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Abstract

Phenotypic variation across related individuals is often correlated: a high or low value of one
phenotype tends to be associated with a high or low value of others. This may reflect lower-
dimensional structure in the genotype-phenotype map, such that genotype affects a relatively small
set of unobserved “core” processes that in turn determine the observed phenotypes. Identifying
low-dimensional structure in high-dimensional genotype-phenotype data thus offers the promise of
inferring the identity and genetic basis of core biological processes, as well as the way in which core
processes determine each observed phenotype. However, inferring this lower-dimensional struc-
ture requires appropriate biologically motivated constraints, even with high-throughput genotype-
phenotype measurements. Here, we show that several recent empirical genotype-phenotype data
sets exhibit evidence of sparse structure, and that a sparsity-favoring matrix decomposition ap-
proach can accurately recover latent processes if each genetic perturbation affects few core processes
or if each phenotype is affected by few core processes. Motivated by this, we develop a generally ap-
plicable framework based on penalized matrix decomposition for sparse structure discovery (SSD)
and apply it to three empirical datasets spanning adaptive mutations in yeast, genotoxin robust-
ness assay in human cell lines, and genetic loci identified from a yeast cross. More generally, we
propose sparsity as a guiding prior for resolving latent structure in empirical genotype-phenotype

maps.

1. INTRODUCTION

15 A central goal of quantitative genetics is to exploit observed correlations between genotype
16 and phenotype to infer the structure of the genotype-phenotype map [1-6]. That is, we aim
17 to build models describing how variation in genotype influences variation in phenotype.
18 However, the choice of phenotypes quantitative geneticists choose to analyze is inherently

o subjective: we typically focus on phenotypes that are practical to measure and/or that

-

N

o are in some sense “important” (e.g. because they are plausibly related to key functions

1 or diseases). These phenotypes are often correlated, presumably because multiple complex

N

N

> traits are often influenced by the same set of core cellular processes. For example, cellular
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23 growth rates across a range of different stressful conditions may be determined by a common
a set of processes such as metabolism, cell wall biosynthesis, DNA repair, and heat or osmotic
25 stress response. This leads to apparent widespread pleiotropy, where individual genetic loci
2 influence many observed phenotypes, presumably because these loci influence one or more
27 core processes that are broadly important across multiple phenotypes.

s  This perspective suggests that the structure of the correlations between the subjective
20 phenotypes that we choose to measure should contain signatures of the underlying biolog-
s ically relevant core processes. That is, if we could measure a large and diverse enough
a1 set of phenotypes across a sufficiently diverse range of genotypes, the observed phenotypic
3 variation should have a lower-dimensional latent structure that reflects the space of actual
;3 core processes. Inferring this lower-dimensional latent structure thus offers the promise
u of explaining the biological basis of pleiotropy, by identifying the core biological processes
55 and inferring how individual loci influence these core processes to generate the observed
36 phenotypic variation.

s Of course, we can only hope to identify core processes which generate variation across
s the phenotypes we choose to measure, so the core processes we infer will always be limited
30 by this choice. For example, imagine that we measure a set of phenotypes that correspond
w0 to the growth rates of yeast cells across a temperature gradient. We might expect that
s these phenotypes exhibit a correlation structure that reflects three core processes: heat
2 shock response, cold tolerance, and all other temperature-independent factors relevant to
13 the common growth medium. We could then hope to infer the extent to which each genetic
a locus influences each of the core processes, as well as the mapping between these three core
s processes and the observed phenotypes. However, if we were to measure additional pheno-
s types corresponding to growth rates across (for example) different nutrient concentrations,
« we might find that this splits the temperature-independent core process into additional
s processes that explain the variation in the new phenotypes.

s In this manuscript, we introduce a method for inferring this lower-dimensional latent
so structure of phenotype space. We assume that we have data that describes the map between
s1 genotype and some set of measured phenotypes. In general, this genotype-phenotype map
52 can involve nonlinear effects such as interactions between multiple genetic loci (epistasis).
s3 However, we focus here on analyzing a standard linear approximation of this map, in which

s« each locus is assumed to have an additive effect on each of the phenotypes, and the observed
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ss phenotype is simply a sum of the additive effects of all the relevant loci. This linear map
ss can be represented as an F x L matrix, F, which has columns corresponding to each of the
s L loci and rows corresponding to the effect of these loci on the £ measured phenotypes.
ss We note that inferring F from data on genotypes and corresponding phenotypes can be a
so complex problem, which we address for one example data set below, but the core of our
s analysis in this paper assumes that F is given and focuses on analyzing the latent structure

61 in this matrix.

e2 In this framework, our problem reduces to inferring lower-dimensional structure in the
s matrix F. While in principle this structure could be nonlinear, we restrict ourselves to
ss inferring a lower-dimensional subspace that can be expressed as a matrix decomposition of
s F. Specifically, we wish to approximate F as the product of two matrices, F ~ WM + b,
s where M is a K x L matrix that describes the additive effect of each genetic locus on each of
e X putative core processes, and W is an E' x K matrix that describes how each core process
ss affects each measured phenotype. In addition, we include a term b which represents locus-
s specific effects on all other processes that contribute equally to the phenotypes measured
70 (and hence cannot be disentangled). For K < E| L, this represents an approximation to F
71 in terms of a lower-dimensional subspace of K core processes. This structure is illustrated
22 in Figure la. We emphasize that this decomposition assumes that the map between loci
73 and core processes and the map between core processes and measured phenotypes are both

72 linear, which may not be true in general. We return to this caveat in the Discussion.

7 Unfortunately, this matrix decomposition problem is underdetermined in general, mean-
76 ing that for any choice of K there are many different pairs of matrices W and M that
77 approximate F equally well. Thus, the fact that a given decomposition gives a good approx-
7 imation for F does not necessarily imply that there is any biological meaning to the core
79 processes inferred. This problem is widely recognized in a variety of fields where this type of
g0 matrix decomposition is used to infer lower-dimensional structure in high-dimensional data.
s1 To make lower-dimensional structure interpretable, domain-specific knowledge must there-
g2 fore be used to guide the choice of additional constraints. For example, earlier work has used
g3 sparsity [7, 8], non-negativity [9-11] and non-Gaussianity assumptions [12-14] to construct
s« powerful methods for identifying meaningful latent structure in specific contexts where those
g5 constraints are appropriate. The success of these approaches motivates our attempt here

g to find appropriate constraints that enable the efficient and interpretable reconstruction of
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FIG. 1: Overview and geometric interpretation of SSD. (a) Sparse structure discovery (SSD) finds a
sparse, low-rank approximation for the effects matrix F containing the phenotypic effects of L loci on FE
phenotypes. (b) Each phenotype (row of F) can be viewed as a point in locus-space. The core processes
(rows of M) can be viewed as vectors that span a lower dimensional subspace, illustrated by the plane.
The distances between each phenotype point and the subspace determine the reconstruction error
(illustrated by dotted red lines). Since the error is a function of the subspace and there are many matrices
M which generate the same subspace, many decompositions yield the same error. SSD applied to these
phenotypes would favor a sparse decomposition, for example, the core processes M1, My which here are
sparse combinations of (£1), (¢2, 3) respectively. SVD applied to the same phenotypes would yield a
decomposition with core processes M}, M, that incur the least error but which are unlikely to be sparse.
(¢) In our analysis pipeline, we first apply SSD to find a range of decompositions F ~ WM + b with
varying errors and sparsities. The reconstruction error of the SVD solution is used to determine a tolerable
error range for SSD solutions. The rotation tests are used to guide the selection of an SSD solution with

appropriate levels of sparsity in phenotypes (each phenotype is described by few core processes) and in the

loci (each locus is part of few core processes).

&7 a lower-dimensional set of core processes from empirical genotype-phenotype maps. Such

ss constraints can be thought of as incorporating a biological “prior” on the features we expect

s the data to exhibit.
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o  Recently, Kinsler et. al. [15] identified lower-dimensional structure in a dataset describing
a1 the effects of a set of yeast mutations on fitness in different environments. Their approach
o2 used Singular Value Decomposition (SVD) [16] to find a decomposition with K < E,L
o3 that approximates the F well. However, while SVD finds the K-dimensional subspace that
« explains the most variation for a given K, the specific W and M are selected subject to the
s constraints that the core processes must be orthogonal and that the first j core processes
o describe the j-dimensional subspace that best approximates F. It is not clear that these
o7 constraints lead to putative core processes with biological meaning. More recently, Pan et.
o al. [17] introduced an alternative matrix decomposition method, Webster, which is based on
o regularized dictionary learning [18], and apply it to a dataset describing the fitness of cells
1o exhibiting gene-knockouts in the presence of various genotoxins [19]. This method enforces
1 a hard constraint that each genetic locus affects at most two core processes, which limits

102 the possibility that different loci exhibit different degrees of pleiotropy.

103 Here, we introduce a new approach that constrains the decomposition based on biologi-
104 cally motivated intuition about the lower-dimensional structure of the genotype-phenotype
10s map. Specifically, our Sparse Structure Discovery (SSD) method encourages decomposi-
10s tions where each genetic locus affects a small subset of the core processes (locus-sparsity)
107 and /or each observed phenotype is influenced by a small subset of core processes (phenotype-
108 sparsity) (Figure 1). These sparsity assumptions are consistent with various notions of mod-
100 ularity which have been proposed to explain the evolvability of complex traits [1, 20-24],
o and with large-scale studies of pairwise gene deletions in yeast, which find that genes cluster
m together based on their interaction profiles, suggesting their involvement in a small set of
112 common core processes [25]. However, we do not adopt either sparsity assumption uncriti-
u3 cally. Instead, we have developed two empirical tests to independently validate the extent
s to which the lower-dimensional structure in an effects matrix F exhibits locus-sparsity or
us phenotype-sparsity. Using these tests, we find evidence of locus-sparsity and phenotype-
ue sparsity across three datasets, motivating the use of these sparsity-enforcing penalties in our
17 SSD method. Further, we show that SSD accurately recovers synthetically-generated maps
us if at least one of the true W or M is sparse.

no  The structure of the paper is as follows. In Section II, we describe the SSD method,
120 explain our empirical tests for sparsity, and demonstrate that SSD accurately recovers core

121 processes in synthetic data. In Section III, we apply our method to three datasets that
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122 measure cellular fitness across environments as a function of three different forms of genetic
123 variability. First, we apply SSD to the Kinsler et. al. dataset [15] describing fitness effects of
124 adaptive mutations identified during a laboratory yeast evolution experiment and compare
125 SSD to the SVD-based analysis presented in [15]. Second, we apply SSD to data describing
126 how single gene knockouts in human cell lines affect fitness in the presence of genotoxic
17 agents [19]. We find that, compared to the Webster analysis of the same dataset [17], SSD
128 solutions exhibit lower error with comparable average sparsity, a more interpretable process-
120 phenotypes map, and a broad range of pleiotropy across loci. Third, we analyze a large-
130 scale quantitative trait locus (QTL) mapping experiment [26], which measured 18 growth
1 rate phenotypes in about 100,000 F1 offspring of a cross between two related budding yeast
132 strains. For this data, we first develop a joint mapping approach to arrive at an additive

133 effects matrix F, which we do using a pipeline based on /5 ;-penalized regression (see SI).

1+ II.  SPARSE STRUCTURE DISCOVERY

135 As described above, our method assumes we begin with an empirical linear genotype-
136 phenotype map, represented as an F x L matrix F which describes the additive effect of
137 each of the L genetic loci on each of the £/ measured phenotypes. Our goal is to find latent
138 structure in this genotype-phenotype map of the form F ~ WM + b. Note that since we
130 will generally assume that K < E| L, the matrices W and M contain fewer total parameters
1o than F (i.e. this is a simpler description of the data). Thus, this factorization will in general
1 only be an approximation, both because there is presumably error in the estimation of F and
112 because the division into K core processes is a simplifying assumption that will inevitably
13 neglect some aspects of the full complexity underlying each measured phenotype.

s Given that the factorization of F is approximate, a natural goal would be to find matrices
1us W and M that minimize the error in this approximation. This is the motivation underlying
us singular value decomposition (SVD), which finds a factorization of F that minimizes the
17 squared Frobenius reconstruction error (i.e. lowest squared error ||F — WM||3). However,
ug this error minimization alone is not sufficient to uniquely determine the factorization. In-
1o stead, any factorization that describes the same lower-dimensional subspace will perform
10 equally well, as illustrated in Figure 1b. This is a general problem: for any set of core

151 processes, represented by the rows of M, that achieve a given reconstruction error, there are

7
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152 infinitely many sets of other processes that achieve the same error (obtained by changing
153 the basis of the subspace, e.g. by rotating the rows of M in the subspace they generate).
154 SVD chooses a particular unique solution to resolve this degeneracy by defining the first core
155 process to be the one-dimensional subspace that minimizes the error for K = 1, the second
156 core process to be orthogonal to the first and minimize the error for K = 2, the third to be
157 orthogonal to the first two and minimize the error for K = 3, and so on. While this is a
1ss reasonable and well-defined procedure, there is no reason to believe that the core processes

159 defined in this way will be biologically meaningful.

1o Here we define an alternative method for matrix decomposition. Like SVD, our approach
161 attempts to minimize the Frobenius reconstruction error. However, we add two additional
162 constraints based on sparsity. Specifically, we aim to find a locus to core process map M in
163 which each locus participates in only a few processes (i.e. most entries in this matrix are 0).
16« We refer to this as locus-sparsity. Analogously, we aim to find a core process to phenotype
15s map W in which each phenotype is affected by only a few core processes (i.e. most entries

166 in this matrix are also 0). We refer to this as phenotype-sparsity.

We do not necessarily assume that both types of sparsity exist in a given dataset. Instead,
our framework allows us to impose constraints on either or both types with a tunable strin-
gency (and below we describe how the choice of this stringency can be guided by empirical
validation tests). To be precise, our Sparse Structure Discovery (SSD) method aims to find

the matrix decomposition F &~ WM + b that minimizes

C(W,M,b) = ||[F — (WM +b) |5+ Aw|[W|1 + A || M]|s (1)

such that |My..|l2 =1 for all 1 <k < Kpax,

17 where |[F — (WM + b)||2 is the squared Frobenius error, |[W]|; is an ¢;-norm measure
16s of the phenotype-sparsity, and |[M]|; is an f;-norm measure of the locus-sparsity. The
10 parameters Ay and Ay determine the relative weighting of the accuracy, phenotype-sparsity,
1o and locus-sparsity objectives (higher Ay, will yield solutions that are more phenotype-sparse,
1 and higher Ay, will yield solutions that are more locus-sparse). We note that when these
12 regularization parameters Ay and A, are sufficiently large, the method will assign no loci
173 to some of the core processes, thereby automatically picking a number of core processes K

172 smaller than the input upper bound K.
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s For fixed values Ay, A\yy, and K.y, SSD will yield a unique set of W, M and b. However,
176 a key challenge is to choose values of these parameters to determine an appropriate weight-
17 ing of the accuracy, phenotype-sparsity, and locus-sparsity objectives that will produce a
178 decomposition with plausible biological meaning. To do so, we first apply our method for a
e range of values Ay and Ay to produce a variety of decompositions that vary in reconstruc-
180 tion error, number of core processes, locus-sparsity, and phenotype-sparsity. In every case,
11 the SSD decomposition will have higher reconstruction error than the SVD decomposition
1.2 with the same number of processes because of the additional constraints. We therefore use
183 the SVD error as a guide to select a desired reconstruction error range, and select sparse
18« decompositions of interest that fall within this range. The choice between these can then
185 be guided by the empirical test described below, which we developed to determine the ex-
186 tent to which an input matrix F exhibits a low-dimensional structure with locus-sparsity or

17 phenotype-sparsity. Figure 1c illustrates the pipeline.

8 A. Empirical validation of sparsity constraints using rotation tests

189 To validate our choice of sparsity assumptions, we designed heuristic tests to determine
1o whether a given dataset F' exhibits signatures of locus-sparsity or phenotype-sparsity. We
11 do not assume that the linear term b, which describes the effects of loci on processes that
12 do not vary across the phenotypes, is necessarily sparse. For the purposes of this test,
13 we therefore first subtract the mean effect across phenotypes for each locus from F, as an
104 approximation of b. To test for locus-sparsity, we then apply a random orthogonal matrix
15 O to the empirical genotype-phenotype map F to produce a matrix F/ = FO. This rotation
196 conserves low-dimensional structure in F and leads to the same SVD error but disrupts
17 any potential locus-sparsity. We then apply our SSD method with a range of weights on
105 the locus-sparsity objective to obtain a range of decompositions for F and F’ that exhibit
100 varying locus-sparsities and reconstruction errors. If the input matrix F truly has locus-
200 Sparsity, our method will consistently find sparser solutions for F than for F across a range
201 of reconstruction errors. If so, we consider this to be evidence of locus-sparsity in F.

22 To gain intuition for this test, consider an example with five loci and two core processes,
203 with loci 1 and 5 both affecting core process 1 (with equal weight) and loci #3, ¢4 and 5 all

204 affecting core process 2 (also with equal weight). The rows of the matrix F will each have

9
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FIG. 2: SSD on synthetic data. Each row corresponds to a synthetic additive effects matrix

F = WM + 1 generated with different sparsities in M and W. All examples have E = 96 phenotypes,

L =200 loci and K = 6 true core processes. First column: Locus (phenotype) rotation test illustrates that
when F is generated with sparsity in M (W), there is a gap between the sparsity of the SSD solutions for
F in blue (red) and rotated F' = FO (F' = OF) in grey. Error bars are over three random rotations. The
red and blue horizontal dashed lines indicate the 6-component SVD reconstruction error. The grey dashed
line indicates the average 6-component SVD reconstruction error of OF. Note that the SVD error for FO
is equal to that for F. The vertical red (blue) line indicates the average processes per locus (phenotype) for
the true M (W). Second column: Each scatter point depicts the average processes per locus/phenotype of
an SSD solution. The colored background illustrates the interpolated reconstruction errors of the solutions.
The solutions selected for further investigation are marked by a star. Third column: The mean cosine
error between each row of the inferred M (column of inferred W) for the selected SSD solution and for the
6-component SVD solution and the true M (W). The error in W in the first row is almost exclusively due
to 4 phenotypes that use no processes, but are assigned very small weights in some processes by SSD.

20s the form (o, o, B, B, ), where a and /8 describe the effect of the first and second processes

206 on the phenotype corresponding to that row, respectively. In other words, the phenotype

10
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207 values lie on a 2D plane in 5D space. This plane contains the sparse vectors (1,1,0,0,0)
208 and (0,0, 1,1,1), which describe the two core processes, and every point on the plane can
200 be written as a weighted sum of these vectors. Now, imagine that we randomly rotate F,
210 producing a matrix F/ which has rows that lie on a rotation of the 2D plane containing the
o rows of F and columns that correspond to random linear combinations of the actual genetic
212 loci. Since the rotation was random, the 2D plane containing the rows of F’ is a random 2D
213 plane in 5D. Most 2D planes in 5D are not spanned by two sparse basis vectors. Therefore,
214 while it is still possible to find two vectors such that each row of F' can be written as the
25 weighted sum of these vectors (the low-dimensional structure is preserved), the two vectors
216 almost certainly will not be sparse.

a7 To test for phenotype-sparsity, we use an analogous method, except that we rotate the
218 columns of F to obtain F/ = OF and vary the phenotype-sparsity objective in SSD to test
210 whether SSD consistently finds sparser solutions for F than F’ across a range of reconstruc-

220 tion errors.

21 B. Sparse structure recovery on synthetic data

2 To validate our method, we constructed synthetic genotype-phenotype maps with lower-
23 dimensional latent structure of varying sparsity. That is, for a given F, L, and K, we
24 construct simulated data matrices F = WM + n by randomly choosing M and W as
2s described below. The noise 77 in each element is drawn independently with scale 0.3 times
26 the standard deviation of the entries in WM. We construct simulated F matrices across a
27 range of sparsities in M and W. Specifically, for M-sparsity p, entries are non-zero with
228 probability p, and if non-zero, the entry is drawn from a standard normal. We then normalize
20 M so that each row is a unit vector. We generate W analogously with W-sparsity ¢, but
230 without normalization.

2 We begin by constructing four sets of simulated data: one with both locus-sparsity and
232 phenotype-sparsity (p = 0.2, ¢ = 0.2), one each with only one type of sparsity (p = 0.2,q = 1
a3 and p = 1,¢ = 0.2), and one with neither (p = 1,¢q = 1). For each set, we first applied the
2. locus and phenotype rotation tests. The results are presented in the left column of Figure 2.
235 Note that the presence of the gap between the error curves for F and rotated F’ in the

23 locus (phenotype) rotation test depends on whether M (W) is sparse. Repeating this test
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237 across a range of locus and phenotype sparsities, we show that the size of the gap grows
233 continuously with sparsity (Figure S1).

20 Next, we evaluated whether SSD can accurately reconstruct the true M and W matrices.
20 We applied our SSD method to each dataset across a range of locus-sparsity (Ay) and
a1 phenotype-sparsity (Ay) constraints and selected one decomposition using the SVD error
22 and rotation tests as guides. The reconstruction error of the SVD decomposition on each
23 dataset is in the range 0.047 —0.049. Keeping in mind that any SSD solution will necessarily
24 have higher error, we focus on “low-error” decompositions with error up to 0.85, illustrated
25 by dark green, teal, and blue in the space of SSD decompositions (Figure 2, center column).
s We select a low-error decomposition that exhibits the most sparsity for the chosen error
247 criterion (indicated by a white star in Figure 2).

s Finally, we compared the M and W of the selected SSD solutions to the true M and W
210 matrices using a cosine error metric described in the Methods (third column of Figure 2).
50 We find that exhibiting sparsity in either W or M (first three rows) suffices for SSD to
251 accurately reconstruct both W and M. Given a non-redundant set of core processes M,
2 there is a unique set of phenotype weights W that best reconstruct F (and vice-versa for
3 W). In contrast to SSD, the SVD decompositions are unable to accurately reconstruct M
s and W, despite lower reconstruction errors when reconstructing F.

5 The phenotypes constructed as described in this section are correlated in so far as each is
26 & random linear combination of a common set of core processes. However, empirical studies
57 Ay measure phenotypes with non-trivial structure, e.g. fitness measurements where the
258 same environmental perturbations are added to various growth mediums. To validate the
250 TOtation tests and SSD in such a setting, we generated synthetic data with a hub-and-spoke
20 structure. Specifically, we introduce “hub” phenotypes (representing the growth mediums)
261 whose effects are a random linear combination of a common set of core processes and “spoke”
262 phenotypes (each representing a growth medium with a perturbation) whose effects are a
23 linear combination of the corresponding hub phenotype and one core process representing
26 the perturbation (Figure S2a). See SI for further details.

s Next, we apply the rotation tests to the hub-and-spoke synthetic data and find evidence
266 Of both locus-sparsity and phenotype-sparsity (Figure S3). We find that a selected SSD so-
267 lution exhibiting both types of sparsity accurately recovers the initially described generative

s structure. If we instead ignore evidence of locus-sparsity and select an SSD solution that
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0 exhibits a greater degree of phenotype-sparsity and little locus-sparsity, the decomposition
a0 resembles an alternate generative structure where each hub phenotype is instead described
on by a single core process (Figure S2b). In contrast, SVD finds a solution with lower recon-
o2 struction error but with matrices M and W that lack any clear relationship to the core

o713 processes that generated the synthetic data.

o III.  APPLICATIONS TO EMPIRICAL DATA

s A. Fitness effects of adaptive mutations in yeast

o To illustrate the applicability of our framework, we first analyze data from a recent study
27 by Kinsler et. al. [15]. This study attempted to infer a lower-dimensional latent structure of
278 phenotype space by measuring the fitness effects of a set of specific yeast mutations across
279 a range of environmental perturbations. Specifically, they isolated 292 yeast strains from
250 an earlier laboratory evolution experiment, each of which contains one or a few putatively
s adaptive mutations. They measured the fitness of each of these strains across a set of
22 45 environments. Based on these measurements, they divided the 45 environments into
23 25 “subtle” perturbations (in which fitness effects of mutations vary only slightly) and 20
280 “strong” perturbations. Applying SVD on the data from the subtle perturbations, they
2ss identified an eight-dimensional subspace that explains most of the variation in the data
286 across these perturbations. They then showed that this latent structure can also predict the
2e7 fitness effects of the mutations across the 20 “strong” perturbations, which they interpret
2s8 as evidence that the subtle perturbations reveal a “local” modularity that is able to predict
280 the global pleiotropic effects of adaptation in this system.

200  We sought to investigate whether our SSD method can recover an alternative sparse
201 lower-dimensional structure in the Kinsler et. al. data. Rather than divide environments
202 into “subtle” and “strong” perturbations, we took the entire mutational effects matrix repre-
203 senting 288 strains across 45 environments as our input F (we use 288 instead of the original
204 292 due to a minor difference in a pre-processing step, see SI). We then applied our locus and
205 phenotype rotation tests (Figure 3b), which confirm that there is strong evidence for spar-
206 Sity in both the process-phenotype map (W) and the locus-process map (M). Note however

207 that removing most diploids from this data (one key type of mutation that represents 188
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FIG. 3: SSD applied to pleiotropic fitness effects of adaptive mutations in yeast (a) A reduced
representation of the effects matrix F (45(F) x 288(L)) where the effects of mutations with common
annotations are grouped together. The number of mutations with each annotation is shown in parenthesis.
(b) The locus and phenotype rotation tests show extensive sparsity in both the process-phenotype and
locus-process maps. (c) The solution space illustrating highly sparse solutions with low reconstruction
error. The chosen solution with 8.5% error is marked with a white star. (d) The M matrix with loci
clustered into 8 groups based on linkage clustering of loci with a modified cosine similarity metric (see
Methods). On the right, the fraction of loci types in each of the 8 groups is shown. The number of loci in

each group is shown in parenthesis next to its label. (e) The process-phenotype map W.

208 of the 288 mutations studied) eliminates sparsity in M but not in W (Figure S4). Further
200 analysis (discussed below) finds that the diploids predominantly affect one core process and

s00 thus the locus-sparsity indicated by the rotation test can be explained by the large number

14


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

so0 of diploids in the data. This is not an issue for applying SSD, as SSD requires sparsity in
302 only one of W and M.

3 We find that SSD can identify a sparse, 4-dimensional approximation of F that incurs
204 less than 8% error in reconstructing the original F (Figure 3c). For concreteness, we focus
s0s here on the sparse solution indicated by the white star in Figure 3¢, which has four core
306 processes and an average sparsity of about 1.5 processes per locus and 2 processes per
sor environment. In Figure S5, we highlight the differences between the SVD and SSD solutions.
308 By construction, the SSD solution has a higher reconstruction error than the corresponding
30 SVD solution (7.5% error for the sparse SSD solution, compared to 4% error for the 4-
s0 dimensional SVD solution). We find that the SVD solution on a training set also shows lower
su error in predicting the fitness effects in held-out environments (the 20 strong perturbations
312 or a random subset of 9 environments) compared to the SSD solutions of equal rank (Figure
a3 55). This suggests that SVD tends to find a better low-rank approximation, even when it
as fails to find meaningful (and potentially sparse) basis vectors (see Discussion). To highlight
a1 this point, if SVD finds the locus-process and process-phenotype maps Mgyvp, Wsyp on the
116 training set, it can be mathematically shown that the maps M’ = OMgyp, W/ = WgypOT
si7 for any arbitrary orthogonal matrix O will match SVD’s generalization error. In contrast,
as the SSD solution is significantly sparser than the SVD solution (Figure S5) at the expense
a9 of a larger generalization error. Thus, even though SVD by construction finds the subspace
30 with the lowest reconstruction error, the SSD approach more accurately identifies basis
;a1 vectors that capture the sparsity in the genotype-phenotype map indicated by the rotation

322 tests.

23 To examine if loci with similar effects on core processes identified by SSD align with
324 existing annotations, we further clustered loci into eight groups by comparing the columns
»s of the Ml matrix with a modified cosine metric (Methods). We observe that core process
26 1 is enriched for mutations in genes involved in the Ras and TOR pathways (Figure 3d).
27 Missense and nonsense mutations in IRA1 (also involved in the Ras pathway) clustered in
»s the “IRAl4other” group have additional pleiotropic effects on core process 3, which has
29 a large influence on fitness in environments with an extended stationary phase (4,5 and 6
30 Day environments in Figure 3e). Diploids are primarily enriched in core process 2, which
s has broad pleiotropic effects across environments. Diploids with additional mutations in

32 IRA1/2 (clustered in the “Diploid + adaptive” group) exhibit effects that combine the

15


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a3 effects shown independently by IRA1/2 in the Ras cluster and the Diploids cluster. Thus,
3. the core processes identified by SSD do appear to have some correspondence with our prior
135 expectations. To ensure that the many diploids do not significantly bias our results, we
136 repeated this analysis on a reduced dataset which excludes a random subset of 168 of the
337 188 diploids, finding similar features in the W and M maps despite lower average sparsity
1 in M (Figure S4).

;9 Finally, it is easier to read off hypotheses from a sparse SSD decomposition than from
110 a dense SVD decomposition (Figure S5b). For example, since SSD core process 3 almost
s exclusively impacts environments with an extended stationary phase (4,5 and 6 Day), it is
s2 Teasonable to hypothesize that loci involved in this core process influence a pathway relevant
3 in stationary phase. In contrast, each SVD core process affects most environments (Figure
e SHe), thereby confounding an analogous interpretation. The SSD solution further suggests
us that diploidy primarily contributes to core process 2, and the contribution of this process
;6 ACTOSS environments is a succinct summary of its effect. For the SVD solution, the diploids

17 do not form a single cluster (Figure She,d), and no such summary is apparent.

us  B. Robustness of gene knockouts to genotoxins in human cell lines

10 Next, we apply our SSD method to the genotoxic fitness screen collected in [19] and

3

a

o curated in [17] (Figure 4a). This dataset was constructed by performing CRISPR-Cas9
351 knockouts on an immortalized human cell line (RPE1-hTERT) and subjecting each knockout
ss2 variant to 31 genotoxic stressors. We show that the core processes described by our SSD
13 decomposition are enriched for particular gene annotations and compare our decomposition
35 to one identified by Webster [17].

5 Our rotation tests find evidence of both locus and phenotype sparsity in this genotoxin
16 data (Figure 4b). Phenotype-sparsity is not assumed by Webster [17], suggesting that SSD
357 may lead to a more interpretable process-phenotype map. In order to compare directly to the
353 Webster decomposition analyzed in [17], we restrict our attention to SSD solutions that have
350 the same number of core processes (K = 10). Guided by the results of the rotation tests, we
360 select a solution that is sparse in both loci and phenotypes (3.3 average-processes-per-locus,
1 2.5 average-processes-per-genotoxin), indicated by the white star in Figure 4c.

w2 First, we evaluate whether the core processes described by our solution are enriched for
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FIG. 4: SSD applied to dataset of human cell responses to gene knockouts under genotoxic
stressors. (a) The input additive effects matrix F generated by [19] and curated by [17]. (b) The locus
and phenotype rotation test indicate there is both locus and phenotype sparsity. (¢) The space of solutions
found by SSD. The white star indicates the solution that we illustrate in (d) and (e). (d) Sorting the loci
by GO annotation in the locus-process map M reveals that certain processes are enriched for particular
annotated functions. (e) The process-phenotype map W demonstrates that the response to each genotoxin

can be explained by a small number of core processes.

363 loci with particular functional effects. We organize the locus-process map M by the loci
36« annotations compiled in [19] and observe that core processes 1, 2, and 7 are enriched for
36 loci involved with the the repair of interstrand cross-links (ICLs) by Fanconi Anemia (FA)
366 proteins, nucleotide excision repair (NER), and DNA replication fork quality control (FORK

367 QC) respectively (Fig 4d). Loci involved with end joining are primarily split between core
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368 processes 6 and 10. Finally, core process 5 is enriched for loci involved with base excision
30 repair (BER) and single-strand break repair (SSBR) as well as homologous recombination
w0 (HR). The functional meaning of the other four processs are not immediately clear from
s the annotations so we leave them unlabeled; investigating the loci with the strongest effects
w2 could elucidate their meaning, as was done by Pan et. al. [17]. Figure 4e illustrates the
3 process-genotoxin map W; the sparsity indicates that a small number of core processes
sa explain the effect of each genotoxic stressor.

ss In the SI, we further describe the differences between Webster and SSD and compare the
ss decompositions of this dataset found by each method. Our SSD method more accurately
si7 reconstructs the the additive effects matrix while exhibiting more phenotype-sparsity and
srs only slightly less locus-sparsity. Moreover, our SSD decomposition exhibits variation in the
9 degree of pleiotropy across loci, measured by the number of processes each locus participates

o in (Figure S6).

3

<)

381 C. The genotype-phenotype map of a yeast cross

:2  Next, we analyze data from a recent study [26] analyzing genotypes and phenotypes of
33 N ~ 100,000 F1 haploid yeast offspring (segregants) of a cross between RM (a European
s wine strain) and BY (a standard lab strain). These two parental strains differ by S ~ 42,000

3

<)

s single-nucleotide-polymorphisms (SNPs), leading to a highly diverse set of genotypes in the

15 segregant pool. This earlier work measured the fitness (growth rate relative to the parental

<)

37 BY strain) of each of the segregants in £ = 18 environments using a bulk barcode-based
;s phenotyping assay.

0 The base condition for most of these environments is propagation in batch culture with
30 1:128 dilutions every 24 hours in rich laboratory media (YPD) at optimal temperature
301 (30C). We refer to this as the 30°C environment. Other environments are then constructed
102 by adding stressors to this base condition (e.g. lithium, 4-nitroquinoline oxide, ethanol),
03 by varying the temperature (23°C to 37°C), by using defined media with various carbon
304 sources (glucose, mannose, raffinose) instead of YPD, and by using complex natural media
205 (molasses).

s 1o apply SSD to this data, we must first infer the genotype-phenotype map for each

207 of these 18 environments (i.e. we must infer F). This is a complex problem; Ba et. al.
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FIG. 5: SSD on genotype-phenotype data from a yeast cross. (a) The average additive effects of
S = 42,000 genetic loci, estimated using unpenalized linear regression for each of the 18 environments
independently. The environments are arranged from bottom to top as arranged in panel d from left to
right. Note that the correlations in average additive effects across neighboring loci due to linkage. (b) The
loci and phenotype rotation tests, showing extensive sparsity in the process-phenotype map and moderate
sparsity in the locus-process map. (c¢) The solution space has a landscape reflecting the sparsity in the
process-phenotype map. The solution picked for downstream analysis is starred. (d) The
process-phenotype map, W. (e) A Sankey figure illustrating the locus-process map M for the large effect
loci in each core process (color) and the process-phenotype map W (grey). The width of each line is
proportional to the magnitude of the value in M or W. In M, the lighter (darker) shade of each color
indicates that the RM (BY) allele contributes positively to the process. In W, light and dark grey indicate
positive and negative contributions to the phenotypic measurement respectively. The signs of the core

processes are adjusted so that they impact most phenotypic values positively.

s [26] includes an extensive discussion of the challenges associated with this inference and

300 introduces a modified stepwise forward search procedure for this purpose. A particular
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a0 difficulty is that this mapping is typically not able to precisely pinpoint specific loci that
w1 affect each phenotype. Because our goal is to use the genotype-phenotype map across
a2 these different environments to infer lower-dimensional latent structure, we adopt a simpler
w03 approach here. Instead of identifying putative causal loci separately for each phenotype, we
s use a penalized regression approach to jointly identify a sparse set of loci that explain the
w05 fitness across environments (see SI). Then, we use a statistical test to establish a confidence
w06 interval for the location of each putative causal locus. This procedure identifies 1089 genomic
s07 Tegions containing putative loci and their fitness effects in the 18 environments. We use this

a0s 18 X 1089 matrix as the effects matrix F for SSD, represented schematically in Figure 5a.

w0 We next apply the loci and phenotype rotation tests (Figure 5b), finding evidence for
a0 extensive sparsity in the process-phenotype map W and moderate levels of sparsity in the
ann locus-processes map M. The SSD solution space shows an error landscape that favors low-
sz rank (K ~ 6 —9) approximations to F which are sparse in W (Figure 5c). We focus here
a3 on the K = 8 solution indicated by the white star in Figure 5c, which represents a trade-off
a1a between achieving high sparsity in W and moderate sparsity in M while retaining relatively
a5 low reconstruction error. We verified that this solution explains a fraction of variance on a
a6 test set of genotypes comparable to that explained by the full F and the 8-component SVD
sz solution (Figure S7a). Other reasonable choices of solutions lead to qualitatively similar

s results (Figure S7b).

a0 In Figure 5d we show the resulting inferred W. We find that this matrix is sparse and
220 has some intuitive features. First, we note that the term b in our SSD decomposition rep-
a1 resents a constant effect of each locus on all of the measured phenotypes (i.e. the aspect
2 of the genotype-phenotype map that is constant across all the environments). The inferred
23 W then represents how the loci in a given process produce deviations from these constant
aa effects across the different environments. We find that none of the inferred processes have
s substantial weight in W for our 30°C environment, indicating that b fully captures the
w6 genotype-phenotype map for this environment. This is intuitive, given that this environ-
«7 ment is the basis for all other conditions. The environments which represent this same
»8 condition at slightly lower temperatures are also largely captured by b, though processes 4
w0 and 8 do become slightly more important as we decrease the temperature. As we increase
0 temperature, we find that process 7 becomes important, suggesting that this process is asso-

a1 clated with high temperature response. Several processes are specific to given environments
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2 (e.g. process 1 primarily affects fitness in guanidinium chloride (gu), process 2 affects fit-
a3 ness in lithium (li), process 5 in suloctidil (suloc), and 6 in molasses (mol)). Some of these
a3 processes, such as processes 2 and 6, contain a largely non-overlapping set of loci that affect
a3 their respective environments (li and mol) in addition to the constant effects captured by
a6 b. Finally, processes 3, 4, and 8 reflect processes that influence a few conditions, including
s37 some observed trade-offs (e.g. between fitness in raffinose and ynb or mannose).

a3 In SI Table 1, we provide a list of the ORFs localized to each putative causal locus,
130 GO annotations and descriptions from the Saccharomyces Genome Database [27], and their
o influence on each core process (i.e. value in M). In Figure 5e we show a Sankey figure
a1 that illustrates W and the most prominent features of M. This figure shows both how a
«2 number of key loci affect each of the processes (i.e. features of M), and how these processes
w3 in turn affect fitness in each of the environments (i.e. W). For example, we see that the
was genes ENA1 and ENAS are the primary contributions to process 2, and that this process
as primarily influences fitness in lithium. This is consistent with prior expectations, as the ENA
w6 cluster is involved in salt tolerance and is known to be important for lithium tolerance [28].
a7 Similarly, we see that BUL2, known to affect heat-shock element mediated gene expression
s (see SI Table 1), is the primary contributor to process 7, which influences fitness in the high
ao temperature environments. In addition, some loci which are known to have large effects on
w0 fitness across these conditions (e.g. MKT1, IRA2) are also represented in M. There are
ss1 also many other loci (some of unknown function and other unannotated genes) that play
s2 a role, and the rationale for these patterns is unclear. Additional experiments measuring
w3 fitness across a larger set of environments may help further disentangle structure in this

e genotype-phenotype map, and help resolve additional processes.

s5 IV, DISCUSSION

w6 Extensive work in quantitative genetics has aimed to develop models that explain the
w57 relationship between genotype and a variety of different phenotypes. This work often finds
»s8 widespread pleiotropy, where specific genetic variants affect multiple phenotypes, creating
w0 & complex pattern of correlations between phenotypes. Using these patterns to infer a
w0 lower-dimensional structure in the map between genotype and multiple phenotypes is an

61 important goal, which offers the promise of identifying a biologically meaningful explanation
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a2 for observed patterns of pleiotropy.

w3 A central challenge in achieving this goal is that discovering lower-dimensional structure
a4 in high-dimensional data is fundamentally underdetermined. Thus, we must always choose
a5 some set of objective functions and/or constraints as the basis for any such decomposition.
w6 This choice is inherently somewhat arbitrary, and it is not immediately clear how to select
w7 objectives and constraints that will lead to solutions that reflect biologically meaningful
a8 structure in the data.

wo  In this paper, we address this challenge by introducing a penalized matrix decomposition
w0 framework, Sparse Structure Discovery (SSD), which allows us to identify a low-dimensional
an set of “core processes” that concisely explains the observed patterns of pleiotropy in
a2 genotype-phenotype data. The method uses sparsity as a key constraint to decompose
a3 a2 model for how genotype influences multiple phenotypes into two linear sparse lower-
a dimensional maps: a map between the genetic loci and the set of putative core biological
a5 processes they affect, and a map explaining how these core processes determine the observed
a6 phenotypes. Using simulated data, we demonstrate that SSD can accurately recover the
a7 true locus-process and process-phenotype maps as long as at least one of them is sparse.
as We then apply the method to three empirical datasets, which include the fitness effects of
ao adaptive mutations in different growth conditions, robustness of gene knockouts to a set of
a0 genotoxic agents, and the fitness effects of QTLs identified in a yeast cross.

a1 SSD is a flexible method which offers a range of solutions that correspond to different

a2 strengths of the sparsity constraints on the locus-process and process-phenotype maps (for-

[

ss3 mally, one unique solution per choice of the hyper-parameters that enforce sparsity). This
sss choice could be made based on some prior biological expectations, or by using standard

4

o

s statistical approaches such as cross-validation to find the set of hyper-parameters that min-
a5 imizes generalization error. However, since our goal is to identify biologically meaningful
a7 low-dimensional structure rather than minimize generalization error, we explore the space of

ags solutions found by SSD across a range of hyper-parameters, and use the reconstruction error

[

4

[

o landscape and proposed rotation tests to guide the examination of specific solutions. By

a0 exploring solutions with different levels of sparsity, we can examine features of the solutions

©

s01 which are robust to the choice of specific hyper-parameters.
w2 Of course, the use of sparsity as the guiding constraint in our SSD method is a choice, and

w03 it would certainly be possible to identify alternative lower-dimensional decompositions of a
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s0s given dataset by choosing a different set of objectives and constraints. Our choice of sparsity
a05 is guided by two main factors. First, because we can use rotation tests to provide evidence
w06 for sparsity, we can demonstrate whether or not this constraint is appropriate directly from
a7 empirical data (and in cases where there is no evidence for sparsity, SSD should not be used).
a8 Second, intuitive notions of modularity in biological systems suggest that sparsity in M and
w0 W may reflect characteristic features of biological organization. For example, sparsity in
so0 the locus-process map may reflect a situation where each gene participates in one or a few
so1 biological “modules” with specific defined functions, and each such module relies primarily
s02 on a relatively small fraction of all possible genes. Sparsity in the process-phenotype map
so3 may hold less generally, but could reflect scenarios where any observed phenotype typically
soe depends primarily on a subset of all possible modules. We also note that our method only
s0s Tequires sparsity in one of these two maps, so it could be useful in scenarios where W is

so6 sparse and M is not, or vice versa.

sor  Naturally, even in scenarios where a biological system has a modular structure and spar-
s Sity seems intuitively appropriate, all biological processes are inherently coupled at some
s00 level. For example, the “omnigenic” model recently introduced by [29] suggests that most
s10 loci affect almost every complex trait. The omnigenic model reflects the observation that
su large numbers of small-effect loci often dominate the heritability of complex traits. This
s12 1S not inconsistent with the sparsity-inducing ¢; constraint used in SSD. Formally, the ¢;

5

iy

s constraint reflects a prior assumption about the distribution (i.e., the spread) of effect sizes,
sie namely, that a small subset of loci have much larger effect sizes than most other loci that

s1s affect each process. In contrast, an /5 constraint, for example, imposes a prior with a tighter

-

s16 spread of effect sizes. This constraint will instead lead to a dense (and non-unique) set of

_

5

iy

7 solutions. The sparsity assumption thus remains valid as long as the effects of mutations
s18 in the core genes of a pathway are significantly larger than the small effects of the genes
s19 outside the pathway, even if there are so many such small-effect genes that they dominate

s20 the heritability of the trait.

s21 By using sparsity as a key constraint, our approach produces a different lower-dimensional
s latent structure in the data than singular value decomposition (SVD), a commonly used
s23 method which finds the subspace of a chosen dimensionality that achieves the lowest error
s in reconstructing the effects matrix (without any additional constraints). By construction,

s SVD produces a set of processes (formally, basis vectors that span this subspace) which
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s26 are orthogonal and which are ordered monotonically based on the variation explained by
s2r each process. Previous work [15] has shown that SVD applied to a subset of mutations and
s28 similar environments generalizes to a held-out set of mutations and dissimilar environments,
s20 which suggests that SVD can be fruitfully used to identify an appropriate low-dimensional
s3 subspace of processes. However, any set of independent basis vectors which span the sub-
sa1 space will lead to the same generalization error. That is, even though SVD achieves good
s32 generalization performance by finding the optimal lower-dimensional decomposition of the
s33 genotype-phenotype map, it does not necessarily lead to a unique set of biologically mean-
s3 ingful processes.

s Our approach is similar in spirit to Webster, a method based on graph-based dictionary
s3 learning introduced recently by Pan et. al. [17]. Like SSD, Webster relies on a penalized
s37 matrix decomposition framework to identify the locus-process and process-phenotype maps.
s3s However, Webster imposes a hard constraint that each locus affects at most two processes
s3 and imposes no sparsity constraint on the process-phenotype map. In contrast to Webster,
ss0 SSD finds sparser solutions with an equivalent reconstruction error, and variable degrees of
sa1 pleiotropy across loci.

s We emphasize that the processes identified by SSD or any other method are fundamentally
sa3 constrained by the genotypes we study and the phenotypes we choose to measure. We cannot
saa hope to resolve any effects of loci that do not vary across the genotypes we analyze. Thus, it
sss 1S important to consider the nature of the genetic variation in a given study in interpreting
sas the results of an SSD decomposition: if a given type of variant is not represented, we may
sa7 fail to identify core processes which depend on those variants. Moreover, it is important to
sss note that expanding a dataset by including additional genotypes can in principle change the
sas0 inferred structure.

sso  Similarly, the constant effects of loci on all the measured phenotypes are represented by
ss1 the b term in SSD. This reflects the effects of loci on phenotypes that cannot be resolved
ss2 by the variation in the measured phenotypes. For example, if some core process influences
ss3 & given type of stress response and we did not measure any phenotypes that depend on that
ss« particular type of stress, we would expect the effects of this core process to be absorbed into
ss5 b along with all other processes whose effects do not vary across the measured phenotypes.
ss6 By measuring additional phenotypes, we could hope to begin to resolve these processes,

ss7 though our success in doing so would depend on the phenotypes chosen.
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sss We note that by using a matrix decomposition framework, we have implicitly made
ss0 several important assumptions about the structure of the genotype-phenotype map. First,
ss0 we have ignored the effects of interactions between loci on the core processes. In other
ss1 words, we assume that the effect of each locus on each core process does not depend on
ss2 other loci. Second, the process-phenotype map is assumed to be a linear function of the
s63 core processes. Nonlinear structure in the locus-process and process-phenotype maps will
sea lead to structured epistasis between loci in the genotype-phenotype data. This structure is
ss in principle resolvable by measuring epistatic effects between loci for different phenotypes.
sss However, we have focused here on the additive effects matrix, because this is both simpler

ss7 and can be more reliably estimated given the scope of current data sets.

ss  Finally, our study and others [15, 17] assume a strictly hierarchical genotype to process
ss0 to phenotype map. That is, we assume that the genotype determines the core processes,
s which in turn determine the observed phenotypes. This structure has some intuitive appeal,
sn and it is central to any latent structure discovery method of this type. However, it may
s22 not always hold in reality. For example, one can imagine a scenario where the effects of
s mutations on one core process depend on the state of another core process (in other words,
s core processes affect mutational effects in addition to phenotypes). Our method (along with
s other matrix decomposition approaches such as SVD) is fundamentally unsuited to describe
sz such scenarios, and developing methods to infer the structure of this and other more general

s77 types of genotype-phenotypes maps is an important goal for future work.

s.s Availability of code and data. Our code and a link to the data is available at https:

s79 //github.com/spetti/sparse-structure-discovery.
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56 SUPPLEMENTARY INFORMATION

687 1. Definitions

8 1. Average processes per locus. Total number of non-zero values in M divided by the
689 number of columns in M with at least one non-zero value. This definition excludes
690 loci that affect no processes.

s1 2. Average processes per phenotype. Total number of non-zero values in W divided by
692 the number of rows in W with at least one non-zero value. This definition excludes
693 phenotypes that use no processes apart from the linear term b.

sa 3. k-component SVD decomposition. As with our SSD method, we include a linear term in

695 our decomposition to capture the effects of the loci that do not vary across phenotypes.
696 Given F, we let b be the mean effect of each locus across phenotypes (i.e. the L-
607 dimensional vector where the i’ value is the mean of the i column of F). Given the
698 SVD of a matrix F —b = UXVT, the k-component SVD decomposition of F — b has
699 M equal to the first k rows of VT and W equal to the first & columns of U with each
700 column scaled by the corresponding diagonal element of 3. The processs, expressed as
701 L-dimensional vectors (rows of M), are of unit length, as is the case for decompositions
702 found by our SSD method.

03 4. Reconstruction error. The reconstruction error of the approximation F ~ WM + b
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704 is the squared Frobenius norm of the difference between F and the approximation

705 divided by the number of entries in F: ||F — (WM + b)|3/(E - L).

6 5. Cosine error. To compare the similarity of a decomposition M, W to the true decom-

707 position M, W (for synthetic data), we first adjust M and W to best align the core
708 processes. First, we select the pair of rows My . and l\A/Iﬁ with the highest absolute
709 value of cosine between them and assign 1\A/Ij7: and VAV:,J- to the k™ row and column of
710 the adjusted matrices M and WP respectively. Further if the cosine between My,
711 and M, is negative, we multiply the & row and column of M” and W (respec-
712 tively) by negative one. We repeat this process, excluding the rows in M and M that
713 have already been paired. This process permutates and changes the sign of the core
714 processes, but does not change the approximation: WM = WP M?F,

715 The mean cosine error for M measures the similarity between the pairs of correspond-
716 ing core processes, viewed as L-dimensional vectors: % Zfil (1 — cos(M,; ., MZ-,:P))
717 The mean cosine error for W measures the extent to which each phenotype uses the
718 corresponding processs similarly: + Zil (1 — cos(W, ., V\}ZP)) 1{W,.#0or V\}Pi,: +
710 0}. The indicator function ensures that the phenotypes affected by no core processes
720 (other than the linear term) in both the true and predicted decompositions do not
721 contribute to the error.

722 2. Sparse Structure Discovery

SSD takes as input the additive effects matrix F, an upper bound on the desired number
of processes Kp.x, and the regularization parameters Ay, A\ys. It returns M, W and b that

approximately minimize

C(W,M,b) = [[F — (WM + b)[[ + Aw[|W|[1 + A [[M]|x (2)

such that ||[My..|lo =1 for all 1 <k < Kppax.

723 Initially b is set to the column means of F, and W and M are found by taking the Singular
72 Value Decomposition (SVD) of F—b with the top K.y singular vectors. We then alternately
75 (1) fix W and find M and b that optimize (2), (ii) normalize the rows of M, (iii) fix M and

30


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

76 b and find W that optimizes (2). While the objective function (1) is not jointly convex in
=7 W and M, the optimization problems in (i) and (iii) are each convex and can be efficiently
728 solved.

729 In order to use comparable regularization values and obtain comparable errors across
720 input matrices F with different sizes and magnitudes, we normalize the input matrix F

7n1 before performing SSD and the rotation tests. To normalize F, we divide each entry by the

w

> standard deviation of all the values in F. In both the SSD solution space plots and the

7

w

7

w

s rotation tests, the reported reconstruction error is with respect to this normalized version
724 of F. After normalization, the reconstruction error can be interpreted as the fraction of
735 variance unexplained by the decomposition.

76 For each application, we apply our method with 625 pairs of regularization parameters:

7

w

7 25 values of Ay uniformly distributed between 1072 and 1.5 in logscale and 25 values of Xy,

73 uniformly distributed between 10~* and 1072 in logscale. We choose K.y as the minimum

w

720 number of SVD components needed to explain at least 95% of the variance in F — b.

w

o Choosing K ax < min{E, L} speeds up the method. Recall that the optimization procedure

7

N

K

N

1 automatically picks an appropriate number of processes K < K. for a given Ay, Ay .

742 a. Comparison to other penalized matriz decomposition methods

723 Our Sparse Structure Discovery method is a form of penalized matrix decomposition. It
74 is well-known that the low rank matrix decomposition that gives the best approximation of a

725 matrix with respect to the Frobenius norm can be computed via the singular value decompo-

N

K

N

s sition (SVD) (see [30]). Penalized matrix decomposition refers to a broader range of matrix
77 decomposition formulations whose objectives are to both minimize the Frobenius norm of
718 the approximation and to encourage the matrix factors to exhibit particular properties (e.g.
720 sparsity) through hard constraints or regularization [31].

70 One form of penalized matrix decomposition is sparse coding, where the goal is to identify
751 an overcomplete set of basis vectors, often called dictionary elements, so that each data point
752 can be written as a combination of a small number of dictionary elements. This approach
753 was used by Field and Olshausen to identify putative receptive fields of cells in the visual
75 cortex [8]. The computer science and statistics literature has developed various formulations

7ss of sparse coding and accompanying efficient algorithms for finding the dictionary elements
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76 [7].  Algorithms for sparse coding formulations that impose an Ly penalty on the use of
757 dictionary elements are studied in [18, 32, 33]. Algorithms for the more tractable convex
758 relaxation with an L; penalty are studied in [34-36]. In Appendix 6 we further discuss the
750 graph-regularized approach introduced in [18] and applied to the genotoxin data set in [17].
70 The key difference between SSD and sparse coding is that we enforce sparsity in both
761 the dictionary elements (M matrix) and the description of the data as combinations of
762 the dictionary elements (W matrix). This is motivated by our observation that sparse
763 solutions can be found for both W and M in empirical genotype-phenotype maps with a
76« marginal increase in reconstruction error. In contrast, standard sparse coding approaches
765 do not constrain the sparsity of the dictionary elements. Additionally, the vector b in (2) is
6 introduced to capture the effects of loci on processes that do not have a variable effect on

767 the measured phenotypes.

768 3. Rotation tests for locus and phenotype sparsity

w0 For both tests, we first subtract out the mean effect of each locus across phenotypes to
770 approximate b, the effects that do not vary across phenotypes. Then, we normalize F and
m select K. as described in Section 2. For the locus-rotation test, we rotate the rows of F
722 randomly by right-multiplying by a random L x L orthogonal matrix O drawn from the Haar
773 distribution, as implemented by SciPy’s stat.orthogroup library. We apply our SSD method
7 directly to FO (without normalizing) for 25 values of Aj; uniformly distributed between
775 107* and 1072 in logscale and Ay, = 1073. For the phenotype-rotation test, we left-multiply
76 F by a random E x F orthogonal matrix O’ drawn from the Haar distribution and apply
77 SSD to O'F for 25 values of Ay, uniformly distributed between 1072 and 1.5 in logscale and
7 A\yr = 1074

779 4. Synthetic data with hub-and-spoke structure

70 To test our SSD method on data with more complex underlying structure, we generated
71 synthetic data with a hub-and-spoke structure, as illustrated in Figure S2a. We constructed
782 eight H-processes and four P-processes. Each of L = 200 loci participated in each process

783 independently with probability 0.2, the weights of the participating loci were drawn indepen-

32


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

784 dently from a standard normal, and the rows of M were normalized. We then constructed
785 20 groups of 5 phenotypes: one hub phenotype and four perturbations of the hub phenotype,
76 which we call spokes. The hub phenotype depends on two randomly selected H-processes
77 with weights drawn independently from a standard normal. Each spoke phenotype is a sum
788 of the hub phenotype and one of the four P-processes multiplied by a scaling factor drawn
780 from a standard normal. This construction yields a 100 x 12 matrix W, a 12 x 200 matrix M
790 and the fitness effect matrix F = WM + 7, where the noise 1 is drawn independently from
701 a normal distribution with scale 0.3 times the standard deviation of the entries in WM.

.2 This same F can also be expressed as a decomposition F = WM + n with 24 core
703 processes and with more sparsity in W than W and far less sparsity in M than M, see
70 Figure S2b. To obtain W, we keep the four P-processes and construct an S-process for each
705 of the 20 hub phenotypes. Instead of expressing each hub phenotype as the weighted sum

796 of two H-processes, each hub phenotype is now represented by single S-process.

77 5. Analysis of adaptive mutations in yeast (Kinsler et. al. dataset)

s The dataset in Kinsler et. al. [15] contains the additive effects of 421 adaptive mutations
799 in 45 environments. We chose a subset of 288 mutations using the procedure described
g0 in the original work. Specifically, mutations that were either not sequenced, whose mean

8l

=1

1 additive effect across the 8 evolutionary conditions was smaller than a threshold (0.05) or
sz Whose maximal error of the additive effect over all environments was larger than a threshold
s03 (0.5) were removed. The specific thresholds were not specified in Kinsler et. al.; we chose
s+ thresholds such that we were left with close to the total number of mutations analyzed in

sos this work (i.e., 292)

806 a. Clustering mutations

sr  Clustering of the M matrix was performed through hierarchical /agglomerative clustering

sos [37] (using the linkage function in SciPy’s hierarchical clustering library) with an absolute

o

s00 cosine metric. Since our goal was to cluster loci with similar effect profiles on processes (i.e.,

[=3

g0 columns of M) independent of the overall sign and magnitude, we use a metric d(x,y) =

prat

su 1 — |X.y|, where x,y are two vectors and X = x/||x||> denotes the unit vector. The method
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s12 groups the loci into clusters depending on an input distance threshold. We found that for a
a13 large range of thresholds (0.15 to 0.93), the number of clusters ranged from 6 to 11. There
s1e was no sharp delineation within this range. We chose an intermediate threshold value 0.4,
a1s which led to 8 clusters. For the analysis with fewer diploids (Figure S4) we used a threshold
s16 value of 0.22 to obtain 8 clusters.

sz In Figure S5d, we present results from hierarchical/agglomerative clustering of the M
s1s found using SVD. We chose a distance threshold of 0.47 instead of 0.4 for the SSD solution
s19 in Figure 3d,e to obtain 9 clusters since we could not find a threshold which led to 8 clusters.

20 Choosing a matching threshold of 0.4 led to 11 clusters.

821 b. Bi-cross-validation

2 In this Section, we summarize the bi-cross-validation test described in [38] and applied in
e23 [15]. We split the 45 environments into train and test environments, and the 288 mutations
g24 into train and test mutations. In panel a of Figure S5, the train and test environments are
e2s the subtle (25) and strong perturbation (20) environments as defined in [15], respectively
26 (Recall that environments in which the fitness effects differed slightly and significantly from
s27 the average fitness effects in the evolution condition were classified as subtle and strong
s perturbations respectively). In panel b, the training and test environments are chosen
s20 tandomly in a 36:9 split.

g0 Bach result is averaged over eight random splits of the mutations into training and test
sa1 sets. In each random split, the training set contains 60 training mutations and test set
g2 contains 228 test mutations. To split mutations, the number of mutations of each annotation
s (Diploids, IRA1-mis, IRA2, etc) that are included the training and test sets are decided as
s specified in [15]. The specific mutations assigned to each set are sampled randomly. For
s3s example, Kinsler et. al. assign 20 diploids to the training set and 168 diploids to the test set.
s3s 'The specific set of 20 diploids that are assigned to the training set for each of the 8 random
g7 seeds are sampled with equal probability from the full set of 188 diploids. As described in
g3 [15], the weighted reconstruction error is computed by normalizing the total reconstruction
s30 error for all mutations of an annotated class with the number of mutations in that class.
ss0 This ensures that the performance on the diploids are not overrepresented in the results.

g1 To obtain the bi-cross validation reconstruction error for each method, we first decompose
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g2 F on train environments and mutations into two matrices W1, M. Fixing M, we fit the
sa3 process-phenotype map Wy for the test environments and train mutations. Similarly, fixing
sas W1, we fit the locus-process map Ms for the test mutations and train environments. The
aas predicted loci-phenotype map on test environments and mutations is then WyM,. To
sas compare SVD and SSD on an equal footing, we first subtract from F the mean of F across

a7 environments for each locus.

s 6. Comparison to Webster method on genotoxin dataset

sao  SSD differs from Webster in three key ways. First, Webster imposes locus-sparsity as a
sso hard constraint; each locus particpates in at most j core processes where j is an input param-
ss1 eter. In contrast, SSD allows loci to participate in different numbers of core processes, allow-
ss2 ing the loci to exhibit varying degrees of pleiotropy. Second, whereas phenotype-sparsity is a
g3 tunable parameter in SSD, Webster does not enforce phenotype-sparsity. Finally, Webster’s
ssa optimization includes graph regularization objectives that encourage each locus to have a
g5 similar core process membership profile as its five closest neighbors, and analogously for
sss phenotypes. This arbitrary cutoff of five could cause problems for a locus or phenotype that
ss7 1s significantly dissimilar from all others.

sss We first select SSD solutions to compare to the Webster decomposition of the genotoxin
ss0 dataset [19] presented in [17]. In the Webster decomposition each locus participates in
se0 exactly two of ten core processes. We selected the most comparable SSD solution (ten
se1 processes, 2.0 average-processes-per-loci, 6.8 average-processes-per-genotoxin), as well as the
g2 SSD solution we selected using the rotation tests as a guide (illustrated by the white star in
ss3 Figure 4, ten processes, 3.3 average-processes-per-loci, 2.5 average-processes-per-genotoxin),
ssa and the 10-process SVD solution.

ss  Next, we compared the unnormalized reconstruction error for each genotoxin between the
s two SSD solutions described above, the SVD decomposition, and the Webster method (left
sz column in Figure S6). Predictably, the methods with less strict sparsity requirements give
sss lower mean error (SVD 1.4, selected SSD solution 2.6, most comparable SSD solution 2.9,
sso Webster 3.3). Unlike Webster, our SSD method allows the number of processes that each
g0 locus participates in to vary, reflecting the possibility that loci may exhibit different levels

en of pleiotropy (right column Figure S6). This flexibility may account for the improved pre-

35


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

g2 dictions of our SSD solutions over Webster at the same average locus-sparsity. As displayed
g3 in Figure S6 center column, the process-genotoxin maps from the SSD solutions are more
g74 Sparse.

srs  Of the sparse solutions, our selected SSD solution most accurately reconstructs the addi-
s tive effects matrix and exhibits the most genotoxin-sparsity (see Figure S6, center column).
sr7 Moreover, the locus-sparsity of this solution is sufficient to assign putative biological func-
grs tions for many of the core processes using predefined annotations (Figure 4d). This suggests
s7o that the SSD approach is a more promising method for generating biologically reasonable

ss0 hypotheses about genetic architecture in this system.

881 7. Joint QTL mapping from large-scale genotype-phenotype measurements

g2 Given an E'x N matrix Y encoding E measured phenotypes of N individuals and an Sx N
ss3 {0, 1}-valued matrix X expressing the genotypes of the N individuals at S loci, our joint
sss QTL mapping method identifies L. < S putative causal loci which explain the majority of
sss the predictable variation in the measured phenotypes. The output of our method is an E'x L
sss effects matrix F which approximates the phenotypes as an additive function of the effects
ss7 of these L loci. The key step in our method aligns loci across phenotypes using a penalized
sss Tegression framework based on f5; regularization with a highly optimized implementation

se0 called glmnet [39]. Specifically, we minimize

S
C(F.c) = |IY —=FX — [ + Ar Y [[F.ll2 (3)

s=1

soo with respect to F and ¢, where ||F. || = \/Zle F2_, A\ controls the strength of regular-
so1 ization and c is an E x 1 intercept term. This /5 regularization penalty is a generalization
sz of the well-known ¢;-based Lasso to multiple outcomes. Like Lasso, the f5; penalty favors
s03 sparse solutions by selecting only the loci whose effects across phenotypes (as measured by
s || F 4||2) are sufficiently large, thus automatically identifying and aligning both large-effect,
sos non-pleiotropic loci and loci that have small effects across many phenotypes.

gos  In our yeast cross application, we have N =~ 100,000 segregants and S =~ 42,000 loci.
sor Due to the scale of this data and strong correlations between neighboring loci from linkage,

ses we avoid running glmnet on all 42,000 loci. We instead run glmnet on a smaller subset of
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g0 putative causal loci and develop a statistical method for computing confidence intervals to

o0 narrow down the true locations of each causal locus. Our pipeline is as follows:

o 1. Compute a reduced genotype matrix by restricting X to a set of rows corresponding
902 to loci that are pairwise correlated by no more than 94%. On our yeast dataset, this

903 reduces S from ~ 42,000 to 1579.

9s 2. Perform /5 -regression on the reduced genotype matrix. On our yeast dataset, this

905 yields 1314 putative causal loci (non-zero columns of F).

ws 3. Construct a new list of putative casual loci that are more likely to be casual than

907 the loci selected in Step 1. To do so, compute confidence intervals for each putative
908 casual locus for each phenotype separately using the statistical method described in
909 Section 7a. When the confidence intervals for a single locus do not overlap, it suggests
910 that the locus is summarizing the effect of multiple distinct nearby causal loci. We
o11 “split” the locus by adding a set of loci to the new list such that each phenotype’s
012 confidence interval contains at least one locus in the set. When the confidence intervals
013 for a locus overlap across all phenotypes, we add the locus from the intersection with
914 the strongest evidence of being causal to the new list. The same locus may appear
015 multiple times on the new list, suggesting that the ¢, ; optimization assigned the effect
916 of a single locus to two (or more) nearby loci. After removing such redundancies, the
017 new list contains 1119 loci for our yeast dataset.

as 4. Perform /;;-regression on the genotype matrix restricted to the new list of putative
019 casual loci. We use this F in downstream analysis. On our yeast dataset, this yields

920 1089 putative casual loci (non-zero columns of F).

o1 5. Localize the ORF's of the putative causal loci with the strongest effects by computing

022 confidence intervals for each phenotype.

23 In Step 1, we apply a greedy algorithm to pre-filter the loci. We order the SNPs (loci) by
o4 genomic position. We select the first SNP. We subsequently select the next SNP that has
s genotypic (Pearson) correlation < 0.94 with the most recently selected SNP. This process is
a6 repeated until we get to the last SNP.

o7 Steps 2 and 4 use the implementation of /5 ;-based regression from the glmnet R library

o8 [39]. The regularization parameter A\p in Eq. (3) is set using cross-validation. Specifically,
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o0 the training, validation, and test sets are obtained by splitting the columns of X (corre-
o0 sponding to segregants) in the ratio 80:10:10, glmnet solves Eq. 3 on the training set for
o1 & range of A\p, and we select the solution with the minimum mean absolute error on the
022 validation set. We use the test set to evaluation our predictions before and after matrix
933 decomposition, see Figure S7a.

s« The goals of Step 3 are to more accurately localize the putative causal loci returned by
s Step 2 and to determine whether some putative causal loci are summarizing the effects of
a6 multiple nearby loci with distinct effects. The putative causal loci identified by glmnet in
o7 Step 2 are a subset of the loci chosen via the greedy prefiltering done in Step 1. Therefore, it
o38 1S qquite possible that the true causal locus was filtered out in Step 1, and the putative causal
a0 locus identified by glmnet is a nearby locus that is highly correlated with the true casual
wo locus. Alternatively, a putative causal locus identified by glmnet may describe the effect of
o1 one nearby causal locus for certain phenotypes and a different nearby causal locus for other
w2 phenotypes, i.e. the putative causal locus is summarizing multiple loci with different effects.
w3 To arrive at a new list of loci that we believe to more likely to be causal, we replace each
s locus identified in Step 2 with a set of loci constructed according to the following procedure.
us For each locus ¢, we first apply the method described in Section 7a to compute a confidence
us interval of locations for the true causal locus for each phenotype separately. For each locus
w7 z in the confidence interval for phenotype e, we also return best approximation of the linear
us effect of locus z on phenotype e, which we denote fze (computed as described above Eq. 7).
sss Across loci in a confidence interval, a higher value of | f¢| indicates that locus z is more likely
0 to be causal.

1 We iteratively select loci for the new set as follows. For each locus z in some confidence
o interval, we compute v(z) = 3. |f¢| where f¢ is set to zero when locus z is not in the
o3 confidence interval for phenotype e. The locus z* that maximizes v is added to the new
osa set. If locus z* is in the confidence interval for all phenotypes, we add no other loci to the
sss new set. Effectively, we have replaced ¢ with a nearby locus z* that is in the confidence
os6 interval for each phenotype and exhibits a stronger effect (measured by the magnitude of
os7 effect size summed across environments). If there are phenotypes whose confidence intervals
sss do not contain z*, it is likely the case that locus ¢ summarizes the effects of different causal
o0 loci for different phenotypes. We need to include more loci in the new set so that the new

o set includes a least one locus in the confidence interval of each phenotype. To do so, we
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o1 Temove all phenotypes whose confidence intervals contain z* and again find the locus z** that
962 maximizes v (where now the summation in v is over a restricted set of phenotypes whose
o3 confidence intervals do not contain z*). We repeat this process until the each confidence

o4 INterval contains at least one locus in the new set.

ws In Step b we localize the putative causal loci returned by glmnet in Step 4 to ORFs.
w6 Pinpointing the location is only possible for the strongest effect loci, so we restrict our
o7 analysis to loci that exhibit an additive effect of magnitude at least 0.003 for some phenotype.
ass For each such locus ¢ and phenotype e, we again use the method described in Section 7a to
w0 compute a confidence interval and the best approximations of the linear effects fj for each
oo locus z in the confidence interval. For each locus z in some confidence interval, we again

on compute v(z) = > _|f¢| where f¢ is set to zero when locus z is not in the confidence interval

-

a2 for phenotype e. We declare the locus z* that maximizes v the “top” locus. We consider the
o3 intersection of all confidence intervals containing z* to be the common confidence interval
aa for locus ¢. We label locus ¢ with the names of all ORFs corresponding to a locus in this

ors common confidence interval.

976 a. Confidence interval computation

o7 We describe a method to identify a confidence interval for a single locus with respect to
as & single phenotype. We assume a linear model for the effect of a locus on the phenotype of

o790 Segregant n

Rn - ftth + €n, (4)

where R, is the “residual”, i.e., the phenotype measurement not explained by the rest of
the loci, ¢ is the index of the true locus, f; is its true fitness effect, and ¢, ~ N(0,0?) is
a noise term which is drawn i.i.d from a normal distribution with mean zero and variance
o%. To measure how well a nearby locus z explains the residuals, we compute the squared
error between the observed residuals and the best approximation of the residuals as a linear

function of X, ., which we call fz. We define this error as

€)= 3 Do (Ru = X )
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To arrive at a confidence interval, we suppose that ¢ is the locus that minimizes C when ¢ is

the true causal locus and compute the probability that ¢ minimizes C' under this assumption:
P(C(£) < C(t)] t is the true causal locus). (6)

o0 If this probability is less than 0.023 (two standard deviations), we reject the hypothesis that

g1 t 1S the true causal loci and exclude t from the confidence interval.

Now we explain how to compute (6). Let F and ¢ be the putative additive effects matrix
and linear term returned by ¢ ; optimization, and let ¢ and e be the locus and phenotype of
interest respectively. Since we consider one phenotype at a time, we suppress the dependency
on e and write Y = Y,.. and ¢ = c.. By a slight abuse of notation, when ¢ appears as a
subscript of F it refers to the column corresponding to the locus ¢ and when ¢ appears as
a subscript of X it refers to the row corresponding to the locus ¢ (these will not necessarily
have the same index). Throughout, we use bar to denote averages over the N segregants.

We use the putative additive effects map to compute the residuals,

Rn = (Yn - C) - Z ]?‘m-Xm.
i#L

2 For a locus z, the best approximation of the residuals as a linear function of X, ., i.e. the
s value of f, that minimizes C(z), is f. = RX,/X2. Plugging this expression into Eq. 5, we
s have C(€) = RZ — f2X2 and C(t) = R? — f2X2. Taking the difference, we obtain

c(0) —ct) = fiXz - fiX7. (7)

s Since R,, = f; Xy, + €,, it follows that

f = (fi X +e)Xe  fiXe Xy + X,
= T = —
X3 X7

= fipre + Ve, (8)

ses Where py = XXy /f? is the fraction of segregants with genotype 41 at t that also have

o7 genotype +1 at £, and vy, = eX,/ f% is a random variable equal to the average noise over all
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o8 segregants with genotype +1 at ¢. Similarly,

f _ (ftXt +€)Xt _ ftX_tQ‘i‘&f_}(t
t x? x?

:ft+7t7 (9)

where v, = eX;/ X_f is a random variable equal to the average noise over all segregants with

genotype +1 at ¢. Plugging these into Eq. (7), we obtain

e() —c(t) = (X3 +w)* = X (fupue +10)°) (10)

~ ((ft + ’Yt>2 — (fipu + 7@)2) Z? (11)

0 Assuming that ¢ and t are nearby, linkage guarantees that most segregants will have the
w0 Same genotype at these positions. As a result, ff ~ ff (validating approximation (11))
o1 and py will be close to one. Since ;,, are order 1/ VN (as they are the mean of order N
o normals with constant variance o?), they tend to be much smaller than f; whenever f; is
s03 significant enough to be causal. We therefore may assume that f; and f;+; , and fip + ¢

s have the same sign.

Suppose f; > 0. Then C(¢) < C(t) whenever fi(1 — py) < v — . Let I' be the random
variable equal to v, — .. Again using the approximation that fg R~ fﬁ, '~ M/@
is1/(N X_?) times the difference between the noise summed over all segregants with genotype
+1 at t and 0 at ¢ and the noise summed over all segregants with genotype 0 at ¢t and +1
at ¢. (Note I' is not affected by the noise from segregants that have the same genotype
value at ¢ and ¢.) Thus, we can approximate I' as 1/(NX2) times the sum of d i.i.d. draws
of N(0,0%) where d = (1 — py)X2N + (1 — py)X2N is the number of segregants with a
recombination breakpoint between ¢t and ¢. The assumption that ff R E implies py ~ pu

and d ~ 2(1 — p;)X2N. We approximate I’ ~ A (0, 2(1 — ptg)O'Q/(NX_%)>. It follows that

P(C(¢) < C(t)] t is the true causal locus) =~ P(I' > fi(1 — pu)). (12)

The probability of this event is less than 2.3% whenever the value f;(1 — py) is at least 2

standard deviations of I'. Thus, we reject the null hypothesis that ¢ is the true causal locus
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whenever

1— > 13
Pte_N ( )

905 Note we are most likely to reject the null hypothesis when f; is high (the true locus has a
96 large effect) and py, is small (a high fraction segregants have a breakpoint between ¢t and /).
o7 In other words, it is easiest to identify the causal locus when its effect size is large and there
ws are many segregants with breakpoints nearby.

s In practice, to verify (13) we approximate f; ~ f; = RX;/X2 and o as the cost C(f).
woo First, as derived in (8), the estimated effect size fo will differ from the true effect size f;
w by fr— fi = v + fi(pre — 1). The relative error of the former approximation is | fo —
wo fi|/|fil = |ve/fe + (pee — 1)|, which is small since |y, < |f;] and 1 — pyy < 1. Second,
s we have C(¢) = R2 — f2X2? = (f,X, +¢)? — f?X2. Expanding this expression and using
o €2 & 02, X2 ~ X2 gives C(0) = (f2 — f2)X2 + 2f,eX; + 0. Note that f, = fypw + ¢ and
w05 Xy = X2, Thus, C(£) = (f2(1— p%) — 2fipreve — 72 + 2fr7.) X2 4 02, Since 1 — p2, is small
wos and 7y, v, are both order 1/v/N, C(£) is a good estimator for o2,

1007 b. Comparison to other QTL mapping approaches

wee  Existing approaches for mapping QTLs of multiple traits include composite interval map-
100 ping [40], least squares regression [41], and Bayesian inference [42, 43]. See survey given in
10 Chapters 14 and 15 of [44]. The scale of our dataset (~ 42000 loci, ~ 100,000 individuals)
111 renders such methods intractable. Instead, we turn to glmnet, a fast solver for regularized
12 generalized linear models [39] that is capable of handling the scale of our data. In [45],
3 Qian et. al. apply glmnet with a standard lasso penalty for QTL mapping of four traits
114 separately using data from the UK biobank. We extend this approach by mapping QTLs
1 for multiple traits simultaneously using glmnet with an /5, error. Moreover, the extreme
6 linkage present in our dataset necessitates post-processing to identify confidence intervals

1017 for the casual loci.
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FIG. S1: Rotation tests on synthetic data over a range of sparsities (a) Analogous plots to the loci

rotation test in Column 1 of Figure 2 for a synthetic additive effects matrix with a range of M-sparsities

and W-sparsity equal to 1. (b) Analogous plots to the phenotype rotation test in Column 1 of Figure 2 for

a synthetic additive effects matrix with a range of W-sparsities and M-sparsity equal to 1.
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(a) Generative F = WM (b) Equivalent F = WM

H-Processes P-Processes S-Processes

X 20 groups ‘ @ @ X 20 groups
= +

FIG. S2: Generation of hub-and-spoke synthetic data. Diamonds represent processes, ovals represent
phenotypes, and the color of the process represents its weight in the phenotype. (a) The core phenotype
(center hub) is the weighted sum of two hub processes (H-process), and each perturbation is the sum of the
processes of the core phenotype plus a weighted perturbation process (P-process). The group of five
phenotypes depicted here corresponds to the group of phenotypes labeled in Figure S3c. We generate 20
such groups from the common set of 8 hub and 4 perturbation process, as detailed in Methods 4. (b) An

alternate way to generate the same F matrix is to replace the H-process with one S-process per phenotype.
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FIG. S3: SSD on hub-and-spoke synthetic data. (a) The rotation tests suggest both locus and
phenotype sparsity. (b) Our SSD method finds a range of solutions at different sparsity and error levels.
We consider two SSD solutions: one with 12 core processes and reconstruction error 0.086 that is sparse in
both loci and phenotypes (lower left star) and one with 21 processs and reconstruction error 0.083 that is
sparse in phenotype only (lower right star). (c) Illustrations of predicted and true W7. The values are
illustrated on a purple-to-green scale ranging from -10 times to +10 times the average magnitude of an
entry in the W matrix. The five phenotypes labeled “group of phenotypes” are illustrated in Figure S2a.
The matrix W for the 12 core process solution approximates the generative W well. The matrix W for
the 21 core process solution has a structure similar to alternate generative structure W described in
Figure S2b.
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FIG. S4: SSD applied to Kinsler et. al. [15] data with fewer diploid mutants. To ensure that the
many diploids do not bias our results, we repeated the analysis presented in Figure 3 with a reduced effects
matrix F. Specifically, we randomly sampled 20 diploids of the 188 in the original dataset leading to an F
with dimensions 45 x 120. Despite much lower locus-sparsity, the examined M and W solutions show
similar features as the ones obtained using the full F (Figure 3). (a) The locus rotation test shows much
reduced sparsity in the locus-process map compared to the dataset with diploids included (Figure 3b). The
sparsity in the process-phenotype map is retained. (b) The solution space illustrating highly sparse
solutions with low reconstruction error. The selected solution (K = 3), which is chosen to match the
reconstruction error of the solution picked in Figure 3, is marked with a white star. (¢) The M matrix
with loci clustered into 8 groups based on linkage clustering of loci with a modified cosine similarity metric
as in Figure 3d. (d) The process-phenotype map W. Processes 1 and 2 from the full F (Figure 3e) are
comparable to processes 1 and 2 respectively, whereas process 3 here appears to capture processes 3 and 4
for the full F.

46


https://doi.org/10.1101/2022.09.27.509675
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.09.27.509675; this version posted September 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a _ Training on subtle, testing on strong perturbations b ‘_Training and testing on a random split of environments (36:9)
<] : o
= . I
c 06 P S 06
_g L] M . ° (] + g
Lj) —_ L] [} ° g —_
= o =
3 8041 e, . 2 804 * $ I ¢ b
— " c = [
88 ¥ sw 88 . o ' . ¢ ‘ }
‘-5 0.2 ¢ ssD (m.ean) -; 0.2 ¢ SSD (mean) * ' ' '
% ¢ SSD (min) i) ¢ SSD (min)
S ¢ SSD (max) S ¢ SSD (max)
2 00— ‘ ‘ ; ‘ ; ; 2 00
= 3 4 5 6 7 8 9 = 73 4 5 6 7 8 9
Number of processes Number of processes
C T
WTinferred from SSD
8 1] 10
7]
2,
22 W - 0
<
a 41 -10
WTinferred from SVD
g 1 10
§ 2 0
g3 o
4 . -10
MO Mmoo ™M > > > > > > :A<AAOUUOOOOCC____EE“"""'Z»I
fs o TSR E b B L R S R R 58588 ccccccaadnasctiedind
£ L Lww S --0=--000000022 =z =z = F w© o o o i
sz egeggeecalttllc-onrworFags 20 o002 EE Sz g
Crddddddas L c 3353553530 8bspacanweelT 8
OG0 bbooor®N®y &‘\,oor\ggéééééédzzggoogio g -
YWD DWomo SEET P 2 @
: 2 EEEEEcg 5
6 © G 5 2
5 o
o
Environments
d Clustered Minferred from SVD
0.75
N | =mm Diploid - IRAT-non
0.50 | Diploid + Chr11Amp WS IRA2
2 a . BN MR | Diploid + Chri2Amp WM PDE2
g %% 3 I | Diploid + IRAT —TFS1
o .
5 000 S ] MMM | Do+ RA2 ToR1
g 3 — D | ™ Dipoid_adapive
g0z 3 - ovR1 = Koo
= - orst = other
o - ePs2 T other_adapiive
-0.75 12 3 4 i i i IRA1-mis
0.0 0.5 1.0
Processes Fraction

FIG. S5: Comparison of SSD and SVD decompositions on Kinsler et. al. [15] data. (a,b)
Bi-cross-validation on held-out sets as described in [38] and applied in [15]. See Section 5 for more details.
The results are averaged over 8 random seeds. For SSD, we present the minimum, maximum and mean
weighted reconstruction errors across all the hyper-parameters Ay, Ay described in the Methods for a
given number of processes K. SVD of the same rank tends to show lower generalization error compared to
SSD. (c) The process-phenotype map W from SSD and SVD, highlighting that the SSD solution is much
sparser. The SSD solution is reproduced from Figure 3e. Since SVD does not fit b separately, here we
estimate b as the mean effect across environments for each locus and subtract it from F before applying
SVD. (In Kinsler et. al., they do not subtract the means, and so their first SVD component approximately
represents the constant effect b.) (d) Hierarchical/agglomerative clustering of M inferred from SVD
similar to Figure 3d (see Methods for clustering parameters). Note the denser loading matrix as compared
to the analogous figure for the SSD solution (Figure 3d).
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FIG. S6: Comparison of SVD, SSD, and Webster decompositions on genotoxin data. Each row
corresponds to a decomposition found by SVD, SSD, or Webster, as labeled on the left. The leftmost

column compares the unnormalized reconstruction error for each method as compared to Webster for each
genotoxin separately. The center column illustrates the process-genotoxin map found by each method; the
SSD solutions exhibit the most sparsity. The rightmost column illustrates the distribution of processes per

locus in each decomposition. The red dotted line depicts the mean.
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FIG. S7: Variance explained on the test set and the process-phenotype map of other SSD solutions for the
yeast cross data. (a) The percentage variance explained when predicting the fitness in individual
environments on a test set of genotypes (i.e., as Yiest = FX oot + c¢), shown here when F is the full
additive effects matrix F (blue), the 8-component SVD approximation of F (orange) and the 8-component
SSD solution analyzed in the main text and marked in Figure 5d (green). (b) The process-phenotype map
W for three additional solutions marked in the solution space. The white star marks the SSD solution
discussed in the main text. Note that the general features are conserved between the solutions marked
with the blue and green stars. The much sparser solution marked by the orange star also devotes

dedicated processes for li, gu and mol, but tends to group the other processes together.
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