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Abstract

Phenotypic variation across related individuals is often correlated: a high or low value of one

phenotype tends to be associated with a high or low value of others. This may reflect lower-

dimensional structure in the genotype-phenotype map, such that genotype affects a relatively small

set of unobserved “core” processes that in turn determine the observed phenotypes. Identifying

low-dimensional structure in high-dimensional genotype-phenotype data thus offers the promise of

inferring the identity and genetic basis of core biological processes, as well as the way in which core

processes determine each observed phenotype. However, inferring this lower-dimensional struc-

ture requires appropriate biologically motivated constraints, even with high-throughput genotype-

phenotype measurements. Here, we show that several recent empirical genotype-phenotype data

sets exhibit evidence of sparse structure, and that a sparsity-favoring matrix decomposition ap-

proach can accurately recover latent processes if each genetic perturbation affects few core processes

or if each phenotype is affected by few core processes. Motivated by this, we develop a generally ap-

plicable framework based on penalized matrix decomposition for sparse structure discovery (SSD)

and apply it to three empirical datasets spanning adaptive mutations in yeast, genotoxin robust-

ness assay in human cell lines, and genetic loci identified from a yeast cross. More generally, we

propose sparsity as a guiding prior for resolving latent structure in empirical genotype-phenotype

maps.

I. INTRODUCTION14

A central goal of quantitative genetics is to exploit observed correlations between genotype15

and phenotype to infer the structure of the genotype-phenotype map [1–6]. That is, we aim16

to build models describing how variation in genotype influences variation in phenotype.17

However, the choice of phenotypes quantitative geneticists choose to analyze is inherently18

subjective: we typically focus on phenotypes that are practical to measure and/or that19

are in some sense “important” (e.g. because they are plausibly related to key functions20

or diseases). These phenotypes are often correlated, presumably because multiple complex21

traits are often influenced by the same set of core cellular processes. For example, cellular22
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growth rates across a range of different stressful conditions may be determined by a common23

set of processes such as metabolism, cell wall biosynthesis, DNA repair, and heat or osmotic24

stress response. This leads to apparent widespread pleiotropy, where individual genetic loci25

influence many observed phenotypes, presumably because these loci influence one or more26

core processes that are broadly important across multiple phenotypes.27

This perspective suggests that the structure of the correlations between the subjective28

phenotypes that we choose to measure should contain signatures of the underlying biolog-29

ically relevant core processes. That is, if we could measure a large and diverse enough30

set of phenotypes across a sufficiently diverse range of genotypes, the observed phenotypic31

variation should have a lower-dimensional latent structure that reflects the space of actual32

core processes. Inferring this lower-dimensional latent structure thus offers the promise33

of explaining the biological basis of pleiotropy, by identifying the core biological processes34

and inferring how individual loci influence these core processes to generate the observed35

phenotypic variation.36

Of course, we can only hope to identify core processes which generate variation across37

the phenotypes we choose to measure, so the core processes we infer will always be limited38

by this choice. For example, imagine that we measure a set of phenotypes that correspond39

to the growth rates of yeast cells across a temperature gradient. We might expect that40

these phenotypes exhibit a correlation structure that reflects three core processes: heat41

shock response, cold tolerance, and all other temperature-independent factors relevant to42

the common growth medium. We could then hope to infer the extent to which each genetic43

locus influences each of the core processes, as well as the mapping between these three core44

processes and the observed phenotypes. However, if we were to measure additional pheno-45

types corresponding to growth rates across (for example) different nutrient concentrations,46

we might find that this splits the temperature-independent core process into additional47

processes that explain the variation in the new phenotypes.48

In this manuscript, we introduce a method for inferring this lower-dimensional latent49

structure of phenotype space. We assume that we have data that describes the map between50

genotype and some set of measured phenotypes. In general, this genotype-phenotype map51

can involve nonlinear effects such as interactions between multiple genetic loci (epistasis).52

However, we focus here on analyzing a standard linear approximation of this map, in which53

each locus is assumed to have an additive effect on each of the phenotypes, and the observed54
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phenotype is simply a sum of the additive effects of all the relevant loci. This linear map55

can be represented as an E × L matrix, F, which has columns corresponding to each of the56

L loci and rows corresponding to the effect of these loci on the E measured phenotypes.57

We note that inferring F from data on genotypes and corresponding phenotypes can be a58

complex problem, which we address for one example data set below, but the core of our59

analysis in this paper assumes that F is given and focuses on analyzing the latent structure60

in this matrix.61

In this framework, our problem reduces to inferring lower-dimensional structure in the62

matrix F. While in principle this structure could be nonlinear, we restrict ourselves to63

inferring a lower-dimensional subspace that can be expressed as a matrix decomposition of64

F. Specifically, we wish to approximate F as the product of two matrices, F ≈ WM + b,65

where M is a K×L matrix that describes the additive effect of each genetic locus on each of66

K putative core processes, and W is an E×K matrix that describes how each core process67

affects each measured phenotype. In addition, we include a term b which represents locus-68

specific effects on all other processes that contribute equally to the phenotypes measured69

(and hence cannot be disentangled). For K < E,L, this represents an approximation to F70

in terms of a lower-dimensional subspace of K core processes. This structure is illustrated71

in Figure 1a. We emphasize that this decomposition assumes that the map between loci72

and core processes and the map between core processes and measured phenotypes are both73

linear, which may not be true in general. We return to this caveat in the Discussion.74

Unfortunately, this matrix decomposition problem is underdetermined in general, mean-75

ing that for any choice of K there are many different pairs of matrices W and M that76

approximate F equally well. Thus, the fact that a given decomposition gives a good approx-77

imation for F does not necessarily imply that there is any biological meaning to the core78

processes inferred. This problem is widely recognized in a variety of fields where this type of79

matrix decomposition is used to infer lower-dimensional structure in high-dimensional data.80

To make lower-dimensional structure interpretable, domain-specific knowledge must there-81

fore be used to guide the choice of additional constraints. For example, earlier work has used82

sparsity [7, 8], non-negativity [9–11] and non-Gaussianity assumptions [12–14] to construct83

powerful methods for identifying meaningful latent structure in specific contexts where those84

constraints are appropriate. The success of these approaches motivates our attempt here85

to find appropriate constraints that enable the efficient and interpretable reconstruction of86
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FIG. 1: Overview and geometric interpretation of SSD. (a) Sparse structure discovery (SSD) finds a

sparse, low-rank approximation for the effects matrix F containing the phenotypic effects of L loci on E

phenotypes. (b) Each phenotype (row of F) can be viewed as a point in locus-space. The core processes

(rows of M) can be viewed as vectors that span a lower dimensional subspace, illustrated by the plane.

The distances between each phenotype point and the subspace determine the reconstruction error

(illustrated by dotted red lines). Since the error is a function of the subspace and there are many matrices

M which generate the same subspace, many decompositions yield the same error. SSD applied to these

phenotypes would favor a sparse decomposition, for example, the core processes M1,M2 which here are

sparse combinations of (ℓ1), (ℓ2, ℓ3) respectively. SVD applied to the same phenotypes would yield a

decomposition with core processes M′
1,M

′
2 that incur the least error but which are unlikely to be sparse.

(c) In our analysis pipeline, we first apply SSD to find a range of decompositions F ≈ WM+ b with

varying errors and sparsities. The reconstruction error of the SVD solution is used to determine a tolerable

error range for SSD solutions. The rotation tests are used to guide the selection of an SSD solution with

appropriate levels of sparsity in phenotypes (each phenotype is described by few core processes) and in the

loci (each locus is part of few core processes).

a lower-dimensional set of core processes from empirical genotype-phenotype maps. Such87

constraints can be thought of as incorporating a biological “prior” on the features we expect88

the data to exhibit.89
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Recently, Kinsler et. al. [15] identified lower-dimensional structure in a dataset describing90

the effects of a set of yeast mutations on fitness in different environments. Their approach91

used Singular Value Decomposition (SVD) [16] to find a decomposition with K < E,L92

that approximates the F well. However, while SVD finds the K-dimensional subspace that93

explains the most variation for a given K, the specific W and M are selected subject to the94

constraints that the core processes must be orthogonal and that the first j core processes95

describe the j-dimensional subspace that best approximates F. It is not clear that these96

constraints lead to putative core processes with biological meaning. More recently, Pan et.97

al. [17] introduced an alternative matrix decomposition method, Webster, which is based on98

regularized dictionary learning [18], and apply it to a dataset describing the fitness of cells99

exhibiting gene-knockouts in the presence of various genotoxins [19]. This method enforces100

a hard constraint that each genetic locus affects at most two core processes, which limits101

the possibility that different loci exhibit different degrees of pleiotropy.102

Here, we introduce a new approach that constrains the decomposition based on biologi-103

cally motivated intuition about the lower-dimensional structure of the genotype-phenotype104

map. Specifically, our Sparse Structure Discovery (SSD) method encourages decomposi-105

tions where each genetic locus affects a small subset of the core processes (locus-sparsity)106

and/or each observed phenotype is influenced by a small subset of core processes (phenotype-107

sparsity) (Figure 1). These sparsity assumptions are consistent with various notions of mod-108

ularity which have been proposed to explain the evolvability of complex traits [1, 20–24],109

and with large-scale studies of pairwise gene deletions in yeast, which find that genes cluster110

together based on their interaction profiles, suggesting their involvement in a small set of111

common core processes [25]. However, we do not adopt either sparsity assumption uncriti-112

cally. Instead, we have developed two empirical tests to independently validate the extent113

to which the lower-dimensional structure in an effects matrix F exhibits locus-sparsity or114

phenotype-sparsity. Using these tests, we find evidence of locus-sparsity and phenotype-115

sparsity across three datasets, motivating the use of these sparsity-enforcing penalties in our116

SSD method. Further, we show that SSD accurately recovers synthetically-generated maps117

if at least one of the true W or M is sparse.118

The structure of the paper is as follows. In Section II, we describe the SSD method,119

explain our empirical tests for sparsity, and demonstrate that SSD accurately recovers core120

processes in synthetic data. In Section III, we apply our method to three datasets that121
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measure cellular fitness across environments as a function of three different forms of genetic122

variability. First, we apply SSD to the Kinsler et. al. dataset [15] describing fitness effects of123

adaptive mutations identified during a laboratory yeast evolution experiment and compare124

SSD to the SVD-based analysis presented in [15]. Second, we apply SSD to data describing125

how single gene knockouts in human cell lines affect fitness in the presence of genotoxic126

agents [19]. We find that, compared to the Webster analysis of the same dataset [17], SSD127

solutions exhibit lower error with comparable average sparsity, a more interpretable process-128

phenotypes map, and a broad range of pleiotropy across loci. Third, we analyze a large-129

scale quantitative trait locus (QTL) mapping experiment [26], which measured 18 growth130

rate phenotypes in about 100,000 F1 offspring of a cross between two related budding yeast131

strains. For this data, we first develop a joint mapping approach to arrive at an additive132

effects matrix F, which we do using a pipeline based on ℓ2,1-penalized regression (see SI).133

II. SPARSE STRUCTURE DISCOVERY134

As described above, our method assumes we begin with an empirical linear genotype-135

phenotype map, represented as an E × L matrix F which describes the additive effect of136

each of the L genetic loci on each of the E measured phenotypes. Our goal is to find latent137

structure in this genotype-phenotype map of the form F ≈ WM + b. Note that since we138

will generally assume that K < E,L, the matrices W and M contain fewer total parameters139

than F (i.e. this is a simpler description of the data). Thus, this factorization will in general140

only be an approximation, both because there is presumably error in the estimation of F and141

because the division into K core processes is a simplifying assumption that will inevitably142

neglect some aspects of the full complexity underlying each measured phenotype.143

Given that the factorization of F is approximate, a natural goal would be to find matrices144

W and M that minimize the error in this approximation. This is the motivation underlying145

singular value decomposition (SVD), which finds a factorization of F that minimizes the146

squared Frobenius reconstruction error (i.e. lowest squared error ∥F −WM∥22). However,147

this error minimization alone is not sufficient to uniquely determine the factorization. In-148

stead, any factorization that describes the same lower-dimensional subspace will perform149

equally well, as illustrated in Figure 1b. This is a general problem: for any set of core150

processes, represented by the rows of M, that achieve a given reconstruction error, there are151

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.27.509675doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/


infinitely many sets of other processes that achieve the same error (obtained by changing152

the basis of the subspace, e.g. by rotating the rows of M in the subspace they generate).153

SVD chooses a particular unique solution to resolve this degeneracy by defining the first core154

process to be the one-dimensional subspace that minimizes the error for K = 1, the second155

core process to be orthogonal to the first and minimize the error for K = 2, the third to be156

orthogonal to the first two and minimize the error for K = 3, and so on. While this is a157

reasonable and well-defined procedure, there is no reason to believe that the core processes158

defined in this way will be biologically meaningful.159

Here we define an alternative method for matrix decomposition. Like SVD, our approach160

attempts to minimize the Frobenius reconstruction error. However, we add two additional161

constraints based on sparsity. Specifically, we aim to find a locus to core process map M in162

which each locus participates in only a few processes (i.e. most entries in this matrix are 0).163

We refer to this as locus-sparsity. Analogously, we aim to find a core process to phenotype164

map W in which each phenotype is affected by only a few core processes (i.e. most entries165

in this matrix are also 0). We refer to this as phenotype-sparsity.166

We do not necessarily assume that both types of sparsity exist in a given dataset. Instead,

our framework allows us to impose constraints on either or both types with a tunable strin-

gency (and below we describe how the choice of this stringency can be guided by empirical

validation tests). To be precise, our Sparse Structure Discovery (SSD) method aims to find

the matrix decomposition F ≈ WM+ b that minimizes

C(W,M,b) = ∥F− (WM+ b)∥22 + λW∥W∥1 + λM∥M∥1 (1)

such that ∥Mk,:∥2 = 1 for all 1 ≤ k ≤ Kmax,

where ∥F − (WM + b)∥22 is the squared Frobenius error, ∥W∥1 is an ℓ1-norm measure167

of the phenotype-sparsity, and ∥M∥1 is an ℓ1-norm measure of the locus-sparsity. The168

parameters λW and λM determine the relative weighting of the accuracy, phenotype-sparsity,169

and locus-sparsity objectives (higher λW will yield solutions that are more phenotype-sparse,170

and higher λM will yield solutions that are more locus-sparse). We note that when these171

regularization parameters λW and λM are sufficiently large, the method will assign no loci172

to some of the core processes, thereby automatically picking a number of core processes K173

smaller than the input upper bound Kmax.174
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For fixed values λW , λM , and Kmax, SSD will yield a unique set of W,M and b. However,175

a key challenge is to choose values of these parameters to determine an appropriate weight-176

ing of the accuracy, phenotype-sparsity, and locus-sparsity objectives that will produce a177

decomposition with plausible biological meaning. To do so, we first apply our method for a178

range of values λW and λM to produce a variety of decompositions that vary in reconstruc-179

tion error, number of core processes, locus-sparsity, and phenotype-sparsity. In every case,180

the SSD decomposition will have higher reconstruction error than the SVD decomposition181

with the same number of processes because of the additional constraints. We therefore use182

the SVD error as a guide to select a desired reconstruction error range, and select sparse183

decompositions of interest that fall within this range. The choice between these can then184

be guided by the empirical test described below, which we developed to determine the ex-185

tent to which an input matrix F exhibits a low-dimensional structure with locus-sparsity or186

phenotype-sparsity. Figure 1c illustrates the pipeline.187

A. Empirical validation of sparsity constraints using rotation tests188

To validate our choice of sparsity assumptions, we designed heuristic tests to determine189

whether a given dataset F exhibits signatures of locus-sparsity or phenotype-sparsity. We190

do not assume that the linear term b, which describes the effects of loci on processes that191

do not vary across the phenotypes, is necessarily sparse. For the purposes of this test,192

we therefore first subtract the mean effect across phenotypes for each locus from F, as an193

approximation of b. To test for locus-sparsity, we then apply a random orthogonal matrix194

O to the empirical genotype-phenotype map F to produce a matrix F′ = FO. This rotation195

conserves low-dimensional structure in F and leads to the same SVD error but disrupts196

any potential locus-sparsity. We then apply our SSD method with a range of weights on197

the locus-sparsity objective to obtain a range of decompositions for F and F′ that exhibit198

varying locus-sparsities and reconstruction errors. If the input matrix F truly has locus-199

sparsity, our method will consistently find sparser solutions for F than for F′ across a range200

of reconstruction errors. If so, we consider this to be evidence of locus-sparsity in F.201

To gain intuition for this test, consider an example with five loci and two core processes,202

with loci ℓ1 and ℓ2 both affecting core process 1 (with equal weight) and loci ℓ3, ℓ4 and ℓ5 all203

affecting core process 2 (also with equal weight). The rows of the matrix F will each have204
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FIG. 2: SSD on synthetic data. Each row corresponds to a synthetic additive effects matrix

F = WM+ η generated with different sparsities in M and W. All examples have E = 96 phenotypes,

L = 200 loci and K = 6 true core processes. First column: Locus (phenotype) rotation test illustrates that

when F is generated with sparsity in M (W), there is a gap between the sparsity of the SSD solutions for

F in blue (red) and rotated F′ = FO (F′ = OF) in grey. Error bars are over three random rotations. The

red and blue horizontal dashed lines indicate the 6-component SVD reconstruction error. The grey dashed

line indicates the average 6-component SVD reconstruction error of OF. Note that the SVD error for FO

is equal to that for F. The vertical red (blue) line indicates the average processes per locus (phenotype) for

the true M (W). Second column: Each scatter point depicts the average processes per locus/phenotype of

an SSD solution. The colored background illustrates the interpolated reconstruction errors of the solutions.

The solutions selected for further investigation are marked by a star. Third column: The mean cosine

error between each row of the inferred M (column of inferred W) for the selected SSD solution and for the

6-component SVD solution and the true M (W). The error in W in the first row is almost exclusively due

to 4 phenotypes that use no processes, but are assigned very small weights in some processes by SSD.

the form (α, α, β, β, β), where α and β describe the effect of the first and second processes205

on the phenotype corresponding to that row, respectively. In other words, the phenotype206
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values lie on a 2D plane in 5D space. This plane contains the sparse vectors (1, 1, 0, 0, 0)207

and (0, 0, 1, 1, 1), which describe the two core processes, and every point on the plane can208

be written as a weighted sum of these vectors. Now, imagine that we randomly rotate F,209

producing a matrix F′ which has rows that lie on a rotation of the 2D plane containing the210

rows of F and columns that correspond to random linear combinations of the actual genetic211

loci. Since the rotation was random, the 2D plane containing the rows of F′ is a random 2D212

plane in 5D. Most 2D planes in 5D are not spanned by two sparse basis vectors. Therefore,213

while it is still possible to find two vectors such that each row of F′ can be written as the214

weighted sum of these vectors (the low-dimensional structure is preserved), the two vectors215

almost certainly will not be sparse.216

To test for phenotype-sparsity, we use an analogous method, except that we rotate the217

columns of F to obtain F′ = OF and vary the phenotype-sparsity objective in SSD to test218

whether SSD consistently finds sparser solutions for F than F′ across a range of reconstruc-219

tion errors.220

B. Sparse structure recovery on synthetic data221

To validate our method, we constructed synthetic genotype-phenotype maps with lower-222

dimensional latent structure of varying sparsity. That is, for a given E, L, and K, we223

construct simulated data matrices F = WM + η by randomly choosing M and W as224

described below. The noise η in each element is drawn independently with scale 0.3 times225

the standard deviation of the entries in WM. We construct simulated F matrices across a226

range of sparsities in M and W. Specifically, for M-sparsity p, entries are non-zero with227

probability p, and if non-zero, the entry is drawn from a standard normal. We then normalize228

M so that each row is a unit vector. We generate W analogously with W-sparsity q, but229

without normalization.230

We begin by constructing four sets of simulated data: one with both locus-sparsity and231

phenotype-sparsity (p = 0.2, q = 0.2), one each with only one type of sparsity (p = 0.2, q = 1232

and p = 1, q = 0.2), and one with neither (p = 1, q = 1). For each set, we first applied the233

locus and phenotype rotation tests. The results are presented in the left column of Figure 2.234

Note that the presence of the gap between the error curves for F and rotated F′ in the235

locus (phenotype) rotation test depends on whether M (W) is sparse. Repeating this test236
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across a range of locus and phenotype sparsities, we show that the size of the gap grows237

continuously with sparsity (Figure S1).238

Next, we evaluated whether SSD can accurately reconstruct the true M and W matrices.239

We applied our SSD method to each dataset across a range of locus-sparsity (λM) and240

phenotype-sparsity (λW ) constraints and selected one decomposition using the SVD error241

and rotation tests as guides. The reconstruction error of the SVD decomposition on each242

dataset is in the range 0.047−0.049. Keeping in mind that any SSD solution will necessarily243

have higher error, we focus on “low-error” decompositions with error up to 0.85, illustrated244

by dark green, teal, and blue in the space of SSD decompositions (Figure 2, center column).245

We select a low-error decomposition that exhibits the most sparsity for the chosen error246

criterion (indicated by a white star in Figure 2).247

Finally, we compared the M and W of the selected SSD solutions to the true M and W248

matrices using a cosine error metric described in the Methods (third column of Figure 2).249

We find that exhibiting sparsity in either W or M (first three rows) suffices for SSD to250

accurately reconstruct both W and M. Given a non-redundant set of core processes M,251

there is a unique set of phenotype weights W that best reconstruct F (and vice-versa for252

W). In contrast to SSD, the SVD decompositions are unable to accurately reconstruct M253

and W, despite lower reconstruction errors when reconstructing F.254

The phenotypes constructed as described in this section are correlated in so far as each is255

a random linear combination of a common set of core processes. However, empirical studies256

may measure phenotypes with non-trivial structure, e.g. fitness measurements where the257

same environmental perturbations are added to various growth mediums. To validate the258

rotation tests and SSD in such a setting, we generated synthetic data with a hub-and-spoke259

structure. Specifically, we introduce “hub” phenotypes (representing the growth mediums)260

whose effects are a random linear combination of a common set of core processes and “spoke”261

phenotypes (each representing a growth medium with a perturbation) whose effects are a262

linear combination of the corresponding hub phenotype and one core process representing263

the perturbation (Figure S2a). See SI for further details.264

Next, we apply the rotation tests to the hub-and-spoke synthetic data and find evidence265

of both locus-sparsity and phenotype-sparsity (Figure S3). We find that a selected SSD so-266

lution exhibiting both types of sparsity accurately recovers the initially described generative267

structure. If we instead ignore evidence of locus-sparsity and select an SSD solution that268

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.27.509675doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/


exhibits a greater degree of phenotype-sparsity and little locus-sparsity, the decomposition269

resembles an alternate generative structure where each hub phenotype is instead described270

by a single core process (Figure S2b). In contrast, SVD finds a solution with lower recon-271

struction error but with matrices M and W that lack any clear relationship to the core272

processes that generated the synthetic data.273

III. APPLICATIONS TO EMPIRICAL DATA274

A. Fitness effects of adaptive mutations in yeast275

To illustrate the applicability of our framework, we first analyze data from a recent study276

by Kinsler et. al. [15]. This study attempted to infer a lower-dimensional latent structure of277

phenotype space by measuring the fitness effects of a set of specific yeast mutations across278

a range of environmental perturbations. Specifically, they isolated 292 yeast strains from279

an earlier laboratory evolution experiment, each of which contains one or a few putatively280

adaptive mutations. They measured the fitness of each of these strains across a set of281

45 environments. Based on these measurements, they divided the 45 environments into282

25 “subtle” perturbations (in which fitness effects of mutations vary only slightly) and 20283

“strong” perturbations. Applying SVD on the data from the subtle perturbations, they284

identified an eight-dimensional subspace that explains most of the variation in the data285

across these perturbations. They then showed that this latent structure can also predict the286

fitness effects of the mutations across the 20 “strong” perturbations, which they interpret287

as evidence that the subtle perturbations reveal a “local” modularity that is able to predict288

the global pleiotropic effects of adaptation in this system.289

We sought to investigate whether our SSD method can recover an alternative sparse290

lower-dimensional structure in the Kinsler et. al. data. Rather than divide environments291

into “subtle” and “strong” perturbations, we took the entire mutational effects matrix repre-292

senting 288 strains across 45 environments as our input F (we use 288 instead of the original293

292 due to a minor difference in a pre-processing step, see SI). We then applied our locus and294

phenotype rotation tests (Figure 3b), which confirm that there is strong evidence for spar-295

sity in both the process-phenotype map (W) and the locus-process map (M). Note however296

that removing most diploids from this data (one key type of mutation that represents 188297
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FIG. 3: SSD applied to pleiotropic fitness effects of adaptive mutations in yeast (a) A reduced

representation of the effects matrix F (45(E)× 288(L)) where the effects of mutations with common

annotations are grouped together. The number of mutations with each annotation is shown in parenthesis.

(b) The locus and phenotype rotation tests show extensive sparsity in both the process-phenotype and

locus-process maps. (c) The solution space illustrating highly sparse solutions with low reconstruction

error. The chosen solution with 8.5% error is marked with a white star. (d) The M matrix with loci

clustered into 8 groups based on linkage clustering of loci with a modified cosine similarity metric (see

Methods). On the right, the fraction of loci types in each of the 8 groups is shown. The number of loci in

each group is shown in parenthesis next to its label. (e) The process-phenotype map W.

of the 288 mutations studied) eliminates sparsity in M but not in W (Figure S4). Further298

analysis (discussed below) finds that the diploids predominantly affect one core process and299

thus the locus-sparsity indicated by the rotation test can be explained by the large number300
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of diploids in the data. This is not an issue for applying SSD, as SSD requires sparsity in301

only one of W and M.302

We find that SSD can identify a sparse, 4-dimensional approximation of F that incurs303

less than 8% error in reconstructing the original F (Figure 3c). For concreteness, we focus304

here on the sparse solution indicated by the white star in Figure 3c, which has four core305

processes and an average sparsity of about 1.5 processes per locus and 2 processes per306

environment. In Figure S5, we highlight the differences between the SVD and SSD solutions.307

By construction, the SSD solution has a higher reconstruction error than the corresponding308

SVD solution (7.5% error for the sparse SSD solution, compared to 4% error for the 4-309

dimensional SVD solution). We find that the SVD solution on a training set also shows lower310

error in predicting the fitness effects in held-out environments (the 20 strong perturbations311

or a random subset of 9 environments) compared to the SSD solutions of equal rank (Figure312

S5). This suggests that SVD tends to find a better low-rank approximation, even when it313

fails to find meaningful (and potentially sparse) basis vectors (see Discussion). To highlight314

this point, if SVD finds the locus-process and process-phenotype maps MSVD,WSVD on the315

training set, it can be mathematically shown that the maps M′ = OMSVD,W
′ = WSVDO

T
316

for any arbitrary orthogonal matrix O will match SVD’s generalization error. In contrast,317

the SSD solution is significantly sparser than the SVD solution (Figure S5) at the expense318

of a larger generalization error. Thus, even though SVD by construction finds the subspace319

with the lowest reconstruction error, the SSD approach more accurately identifies basis320

vectors that capture the sparsity in the genotype-phenotype map indicated by the rotation321

tests.322

To examine if loci with similar effects on core processes identified by SSD align with323

existing annotations, we further clustered loci into eight groups by comparing the columns324

of the M matrix with a modified cosine metric (Methods). We observe that core process325

1 is enriched for mutations in genes involved in the Ras and TOR pathways (Figure 3d).326

Missense and nonsense mutations in IRA1 (also involved in the Ras pathway) clustered in327

the “IRA1+other” group have additional pleiotropic effects on core process 3, which has328

a large influence on fitness in environments with an extended stationary phase (4,5 and 6329

Day environments in Figure 3e). Diploids are primarily enriched in core process 2, which330

has broad pleiotropic effects across environments. Diploids with additional mutations in331

IRA1/2 (clustered in the “Diploid + adaptive” group) exhibit effects that combine the332
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effects shown independently by IRA1/2 in the Ras cluster and the Diploids cluster. Thus,333

the core processes identified by SSD do appear to have some correspondence with our prior334

expectations. To ensure that the many diploids do not significantly bias our results, we335

repeated this analysis on a reduced dataset which excludes a random subset of 168 of the336

188 diploids, finding similar features in the W and M maps despite lower average sparsity337

in M (Figure S4).338

Finally, it is easier to read off hypotheses from a sparse SSD decomposition than from339

a dense SVD decomposition (Figure S5b). For example, since SSD core process 3 almost340

exclusively impacts environments with an extended stationary phase (4,5 and 6 Day), it is341

reasonable to hypothesize that loci involved in this core process influence a pathway relevant342

in stationary phase. In contrast, each SVD core process affects most environments (Figure343

S5c), thereby confounding an analogous interpretation. The SSD solution further suggests344

that diploidy primarily contributes to core process 2, and the contribution of this process345

across environments is a succinct summary of its effect. For the SVD solution, the diploids346

do not form a single cluster (Figure S5c,d), and no such summary is apparent.347

B. Robustness of gene knockouts to genotoxins in human cell lines348

Next, we apply our SSD method to the genotoxic fitness screen collected in [19] and349

curated in [17] (Figure 4a). This dataset was constructed by performing CRISPR-Cas9350

knockouts on an immortalized human cell line (RPE1-hTERT) and subjecting each knockout351

variant to 31 genotoxic stressors. We show that the core processes described by our SSD352

decomposition are enriched for particular gene annotations and compare our decomposition353

to one identified by Webster [17].354

Our rotation tests find evidence of both locus and phenotype sparsity in this genotoxin355

data (Figure 4b). Phenotype-sparsity is not assumed by Webster [17], suggesting that SSD356

may lead to a more interpretable process-phenotype map. In order to compare directly to the357

Webster decomposition analyzed in [17], we restrict our attention to SSD solutions that have358

the same number of core processes (K = 10). Guided by the results of the rotation tests, we359

select a solution that is sparse in both loci and phenotypes (3.3 average-processes-per-locus,360

2.5 average-processes-per-genotoxin), indicated by the white star in Figure 4c.361

First, we evaluate whether the core processes described by our solution are enriched for362
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FIG. 4: SSD applied to dataset of human cell responses to gene knockouts under genotoxic

stressors. (a) The input additive effects matrix F generated by [19] and curated by [17]. (b) The locus

and phenotype rotation test indicate there is both locus and phenotype sparsity. (c) The space of solutions

found by SSD. The white star indicates the solution that we illustrate in (d) and (e). (d) Sorting the loci

by GO annotation in the locus-process map M reveals that certain processes are enriched for particular

annotated functions. (e) The process-phenotype map W demonstrates that the response to each genotoxin

can be explained by a small number of core processes.

loci with particular functional effects. We organize the locus-process map M by the loci363

annotations compiled in [19] and observe that core processes 1, 2, and 7 are enriched for364

loci involved with the the repair of interstrand cross-links (ICLs) by Fanconi Anemia (FA)365

proteins, nucleotide excision repair (NER), and DNA replication fork quality control (FORK366

QC) respectively (Fig 4d). Loci involved with end joining are primarily split between core367
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processes 6 and 10. Finally, core process 5 is enriched for loci involved with base excision368

repair (BER) and single-strand break repair (SSBR) as well as homologous recombination369

(HR). The functional meaning of the other four processs are not immediately clear from370

the annotations so we leave them unlabeled; investigating the loci with the strongest effects371

could elucidate their meaning, as was done by Pan et. al. [17]. Figure 4e illustrates the372

process-genotoxin map W; the sparsity indicates that a small number of core processes373

explain the effect of each genotoxic stressor.374

In the SI, we further describe the differences between Webster and SSD and compare the375

decompositions of this dataset found by each method. Our SSD method more accurately376

reconstructs the the additive effects matrix while exhibiting more phenotype-sparsity and377

only slightly less locus-sparsity. Moreover, our SSD decomposition exhibits variation in the378

degree of pleiotropy across loci, measured by the number of processes each locus participates379

in (Figure S6).380

C. The genotype-phenotype map of a yeast cross381

Next, we analyze data from a recent study [26] analyzing genotypes and phenotypes of382

N ≈ 100, 000 F1 haploid yeast offspring (segregants) of a cross between RM (a European383

wine strain) and BY (a standard lab strain). These two parental strains differ by S ≈ 42, 000384

single-nucleotide-polymorphisms (SNPs), leading to a highly diverse set of genotypes in the385

segregant pool. This earlier work measured the fitness (growth rate relative to the parental386

BY strain) of each of the segregants in E = 18 environments using a bulk barcode-based387

phenotyping assay.388

The base condition for most of these environments is propagation in batch culture with389

1:128 dilutions every 24 hours in rich laboratory media (YPD) at optimal temperature390

(30C). We refer to this as the 30◦C environment. Other environments are then constructed391

by adding stressors to this base condition (e.g. lithium, 4-nitroquinoline oxide, ethanol),392

by varying the temperature (23◦C to 37◦C), by using defined media with various carbon393

sources (glucose, mannose, raffinose) instead of YPD, and by using complex natural media394

(molasses).395

To apply SSD to this data, we must first infer the genotype-phenotype map for each396

of these 18 environments (i.e. we must infer F). This is a complex problem; Ba et. al.397
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FIG. 5: SSD on genotype-phenotype data from a yeast cross. (a) The average additive effects of

S ≈ 42, 000 genetic loci, estimated using unpenalized linear regression for each of the 18 environments

independently. The environments are arranged from bottom to top as arranged in panel d from left to

right. Note that the correlations in average additive effects across neighboring loci due to linkage. (b) The

loci and phenotype rotation tests, showing extensive sparsity in the process-phenotype map and moderate

sparsity in the locus-process map. (c) The solution space has a landscape reflecting the sparsity in the

process-phenotype map. The solution picked for downstream analysis is starred. (d) The

process-phenotype map, W. (e) A Sankey figure illustrating the locus-process map M for the large effect

loci in each core process (color) and the process-phenotype map W (grey). The width of each line is

proportional to the magnitude of the value in M or W. In M, the lighter (darker) shade of each color

indicates that the RM (BY) allele contributes positively to the process. In W, light and dark grey indicate

positive and negative contributions to the phenotypic measurement respectively. The signs of the core

processes are adjusted so that they impact most phenotypic values positively.

[26] includes an extensive discussion of the challenges associated with this inference and398

introduces a modified stepwise forward search procedure for this purpose. A particular399
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difficulty is that this mapping is typically not able to precisely pinpoint specific loci that400

affect each phenotype. Because our goal is to use the genotype-phenotype map across401

these different environments to infer lower-dimensional latent structure, we adopt a simpler402

approach here. Instead of identifying putative causal loci separately for each phenotype, we403

use a penalized regression approach to jointly identify a sparse set of loci that explain the404

fitness across environments (see SI). Then, we use a statistical test to establish a confidence405

interval for the location of each putative causal locus. This procedure identifies 1089 genomic406

regions containing putative loci and their fitness effects in the 18 environments. We use this407

18× 1089 matrix as the effects matrix F for SSD, represented schematically in Figure 5a.408

We next apply the loci and phenotype rotation tests (Figure 5b), finding evidence for409

extensive sparsity in the process-phenotype map W and moderate levels of sparsity in the410

locus-processes map M. The SSD solution space shows an error landscape that favors low-411

rank (K ≈ 6 − 9) approximations to F which are sparse in W (Figure 5c). We focus here412

on the K = 8 solution indicated by the white star in Figure 5c, which represents a trade-off413

between achieving high sparsity in W and moderate sparsity in M while retaining relatively414

low reconstruction error. We verified that this solution explains a fraction of variance on a415

test set of genotypes comparable to that explained by the full F and the 8-component SVD416

solution (Figure S7a). Other reasonable choices of solutions lead to qualitatively similar417

results (Figure S7b).418

In Figure 5d we show the resulting inferred W. We find that this matrix is sparse and419

has some intuitive features. First, we note that the term b in our SSD decomposition rep-420

resents a constant effect of each locus on all of the measured phenotypes (i.e. the aspect421

of the genotype-phenotype map that is constant across all the environments). The inferred422

W then represents how the loci in a given process produce deviations from these constant423

effects across the different environments. We find that none of the inferred processes have424

substantial weight in W for our 30◦C environment, indicating that b fully captures the425

genotype-phenotype map for this environment. This is intuitive, given that this environ-426

ment is the basis for all other conditions. The environments which represent this same427

condition at slightly lower temperatures are also largely captured by b, though processes 4428

and 8 do become slightly more important as we decrease the temperature. As we increase429

temperature, we find that process 7 becomes important, suggesting that this process is asso-430

ciated with high temperature response. Several processes are specific to given environments431

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.27.509675doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/


(e.g. process 1 primarily affects fitness in guanidinium chloride (gu), process 2 affects fit-432

ness in lithium (li), process 5 in suloctidil (suloc), and 6 in molasses (mol)). Some of these433

processes, such as processes 2 and 6, contain a largely non-overlapping set of loci that affect434

their respective environments (li and mol) in addition to the constant effects captured by435

b. Finally, processes 3, 4, and 8 reflect processes that influence a few conditions, including436

some observed trade-offs (e.g. between fitness in raffinose and ynb or mannose).437

In SI Table 1, we provide a list of the ORFs localized to each putative causal locus,438

GO annotations and descriptions from the Saccharomyces Genome Database [27], and their439

influence on each core process (i.e. value in M). In Figure 5e we show a Sankey figure440

that illustrates W and the most prominent features of M. This figure shows both how a441

number of key loci affect each of the processes (i.e. features of M), and how these processes442

in turn affect fitness in each of the environments (i.e. W). For example, we see that the443

genes ENA1 and ENA5 are the primary contributions to process 2, and that this process444

primarily influences fitness in lithium. This is consistent with prior expectations, as the ENA445

cluster is involved in salt tolerance and is known to be important for lithium tolerance [28].446

Similarly, we see that BUL2, known to affect heat-shock element mediated gene expression447

(see SI Table 1), is the primary contributor to process 7, which influences fitness in the high448

temperature environments. In addition, some loci which are known to have large effects on449

fitness across these conditions (e.g. MKT1, IRA2) are also represented in M. There are450

also many other loci (some of unknown function and other unannotated genes) that play451

a role, and the rationale for these patterns is unclear. Additional experiments measuring452

fitness across a larger set of environments may help further disentangle structure in this453

genotype-phenotype map, and help resolve additional processes.454

IV. DISCUSSION455

Extensive work in quantitative genetics has aimed to develop models that explain the456

relationship between genotype and a variety of different phenotypes. This work often finds457

widespread pleiotropy, where specific genetic variants affect multiple phenotypes, creating458

a complex pattern of correlations between phenotypes. Using these patterns to infer a459

lower-dimensional structure in the map between genotype and multiple phenotypes is an460

important goal, which offers the promise of identifying a biologically meaningful explanation461
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for observed patterns of pleiotropy.462

A central challenge in achieving this goal is that discovering lower-dimensional structure463

in high-dimensional data is fundamentally underdetermined. Thus, we must always choose464

some set of objective functions and/or constraints as the basis for any such decomposition.465

This choice is inherently somewhat arbitrary, and it is not immediately clear how to select466

objectives and constraints that will lead to solutions that reflect biologically meaningful467

structure in the data.468

In this paper, we address this challenge by introducing a penalized matrix decomposition469

framework, Sparse Structure Discovery (SSD), which allows us to identify a low-dimensional470

set of “core processes” that concisely explains the observed patterns of pleiotropy in471

genotype-phenotype data. The method uses sparsity as a key constraint to decompose472

a model for how genotype influences multiple phenotypes into two linear sparse lower-473

dimensional maps: a map between the genetic loci and the set of putative core biological474

processes they affect, and a map explaining how these core processes determine the observed475

phenotypes. Using simulated data, we demonstrate that SSD can accurately recover the476

true locus-process and process-phenotype maps as long as at least one of them is sparse.477

We then apply the method to three empirical datasets, which include the fitness effects of478

adaptive mutations in different growth conditions, robustness of gene knockouts to a set of479

genotoxic agents, and the fitness effects of QTLs identified in a yeast cross.480

SSD is a flexible method which offers a range of solutions that correspond to different481

strengths of the sparsity constraints on the locus-process and process-phenotype maps (for-482

mally, one unique solution per choice of the hyper-parameters that enforce sparsity). This483

choice could be made based on some prior biological expectations, or by using standard484

statistical approaches such as cross-validation to find the set of hyper-parameters that min-485

imizes generalization error. However, since our goal is to identify biologically meaningful486

low-dimensional structure rather than minimize generalization error, we explore the space of487

solutions found by SSD across a range of hyper-parameters, and use the reconstruction error488

landscape and proposed rotation tests to guide the examination of specific solutions. By489

exploring solutions with different levels of sparsity, we can examine features of the solutions490

which are robust to the choice of specific hyper-parameters.491

Of course, the use of sparsity as the guiding constraint in our SSD method is a choice, and492

it would certainly be possible to identify alternative lower-dimensional decompositions of a493
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given dataset by choosing a different set of objectives and constraints. Our choice of sparsity494

is guided by two main factors. First, because we can use rotation tests to provide evidence495

for sparsity, we can demonstrate whether or not this constraint is appropriate directly from496

empirical data (and in cases where there is no evidence for sparsity, SSD should not be used).497

Second, intuitive notions of modularity in biological systems suggest that sparsity in M and498

W may reflect characteristic features of biological organization. For example, sparsity in499

the locus-process map may reflect a situation where each gene participates in one or a few500

biological “modules” with specific defined functions, and each such module relies primarily501

on a relatively small fraction of all possible genes. Sparsity in the process-phenotype map502

may hold less generally, but could reflect scenarios where any observed phenotype typically503

depends primarily on a subset of all possible modules. We also note that our method only504

requires sparsity in one of these two maps, so it could be useful in scenarios where W is505

sparse and M is not, or vice versa.506

Naturally, even in scenarios where a biological system has a modular structure and spar-507

sity seems intuitively appropriate, all biological processes are inherently coupled at some508

level. For example, the “omnigenic” model recently introduced by [29] suggests that most509

loci affect almost every complex trait. The omnigenic model reflects the observation that510

large numbers of small-effect loci often dominate the heritability of complex traits. This511

is not inconsistent with the sparsity-inducing ℓ1 constraint used in SSD. Formally, the ℓ1512

constraint reflects a prior assumption about the distribution (i.e., the spread) of effect sizes,513

namely, that a small subset of loci have much larger effect sizes than most other loci that514

affect each process. In contrast, an ℓ2 constraint, for example, imposes a prior with a tighter515

spread of effect sizes. This constraint will instead lead to a dense (and non-unique) set of516

solutions. The sparsity assumption thus remains valid as long as the effects of mutations517

in the core genes of a pathway are significantly larger than the small effects of the genes518

outside the pathway, even if there are so many such small-effect genes that they dominate519

the heritability of the trait.520

By using sparsity as a key constraint, our approach produces a different lower-dimensional521

latent structure in the data than singular value decomposition (SVD), a commonly used522

method which finds the subspace of a chosen dimensionality that achieves the lowest error523

in reconstructing the effects matrix (without any additional constraints). By construction,524

SVD produces a set of processes (formally, basis vectors that span this subspace) which525
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are orthogonal and which are ordered monotonically based on the variation explained by526

each process. Previous work [15] has shown that SVD applied to a subset of mutations and527

similar environments generalizes to a held-out set of mutations and dissimilar environments,528

which suggests that SVD can be fruitfully used to identify an appropriate low-dimensional529

subspace of processes. However, any set of independent basis vectors which span the sub-530

space will lead to the same generalization error. That is, even though SVD achieves good531

generalization performance by finding the optimal lower-dimensional decomposition of the532

genotype-phenotype map, it does not necessarily lead to a unique set of biologically mean-533

ingful processes.534

Our approach is similar in spirit to Webster, a method based on graph-based dictionary535

learning introduced recently by Pan et. al. [17]. Like SSD, Webster relies on a penalized536

matrix decomposition framework to identify the locus-process and process-phenotype maps.537

However, Webster imposes a hard constraint that each locus affects at most two processes538

and imposes no sparsity constraint on the process-phenotype map. In contrast to Webster,539

SSD finds sparser solutions with an equivalent reconstruction error, and variable degrees of540

pleiotropy across loci.541

We emphasize that the processes identified by SSD or any other method are fundamentally542

constrained by the genotypes we study and the phenotypes we choose to measure. We cannot543

hope to resolve any effects of loci that do not vary across the genotypes we analyze. Thus, it544

is important to consider the nature of the genetic variation in a given study in interpreting545

the results of an SSD decomposition: if a given type of variant is not represented, we may546

fail to identify core processes which depend on those variants. Moreover, it is important to547

note that expanding a dataset by including additional genotypes can in principle change the548

inferred structure.549

Similarly, the constant effects of loci on all the measured phenotypes are represented by550

the b term in SSD. This reflects the effects of loci on phenotypes that cannot be resolved551

by the variation in the measured phenotypes. For example, if some core process influences552

a given type of stress response and we did not measure any phenotypes that depend on that553

particular type of stress, we would expect the effects of this core process to be absorbed into554

b along with all other processes whose effects do not vary across the measured phenotypes.555

By measuring additional phenotypes, we could hope to begin to resolve these processes,556

though our success in doing so would depend on the phenotypes chosen.557
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We note that by using a matrix decomposition framework, we have implicitly made558

several important assumptions about the structure of the genotype-phenotype map. First,559

we have ignored the effects of interactions between loci on the core processes. In other560

words, we assume that the effect of each locus on each core process does not depend on561

other loci. Second, the process-phenotype map is assumed to be a linear function of the562

core processes. Nonlinear structure in the locus-process and process-phenotype maps will563

lead to structured epistasis between loci in the genotype-phenotype data. This structure is564

in principle resolvable by measuring epistatic effects between loci for different phenotypes.565

However, we have focused here on the additive effects matrix, because this is both simpler566

and can be more reliably estimated given the scope of current data sets.567

Finally, our study and others [15, 17] assume a strictly hierarchical genotype to process568

to phenotype map. That is, we assume that the genotype determines the core processes,569

which in turn determine the observed phenotypes. This structure has some intuitive appeal,570

and it is central to any latent structure discovery method of this type. However, it may571

not always hold in reality. For example, one can imagine a scenario where the effects of572

mutations on one core process depend on the state of another core process (in other words,573

core processes affect mutational effects in addition to phenotypes). Our method (along with574

other matrix decomposition approaches such as SVD) is fundamentally unsuited to describe575

such scenarios, and developing methods to infer the structure of this and other more general576

types of genotype-phenotypes maps is an important goal for future work.577

Availability of code and data. Our code and a link to the data is available at https:578

//github.com/spetti/sparse-structure-discovery.579
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SUPPLEMENTARY INFORMATION686

1. Definitions687

1. Average processes per locus. Total number of non-zero values in M divided by the688

number of columns in M with at least one non-zero value. This definition excludes689

loci that affect no processes.690

2. Average processes per phenotype. Total number of non-zero values in W divided by691

the number of rows in W with at least one non-zero value. This definition excludes692

phenotypes that use no processes apart from the linear term b.693

3. k-component SVD decomposition. As with our SSD method, we include a linear term in694

our decomposition to capture the effects of the loci that do not vary across phenotypes.695

Given F, we let b be the mean effect of each locus across phenotypes (i.e. the L-696

dimensional vector where the ith value is the mean of the ith column of F). Given the697

SVD of a matrix F− b = UΣV T , the k-component SVD decomposition of F− b has698

M equal to the first k rows of V T and W equal to the first k columns of U with each699

column scaled by the corresponding diagonal element of Σ. The processs, expressed as700

L-dimensional vectors (rows ofM), are of unit length, as is the case for decompositions701

found by our SSD method.702

4. Reconstruction error. The reconstruction error of the approximation F ≈ WM + b703
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is the squared Frobenius norm of the difference between F and the approximation704

divided by the number of entries in F: ∥F− (WM+ b)∥22/(E · L).705

5. Cosine error. To compare the similarity of a decomposition M̂,Ŵ to the true decom-706

position M,W (for synthetic data), we first adjust M̂ and Ŵ to best align the core707

processes. First, we select the pair of rows Mk,: and M̂j,: with the highest absolute708

value of cosine between them and assign M̂j,: and Ŵ:,j to the kth row and column of709

the adjusted matrices M̂P and ŴP respectively. Further if the cosine between Mk,:710

and M̂j,: is negative, we multiply the kth row and column of M̂P and ŴP (respec-711

tively) by negative one. We repeat this process, excluding the rows in M and M̂ that712

have already been paired. This process permutates and changes the sign of the core713

processes, but does not change the approximation: ŴM̂ = ŴP M̂P .714

The mean cosine error for M measures the similarity between the pairs of correspond-715

ing core processes, viewed as L-dimensional vectors: 1
K

∑K
i=1

(
1− cos⟨Mi,:, M̂i,:

P
⟩
)
.716

The mean cosine error for W measures the extent to which each phenotype uses the717

corresponding processs similarly: 1
E

∑E
i=1

(
1− cos⟨Wi,:,ŴP

i,:⟩
)

1{Wi,: ̸= 0 or ŴP
i,: ̸=718

0}. The indicator function ensures that the phenotypes affected by no core processes719

(other than the linear term) in both the true and predicted decompositions do not720

contribute to the error.721

2. Sparse Structure Discovery722

SSD takes as input the additive effects matrix F, an upper bound on the desired number

of processes Kmax, and the regularization parameters λW , λM . It returns M,W and b that

approximately minimize

C(W,M,b) = ∥F− (WM+ b)∥22 + λW∥W∥1 + λM∥M∥1 (2)

such that ∥Mk,:∥2 = 1 for all 1 ≤ k ≤ Kmax.

Initially b is set to the column means of F, and W and M are found by taking the Singular723

Value Decomposition (SVD) of F−b with the topKmax singular vectors. We then alternately724

(i) fix W and find M and b that optimize (2), (ii) normalize the rows of M, (iii) fix M and725
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b and find W that optimizes (2). While the objective function (1) is not jointly convex in726

W and M, the optimization problems in (i) and (iii) are each convex and can be efficiently727

solved.728

In order to use comparable regularization values and obtain comparable errors across729

input matrices F with different sizes and magnitudes, we normalize the input matrix F730

before performing SSD and the rotation tests. To normalize F, we divide each entry by the731

standard deviation of all the values in F. In both the SSD solution space plots and the732

rotation tests, the reported reconstruction error is with respect to this normalized version733

of F. After normalization, the reconstruction error can be interpreted as the fraction of734

variance unexplained by the decomposition.735

For each application, we apply our method with 625 pairs of regularization parameters:736

25 values of λW uniformly distributed between 10−3 and 1.5 in logscale and 25 values of λM737

uniformly distributed between 10−4 and 10−2 in logscale. We choose Kmax as the minimum738

number of SVD components needed to explain at least 95% of the variance in F − b.739

Choosing Kmax < min{E,L} speeds up the method. Recall that the optimization procedure740

automatically picks an appropriate number of processes K ≤ Kmax for a given λM , λW .741

a. Comparison to other penalized matrix decomposition methods742

Our Sparse Structure Discovery method is a form of penalized matrix decomposition. It743

is well-known that the low rank matrix decomposition that gives the best approximation of a744

matrix with respect to the Frobenius norm can be computed via the singular value decompo-745

sition (SVD) (see [30]). Penalized matrix decomposition refers to a broader range of matrix746

decomposition formulations whose objectives are to both minimize the Frobenius norm of747

the approximation and to encourage the matrix factors to exhibit particular properties (e.g.748

sparsity) through hard constraints or regularization [31].749

One form of penalized matrix decomposition is sparse coding, where the goal is to identify750

an overcomplete set of basis vectors, often called dictionary elements, so that each data point751

can be written as a combination of a small number of dictionary elements. This approach752

was used by Field and Olshausen to identify putative receptive fields of cells in the visual753

cortex [8]. The computer science and statistics literature has developed various formulations754

of sparse coding and accompanying efficient algorithms for finding the dictionary elements755
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[7]. Algorithms for sparse coding formulations that impose an L0 penalty on the use of756

dictionary elements are studied in [18, 32, 33]. Algorithms for the more tractable convex757

relaxation with an L1 penalty are studied in [34–36]. In Appendix 6 we further discuss the758

graph-regularized approach introduced in [18] and applied to the genotoxin data set in [17].759

The key difference between SSD and sparse coding is that we enforce sparsity in both760

the dictionary elements (M matrix) and the description of the data as combinations of761

the dictionary elements (W matrix). This is motivated by our observation that sparse762

solutions can be found for both W and M in empirical genotype-phenotype maps with a763

marginal increase in reconstruction error. In contrast, standard sparse coding approaches764

do not constrain the sparsity of the dictionary elements. Additionally, the vector b in (2) is765

introduced to capture the effects of loci on processes that do not have a variable effect on766

the measured phenotypes.767

3. Rotation tests for locus and phenotype sparsity768

For both tests, we first subtract out the mean effect of each locus across phenotypes to769

approximate b, the effects that do not vary across phenotypes. Then, we normalize F and770

select Kmax as described in Section 2. For the locus-rotation test, we rotate the rows of F771

randomly by right-multiplying by a random L×L orthogonal matrix O drawn from the Haar772

distribution, as implemented by SciPy’s stat.orthogroup library. We apply our SSD method773

directly to FO (without normalizing) for 25 values of λM uniformly distributed between774

10−4 and 10−2 in logscale and λW = 10−3. For the phenotype-rotation test, we left-multiply775

F by a random E × E orthogonal matrix O′ drawn from the Haar distribution and apply776

SSD to O′F for 25 values of λW uniformly distributed between 10−3 and 1.5 in logscale and777

λM = 10−4.778

4. Synthetic data with hub-and-spoke structure779

To test our SSD method on data with more complex underlying structure, we generated780

synthetic data with a hub-and-spoke structure, as illustrated in Figure S2a. We constructed781

eight H-processes and four P -processes. Each of L = 200 loci participated in each process782

independently with probability 0.2, the weights of the participating loci were drawn indepen-783
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dently from a standard normal, and the rows of M were normalized. We then constructed784

20 groups of 5 phenotypes: one hub phenotype and four perturbations of the hub phenotype,785

which we call spokes. The hub phenotype depends on two randomly selected H-processes786

with weights drawn independently from a standard normal. Each spoke phenotype is a sum787

of the hub phenotype and one of the four P -processes multiplied by a scaling factor drawn788

from a standard normal. This construction yields a 100×12 matrix W, a 12×200 matrix M789

and the fitness effect matrix F = WM+ η, where the noise η is drawn independently from790

a normal distribution with scale 0.3 times the standard deviation of the entries in WM.791

This same F can also be expressed as a decomposition F = W̄M̄ + η with 24 core792

processes and with more sparsity in W̄ than W and far less sparsity in M̄ than M, see793

Figure S2b. To obtain W̄, we keep the four P -processes and construct an S-process for each794

of the 20 hub phenotypes. Instead of expressing each hub phenotype as the weighted sum795

of two H-processes, each hub phenotype is now represented by single S-process.796

5. Analysis of adaptive mutations in yeast (Kinsler et. al. dataset)797

The dataset in Kinsler et. al. [15] contains the additive effects of 421 adaptive mutations798

in 45 environments. We chose a subset of 288 mutations using the procedure described799

in the original work. Specifically, mutations that were either not sequenced, whose mean800

additive effect across the 8 evolutionary conditions was smaller than a threshold (0.05) or801

whose maximal error of the additive effect over all environments was larger than a threshold802

(0.5) were removed. The specific thresholds were not specified in Kinsler et. al.; we chose803

thresholds such that we were left with close to the total number of mutations analyzed in804

this work (i.e., 292).805

a. Clustering mutations806

Clustering of the M matrix was performed through hierarchical/agglomerative clustering807

[37] (using the linkage function in SciPy’s hierarchical clustering library) with an absolute808

cosine metric. Since our goal was to cluster loci with similar effect profiles on processes (i.e.,809

columns of M) independent of the overall sign and magnitude, we use a metric d(x,y) =810

1− |x̂.ŷ|, where x,y are two vectors and x̂ = x/||x||2 denotes the unit vector. The method811
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groups the loci into clusters depending on an input distance threshold. We found that for a812

large range of thresholds (0.15 to 0.93), the number of clusters ranged from 6 to 11. There813

was no sharp delineation within this range. We chose an intermediate threshold value 0.4,814

which led to 8 clusters. For the analysis with fewer diploids (Figure S4) we used a threshold815

value of 0.22 to obtain 8 clusters.816

In Figure S5d, we present results from hierarchical/agglomerative clustering of the M817

found using SVD. We chose a distance threshold of 0.47 instead of 0.4 for the SSD solution818

in Figure 3d,e to obtain 9 clusters since we could not find a threshold which led to 8 clusters.819

Choosing a matching threshold of 0.4 led to 11 clusters.820

b. Bi-cross-validation821

In this Section, we summarize the bi-cross-validation test described in [38] and applied in822

[15]. We split the 45 environments into train and test environments, and the 288 mutations823

into train and test mutations. In panel a of Figure S5, the train and test environments are824

the subtle (25) and strong perturbation (20) environments as defined in [15], respectively825

(Recall that environments in which the fitness effects differed slightly and significantly from826

the average fitness effects in the evolution condition were classified as subtle and strong827

perturbations respectively). In panel b, the training and test environments are chosen828

randomly in a 36:9 split.829

Each result is averaged over eight random splits of the mutations into training and test830

sets. In each random split, the training set contains 60 training mutations and test set831

contains 228 test mutations. To split mutations, the number of mutations of each annotation832

(Diploids, IRA1-mis, IRA2, etc) that are included the training and test sets are decided as833

specified in [15]. The specific mutations assigned to each set are sampled randomly. For834

example, Kinsler et. al. assign 20 diploids to the training set and 168 diploids to the test set.835

The specific set of 20 diploids that are assigned to the training set for each of the 8 random836

seeds are sampled with equal probability from the full set of 188 diploids. As described in837

[15], the weighted reconstruction error is computed by normalizing the total reconstruction838

error for all mutations of an annotated class with the number of mutations in that class.839

This ensures that the performance on the diploids are not overrepresented in the results.840

To obtain the bi-cross validation reconstruction error for each method, we first decompose841
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F on train environments and mutations into two matrices W1,M1. Fixing M1, we fit the842

process-phenotype map W2 for the test environments and train mutations. Similarly, fixing843

W1, we fit the locus-process map M2 for the test mutations and train environments. The844

predicted loci-phenotype map on test environments and mutations is then W2M2. To845

compare SVD and SSD on an equal footing, we first subtract from F the mean of F across846

environments for each locus.847

6. Comparison to Webster method on genotoxin dataset848

SSD differs from Webster in three key ways. First, Webster imposes locus-sparsity as a849

hard constraint; each locus particpates in at most j core processes where j is an input param-850

eter. In contrast, SSD allows loci to participate in different numbers of core processes, allow-851

ing the loci to exhibit varying degrees of pleiotropy. Second, whereas phenotype-sparsity is a852

tunable parameter in SSD, Webster does not enforce phenotype-sparsity. Finally, Webster’s853

optimization includes graph regularization objectives that encourage each locus to have a854

similar core process membership profile as its five closest neighbors, and analogously for855

phenotypes. This arbitrary cutoff of five could cause problems for a locus or phenotype that856

is significantly dissimilar from all others.857

We first select SSD solutions to compare to the Webster decomposition of the genotoxin858

dataset [19] presented in [17]. In the Webster decomposition each locus participates in859

exactly two of ten core processes. We selected the most comparable SSD solution (ten860

processes, 2.0 average-processes-per-loci, 6.8 average-processes-per-genotoxin), as well as the861

SSD solution we selected using the rotation tests as a guide (illustrated by the white star in862

Figure 4, ten processes, 3.3 average-processes-per-loci, 2.5 average-processes-per-genotoxin),863

and the 10-process SVD solution.864

Next, we compared the unnormalized reconstruction error for each genotoxin between the865

two SSD solutions described above, the SVD decomposition, and the Webster method (left866

column in Figure S6). Predictably, the methods with less strict sparsity requirements give867

lower mean error (SVD 1.4, selected SSD solution 2.6, most comparable SSD solution 2.9,868

Webster 3.3). Unlike Webster, our SSD method allows the number of processes that each869

locus participates in to vary, reflecting the possibility that loci may exhibit different levels870

of pleiotropy (right column Figure S6). This flexibility may account for the improved pre-871
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dictions of our SSD solutions over Webster at the same average locus-sparsity. As displayed872

in Figure S6 center column, the process-genotoxin maps from the SSD solutions are more873

sparse.874

Of the sparse solutions, our selected SSD solution most accurately reconstructs the addi-875

tive effects matrix and exhibits the most genotoxin-sparsity (see Figure S6, center column).876

Moreover, the locus-sparsity of this solution is sufficient to assign putative biological func-877

tions for many of the core processes using predefined annotations (Figure 4d). This suggests878

that the SSD approach is a more promising method for generating biologically reasonable879

hypotheses about genetic architecture in this system.880

7. Joint QTL mapping from large-scale genotype-phenotype measurements881

Given an E×N matrixY encoding E measured phenotypes ofN individuals and an S×N882

{0, 1}-valued matrix X expressing the genotypes of the N individuals at S loci, our joint883

QTL mapping method identifies L < S putative causal loci which explain the majority of884

the predictable variation in the measured phenotypes. The output of our method is an E×L885

effects matrix F which approximates the phenotypes as an additive function of the effects886

of these L loci. The key step in our method aligns loci across phenotypes using a penalized887

regression framework based on ℓ2,1 regularization with a highly optimized implementation888

called glmnet [39]. Specifically, we minimize889

C(F, c) = ||Y − FX− c||2 + λF

S∑
s=1

||F:,s||2 (3)

with respect to F and c, where ||F:,s||2 ≡
√∑E

e=1 F
2
es, λF controls the strength of regular-890

ization and c is an E × 1 intercept term. This ℓ2,1 regularization penalty is a generalization891

of the well-known ℓ1-based Lasso to multiple outcomes. Like Lasso, the ℓ2,1 penalty favors892

sparse solutions by selecting only the loci whose effects across phenotypes (as measured by893

||F:,s||2) are sufficiently large, thus automatically identifying and aligning both large-effect,894

non-pleiotropic loci and loci that have small effects across many phenotypes.895

In our yeast cross application, we have N ≈ 100, 000 segregants and S ≈ 42, 000 loci.896

Due to the scale of this data and strong correlations between neighboring loci from linkage,897

we avoid running glmnet on all 42, 000 loci. We instead run glmnet on a smaller subset of898
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putative causal loci and develop a statistical method for computing confidence intervals to899

narrow down the true locations of each causal locus. Our pipeline is as follows:900

1. Compute a reduced genotype matrix by restricting X to a set of rows corresponding901

to loci that are pairwise correlated by no more than 94%. On our yeast dataset, this902

reduces S from ≈ 42, 000 to 1579.903

2. Perform ℓ2,1-regression on the reduced genotype matrix. On our yeast dataset, this904

yields 1314 putative causal loci (non-zero columns of F).905

3. Construct a new list of putative casual loci that are more likely to be casual than906

the loci selected in Step 1. To do so, compute confidence intervals for each putative907

casual locus for each phenotype separately using the statistical method described in908

Section 7 a. When the confidence intervals for a single locus do not overlap, it suggests909

that the locus is summarizing the effect of multiple distinct nearby causal loci. We910

“split” the locus by adding a set of loci to the new list such that each phenotype’s911

confidence interval contains at least one locus in the set. When the confidence intervals912

for a locus overlap across all phenotypes, we add the locus from the intersection with913

the strongest evidence of being causal to the new list. The same locus may appear914

multiple times on the new list, suggesting that the ℓ2,1 optimization assigned the effect915

of a single locus to two (or more) nearby loci. After removing such redundancies, the916

new list contains 1119 loci for our yeast dataset.917

4. Perform ℓ2,1-regression on the genotype matrix restricted to the new list of putative918

casual loci. We use this F in downstream analysis. On our yeast dataset, this yields919

1089 putative casual loci (non-zero columns of F).920

5. Localize the ORFs of the putative causal loci with the strongest effects by computing921

confidence intervals for each phenotype.922

In Step 1, we apply a greedy algorithm to pre-filter the loci. We order the SNPs (loci) by923

genomic position. We select the first SNP. We subsequently select the next SNP that has924

genotypic (Pearson) correlation < 0.94 with the most recently selected SNP. This process is925

repeated until we get to the last SNP.926

Steps 2 and 4 use the implementation of ℓ2,1-based regression from the glmnet R library927

[39]. The regularization parameter λF in Eq. (3) is set using cross-validation. Specifically,928
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the training, validation, and test sets are obtained by splitting the columns of X (corre-929

sponding to segregants) in the ratio 80:10:10, glmnet solves Eq. 3 on the training set for930

a range of λF , and we select the solution with the minimum mean absolute error on the931

validation set. We use the test set to evaluation our predictions before and after matrix932

decomposition, see Figure S7a.933

The goals of Step 3 are to more accurately localize the putative causal loci returned by934

Step 2 and to determine whether some putative causal loci are summarizing the effects of935

multiple nearby loci with distinct effects. The putative causal loci identified by glmnet in936

Step 2 are a subset of the loci chosen via the greedy prefiltering done in Step 1. Therefore, it937

is quite possible that the true causal locus was filtered out in Step 1, and the putative causal938

locus identified by glmnet is a nearby locus that is highly correlated with the true casual939

locus. Alternatively, a putative causal locus identified by glmnet may describe the effect of940

one nearby causal locus for certain phenotypes and a different nearby causal locus for other941

phenotypes, i.e. the putative causal locus is summarizing multiple loci with different effects.942

To arrive at a new list of loci that we believe to more likely to be causal, we replace each943

locus identified in Step 2 with a set of loci constructed according to the following procedure.944

For each locus ℓ, we first apply the method described in Section 7 a to compute a confidence945

interval of locations for the true causal locus for each phenotype separately. For each locus946

z in the confidence interval for phenotype e, we also return best approximation of the linear947

effect of locus z on phenotype e, which we denote f̂ e
z (computed as described above Eq. 7).948

Across loci in a confidence interval, a higher value of |f̂ e
z | indicates that locus z is more likely949

to be causal.950

We iteratively select loci for the new set as follows. For each locus z in some confidence951

interval, we compute v(z) =
∑

e |f̂ e
z | where f̂ e

z is set to zero when locus z is not in the952

confidence interval for phenotype e. The locus z∗ that maximizes v is added to the new953

set. If locus z∗ is in the confidence interval for all phenotypes, we add no other loci to the954

new set. Effectively, we have replaced ℓ with a nearby locus z∗ that is in the confidence955

interval for each phenotype and exhibits a stronger effect (measured by the magnitude of956

effect size summed across environments). If there are phenotypes whose confidence intervals957

do not contain z∗, it is likely the case that locus ℓ summarizes the effects of different causal958

loci for different phenotypes. We need to include more loci in the new set so that the new959

set includes a least one locus in the confidence interval of each phenotype. To do so, we960
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remove all phenotypes whose confidence intervals contain z∗ and again find the locus z∗∗ that961

maximizes v (where now the summation in v is over a restricted set of phenotypes whose962

confidence intervals do not contain z∗). We repeat this process until the each confidence963

interval contains at least one locus in the new set.964

In Step 5 we localize the putative causal loci returned by glmnet in Step 4 to ORFs.965

Pinpointing the location is only possible for the strongest effect loci, so we restrict our966

analysis to loci that exhibit an additive effect of magnitude at least 0.003 for some phenotype.967

For each such locus ℓ and phenotype e, we again use the method described in Section 7 a to968

compute a confidence interval and the best approximations of the linear effects f̂ e
z for each969

locus z in the confidence interval. For each locus z in some confidence interval, we again970

compute v(z) =
∑

e |f̂ e
z | where f̂ e

z is set to zero when locus z is not in the confidence interval971

for phenotype e. We declare the locus z∗ that maximizes v the “top” locus. We consider the972

intersection of all confidence intervals containing z∗ to be the common confidence interval973

for locus ℓ. We label locus ℓ with the names of all ORFs corresponding to a locus in this974

common confidence interval.975

a. Confidence interval computation976

We describe a method to identify a confidence interval for a single locus with respect to977

a single phenotype. We assume a linear model for the effect of a locus on the phenotype of978

segregant n979

Rn = ftXtn + εn, (4)

where Rn is the “residual”, i.e., the phenotype measurement not explained by the rest of

the loci, t is the index of the true locus, ft is its true fitness effect, and εn ∼ N (0, σ2) is

a noise term which is drawn i.i.d from a normal distribution with mean zero and variance

σ2. To measure how well a nearby locus z explains the residuals, we compute the squared

error between the observed residuals and the best approximation of the residuals as a linear

function of Xz,:, which we call f̂z. We define this error as

C(z) = 1

N

N∑
n=1

(Rn − f̂zXzn)
2. (5)
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To arrive at a confidence interval, we suppose that ℓ is the locus that minimizes C when t is

the true causal locus and compute the probability that ℓ minimizes C under this assumption:

P (C(ℓ) < C(t)| t is the true causal locus). (6)

If this probability is less than 0.023 (two standard deviations), we reject the hypothesis that980

t is the true causal loci and exclude t from the confidence interval.981

Now we explain how to compute (6). Let F̂ and ĉ be the putative additive effects matrix

and linear term returned by ℓ2,1 optimization, and let ℓ and e be the locus and phenotype of

interest respectively. Since we consider one phenotype at a time, we suppress the dependency

on e and write Y = Ye,: and c = ce. By a slight abuse of notation, when ℓ appears as a

subscript of F̂ it refers to the column corresponding to the locus ℓ and when ℓ appears as

a subscript of X it refers to the row corresponding to the locus ℓ (these will not necessarily

have the same index). Throughout, we use bar to denote averages over the N segregants.

We use the putative additive effects map to compute the residuals,

Rn = (Yn − c)−
∑
i̸=ℓ

F̂eiXin.

For a locus z, the best approximation of the residuals as a linear function of Xz,:, i.e. the982

value of f̂z that minimizes C(z), is f̂z = RXz/X2
z. Plugging this expression into Eq. 5, we983

have C(ℓ) = R2 − f̂ 2
ℓ X

2
ℓ and C(t) = R2 − f̂ 2

t X
2
t . Taking the difference, we obtain984

C(ℓ)− C(t) = f̂ 2
t X

2
t − f̂ 2

l X
2
l . (7)

Since Rn = ftXtn + εn, it follows that985

f̂l =
(ftXt + ε)Xℓ

X2
ℓ

=
ftXtXℓ + εXℓ

X2
ℓ

= ftρtℓ + γℓ, (8)

where ρtℓ = XtXℓ/X2
t is the fraction of segregants with genotype +1 at t that also have986

genotype +1 at ℓ, and γℓ = εXℓ/X2
ℓ is a random variable equal to the average noise over all987
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segregants with genotype +1 at ℓ. Similarly,988

f̂t =
(ftXt + ε)Xt

X2
t

=
ftX2

t + εXt

X2
t

= ft + γt, (9)

where γt = εXt/X2
t is a random variable equal to the average noise over all segregants with

genotype +1 at t. Plugging these into Eq. (7), we obtain

C(ℓ)− C(t) =
(
X2

t (ft + γt)
2 −X2

ℓ(ftρtℓ + γℓ)
2
)

(10)

≈
(
(ft + γt)

2 − (ftρtℓ + γℓ)
2
)
X2

t (11)

Assuming that ℓ and t are nearby, linkage guarantees that most segregants will have the989

same genotype at these positions. As a result, X2
t ≈ X2

ℓ (validating approximation (11))990

and ρtℓ will be close to one. Since γt, γℓ are order 1/
√
N (as they are the mean of order N991

normals with constant variance σ2), they tend to be much smaller than ft whenever ft is992

significant enough to be causal. We therefore may assume that ft and ft+γt , and ftρtℓ+γℓ993

have the same sign.994

Suppose ft > 0. Then C(ℓ) < C(t) whenever ft(1 − ρtℓ) < γt − γℓ. Let Γ be the random

variable equal to γt−γℓ. Again using the approximation that X2
t ≈ X2

ℓ , Γ ≈ ε(Xt −Xℓ)/X2
t

is 1/(NX2
t ) times the difference between the noise summed over all segregants with genotype

+1 at t and 0 at ℓ and the noise summed over all segregants with genotype 0 at t and +1

at ℓ. (Note Γ is not affected by the noise from segregants that have the same genotype

value at t and ℓ.) Thus, we can approximate Γ as 1/(NX2
t ) times the sum of d i.i.d. draws

of N (0, σ2) where d = (1 − ρtℓ)X2
tN + (1 − ρℓt)X2

ℓN is the number of segregants with a

recombination breakpoint between t and ℓ. The assumption that X2
t ≈ X2

ℓ implies ρtℓ ≈ ρℓt

and d ≈ 2(1− ρtℓ)X2
tN . We approximate Γ ∼ N

(
0, 2(1− ρtℓ)σ

2/(NX2
t )
)
. It follows that

P (C(ℓ) < C(t)| t is the true causal locus) ≈ P (Γ > ft(1− ρtℓ)). (12)

The probability of this event is less than 2.3% whenever the value ft(1 − ρtℓ) is at least 2

standard deviations of Γ. Thus, we reject the null hypothesis that t is the true causal locus
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whenever

1− ρtℓ ≥
8σ2

NX2
tf

2
t

. (13)

Note we are most likely to reject the null hypothesis when ft is high (the true locus has a995

large effect) and ρtℓ is small (a high fraction segregants have a breakpoint between t and ℓ).996

In other words, it is easiest to identify the causal locus when its effect size is large and there997

are many segregants with breakpoints nearby.998

In practice, to verify (13) we approximate ft ≈ f̂ℓ = RXℓ/X2
ℓ and σ2 as the cost C(ℓ).999

First, as derived in (8), the estimated effect size f̂ℓ will differ from the true effect size ft1000

by f̂ℓ − ft = γℓ + ft(ρtℓ − 1). The relative error of the former approximation is |f̂ℓ −1001

ft|/|ft| = |γℓ/ft + (ρtℓ − 1)|, which is small since |γℓ| ≪ |ft| and 1 − ρtℓ ≪ 1. Second,1002

we have C(ℓ) = R2 − f̂ 2
ℓ X

2
ℓ = (ftXt + ε)2 − f̂ 2

ℓ X
2
ℓ . Expanding this expression and using1003

ε2 ≈ σ2,X2
ℓ ≈ X2

t gives C(ℓ) ≈ (f 2
t − f̂ 2

ℓ )X
2
t + 2ftεXt + σ2. Note that f̂ℓ = ftρtℓ + γℓ and1004

εXt = γtX2
t . Thus, C(ℓ) ≈ (f 2

t (1− ρ2tℓ)− 2ftρtℓγℓ − γ2
ℓ +2ftγt)X2

t + σ2. Since 1− ρ2tℓ is small1005

and γt, γℓ are both order 1/
√
N , C(ℓ) is a good estimator for σ2.1006

b. Comparison to other QTL mapping approaches1007

Existing approaches for mapping QTLs of multiple traits include composite interval map-1008

ping [40], least squares regression [41], and Bayesian inference [42, 43]. See survey given in1009

Chapters 14 and 15 of [44]. The scale of our dataset (∼ 42000 loci, ∼ 100, 000 individuals)1010

renders such methods intractable. Instead, we turn to glmnet, a fast solver for regularized1011

generalized linear models [39] that is capable of handling the scale of our data. In [45],1012

Qian et. al. apply glmnet with a standard lasso penalty for QTL mapping of four traits1013

separately using data from the UK biobank. We extend this approach by mapping QTLs1014

for multiple traits simultaneously using glmnet with an ℓ2,1 error. Moreover, the extreme1015

linkage present in our dataset necessitates post-processing to identify confidence intervals1016

for the casual loci.1017
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(b) Phenotype rotation test with M-sparsity 1.0

FIG. S1: Rotation tests on synthetic data over a range of sparsities (a) Analogous plots to the loci

rotation test in Column 1 of Figure 2 for a synthetic additive effects matrix with a range of M-sparsities

and W-sparsity equal to 1. (b) Analogous plots to the phenotype rotation test in Column 1 of Figure 2 for

a synthetic additive effects matrix with a range of W-sparsities and M-sparsity equal to 1.
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(a) Generative F = WM (b) Equivalent F = WM

+ P1S2+ P2S2

+ P4S2+ P3S2
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H3 + H5S2 =

S1 S2 S20 P1 P4��� ���

S-Processes P-Processes

S19

FIG. S2: Generation of hub-and-spoke synthetic data. Diamonds represent processes, ovals represent

phenotypes, and the color of the process represents its weight in the phenotype. (a) The core phenotype

(center hub) is the weighted sum of two hub processes (H-process), and each perturbation is the sum of the

processes of the core phenotype plus a weighted perturbation process (P-process). The group of five

phenotypes depicted here corresponds to the group of phenotypes labeled in Figure S3c. We generate 20

such groups from the common set of 8 hub and 4 perturbation process, as detailed in Methods 4. (b) An

alternate way to generate the same F matrix is to replace the H-process with one S-process per phenotype.
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FIG. S3: SSD on hub-and-spoke synthetic data. (a) The rotation tests suggest both locus and

phenotype sparsity. (b) Our SSD method finds a range of solutions at different sparsity and error levels.

We consider two SSD solutions: one with 12 core processes and reconstruction error 0.086 that is sparse in

both loci and phenotypes (lower left star) and one with 21 processs and reconstruction error 0.083 that is

sparse in phenotype only (lower right star). (c) Illustrations of predicted and true WT . The values are

illustrated on a purple-to-green scale ranging from -10 times to +10 times the average magnitude of an

entry in the W matrix. The five phenotypes labeled “group of phenotypes” are illustrated in Figure S2a.

The matrix W for the 12 core process solution approximates the generative W well. The matrix W for

the 21 core process solution has a structure similar to alternate generative structure W̄ described in

Figure S2b.
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FIG. S4: SSD applied to Kinsler et. al. [15] data with fewer diploid mutants. To ensure that the

many diploids do not bias our results, we repeated the analysis presented in Figure 3 with a reduced effects

matrix F. Specifically, we randomly sampled 20 diploids of the 188 in the original dataset leading to an F

with dimensions 45× 120. Despite much lower locus-sparsity, the examined M and W solutions show

similar features as the ones obtained using the full F (Figure 3). (a) The locus rotation test shows much

reduced sparsity in the locus-process map compared to the dataset with diploids included (Figure 3b). The

sparsity in the process-phenotype map is retained. (b) The solution space illustrating highly sparse

solutions with low reconstruction error. The selected solution (K = 3), which is chosen to match the

reconstruction error of the solution picked in Figure 3, is marked with a white star. (c) The M matrix

with loci clustered into 8 groups based on linkage clustering of loci with a modified cosine similarity metric

as in Figure 3d. (d) The process-phenotype map W. Processes 1 and 2 from the full F (Figure 3e) are

comparable to processes 1 and 2 respectively, whereas process 3 here appears to capture processes 3 and 4

for the full F.
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Training on subtle, testing on strong perturbations Training and testing on a random split of environments (36:9) 

WT inferred from SSD

WT inferred from SVD

c

ba

d Clustered M inferred from SVD

FIG. S5: Comparison of SSD and SVD decompositions on Kinsler et. al. [15] data. (a,b)

Bi-cross-validation on held-out sets as described in [38] and applied in [15]. See Section 5 for more details.

The results are averaged over 8 random seeds. For SSD, we present the minimum, maximum and mean

weighted reconstruction errors across all the hyper-parameters λW , λM described in the Methods for a

given number of processes K. SVD of the same rank tends to show lower generalization error compared to

SSD. (c) The process-phenotype map W from SSD and SVD, highlighting that the SSD solution is much

sparser. The SSD solution is reproduced from Figure 3e. Since SVD does not fit b separately, here we

estimate b as the mean effect across environments for each locus and subtract it from F before applying

SVD. (In Kinsler et. al., they do not subtract the means, and so their first SVD component approximately

represents the constant effect b.) (d) Hierarchical/agglomerative clustering of M inferred from SVD

similar to Figure 3d (see Methods for clustering parameters). Note the denser loading matrix as compared

to the analogous figure for the SSD solution (Figure 3d).
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FIG. S6: Comparison of SVD, SSD, and Webster decompositions on genotoxin data. Each row

corresponds to a decomposition found by SVD, SSD, or Webster, as labeled on the left. The leftmost

column compares the unnormalized reconstruction error for each method as compared to Webster for each

genotoxin separately. The center column illustrates the process-genotoxin map found by each method; the

SSD solutions exhibit the most sparsity. The rightmost column illustrates the distribution of processes per

locus in each decomposition. The red dotted line depicts the mean.
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SSD Solution Space

a

b

FIG. S7: Variance explained on the test set and the process-phenotype map of other SSD solutions for the

yeast cross data. (a) The percentage variance explained when predicting the fitness in individual

environments on a test set of genotypes (i.e., as Ytest = F̂Xtest + c), shown here when F̂ is the full

additive effects matrix F (blue), the 8-component SVD approximation of F (orange) and the 8-component

SSD solution analyzed in the main text and marked in Figure 5d (green). (b) The process-phenotype map

W for three additional solutions marked in the solution space. The white star marks the SSD solution

discussed in the main text. Note that the general features are conserved between the solutions marked

with the blue and green stars. The much sparser solution marked by the orange star also devotes

dedicated processes for li, gu and mol, but tends to group the other processes together.
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