the hypothesis of trans-

acting effects arising from directional competition for limited translational resources, associated to 

CUBias in humans. 
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Results 

 

Transfection and heterologous gene expression lead to substantial changes in the cellular 

transcriptome, independently of the codon usage bias of the heterologous genes 

 

In the present study we have transfected human HEK293 cells with a pcDNA3.1 plasmid 

containing different synonymous versions of the shble gene (Fig. 1A) and analysed transcriptional and 

translational differential changes associated to heterologous gene expression. Shble sequences were 

translationally coupled to the egfp gene, under the control of a strong promoter. We performed three 

rounds of transfection experiments, each one including six shble synonymous versions, one 

transfection control with the EMPTY vector (i.e. our plasmid backbone with no shble sequence and 

encoding only for the egfp and NeoR genes, with identical sequences for all constructs), as well as one 

MOCK control with mock-transfected cells. Transcriptomic analyses were run in biological duplicates for 

each experiment, so that we obtained a total of 48 cellular transcriptomes, that were latter collapsed 

to 24 by averaging TPM values of duplicates (see Methods). For proteome analyses, the biological 

duplicates in each experiment were pooled during protein extraction, so that we analysed a total of 24 

cellular proteomes. 

A principal component analysis performed on our transcriptomic data (exclusively using cellular 

mRNAs, i.e., heterologous mRNAs excluded) revealed that the main source of variation across our 

samples stems from transfection itself (Fig. S1). The first principal component captured 67% of the total 

transcriptomic variance, with MOCK samples displaying values divergent from all other versions. 

Importantly, variation along the first component was largely explained by variation in the total amount 

of heterologous transcripts in the sample (Fig. 1B, Spearman correlation coefficient: 0.87, P = 4.8e-7). 

Since heterologous expression was the largest determinant of transcriptomic changes, we focused on 

the identification of differentially expressed (DiffExp) cellular transcripts compared to the MOCK control 

for each transfected plasmid version. The total number of transcripts identified as DiffExp in at least 

one condition was 1,425 (Table S1). Transfection with our EMPTY control resulted in 645 DiffExp 

transcripts, while the number of DiffExp transcripts detected in our experimental conditions varied 

between 487 for Shble#6 and 1,311 for Shble#3, as a function of heterologous gene expression (Fig. 

S2). Most of the 645 DiffExp mRNAs in the EMPTY control were also identified as DiffExp in all six (64%) 

or in five out of the six (82%) shble synonymous versions (Fig. 1C). The precise overlap between DiffExp 

mRNAs in the EMPTY and in each of the six shble versions is given in Fig. S3. Finally, and independently 

of their behaviour in the EMPTY condition, we observe that a vast majority of transcripts DiffExp 

compared to the MOCK in each version are shared among several shble synonymous versions, despite 

the very different CUBias of the recoded gene (Fig. S4). We hence interpret that our sets of DiffExp 
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transcripts constitute a fundamental part of the cellular response to transfection and to heterologous 

gene expression, and not to a specific shble synonymous version. Functional enrichment analysis 

supported this conclusion, with all seven sets of DiffExp transcripts relative to the MOCK sharing the 

same top three enriched categories, namely Inflammatory response, Type I interferon signaling 

pathway and Response to virus. Two other immunity-related categories appeared over-represented in 

most of the sets of DiffExp transcripts: Negative regulation of viral genome replication and Immune 

response categories (Table S2). Of note, an overwhelming majority of mRNAs belonging to these five 

categories appeared to be up-regulated in comparison to the MOCK condition, suggesting transfection 

triggered an inflammatory response in our HEK293 cells. Overall, the global trends for our 

transcriptomic results are that: i) transfected cells undergo substantial changes in the transcriptome; 

ii) the extent of these changes correlates with the extent of heterologous gene expression; iii) the bulk 

of the transcriptomic response are shared among conditions, irrespective of the CUBias of the 

transfected shble version; and iv) transcriptomic changes upon transfection largely overlap the 

activation of the cellular response to viral infection and inflammatory response. 

 

Lack of directional changes in the cellular proteome upon transfection and heterologous gene 

expression, irrespective of the codon usage bias of the heterologous genes 

 
Our experimental setup of paired transcriptomic and proteomic data allowed us to estimate 

intra-sample covariation between mRNA and protein levels. Overall, we detected a total of 4,005 

protein entries, with an average of 2,723 proteins detected per sample, and 2,891 proteins detected in 

all three replicates of at least one condition (Table S3). Distribution of relative intensity-Based Absolute 

Quantification (riBAQ) values for proteins detected in each sample is given in Fig. S5. When coupling 

proteomic data with transcriptomic data, we observed that variation in mRNA levels accounts for 

around one-third of the variation in protein levels (median R²=0.31, min=0.29, max=0.35, Table S4). A 

representative example is provided in Fig. S6. These values agree with previous measurements 

performed on mammalian cells, with studies reporting correlation values around 0.40 for mouse cells 

(Schawanhaüsser et al, 2011) and between 0.30 and 0.40 for human cells (reviewed in Vogel & 

Marcotte, 2012).  

We next used proteomic data to investigate whether we could find evidence for a shared 

response across versions, similar to the one described above at the transcriptomic level, or alternatively 

whether a shble synonymous version-specific response is observed after transfection at the protein 

level. The two first axes of a PCA performed on our proteomic data (exclusively using cellular proteins) 

captured an important fraction (77%) of the global proteome variation among samples (Fig. S7). 

However, in contrast with variation at the transcriptomic level, the experimental conditions did not 
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spread following any evident pattern. Especially, variation along the first component was not driven by 

variation in the total amount of heterologous transcripts expressed by the samples (Spearman 

correlation coefficient = 0.099; P = 0.67).  The absence of clustering in the PCA was still notable when 

considering the set of 2,891 proteins that were robustly detected in all the three replicates of at least 

one condition (data not shown). Accordingly, differential expression analysis failed to identify 

differentially expressed proteins, either with regards to transfection itself or regarding the different 

shble synonymous versions in the transfected plasmids. We tried to refine this analysis by defining a 

set of proteins that could maximize the chances of detecting DiffExp proteins between conditions. We 

identified thus all proteins that were detected in all three replicates of a same condition and that were 

not detected in any of the three replicates of at least one other condition (see Methods and Table S3), 

reasoning that if an effect was to be found, working specifically on this subset of proteins would 

maximize variation across versions. We found 369 proteins that fulfilled this stringent criterion, but 

again a Principal Component Analysis failed at identifying systematic differences between conditions 

(Fig. S8). Overall, we concluded that in our experimental setup, the cellular proteomic response to 

heterologous expression was much less important than the transcriptomic one. 

 

High translation level of heterologous sequences does not impair translation of cellular genes with a 

similar codon usage bias 

For prokaryotic and unicellular eukaryotic systems it has been proposed that overexpressing 

heterologous genes with extreme CUBias can affect the translation efficiency of other genes (Kudla et 

al, 2009; Shah et al, 2013; Frumkin et al, 2018). To test whether this was also the case in our human 

cells, we chose as a proxy for translation efficiency of a given gene the ratio protein-over-mRNA 

(expressed as an riBAQ/TPM ratio). We first studied the impact of heterologous expression on the 

translation efficiency of cellular genes by comparing the EMPTY condition to the MOCK condition. Cells 

under the EMPTY condition were transfected with a plasmid encoding only the egfp gene, whose 

sequence, “enhanced” for expression in human cells, is strongly biased towards the use of the most 

frequent codons in the human genome (COUSIN value of egfp: 3.38). This first level of analysis hence 

provide insights into potential consequences of over-expressing an “over-humanized” gene on the 

translation efficiency of cellular genes. Changes in the riBAQ/TPM ratio in EMPTY vs. MOCK samples were 

calculated for 2,471 cellular genes and are depicted as a function of the CUBias of the corresponding 

gene (Fig. 2A). Our results show that the intensity of changes in riBAQ/TPM for cellular genes when 

EGFP is actively expressed is not a function of gene’s CUBias (slope = 0.00378, F-test P = 0.29). We 

performed the same analysis comparing riBAQ/TPM ratios in Shble#1 and Shble#2 conditions against 

the MOCK. These two versions encode shble using an over-humanized CUBias, in the same direction 

than egfp (COUSIN values to the human genome for Shble#1 and Shble#2 are of 3.47 and 3.42, 
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respectively). Again, we do not observe any trend in protein-over-mRNA levels as a function of the 

CUBias of the corresponding gene (Fig. 2B, slope = 0.0048, F-test P = 0.18 and Fig. 2C, slope = -0.0059, 

F-test P = 0.11). These results go in the same direction as the ones presented in Fig. 2A and do not 

support the hypothesis that translation of highly expressed over-humanized genes especially impairs 

translation of cellular genes also enriched in these human-frequent codons. 

 

To extend the analysis of the impact of heterologous gene expression on translation of cellular 

genes to the range of CUBias explored in our setup, we aimed at identifying cellular genes that 

presented consistent trends of changes in protein-over-mRNA ratio across conditions. As a proxy for 

translation level of the heterologous genes we used the total amount of EGFP and SHBLE detected in 

each sample, using the sum of the corresponding riBAQ values. We stratified the experimental 

conditions in two mutually exclusive  sets: those that expressed heterologous genes enriched in codons 

frequently used in the human genome (i.e., EMPTY, Shble#1 and Shble#2) and those that expressed 

heterologous genes enriched in codons rarely used in the human genome (i.e., Shble#3, Shble#4, 

Shble#5 and Shble#6).  

We first focused on conditions using human-frequent codons (EMPTY, Shble#1 and Shble#2), 

exploring correlation between variation in riBAQ/TPM ratios for each individual gene and variation in 

the total amount of heterologous proteins. This analysis used twelve underlying data points per gene 

as explanatory variable: three values for the MOCK control samples and nine values for the transfected 

samples. Out of the 2,550 cellular genes that we could analyze, 235 displayed a significant co-variation 

between riBAQ/TPM ratios and heterologous protein levels: 109 genes showed a positive and 126 

showed a negative, significant co-variation (Fig. 3A, yellow and green sets, respectively; Table S5). 

Results for a representative example of a gene with a negative association (green set) are given in Fig. 

3B (left, P = 0.0092). We next compared these two sets of genes in terms of CUBias, with the hypothesis 

that a competition for translational resources between cellular and heterologous transcripts should 

primarily negatively affect translation of genes enriched in most human-frequent codons (i.e., in the 

same codons used by egfp and Shble#1 and Shble#2 versions). Instead, we found that the median 

COUSIN score for the two gene sets were not significantly different (0.58 for the set of 126 genes; 0.45 

for the set of 109 genes; Wilcoxon Mann-Whitney test P = 0.58, Fig. 3C). An additional Anderson-Darling 

test failed to reject the null hypothesis that the COUSIN value distributions for each dataset could have 

been drawn from a same underlying distribution and were thus not significantly different (P=0.33, Fig. 

3C). Finally, these two gene sets, with translation positively or negatively affected by overexpression of 

heterologous genes enriched in human-frequent codons, do not display different distribution of 

COUSIN values than the overall cellular genes (Fig. S9). These results confirm the trend communicated 

above (Figure 2) and show that cellular genes whose translation was positively or negatively impacted 
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by overexpression of heterologous genes enriched in human-frequent codons do not display different 

CUBias: high expression of heterologous genes enriched in human-frequent codons does not impose a 

substantial differential burden on host translation efficiency of cellular genes as a function of their 

CUBias.  

It is conceivable that we failed to identify a differential impact of over-humanized protein 

expression on host translation efficiency due to a pool of tRNAs for the considered codons large enough 

to accommodate the demand exerted by translation of heterologous mRNAs. Alternatively, we can 

expect the pool of tRNAs decoding human rare codons to be more limiting and therefore more prone 

to be depleted by the demand imposed by the translation of heterologous mRNAs rich in such rare 

codons. We thus perform our analysis with the second set of conditions, focusing on conditions 

expressing heterologous genes enriched in codons underrepresented in the human genome. This 

analysis used 15 underlying data points per gene as explanatory variable: three values for the MOCK 

control samples and twelve values for the transfected samples (i.e. Shble#3, Shble#4, Shble#5 and 

Shble#6). Out of the 2,580 cellular genes that we could analyze, 285 displayed a significant co-variation 

between riBAQ/TPM ratios and heterologous protein levels: 130 genes showed a positive and 155 

showed a negative, significant co-variation (Fig. 3A, pink and blue sets, respectively; Table S5). Results 

for a representative example of a gene with a negative association (blue set) are given in Fig. 3B (right, 

P = 0.0012). We compared then the CUBias of the genes in each of these two sets and we observed 

that they differ in their match to the average human CUBias: cellular genes showing a negative 

association with overexpression of heterologous genes enriched in human-rare codons displayed 

higher COUSIN scores than genes displaying positive association (respective median values 0.79 and 

0.13; Wilcoxon Mann-Whitney test P = 0.010, Fig. 3D). The distribution of COUSIN values between the 

two gene datasets is also significantly different (Anderson-Darling test, P = 0.0010, Fig. 3D). 

Furthermore, cellular genes negatively affected by overexpression of heterologous genes enriched in 

human-rare codons do not display different COUSIN values distribution than the ensemble of the 

cellular genes, while genes positively affected do display a different CUBias distribution that is shifted 

towards lower COUSIN values (Fig. S10). These results are counter-intuitive because – assuming cellular 

mRNAs compete with heterologous mRNAs for access to rare-codon decoding tRNAs – we would 

instead have expected cellular genes negatively impacted to be the ones preferentially using these non-

optimal codons that are required for translating heterologous transcripts and hence to be those 

presenting lower COUSIN values. 

For the sake of completeness, we repeated all these analyses (i.e., using the two mutually 

exclusive sets of conditions), after having excluded cellular genes that were significantly affected in the 

same direction in both datasets (i.e., after having removed the 27 cellular genes that are positively 
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affected in both cases and the 34 cellular genes that are negatively affected in both cases). The results 

did not change with regards to those communicated above (Fig. S11). 

Overall, the global trends for our experiment results does not support thus the hypothesis for 

resource competition among mRNAs for the rare cellular resources of the translation machinery, as 

overexpression of genes with a given CUBias does not hinder translation of other genes with similar 

CUBias. 

 

Heterologous expression of genes with extreme CUBias does not lead to a global alteration of the 

translation efficiency of cellular transcripts 

 
We finally used a more integrative approach to examine how the global codon repertoire 

present at the transcriptomic layer ‘flows’ to the proteomic layer. This approach follows a supply-and-

demand reasoning: codons present in the pool of cellular mRNAs exert a demand for being decoded 

whereas the codon composition inferred from the cell proteome informs us to what extent this demand 

has been met. For this purpose, we calculated for every sample the occurrence of each codon by 

accounting for their relative abundance, as they are represented in the whole cellular transcriptome, 

in the whole cellular proteome, or in the set of transcripts that matched detected proteins (Table S6). 

We next computed the relative synonymous codon frequency (RSCF) from these ponderated codon 

counts (see Methods) and recapitulated the obtained RSCF profiles in the PCA shown in Fig. 4A. To 

avoid introducing bias due to difference in sensitivity of features detection (~ 14,000 mRNAs detected 

versus ~ 3,000 proteins detected) when comparing proteome RSCF and transcriptome RSCF, we 

decided to use exclusively the set of transcripts that matched detected proteins instead of the whole 

transcriptome data for the rest of the analysis. By dividing proteome RSCF of each codon by its 

transcriptome RSCF counterpart, we obtained for each sample an integrated view of how content of 

each codon changed between mRNAs present in the cell and mRNAs that had been translated into 

proteins. We called this variable Prot-to-RNA RSCF and considered it as a proxy of whole-cell translation 

efficiency of codons. The resulting variation across samples for their Prot-to-RNA RSCF vectors is shown 

in Fig. 4B. We observed that Shble#3 seem to have preferentially translated GC-ending codons. More 

generally, we observed that most AT-rich versions (Shble#3, Shble#4 and Shble#6) have positive scores 

on PC2, while most GC-rich versions (Shble#1, Shble#2, Shble#5 + Empty) have negative scores. We 

checked the correlation between heterologous transcripts expression and both PC1 (62%) and PC2 

(15%) of the variation of Prot-to-RNA RSCF across samples, to see if it drives some of the variation and 

hence could cofound the effect of our synonymous recoding of shble versions per se. None of the 

correlation was significant, but for PC2 there was a positive trend (Fig. S12). For this reason, we 

examined the relationship between shble sequence features and PC2 of Prot-to-RNA RSCF, after having 
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removed the effect of heterologous expression (see Methods). We focused on shble CDS GC-richness 

and COUSIN score and found a significant and negative correlation for GC-richness (R² = 0.28, P = 0.015 

- Fig 4C). Since higher PC2 scores represent samples that favored the translation of GC-ending codons 

(Fig. 4B), the result of Fig. 4C suggests a differential effect in terms of codon third base-dependent 

global translation efficiency in host cells, driven by base composition of the synonymous version they 

express. Samples expressing GC-depleted versions of shble (such as Shble#3) preferentially translate 

GC-ending codons, whereas samples expressing GC-rich versions of shble (such as Shble#1 or Shble#2) 

preferentially translate AT-rich codons. However, this effect is subtle since it only emerges when looking 

at PC2, which captures only 15% of the total variation across samples in their whole-cell translation 

efficiency. 

 

Discussion 

 

We present here a systematic analysis of the changes in the cellular transcriptomic and 

proteomic profiles upon experimental transfection, using a number of synonymous versions of 

heterologous genes with divergent CUBias. Our results show that transfection and heterologous gene 

expression elicited substantial changes in the cellular transcriptome, while changes in the proteome 

were of a lesser extent. Transcriptomic changes triggered by plasmid DNA mainly involved the 

activation of genes related to inflammatory response and antiviral immunity. This cellular response 

was shared across all experimental conditions used (i.e., mock transfections, EGFP expression alone or 

SHBLE and EGFP expression), pointing towards a common response to the presence of plasmid DNA in 

the cytoplasm of the transfected cells. Indeed, DNA in eukaryotic cells is restricted to enveloped 

subcellular structures (nucleus, mitochondria, chloroplasts), and the presence of naked DNA in the 

cytoplasm is most often related to viral infections. In vertebrates several cytoplasmic DNA sensors exist 

such as the cyclic GMP-AMP synthase (cGAS) and the stimulator of interferon genes (STING) (Wu & 

Chen, 2014). Consistent with the activation of such cytoplasmic DNA-sensing pathways and their 

known downstream effects on gene expression (Stetson & Medzhitov, 2006; Wu & Chen, 2014), we 

detect in our transfected cells many activated genes related to Type I interferon signaling pathway. 

This was the case of upregulation in all our experimental conditions of interferon stimulated genes 

ISG15 and ISG20, interferon induced proteins with tetratricopeptide repeats IFIT1, IFIT2 and IFIT3, or 

of the interferon alpha-inducible protein 6 IFI6 genes. Though our study did not aim at characterizing 

the HEK293 response to transfection, our results suggest that it induces an inflammatory response that 

could be dependent on STING activation, as shown by a study conducted on this cell line (Khiar et al, 

2017). Finally, we also observed that transfection led to up-regulation of genes known to have viral 
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RNA sensor roles, such as the four members of the OAS gene family (2'-5' oligoadenylate synthetases, 

OAS1, OAS2, OAS3, OASL), all of them regulated by interferon signaling and encoding for enzymes 

displaying RNAse activity (Kristiansen et al, 2011; Zhu et al, 2014). Note that this observation is not 

necessarily in contradiction with the fact that we transfected DNA and not RNA, knowing that crosstalk 

exists between antiviral sensors of DNA and double-stranded RNA (Cheng et al, 2007). Our previous 

results on this experimental system (Picard et al, 2022) further show that transfection alone leads to 

a 50% drop in cell growth, in line with a functional anti-viral response that would prevent access of 

exogenous DNA to the cell nucleus upon cell division. In conclusion transfection of plasmid DNA 

resulted in the induction of a common anti-viral response through the overexpression of mRNAs 

involved in inflammatory processes, consistent with functional correlates of cell growth decrease. 

Expressing plasmid-encoded heterologous genes in our cells triggered large transcriptomic 

changes. For each of the different synonymous version, we identify at least 480 cellular transcripts to 

be differentially expressed after transfection. In striking contrast to these transcriptomic changes we 

observed no differences in the proteomes of the transfected cells. A technical explanation for this 

differential response between transcriptomic and proteomic responses could be related to the 

differential power of the technical approaches quantifying transcripts and proteins. In our case we 

detect the presence of a median 13,661 gene transcripts per sample while we could only detect 2,712 

proteins. We also observe that mRNAs for which we detected the corresponding protein were on 

average 3 times more abundant than mRNAs without protein detected (median log10 TPM values: 

1.76 versus 1.28, p < 2.2e-16, Wilcoxon Mann Whitney – Fig. S13). Concomitantly, detected proteins 

were biased towards those corresponding to transcripts displaying no significant variation of 

expression after transfection (Fig. S13), providing a potential explanation for the absence of protein 

differential expression. Despite this technical gap, our results contribute to the growing evidence 

obtained by combining transcriptomics and proteomics (or Ribo-Seq) approaches, showing that 

proteomes tend to be more stable, and/or to display a larger inertia to change, than transcriptomes. 

Such a trend has been communicated for yeasts species (McManus et al, 2014), for the molecular 

responses of other fungi either to stressors or environmental cues (Blevins et al, 2019; Brancini et al, 

2019), as well as across primates (Khan et al, 2013). In this regard, it has been shown that human 

tissues involved in similar broad functions display similar proteomes, even if their transcriptomes are 

divergent (Wang D et al, 2019) and that this trend is conserved across evolutionary timescales for 

mammals (Wang ZY et al, 2020). Additionally, differences in degradation rates of mRNAs and proteins 

can further enhance this gap between the transcriptomic and the proteomic responsiveness: in 

mammalian cells in culture, proteins display in average five times larger half-lives than mRNAs (46 h 

vs. 9h, respectively), and there is no correlation between the stability of mRNA and the corresponding 

protein (Schwanhaüsser et al, 2011). It is thus conceivable that changes at the proteome level appear 
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buffered because highly expressed and long-lived proteins might still be present at their initial 

expression level (i.e., at the time before transfection occurred) and had not sufficient time to achieve 

a complete turnover. Nevertheless, even if such effect exists, we anticipate its impact on our 

experimental data to be limited because we collected our cells for the transcriptomic and proteomic 

determination 48h after transfection.  

It is well known that CUBias strongly influences the expression level of a gene (either directly 

or indirectly via linked variables such as GC composition, dinucleotide composition, mRNA folding 

energy or changes in decay pathways – Chamary & Hurst, 2005; Kudla et al, 2006; Vogel et al, 2010; 

Boël et al, 2016; Cambray, Guimaraes & Arkin, 2018; Courel et al, 2019. Such cis-acting effects of 

CUBias on gene expression have been thoroughly documented for our shble-egfp experimental system 

(Picard et al, 2022). The purpose of the present study was to determine whether and to what extent 

CUBias may display trans-acting effects on the overall cell translation. We specifically explored 

whether strong expression of a heterologous gene lead to a differential impact on the translation of 

cellular genes as a function of the match between their CUBias and the CUBias of the overexpressed 

gene. In mammalian cells, virtually all ribosomes are engaged in translation at any given time 

(Princiotta et al, 2003), and translation is the most expensive step in the biological information flow 

process (Lynch & Marinov, 2015), consuming around 45% of all cellular energy (Princiotta et al, 2003). 

It is thus conceivable that high expression levels of certain genes may come at the expense of a limited 

expression of other genes, due to competition for non-finite pool of translational resources shared by 

mRNAs present in the cell. This may be especially the case if highly abundant mRNA species are not 

efficiently translated (Shah et al, 2013) – for example due to a poor CUBias. The existence of such 

trans- effects has been verified in E. coli using high-throughput approaches with respect to tRNAs 

availability (Frumkin et al, 2018). Another study on S. cerevisiae led to the same conclusion that CUBias 

of highly expressed genes is key in maintaining the overall translation efficiency of the rest of mRNAs 

present in the cell (Qian et al, 2012). Here we test on a mammalian model the hypothesis that CUBias 

of highly expressed genes impacts translation efficiency via trans-acting effects, linked to competition 

between heterologous transcripts and cellular transcripts to access tRNAs. We found no evidence of 

such effects in our experimental system, despite having constructed highly divergent synonymous 

shble versions that are expressed at remarkably high levels. Indeed, heterologous shble-egfp 

transcripts represent more than 1% of transcripts in most samples (i.e., above 10,000 TPM) and the 

SHBLE and EGFP proteins together represent more than 0.6% of the total protein abundance detected 

for all versions except Shble#6. Results presented in Figure 2 and Figure 3 show no support for the 

codon usage-specific decrease in translation efficiency of cellular mRNAs expected under the 

hypothesis that high expression of heterologous genes leads to trans-acting effects through tRNA 

shortage. Regarding the use of rare codons more specifically, which are codons presumably decoded 
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by tRNAs more prone to shortage, the competition hypothesis predicts that overexpression of 

heterologous genes enriched in rare codons should result in a negative impact on the translation of 

cellular genes enriched in these same rare codons (Yona et al, 2013; Frumkin et al, 2018). Our results 

however do not support this hypothesis. In contradiction to this expectation, we instead observe a 

decreased translation efficiency in cellular genes enriched in common codons when we force the cells 

to overexpress heterologous genes rich in rare codons. We ruled out that genes with decreased 

translation efficiency are more expressed (Fig. S14), which could have rendered them more prone to 

potential tRNA shortage independently of their CUBias. We must admit that we have not found yet a 

satisfying explanation for this counter-intuitive pattern. 

Synonymous versions of the shble coding sequence used in this study were designed to present 

distinct CUBias, except for the first seven codons, which are identical across. Thus, the chemical and 

coding environments immediately surrounding the translation starting point are identical for all 

synonymous versions and our postulate is that our gene recoding strategy allows to largely tease apart 

initiation- from elongation-driven effects. Local mRNA structures present around the start codon can 

hinder ribosomal binding and early progression and hence translation initiation. Indeed, variation in 

the strength of secondary structures around the start codon is the largest explanatory factor for 

differences in translation in E. coli (Cambray, Guimaraes & Arkin, 2018). Molecular modelling suggests 

indeed that translation is mainly limited by initiation rate rather than by elongation rate (Shah et al, 

2013; Riba et al, 2019). These predictions are supported by numerous experimental studies reporting 

a link between mRNA secondary structures immediately upstream the translation start site and protein 

synthesis. This positive relationship between mRNAs with less structured 5’ UTR and higher protein 

production seems to be conserved throughout evolution as has been identified in E. coli (Kudla et al, 

2009), unicellular eukaryotic organisms (Shah et al, 2013; Weinberg et al, 2016; Wang SE et al, 2020) 

and mammals including humans (Gandin et al, 2008; Mauger et al, 2019 but see De Sousa Abreu et 

al, 2009 who described no effect of the initiation rate on translation efficiency in human transcripts). 

Our design for synonymous versions recoding of the shble gene focused on the elongation step of 

protein synthesis, so we don’t expect mRNAs species of the different shble versions to be initiated at 

different rates. Results present in this study and our previous one together suggest that elongation can 

alter protein expression in cis-, but that trans-effects on cellular mRNAs translation efficiency are 

modest and, importantly, not related to their CUBias. 

Results presented in Figure 4 suggest that differences in GC composition between our 

synonymous versions impact host translation efficiency in opposite ways: cultures transfected with AT-

rich versions (Shble#3, Shble#4, Shble#6) presented an enhanced translation efficiency of cellular 

mRNAs rich in GC-ending codons whereas cultures transfected with GC-rich versions (Shble#1, 

Shble#2, Shble#5) presented an enhanced translation efficiency of cellular mRNAs rich in AT-ending 
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codons. Considering the hypothesis of trans- effects exerted on cellular genes through translation of 

heterologous genes, we expected our synonymous versions to cluster not according to their GC-

content but rather according to their overall match with the CUBias of the host cell (proxied here by 

their COUSIN score). We first note that we did not recover the expected pattern of AT-rich versions 

triggering the expression of schlafen11, which could have explained why translation of GC-rich cellular 

transcripts seems favored in sample expressing these versions. In mammals, this gene is indeed known 

to be a part of the innate immune response against viral infections resulting in an altered translation 

in a CUBias-dependent manner, specifically impairing AT-rich transcripts translation (Li M et al, 2012). 

As a second line of thought, a highly expressed heterologous gene could globally modify the cellular 

translation dynamics because of the overload it imposes on the translation machinery, via ribosomal 

sequestration, for instance (Princiotta et al, 2003). It has been indeed shown that adenine-rich mRNAs 

promoted ribosomal binding to these transcripts (Castillo-Méndez et al, 2012). 

Finally, we would like to draw attention to the fact that modifying CUBias so that the designed 

sequences are either enriched or depleted in the most frequent synonymous codons found in a 

genome has not always straightforward consequences on translation efficiency. Albeit it is probably 

true that in most cases such strategy of codon “optimization” (or “de-optimization”) gives the expected 

results in terms of protein production (see Quax et al, 2015 for a review; Welch et al, 2009; Schmitz & 

Zhang, 2021), there are several instances that produced surprising results, not only in humans but also 

for micro-organisms (Pop et al, 2014). In bacteria for example some studies reported that varying 

CUBias did not change protein expression of the target, was it a transgene or a gene in the genome of 

a recoded strain (Kudla et al, 2009; Frumkin et al, 2018) or worse reported that encoding a protein 

with putatively most optimal codons ultimately led to a decrease in expression (Agashe et al, 2013) or 

activity (Zucchelli et al, 2017). Regarding mammalian cells, a systematic examination of sequence 

features that impact protein concentration performed on a human cell line revealed for example that 

CUBias only has a minor impact compared to other sequence features (Vogel et al, 2010). A work 

performed by Cambray, Guimaraes & Arkin, 2018 dissected out the individual and combined impact 

of several mRNA compositional variables onto translation (e.g. ability of sequences at the 5’-

untranslated region at recruiting ribosome, strength of mRNA structures around the translation start, 

and CUBias) and found the experimental design could only account for hardly 30% of variation in 

protein synthesis. In conclusion, the last decades have produced a large body of literature about the 

origin and meaning (if any) of CUBias and its interplay on gene expression, but we find still ourselves 

facing a puzzle, for which we do not know whether there is actually a solution, especially in the case 

of humans. 
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Materials and Methods 

 

Design of the synonymous six synonymous plasmidic constructs 

The original sequence of the shble gene found in Streptoalloteichus hindustans was obtained from the 

GenBank database (X52869.1, https://www.ncbi.nlm.nih.gov/nuccore/X52869.1?report=genbank). 

Six synonymous coding sequences (CDS) of this gene were designed according to the 'one codon by 

amino acid' rule. Codon usage of these six synonymous versions was designed as follows: version 

Shble#1 uses exclusively the human most frequent codon; versions Shble#2 and Shble#3 use codons 

with the highest GC or the highest AT contents among the two most common codons, respectively; 

version Shble#4 uses exclusively the human least frequent codon; versions Shble#5 and Shble#6 use 

codons with the highest GC or the highest AT contents among the two least common codons, 

respectively. An invariable AU1 tag (MDTYRYI) was added at the start of each synonymous version, 

resulting in the same first seven codons for all synonymous versions. A PCA illustrating how these 

synonymous versions differ in terms of their CUBias among one another is given in Fig. 1A. Each of 

these synonymous versions of the shble CDS was linked to the CDS of the Enhanced Green Fluorescent 

Protein (egfp) via a P2A self-cleaving peptide sequence, so that a bicistronic mRNA is produced and 

translated into two proteins after cleavage of the P2A peptide. Synonymous versions were synthesized 

(Genescript) and cloned into the XhoI site of the pcDNA3.1-P2A-EGFP-C plasmid, that also contains in 

its backbone a Neomycin resistance gene (3′-glycosyl phosphotransferase). In addition to the six 

constructs bearing different synonymous versions of shble translationally fused to egfp, a control 

vector missing the shble gene upstream the p2a-egfp region was designed, named the EMPTY version. 

This Empty version serves as a control to account for egfp expression. Note that the sequence encoding 

egfp is similar for all constructs and that its CUBias is strongly biased towards human’s most favored 

codons, resembling to the CUBias of versions Shble#1 and Shble#2. 

 

Measurement of codon usage bias 

COUSIN scores (Codon Usage Similarity Index, Bourret, Alizon & Bravo, 2019) were used to compare 

the codon usage of both human and plasmidic genes to the average Homo sapiens codon usage 

(https://cousin.ird.fr). The COUSIN score reflects the extent to which codon usage of a query sequence 

matches the one of a reference. In our study, the reference is the whole codon composition of the 

coding part of the human genome. Briefly values above 1 reflect an overmatch compared to the codon 

usage preferences of the reference while values below zero reflect preferences opposite to those of 

the reference. By design, all six synonymous versions of the shble CDS have a different COUSIN values, 
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with some being over-humanized (higher COUSIN; Shble#1 and Shble#2) while others being enriched 

in infrequent codons compared to the average human codon usage (lower COUSIN; Shble#3 to 

Shble#6). Ordered by decreasing COUSIN scores, the COUSIN score of the six different synonymous 

versions based on their CDS are as followed:  3.47 (Shble#1), 3.42 (Shble#2), 0.19 (Shble#5), -0.48 

(Shble#3), -1.32 (Shble#6) and -2.53 (Shble#4). The COUSIN score of the egfp CDS is high (3.38), close 

to the one of Shble#1 and Shble#2 versions. 

 

Cell transfection and sampling design 

HEK293 cells (Human Embryonic Kidney cells, CRL-1573, ATCC) were cultured at 37°C and 5% CO2, in 

Minimum Essential Medium (Earle, M1MEM10K, Eurobio), with 10% FBS (Fetal Bovine Serum, 

CVFSVF0001, EuroBio) and 1% Penicillin-Streptomycin (15140122, Fisher scientific). Transfection was 

done in six-well plates, with 1.17x105 cells/mL. The next day, medium was replaced by MEM 2% FBS. 

Each synonymous plasmid mixed with turbofect reagent (12331863, Fisher scientific) was added in 

each well and cells were sampled at day 2 (Trypsin-EDTA, CEZTDA000U, Eurobio) for further 

processing. In total, three independent series of transfection experiments – each with the eight 

conditions in duplicates – were performed. This resulted in 48 samples, balanced as follows: six 

Shble#1, six Shble#2, six Shble#3, six Shble#4, six Shble#5, six Shble#6, as well as six EMPTY samples and 

six MOCK samples. 

 

Sequencing and RNAseq data analyses 

RNA extraction was performed using the Monarch Total RNA miniprep kit (T2010S, NEB), following the 

manufacturer’s recommendations. Total RNAs were sent to Genewiz NGS laboratory (New Jersey, USA), 

where they performed polyA selection, strand-specific RNA library preparation and 2x150bp 

sequencing on an Illumina HiSeq4000 system. Quality checks of raw reads were performed with FastQC 

(available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc). Reads were passed 

to Cutadapt (v1.10, Martin, 2011) to remove universal Illumina adapters then trimmed with 

Trimmomatic (v0.38, Bolger, Lohse & Usadel, 2014) using the following options: PE HEADCROP:13 

SLIDINGWINDOW:4:30 MINLEN:85. Processed reads were pseudo-mapped onto the human 

transcriptome 

(//ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/001/405/GCF_000001405.39_GRCh38.p13, 19,812 

predicted protein coding genes). To allow reads coming from expression of the genes contained in the 

plasmid to be aligned, the transcriptome was appended with the Neomycin resistance transcript 

sequence (Neo-R) and with the shble#X-p2a-egfp transcript sequence (where X stands for 1 to 6; i.e., 

for each sample transfected with Shble#1 to Shble#6, the corresponding synonymous sequence of 
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shble was used to allow proper mapping). For EMPTY, only the egfp transcript sequence was added. For 

Shble#4 and Shble#6 samples, spliced forms of the shble-p2a-egfp transcript identified in a previous 

study (Picard et al, 2022) were also added to allows reads spanning the junctions to be aligned. Pseudo-

mapping onto the transcriptome was performed with Kallisto (v0.46.0, Bray et al, 2016) with default 

options except for the number of bootstrap samples and the number of threads, that were respectively 

set as follows: -b 100 -t 16. As outputs of Kallisto, we retrieved quantification at the gene level in raw 

read counts and in Transcripts Per Million (TPM), both for cellular and heterologous transcripts. 

 
Cellular transcripts level distribution over the 48 transcriptomes 

We plotted the distribution of expression of all cellular transcripts for each transcriptome using 

log10(TPM+1) values and reported the number of transcripts expressed above 1 TPM (Fig. S15). We 

calculated the correlation of transcriptome-wide expression between duplicates derived from the same 

transfection experiment. Extremely high R² values obtained for such pairs of duplicates (in all cases R² > 

0.99 – Fig S16) led us to average TPM obtained from the two repetitions of each transfection, thereby 

reducing the number of samples from 48 to 24. For all remaining analyses we used these “collapsed” 

measurements (i.e., n=3 independent quantification per condition). 

 
Differential expression of cellular transcripts after 2-days post transfection by different 

synonymous constructs 

After duplicates collapsing, our transcriptomic dataset was reduced from 48 to 24 data points, with 

each condition supported by n=3 independent experiments. We defined for each condition the set of 

expressed mRNAs as those expressed above 1 TPM in at least two out the three replicates that 

correspond to the condition. On average across all eight conditions 13,650 mRNAs were detected as 

being expressed (min = 13,297; max = 13,863). Working on the union of these sets of expressed mRNAs 

(14,139 mRNAs), fold-changes relative to the MOCK condition were calculated for each seven conditions 

(Shble#1 to Shble#6 + EMPTY). Genes were considered differentially expressed relatively to the MOCK in 

a condition if the median fold-change (across the three samples corresponding to this condition) was 

above 2 or below 0.5 for this gene. In parallel, we also used the DESeq2 R package (Love, Huber & 

Anders, 2014) on the total set of 19,812 mRNAs to similarly identify differentially expressed (DiffExp) 

transcripts in comparison to the MOCK after transfection by our different constructs. For this, we used 

counts estimated by Kallisto, that we normalized using the estimateSizeFactors() function of DESeq2. 

This second approach presents the advantage of returning corrected p-values and takes into account 

the lack of power of differential expression for genes with low counts. Overlaps of genes identified as 

differentially expressed by the two distinct approaches were considered for the analysis of DiffExp 

transcripts. 
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Protein extraction and label-free proteomic analysis 

For protein extraction, the two duplicates sampled from the same transfection experiment were pooled 

in one tube, thereby reducing the number of samples from 48 to 24. Solubilized proteins were 

resuspended in Laemmli buffer and 20-30 µg of proteins were stacked on a SDS-PAGE gel. Proteins were 

in-gel digested using Trypsin (Trypsin Gold, Promega), as previous described in Shevchenko et al, 2006. 

Proteomic data were collected in data dependent acquisition mode using a Q Exactive HF mass 

spectrometer coupled with Ultimate 3000 RSLC (Thermo Fischer Scientific). The software MaxQuant 

(Cox & Mann, 2008) was used to analyze tandem mass spectrometry data. All m/Z spectra were 

searched using standard settings with the search engine Andromeda (Cox et al, 2011) against a target 

decoy database to deliver false-positive estimations. The database contains entries from the Homo 

sapiens Reference Proteome (UP000005640, release 2019_02, https://www.uniprot.org) and a list of 

potential contaminants. Sequences of the two heterologous proteins of interest (SHBLE and EGFP) were 

added into this database to allow for their identification. Search parameters were let at their default 

values, oxidation (Met) and acetylation (Nt) were applied as variable modifications and 

carbamidomethyl (Cys) as a fixed modification. False Discovery Rates (FDR) of peptides and proteins 

identification were let at their default values (both at 1%). Proteins groups were automatically 

constructed by MaxQuant. A representative ID in each protein group was automatically selected using 

an in-house bioinformatics tool. After excluding usual contaminants, 4,005 proteins were identified in 

at least one sample (out of 24 samples), of which 2,891 were detected in all the three replicates of at 

least one condition (Table S3). Protein quantifications in intensity-Based Absolute Quantification (iBAQ, 

Schwanhäusser et al, 2011) were retrieved and normalized by the total sum of iBAQ within each 

sample (heterologous proteins included) to obtain relative iBAQ (riBAQ), a measure representing the 

molar fraction of each protein for within-sample normalization (Shin et al, 2013). The distribution of 

riBAQ for proteins detected in each sample is given as log2 scale in Fig. S5. Correlation of riBAQ values 

between replicates was checked (Fig. S17). Protein quantification in Label Free Quantification (LFQ) 

was also retrieved for the analysis of differentially expressed proteins (Cox et al, 2014). Details 

regarding protein expression in the different conditions are given in Table S3. 

 

Analysis of differentially expressed proteins 

The software Perseus (Tyanova et al, 2016) was used to identify human proteins which level of 

expression vary depending on the version of the plasmid that was transfected into our cells. Adding 

the MOCK condition in addition to the six synonymous versions and the EMPTY construct, this resulted 

to a total of eight groups, each supported by n=3 biological replicates. We used LFQ values for this 

analysis of DiffExp proteins as this metrics is tailored for comparisons of the expression level of a given 

protein across different samples. LFQ values were log2 transformed and the following rationale was 
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applied: proteins that were not present in at least 2 out of 3 replicates in a least one condition were 

filtered out. Only 1,989 proteins with a maximum of one missing log2(LFQ) value were hence retained 

for the rest of the analysis as they probably represent proteins identified with sufficient level of 

confidence in at least one condition. Note that this number is low due to the inherent calculation of 

LFQ values, which returns zero when there is not enough information for a peptide to be detected (Cox 

et al, 2014). 

 
Analysis of proteins with a qualitative expression pattern (ON/OFF) according to the different 

conditions 

Complementary to the analysis of differentially expressed proteins described above, we selected 

proteins that displayed qualitative differences (i.e., ON/OFF) across our eight groups (Shble#1 to 

Shble#6, EMPTY, MOCK). To do so, we selected – based on their riBAQ – proteins that were detected in 

all three replicates of at least one condition but not detected in any of the three replicates in at least 

another condition. This stringent definition of qualitative expression pattern yielded 369 proteins 

displaying such behaviour. Within each of the 24 samples, we found that those expressed in the 

considered sample among this set of 369 proteins systematically displayed lower riBAQ values than 

the rest of the proteins expressed in that sample (Fig. S18). 

 

Calculation of protein-over-mRNA ratios for samples expressing over-humanized versions compared 

to ratios in the Mock condition 

We tested for competition between translation of mRNAs from plasmidic genes that use codons close 

to the human average and translation of host mRNAs. To do so, we calculated separately for Shble#1, 

Shble#2 and EMPTY conditions the ratio between the protein-over-mRNA ratio (riBAQ/TPM) of a given 

gene in the considered condition and in the MOCK condition. For each condition, ratios compared to 

Mock ratios were calculated from the n=3 samples of the condition and the n=3 Mock samples. After 

excluding genes that were not detected in all the three Mock samples, we retained 2,471 genes for 

which we calculated these [riBAQ/TPM]Condition / [riBAQ/TPM]MOCK ratio of ratios. 

 

Changes in individual protein-over-mRNA ratios for different direction of CUBias and levels of 

heterologous protein expression 

Transfected samples were separated depending on the CUBias of the heterologous genes they 

encoded: nine samples expressing heterologous proteins with an over-humanized CUBias (n=3 EMPTY 

samples, n=3 Shble#1 samples, and n=3 Shble#2 samples) and twelve samples expressing egfp plus a 

version of shble rich in rare codons (n=3 Shble#3 samples, n=3 Shble#4 samples, n=3 Shble#5 samples, 

and n=3 Shble#6 samples). Adding the three samples of the MOCK condition, this led to two sets of 
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samples (n=12 and n=15) that do not overlap except for the three MOCK samples. Note that MOCK 

samples were included to serve as «anchors» for our linear regressions, representing what happens in 

the absence of heterologous protein expression. Independently for these two mutually exclusive sets 

of samples, we used linear regressions to model how protein-over-mRNA ratios (riBAQ/TPM) of a given 

gene varied with expression levels of over-humanized (n=9 + the three MOCK) or rare codons rich (n=12 

+ the three MOCK) heterologous proteins (EGFP + SHBLE). The range of the x-axis for these two sets of 

regression is provided in Fig. S19. Before running regressions, we filtered genes based on their values 

of riBAQ/TPM ratio in order to calculate a slope only when considered sufficiently meaningful. We used 

the following rationale: when the regression was performed based on the n=12 samples, we fixed a 

threshold of at least 8 non-null values of ratio and when the regression was performed based on the 

n=15 samples we fixed a threshold of at least 9 non-null values of ratio. This results in 2,554 and 2,585 

genes to analyze for regressions based on n=12 and n=15 samples respectively, that later became 2,550 

and 2,580 after having removed the very few genes with more than three infinite values of ratio. In 

each case, genes for which the F-test testing the significance of the regression slope had a p-value 

smaller than alpha = 5% were considered for further analysis. 

 

Comparison of COUSIN scores distributions between different gene sets  

We compared the distribution of the COUSIN scores between sets of genes using Anderson-Darling 

tests, with the use of the ad_test() function implemented in the R package “twosamples” 

(https://github.com/cdowd/twosamples). 

 

Relative synonymous codon frequency (RSCF) of a coding sequence 

For a given CDS, the number of occurrences of each 59 amino acid-encoding codons (Tryptophane and 

Methionine excluded) is retrieved. Acknowledging the genetic code redundancy, occurrence of each 

synonymous codons is divided by the sum of occurrences of codons encoding the corresponding amino 

acid to obtain RSCF values. By construction, summing RSCF values of synonymous codons returns 1, 

and summing all 59 RSCF values returns 18 (i.e., all amino acids except Tryptophane and Methionine). 

Regarding synonymous versions of shble, RSCF profiles allowed sequence discrimination based on 

CUBias (Fig. 1A). 

 

Assessment of synonymous codon content in sample’s proteomes compared to transcriptomes using 

the Prot-to-RNA RSCF metrics 

For every annotated gene in the human genome the number of occurrences of each 59 amino acid- 

encoding codons (Tryptophane and Methionine excluded) was retrieved using the CDS of its longest 
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predicted transcript. Then using expression levels of either all detected cellular mRNAs, only those with 

the corresponding protein detected by LC-MS/MS (both measured in TPM) or all detected cellular 

proteins (measured in riBAQ), we quantified for each codon the amount of its “expression” in the 

transcriptome or in the proteome of our 24 samples as follows :∑ 𝐶𝑜𝑑𝑜𝑛𝑐𝑜𝑢𝑛𝑡𝑔 ⋅ 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑔𝑔=𝐺𝑒𝑛𝑒  

(Gingold, Dahan & Pilpel, 2012; Schmitt et al, 2014) Codon content in each sample was hence 

represented by two vectors of length 59, one derived from its transcriptome profile of expression and 

another derived from its proteome profile of expression. From these vectors we obtained vectors of 

transcriptome and proteome relative synonymous codon frequency (RSCF), by dividing values of each 

codon encoding a similar amino acid by the total sum of values of codons encoding the considered 

amino acid (as described in the above section). Ultimately, to quantify how the CUBias ‘flows’ from 

transcriptome to proteome we divided the proteome RSCF of each sample by its transcriptome RCSF 

counterpart. We called this metrics Prot-to-RNA RSCF and considered it as a proxy for whole-cell 

translation efficiency of synonymous codons. To compute this Prot-to-RNA RSCF metrics, we used 

exclusively transcripts expression data from transcripts that matched protein detected by LC-MS/MS 

(i.e., we did not consider whole-transcriptomes). Note that our codon counts vectors were computed 

without considering heterologous genes in the transcriptome and proteome. 

 

Content specificity of sets of differentially expressed (DiffExp) genes using combinatorial 

configurations  

We used a combinatorial approach to estimate to what extent the content of the six sets (Shble#1 to 

Shble#6) of DiffExp cellular transcripts compared to the MOCK was version-specific or redundant across 

versions. For this, for a given number N of sets included (N from 1 to 6), we calculated the number of 

unique genes present in the union of these N sets. For each collection of size N, we reported the 

median number of unique genes obtained from all possible arrangements. The number of possible 

arrangements of size N drawn among six sets is 6, 15, 20, 15, 6, 1, for N ranging from 1 to 6, 

respectively. 

 

 

 

Regression of Principal Component scores against shble sequence features by accounting for 

heterologous expression 

To account for expression of heterologous transcripts when regressing Prot-to-RNA RSCF PC scores 

against shble sequence features (COUSIN score and GC-richness), we performed a linear regression of 

Prot-to-RNA RSCF PC scores against shble-egfp transcript expression, retrieved the residuals and 
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performed a second linear regression using these residuals as response variable against shble sequence 

features. 

 

Functional enrichment analysis 

The Functional Annotation Chart module of the DAVID tool (https://david.ncifcrf.gov/, Dennis et al, 

2003) was used to detect functional categories over-represented in gene sets. Functional categories 

displaying a Fold-Enrichment above 2 and a FDR-corrected p-value below 0.05 were considered as 

significantly over-represented. 

 

Statistical analyses 

All statistical tests were performed with R (version 3.6.3). Principal components analyses were 

performed using the prcomp() function of the R package “stats”. Principal components (the 

eigenvectors of the covariance matrix) were visualized and superimposed to PCA graphs using 

prcomp()$rotation. Except when explicitly noted, all reported correlation coefficients correspond to 

Pearson correlation coefficients. 
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Figure 1. Panel A. Principal Component Analysis based on the relative synonymous codon frequency 

(RSCF) of the different plasmidic sequences designed. For each seven CDS (the six synonymous ones 

of the shble gene and the one of the egfp gene), the profile of their 59 RSCF values (see Methods) were 

used to perform a PCA. Over-humanized sequences (i.e., those rich in human most favored codons: 

Shble#1 in pink, Shble#2 in green and egfp in purple) cluster together on the top-left of the PC1/PC2 

space, while sequences enriched in human rare codons occupy other extreme parts of the PC1/PC2 

space (Shble#3 in light blue, Shble#4 in red, Shble#5 in grey, Shble#6 in brown). RSCF profiles allows 

sequence discrimination based on CUBias. Loadings of each of the 59 amino acids-encoding codons 

are plotted and displayed with the following color code: those ending either with U or A are indicated 

in blue and those ending either with C or G are indicated in red. 
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Figure 1. Panel B. Link between the global transcriptome profile relatively to the Mock condition and 

the quantity of heterologous transcripts expressed. The y-axis represents the distance between 

transfected and Mock samples, obtained as the difference between their projections onto the first axis 

of the PCA based on expression of cellular transcripts (Fig. S1). Samples are color-coded according to 

the different conditions: EMPTY in purple, Shble#1 in pink, Shble#2 in green, Shble#3 in light blue, 

Shble#4 in red, Shble#5 in grey, Shble#6 in brown. The three experimental batches are symbolized by 

different shapes. 
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Figure 1. Panel C. Match between differentially expressed (DiffExp) transcripts in the EMPTY control 

(only shble expressed) and DiffExp transcripts in the six shble-egfp synonymous versions. Each of the 

645 DiffExp transcripts in the EMPTY condition were assigned to a category depending on the number 

of other conditions this gene was found to be DiffExp. In all cases the transcripts are labelled as DiffExp 

with respect to the MOCK control condition. Bar heights correspond to the number of genes identified 

in each category (left axis). The secondary axis on the right reports the cumulative fraction of the 645 

DiffExp transcripts in the EMPTY control condition as each category is added to the previous one. Data 

should be read as follows, using “Emtpy + 5 versions” as an example: among the 645 transcripts DiffExp 

between the EMPTY version and the mock, a total of 414+113 transcripts (i.e., 82% of the 645 transcripts 

– right axis) are also DiffExp in five or more of the shble-egfp synonymous conditions. 
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Figure 2. Panel A. Protein-over-mRNA ratios in the EMPTY condition compared to the Mock condition 

as a function of individual gene’s codon usage bias (CUBias). Transcript levels were estimated as 

Transcripts Per Million (TPM), while protein levels were estimated as relative intensity-Based Absolute 

Quantification (riBAQ). Each dot represents, for one gene, the averaged [riBAQ/TPM] EMPTY normalized 

by the [riBAQ/TPM] Mock, calculated from the n=3 transfection experiments. This ratio of ratios reflects 

the extent to which cellular transfection and heterologous expression of a gene with an over-

humanized sequence (egfp, encoded in the EMPTY condition) affects translation efficiency of cellular 

transcripts. This ratio has been calculated for the 2,471 genes for which both proteomic and 

transcriptomic values were available. For visual purposes, the horizontal line centered on the y=0 value 

(log scale) is shown. The x-axis displays the match between the CUBias of each individual gene to that 

of the human genome average, calculated using the COUSIN index: negative scores correspond to 

genes with CUBias opposite to the human average while scores above one correspond to genes with 

CUBias similar in direction but of stronger intensity than the human average. The COUSIN value of the 

egfp expressed in the EMPTY condition is of 3.38. No link was found between gene’s CUBias and the 

gene’s [riBAQ/TPM] EMPTY ratio normalized by the [riBAQ/TPM]Mock ratio. 
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Figure 2. Panel B and C. Similar to Figure 2.A, but for the Shble#1 condition compared to the MOCK 

(Panel B, left) or for the Shble#2 condition compared to the MOCK (Panel C, right). The shble CDS in the 

Shble#1 version had been synonymously recoded using systematically for each amino acid the most 

used among the synonymous codons in the human genome average. It corresponds thus to an over-

humanized heterologous gene (COUSIN value of this version =3.47). The shble CDS in the Shble#2 

version had been synonymously recoded using systematically for each amino acid the GC-richest 

among the two most used synonymous codons in the human genome average (COUSIN value of this 

version = 3.42). It differs only in eight codons from the Shble#1 version. As in Figure 2.A, no link was 

found between gene’s CUBias and the gene’s riBAQ/TPM ratio of ratios, neither for Shble1 versus  

MOCK (left), nor for Shble#2 versus MOCK (right). 
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Figure 3. Panel A. Categories of genes according to their variation in riBAQ/TPM ratios with varying 

heterologous protein expression across conditions. The ratio riBAQ/TPM was taken as a proxy for the 

translation efficiency of a given transcript. The green set corresponds to cellular genes displaying a 

decreasing translation efficiency as heterologous protein expression under the conditions EMPTY, 

Shble#1 and Shble#2 increases (i.e., when expressing humanized heterologous genes increases), while 

the yellow set corresponds to genes displaying an increasing translation efficiency under these same 

conditions. The blue set corresponds to cellular genes displaying a decreasing translation efficiency as 

heterologous protein expression under the conditions Shble#3, Shble#4, Shble#5 and Shble#6 

increases (i.e., when expressing under-humanized heterologous genes increases), while the pink set 

corresponds to genes displaying an increasing translation efficiency under these same conditions. Note 

that, by construction, neither the green and yellow sets nor the blue and pink sets overlap. 
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Figure 3. Panel B. Example of two cellular genes displaying significant variation in their riBAQ/TPM 

ratio as a function of heterologous protein expression levels across samples. The ratio riBAQ/TPM 

was taken as a proxy for the translation efficiency of a given transcript. KIF11 (left) belongs to the green 

set shown in Figure 3.A (negative association with increasing amount of protein expressed from over-

humanized heterologous genes); SNRPG (right) belongs to the blue set shown in Figure 3.A (negative 

association with increasing amount of protein expressed from non-humanized heterologous 

genes). The x-axis represents heterologous proteins expression in the different samples (n=3 by 

condition). Samples are color-coded according to the transfected construct: Shble#1 in pink, Shble#2 

in green, Shble#3 in light blue, Shble#4 in red, Shble#5 in grey, Shble#6 in brown, EMPTY in purple and 

Mock in orange. P-values of F-tests testing the significance of regression slopes are indicated. 
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Fig. 3.C 

 

 

 

 

 

 

 

 

Fig. 3.D 

 

 

 

 

 

 

 

 

 

Figure 3. Panel C. Left: COUSIN scores for cellular genes displaying either negative (green) or positive 

(yellow) changes in the riBAQ/TPM ratio values under increasing expression of over-humanized genes 

(EMPTY, Shble#1 and Shble#2). Below each boxplot the underlying number of genes included is shown. 

The P-value of the Wilcoxon-Mann-Whitney test contrasting median COUSIN values is indicated. 

Marginal distributions of COUSIN values underlying each boxplot are shown on the right y-axis. Right: 

Cumulative distribution of COUSIN values for the two sets of genes described in the left. P-values for of 

the Anderson Darling test contrasting the two distributions is indicated.  

Figure 3. Panel D. Left: COUSIN scores for cellular genes displaying either negative (blue) or positive 

(pink) changes in the riBAQ/TPM ratio values under increasing expression of non-humanized genes 

(Shble#3, Shble#4, Shble#5 and Shble#6). Below each boxplot the underlying number of genes included 

is shown. The P-value of the Wilcoxon-Mann-Whitney test contrasting median COUSIN values is 

indicated. Marginal distributions of COUSIN values underlying each boxplot are shown on the right y-

axis Right: Cumulative distribution of COUSIN values for the two sets of genes described in the left. P-

values of the Anderson Darling test contrasting the two distributions is indicated. 
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Figure 4. Panel A. Relative synonymous codon (RSCF) frequency profiles from different datasets of 

expression. For each sample, a vector of RSCF has been obtained using codon content ponderated by 

codons expression from either transcriptomic or proteomic data. Symbol shapes indicates the 

expression matrix used to compute these vectors: whole-transcriptome data (triangles), whole-

proteome data (dots), or expression of transcripts that match detected proteins (squares). Samples 

are color-coded according to the transfected construct: Shble#1 in pink, Shble#2 in green, Shble#3 in 

light blue, Shble#4 in red, Shble#5 in grey, Shble#6 in brown, EMPTY in Purple and Mock in orange. 

Eigenvectors loads of the covariance matrix are superimposed to the graph and are colored according 

to the nucleotide composition at the codon 3rd position (blue for A or U-ending codons, red for G or C-

ending codons). Values in parentheses along axes represent the fraction of the total variance captured 

by the corresponding axis. 
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Figure 4. Panel B. Inter-sample variation of Prot-to-RNA RSCF profiles. The Prot-to-RNA RSCF metrics 

has been computed using exclusively transcripts expression data from transcripts that matched protein 

detected by LC-MS/MS (i.e., we did not consider whole-transcriptomes). The first two axes of variation 

from a PCA performed on Prot-to-RNA RSCF profiles using 59 amino acids-encoding codons are shown. 

Samples are color-coded according to the transfected construct: Shble#1 in pink, Shble#2 in green, 

Shble#3 in light blue, Shble#4 in red, Shble#5 in grey, Shble#6 in brown, EMPTY in Purple and Mock in 

orange. Eigenvectors loads of the covariance matrix are superimposed to the graph and are colored 

according to the nucleotide composition at the codon 3rd position (blue for A or U-ending codons, red 

for G or C-ending codons). Values in parentheses represent the fraction of the total variance captured 

by the corresponding axis. 
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Figure 4. Panel C. Link between base composition of the shble version and preferentially translated 

codons. The y-axis corresponds residuals obtained after samples’ PC2 scores (capturing 15% of the 

total variance in Prot-to-RNA RSCF, Panel B) were regressed against the sum of heterologous 

transcripts (Fig. S12). Only the 18 experimental synonymous shble-egfp conditions are included. 

Samples are color-coded according to the transfected construct: Shble#1 in pink, Shble#2 in green, 

Shble#3 in light blue, Shble#4 in red, Shble#5 in grey and Shble#6 in brown. The x-axis indicates the 

overall GC-richness of the shble CDS of each synonymous version. The regression line is plotted, as well 

as the P-value of the F-test for the slope significance and the coefficient of determination (R²). 
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