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Abstract 
 
Protein complexes constitute the primary functional modules of cellular activity. To respond to 

perturbations, complexes undergo changes in their abundance, subunit composition or state of 

modification. Understanding the function of biological systems requires global strategies to 

capture this contextual state information on protein complexes and interaction networks. 

Methods based on co-fractionation paired with mass spectrometry have demonstrated the 

capability for deep biological insight but the scope of studies using this approach has been limited 

by the large measurement time per biological sample and challenges with data analysis. As such, 
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there has been little uptake of this strategy beyond a few expert labs into the broader life science 

community despite rich biological information content. We present a rapid integrated 

experimental and computational workflow to assess the re-organization of protein complexes 

across multiple cellular states. It enables complex experimental designs requiring increased 

sample/condition numbers. The workflow combines short gradient chromatography and 

DIA/SWATH mass spectrometry with a data analysis toolset to quantify changes in complex 

organization. We applied the workflow to study the global protein complex rearrangements of 

THP-1 cells undergoing monocyte to macrophage differentiation and a subsequent stimulation of 

macrophage cells with lipopolysaccharide. We observed massive proteome organization in 

functions related to signaling, cell adhesion, and extracellular matrix during differentiation, and 

less pronounced changes in processes related to innate immune response induced by the 

macrophage stimulation.  We therefore establish our integrated differential pipeline for rapid and 

state-specific profiling of protein complex organization with broad utility in complex 

experimental designs. 

 

Introduction  
 
The field of proteomics has become increasingly informative from the perspective of biology as 

the technology has transitioned from initially generating qualitative lists of detected proteins 

toward quantitative assessment of the state of the proteome over many experimental conditions 

in complex experimental designs1. However, in the cellular context functions are frequently not 

carried out by molecules in isolation, but rather by modules of interacting molecules2. A canonical 

example are non-covalently interacting proteins assembled into functional complexes. Large-

scale protein-protein interaction (PPI) studies have demonstrated that almost all proteins 

participate in complexes3 and we have observed that the majority of the total proteome mass is 

assembled in stable macromolecular protein complexes4. The assembly state of numerous 

protein complexes as well as their abundance dynamically changes to respond functionally to 

specific environmental stimuli. To better understand the cell’s functional state, we require 

methods that can provide quantitative and context-dependent snapshots of the global 

organization of protein complexes in a way analogous to what has been achieved in more 

standard proteomics approaches aimed at the quantification of the expressed proteins. Methods 

such as affinity purification or proximity labelling combined with mass spectrometry have 

provided deep maps of the protein interaction space within static cellular contexts3,5, or 

alternatively, descriptions of changes for limited numbers of protein complexes in perturbed 

systems6–8. However, practical global methods aimed at monitoring complexes in many 
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conditions have been difficult to achieve at a scale consistent with large-scale experiments 

needed to address complex biological questions. 

Methods based on co-fractionation of native proteome extracts coupled to mass-spectrometry 4,9–

13 (CoFrac-MS, or protein correlation profiling - PCP) have shown substantial promise as an 

unbiased strategy to monitor the composition and variations of the protein complex landscape. 

CoFrac-MS relies on the biochemical fractionation (frequently SEC - size exclusion 

chromatography) of native cell protein extracts combined with identification and quantification 

of proteins inferred by bottom-up LC-MS/MS analysis of sequential fractions. The established 

data analysis concept14–17 rests on the idea that the identity of protein interactions, or further, the 

composition of protein complexes, can be inferred by reconstructing and correlating the elution 

patterns of individual proteins across the SEC fractionation space. Where two or more proteins 

co-elute, we take this as evidence of a protein interaction or complex, evidence that has to be 

further supported by using statistical filtering and the inclusion of orthogonal information e.g. 

prior knowledge that the respective proteins can interact4. In principle, such methods have the 

attractive property that they can capture a quantitative and contextual snapshot of the proteome-

wide organization of proteins in modules for any given biological sample from which native 

protein extracts can be prepared. Comparative studies employing this analysis concept have 

demonstrated deep biological insights, that would have been difficult to achieve with other 

methods, such as the conservation of protein complex/interaction organization across 

metazoans18 and across mammalian tissues19, the reorganization of protein complexes as a 

function of cell cycle progression16,20, interactome disassembly during apoptosis21, the 

organization of ribosomes into polysomes22, and the large-scale characterization of RNA bound 

protein complexes23. While these and other studies have demonstrated the potential of the 

approach, the number of applied biology studies published that employ CoFrac-MS as their basis 

remains relatively modest compared to more standard proteomics approaches. We suggest that 

the explanation for the under-utilization of this apparently informative approach lies in the 

massive measurement resources required to complete a statistically well-powered multi-

condition comparative experiment. Published studies have required weeks to months of mass 

spectrometer measurement time and even with such a brute force approach the number of 

biological conditions and experimental replicates analyzed is limited. In the course of preparing 

our manuscript Havugimana and colleagues proposed a method to scale such analysis using 

multiplex isobaric labelling24. A second barrier is the difficulty in extracting biologically 

meaningful information from the complicated high dimensional data produced by differential 

CoFrac-MS studies. We and others have proposed several computational strategies including an 

approach based on differential changes in protein SEC features between conditions (CCprofiler)20, 

an autocorrelation-based approach to detect rewiring of individual proteins across conditions 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.12.17.473177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473177
http://creativecommons.org/licenses/by-nd/4.0/


 

 

(PrInCE)15, a PPI network centric approach that accounts for changes at multiple levels (SECAT)16, 

and a Bayesian framework to identify alterations in protein complexes (PCprophet)17. However, 

a data analysis pipeline that can simultaneously perform statistical comparisons of known 

protein complexes across multiple experimental conditions while also providing hypothesis free 

evaluation of evidence for protein complex remodeling at the individual protein level has not yet 

been described. We suggest that an integrated method combining increased measurement 

throughput with an integrated data analysis pipeline would enable the concept of CoFrac-MS to 

become broadly and routinely applicable in life science research. 

We have recently introduced a number of advances to the CoFrac-MS approach. SEC-SWATH-

MS4,25 employs Data Independent Acquisition (DIA/SWATH) mass spectrometry enabling 

reproducible, robust and sensitive quantification of peptides across protein complex fractions 

and experimental groups. Our analysis software CCprofiler uses prior protein connectivity 

information from protein complex or PPI databases to generate and execute targeted protein 

complex queries to detect target complexes, while controlling the error-rate using a target-decoy 

based statistical model26. This SEC-SWATH-MS strategy was used as the starting point for the 

developments reported in this study. 

We present an integrated experimental and computational workflow for global assessment of 

protein complex reorganization in perturbed systems. Our approach relies on DIA/SWATH 

analysis of SEC fractions using short gradient chromatography that increases throughput by ~1 

order of magnitude, achieving a measurement capacity of ~1 biological sample per day with 

similar information content compared to prior low throughput methods. The increase in 

throughput facilitates the comparison of multiple experimental groups with multiple biological 

replicates. To deal with this increase in complexity and to maximize the information content 

discernible from the data, we developed statistical methods to compare the data from several 

perspectives that we refer to as (i) assembled mass fraction – where we assess whether a given 

protein is shifting between monomeric and assembled states, (ii) protein-centric – where we 

detect and differentially quantify individual protein SEC features between conditions, and (iii) 

complex-centric – where we quantify changes in protein complexes detected by a hypothesis 

driven approach. We benchmark our workflow with respect to a typical lower throughput 

strategy and then demonstrate its performance by investigating rearrangements in the protein 

complex landscape of THP-1 human monocytic precursor cells when undergoing a phorbol ester 

induced differentiation into a macrophage-like phenotype27 and upon further induction of an 

inflammatory response via lipopolysaccharide (LPS) stimulation28 in the differentiated 

macrophages.  
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Results  
Integrated experimental and computational workflow 
 
To increase the throughput of the SEC-SWATH-MS workflow we optimized multiple steps of the 

experimental procedure (fig 1a). These included (i) parallelized sample preparation after SEC 

fractionation, including proteolytic digestion using 96-well FASP (Filter-Aided Sample 

Preparation) plates to ensure robustness and comparability, while significantly reducing sample 

handling steps and time29; (ii) direct sample loading onto solid phase extraction tips, omitting an 

offline reversed phase-based clean-up step; (iii) a data acquisition strategy comprising a 21-

minute LC gradient (24 minute injection to injection time) using direct loading from solid phase 

extraction tips and embedded gradients to reduce overhead. This advance enabled the acquisition 

of data for 1 biological sample comprising ~60 SEC fractions per day while minimizing loss in 

sensitivity30; (iv) a DIA/SWATH acquisition strategy specifically optimized to maintain proteome 

coverage and quantitative robustness for short gradient analysis (Supplementary Fig. 1&2). 

In this study we benchmarked the rapid method and used it to compare THP-1 human monocytic 

precursor cells when undergoing a PMA-induced differentiation into a macrophage-like 

phenotype27 and subsequently a further lipopolysaccharide (LPS) stimulation of the macrophage 

cells to elicit an inflammatory response28 (Fig. 1). The native protein extracts of 3 biological 

replicates from all 3 biological conditions were fractionated by SEC and analyzed by DIA/SWATH 

mass spectrometry using short gradients as described. This amounted to 9 SEC runs of 64 

fractions each, leading to a total of 576 MS runs which were acquired within 9.5 days. 

Figure 1 – Workflow for rapid profiling of protein complex re-organization 

(a) The main steps in the sample processing workflow exemplified with three biological conditions 

(undifferentiated, differentiated, stimulated) analyzed in triplicate. Native extracts were separated by SEC 

collecting 64 fractions per sample. The fractions were processed to peptides using a 96 well plate Filter 

Aided Sample Preparation (FASP) protocol and analyzed by 21-minutesminutes gradients in DIA/SWATH 

mode at a rate of 60 MS samples (~1 biological sample) measured per day. (b) The extended CCprofiler4,20 

workflow is depicted. Steps 1,2, and 3 outline the required input data for data import that is followed by 

normalization, quality control procedures, and data pre-processing. Step 4 consists of quantitative 

comparisons between experimental groups at 3 different levels. The first differential analysis module in 

figure 1b panel 4.I assesses differential global assembly state analysis, reporting the relative assembled 

fraction compared to the monomeric state for each protein. The protein-centric analysis, in figure 1b panel 

4.II reports quantitative comparisons of all detected peptide co-elution groups called protein features. 

Figure 1b panel 4.III depicts the CCprofiler module that supports differential complex centric analysis, 

where pair-wise quantitative comparisons of the detected protein co-elution groups, called complex 

features, between all the biological conditions are reported. (c) Benchmarking experiment using HeLa cells 

comparing a typical SEC-SWATH workflow using the long gradient (90 minute gradient; 126 minute 

injection to injection time) compared to our optimized workflow using short gradient (21 minute, 24 

minute injection to injection time) analyses showing the number of peptides, proteins, or protein 

complexes detected. (d) CV distribution within THP-1 perturbation experimental groups compared to 
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whole experiment. (e) Spearman correlation matrix with hierarchical clustering calculated based on SEC 

protein feature peak areas for undifferentiated (U), differentiated macrophages (D), and LPS stimulated (S). 

 

Given that our optimized experimental workflow substantially increased throughput, thus 

facilitating the measurement of biological replicates from different experimental conditions with 

comparable information content, we reasoned that new algorithmic and statistical approaches 

were needed to fully exploit the available data and to maximize biological insight. The 

computational advances in the workflow are implemented in a new version of our software 

CCprofiler31 to systematically and automatically investigate changes in proteome assembly across 

multiple conditions or cellular states (Fig. 1b). CCprofiler includes several pre-processing 

functions to align SEC profiles, to compute missing values and to normalize intensities between 

replicates and conditions (see materials and methods). The extended CCprofiler version further 

enables the qualitative and quantitative detections of three complementary aspects of 

(differential) proteome organization, each one implemented in a specific CCProfiler module.  

The first module is directed at detecting proteins that differ in their global assembly state, 

meaning that the relative distribution between monomeric and assembled states is different 

across the conditions (Fig. 1b panel 4.I). For this analysis we first exploit the log-linear 

relationship between the SEC elution fractions and their apparent molecular weight 

(Supplementary Fig. 3), enabling the assignment of a monomeric and assembled SEC elution 

range specific for each protein detected. The fraction of observed protein mass in the assembled 

SEC elution range is represented by the Assembled Mass Fraction (AMF) (see materials and 

methods). The differential module assesses whether a protein undergoes a significant change in 

AMF across the different conditions, meaning that it changes from assembled states to the 

monomeric state or vice versa. Importantly, AMF analysis does not require the extraction of 

specific elution peaks, but instead takes all fractions in the monomeric and assembled range into 

account, respectively. This makes the AMF analysis module also applicable to CoFrac-MS 

experiments of limited chromatographic resolution.    

The second, protein-centric analysis module evaluates the number of distinct assembly states in 

which each protein is observed. We define a distinct assembly state as a resolved peptide co-

elution peak group of a protein along the SEC chromatographic dimension, referred to as ‘protein 

feature’. Recently, we extended the protein-centric analysis to quantitatively compare protein 

features across different conditions20. In contrast to a standard differential protein expression 

analysis, abundance fold-changes and p-values are computed for each distinct protein feature, 

thereby capturing not only changes in overall protein expression, but abundance changes of 

specific assembly states. In addition to the feature-specific differential analysis, global differential 

assessment is performed by comparing integrated intensities across the entire fractionation 
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dimension instead of restricting the analysis to a feature-specific range. The same strategies as 

for feature-specific estimation of log2-fold-changes and p-values are performed. Additionally, we 

provide the opportunity to compare the relative distribution of protein mass across the various 

detected assembly states (Fig. 1b panel 4.II), represented by a relative Feature-specific Mass 

Fraction (FMF). Here, a change in FMF across conditions indicates that the protein changes its 

relative distribution across different assembly states i.e. a change in the state of protein 

complexes that cannot be explained by a change in protein abundances only. The protein-centric 

differential analysis yields a fine-grained view of individual assembly states of each protein but 

also enables more global assessments of the overall degree of higher order assembly observed in 

each biological condition.  

Finally, in the third analysis module CCprofiler quantitatively compares the abundances and 

compositions of protein complexes across different biological conditions in an automated and 

error-controlled manner (Fig. 1b panel 4.III). Unlike the first two strategies which are hypothesis 

free, the complex-centric analysis module first relies on prior protein connectivity information to 

query the data in a targeted fashion and to extract protein complexes based on their co-elution 

profiles under a controlled FDR (see materials and methods). CCprofiler then carries out a 

differential analysis step by comparing the signal intensity for each protein complex feature 

across all pairwise biological conditions. This analysis enables the consistent detection and 

quantitative comparison of hundreds of protein complexes across different biological conditions. 

Performance and quality assessment 
 
To determine whether our optimized workflow had comparable information content to 

established CoFrac-MS strategies we benchmarked against a typical SEC-SWATH method using a 

90-minute gradient (126 minute injection to injection time). In this comparison we analyzed 

equivalent SEC fractions from a HeLa CCL2 native protein extract with either method. The 

DIA/SWATH data were analyzed using Spectronaut and a previously published HeLa CCL2 

spectral library32. We applied CCprofiler filtering and feature finding functions and evaluated the 

number of peptides, proteins, and protein complexes detected by both methods (Fig. 1c, 

Supplementary Fig. 4-5, and Supplementary Tables 1-6). Overall, we recovered 70%, 77%, and 

95% of the information at the peptide, protein, and protein complex levels, respectively, when 

comparing the short gradient to the long gradient method with ~half order reduction in protein 

SEC feature dynamic range. 

Having demonstrated that our rapid method still provides comparative proteome and 

interactome coverage, we next turned to the THP-1 perturbation experiment. We analyzed the 

576 LC-MS/MS runs from the three experimental conditions in SEC triplicates using the 
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OpenSWATH computational pipeline and a THP-1 specific spectral library generated by DDA 

analysis of 12 basic reversed phase fractions of a pool of the biological samples. It  contained 

84,453 peptide precursors, mapping to 9,375 proteins. The output, initially filtered with relaxed 

FDR thresholds before import to CCprofiler, contained on average 46,146 proteoytpic peptides 

per SEC run (range 43,785-47,297) from which we inferred 5,736 unique proteins on average 

(range 5,686-5,762) across the dataset at a 10% run-specific peak-group FDR, 5% global peptide 

FDR and 5% global protein FDR before further FDR refinement in CCprofiler (described below). 

We first assessed the consistency and comparability of the 9 fractionation runs by performing 

pair-wise alignments at the peptide-level and calculated the global correlation amongst all 

matching peptides (Supplementary Fig. 6). The results demonstrate that the SEC runs were 

reproducible and did not require further alignment. To enable a quantitative comparison of the 

respective SEC runs at the three analysis levels, we then normalized the intensities using a cyclic 

loess method (Supplementary Figure 7). To increase the confidence for downstream analyses, we 

filtered out peptides which were not identified in two consecutive SEC fractions, we only kept 

proteins supported by more than one proteotypic peptide, and we required that the remaining 

proteins are supported by at least two highly-correlating sibling peptides (materials and methods 

& Supplementary Fig. 8). After these conservative filtering steps, the mean number of detected 

proteins per SEC run was 4,013 (range 3,996-4,025). We next applied chromatographic feature 

finding to the concatenated dataset of all 9 SEC runs and detected 5,196 protein SEC elution 

features from 3,335 proteins at a 5% FDR threshold, amongst which 911 (27%) were detected as 

monomers only, whilst 2,424 (73%) had at least one elution feature in the assembled molecular 

weight range (> 2x monomer molecular weight). Of the 3,335 proteins 1,389 had multiple 

detected features at different molecular weights, thus suggesting their contributions to more than 

one complex (Supplementary Fig. 9-10).  

To assess the global biological information content of the THP-1 dataset, we computed the 

coefficient of variation (CV) for peak areas of protein SEC features over the biological replicates 

within experimental groups and compared these to the CV over all samples across groups. Fig 1d 

shows the distribution of the CV for these categories where the median within experimental 

group CV is 0.18-0.23 whereas the median CV for all samples across the three different 

experimental conditions is 0.32, indicating that we have captured substantial biological variation. 

To further examine the global pattern of biological variability within and across experimental 

groups we calculated the Spearman correlation using protein SEC feature peak areas and 

performed hierarchical clustering (Fig 1e). This analysis showed that the undifferentiated 

monocytic cell state clusters distinctly from both the differentiated and stimulated states, which 

are not distinguished in this global analysis, indicating that the magnitude of proteome 
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reorganization induced by differentiation is substantially higher than that of LPS stimulation of 

in the differentiated state. 

Protein complex re-organization in differentiated and stimulated THP-1 cells 
 
To compare between experimental groups, we applied the 3 quantitative modules of CCprofiler 

beginning with the Assembled Mass Fraction (AMF) analysis. Over the 9 samples analyzed, 60-

64% of the global proteome mass was estimated to be in an assembled state (Supplementary Fig. 

11 and Supplementary Tables 7-8). A global view of the change in AMF with respect to the 

experimental comparisons is shown in Fig. 2a. Of the 3,903 proteins in the AMF analysis, 61 

proteins had significant changes in their assembly state (absolute mean AMF difference larger 

than 0.25, BH p-value less than 0.05) comparing the differentiated to undifferentiated conditions 

(51 proteins increased AMF and 10 proteins decreased AMF on differentiation) and only 1 protein 

showed a significant change (decreased AMF) when comparing the stimulated to differentiated 

conditions. For example, Fig. 2b shows the average protein abundance over the SEC dimension 

for SHC1, a adaptor protein with broad functional roles in signaling, for each of the 3 experimental 

conditions. In the undifferentiated state almost all of the SHC1 signal is observed at the expected 

monomeric molecular weight (MMW) of ~63 kDa with only 3.7% observed at larger than 2 times 

the expected MMW. On differentiation we observe a clear and statistically significant shift (BH p-

value = 0.003) with 32.4% of the signal for this protein observed in the assembled state. 

Stimulation of the differentiated cells with LPS did not produce a further significant shift in the 

assembly state of SHC1 with 38.4% in the assembled state (BH p-value = 0.522). SHC1 has been 

directly implicated as a signaling adaptor in monocyte to macrophage differentiation in previous 

studies33,34. 

 

Figure 2 – Protein complex reorganization in differentiated/stimulated THP-1 cells 

(a) Scatterplot summarizing the summarizing the AMF analysis in the pairwise comparisons of interest. 

Points on the diagonal indicate no change between conditions and points outside the thresholds indicate 

an effect size > 25% with the BH p-value indicated by the pink/blue color scale. SHC1 is highlighted with a 

significantly altered AMF in differentiated versus undifferentiated cells (red) but not in stimulated versus 

differentiated cells (blue). (b) Absolute mass fraction (AMF) analysis showing protein SEC profiles for SHC1 

in the 3 experimental conditions, demonstrating an AMF shift from the monomeric state toward an 

assembled state, going from undifferentiated monocytes to differentiated macrophages. MMW and 2x 

MMW indicate the expected monomeric molecular weight and twice the expected monomeric molecular 

weight. Biological replicates are collapsed to median ± SD. (c) Volcano plot summarizing the protein-centric 

analysis where each data point represents one protein SEC feature. Highlighted points are WASHC5 protein 

SEC features that do (red) or do not (blue) pass significance thresholds. (d) Protein-centric analysis 

showing Peptide SEC traces for WASHC5 in the 3 experimental conditions demonstrating a reduction in 

abundance of the lower molecular weight SEC feature and an increase in the higher molecular weight SEC 

feature going from the undifferentiated condition toward the differentiated condition. Grey background 

indicates SEC feature boundaries and black lines indicate feature apex. Biological replicates are collapsed 
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to mean ± SD. (e) Volcano plot summarizing the complex-centric analysis where each data point represents 

one detected protein complex. Highlighted points are the IFIT complex that changes significant in the 

stimulated vs. differentiated comparison (red) but not in the differentiated vs. undifferentiated comparison 

(blue). (f) Complex-centric analysis showing protein SEC profiles for the 3 components of the IFIT complex 

where the complex is observed in the stimulated condition but not in the undifferentiated or differentiated 

conditions. Grey background indicates SEC feature boundaries and black lines indicate feature apex. (g) 

Upset plot showing the overlap in proteins deemed to have significant changes in each of the quantitative 

comparisons in either the differentiated vs. undifferentiated comparison (blue), the stimulated vs. 

differentiated comparison (pink), or shared in both (grey) (h) Functional enrichment analysis both 

comparisons of interest based on combined set of proteins significant from all comparison methods. 

 

We next applied the Protein-Centric Analysis module of CCprofiler to the THP-1 dataset. Overall, 

we observed feature-specific quantitative differences (absolute log2FC larger than 1, BH p-value 

less than 0.05) between SEC features for 540 proteins in the differentiated vs. undifferentiated 

comparison and in 30 proteins for the stimulated vs. differentiated comparison (Fig 2c and 

Supplementary Tables 9-11). In the protein-centric global comparison, where the signal from all 

SEC fractions for a given protein is summed and compared across conditions, we observed 

significant changes for 428 proteins in the differentiated vs. undifferentiated comparison and 39 

proteins for the stimulated vs. differentiated comparison. We then performed the feature-specific 

mass fraction (FMF) comparison in which we can infer whether a protein changes its relative 

distribution across different assembly states. We detected 114 proteins in the differentiated vs. 

undifferentiated comparison that underwent changes in their assembly state that were not 

attributable to changes in overall protein quantity and, in contrast, we could detect no proteins 

in this category for the stimulated vs. differentiated comparison. Fig. 2d shows SEC profiles for 

peptides mapping to WASHC5, a component of the WASH complex associated with endosome 

regulation. We observe 2 distinct protein SEC features both substantially in excess of the expected 

MMW, indicating the likely participation of WASHC5 in two distinct complexes. A significant 

reduction of peak area of the lower molecular weight feature in the undifferentiated vs. 

differentiated conditions is observed in combination with an apparent (although not significant) 

increase in the higher molecular weight feature. In Fig. 2c the summary for all protein features is 

shown in volcano plots for the comparisons of interest with the protein features for WASHC5 

highlighted. While the specific role of the WASH complex in differentiation is not broadly 

understood mouse cells lacking the WASH complex  were shown to be deficient in haemopoietic 

differentiation including at the transition from monocyte to macrophage lineages35 and therefore 

reorganization of this complex is plausibly functionally relevant in this monocyte to macrophage 

transition. 

Finally, we applied the complex-centric module of CCprofiler to compare the set of detected 

protein complexes between conditions. To generate a comprehensive input hypothesis-set for 
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the complex-centric analysis, we merged the CORUM database36 with the String database37 

partitioned to create discrete protein complex hypotheses using the ClusterONE algorithm38, 

originally created to detect potentially overlapping protein complexes from PPI datasets 

(Supplementary Table 12). This resulted in 3,127 complex hypotheses, from which 644 were 

detected; 104 were fully detected, 375 were detected with at least 50% of the subunits present 

and 165 were identified with less than 50% of the subunits present, all with a 5% FDR at the 

complex-detection level (Supplementary Fig. 12). We further collapsed these 644 confidently 

detected protein complex queries to 321 likely unique protein complexes based on subunit 

composition and position in the SEC dimension25. Overall, we observed significant quantitative 

changes in 17 protein complexes, composed of 73 protein subunits, in the differentiated vs. 

undifferentiated comparison. This is in contrast to the stimulated vs. differentiated comparison 

in which only a single protein complex was called as significantly different (Fig. 2e and 

Supplementary Tables 13-17). Fig. 2f shows the protein level SEC traces for the 3 annotated 

subunits of the IFIT complex. The IFIT complex, composed of the Interferon-induced protein with 

tetratricopeptide repeats 1-3, is a well described factor in interferon-induced response with 

particular functional relevance in anti-viral function although more recent data implicates the 

IFIT complex in regulatory function in inflammatory reponses39. For example, LPS stimulation in 

macrophages has been shown to increase IFIT expression levels in order to enhance the secretion 

of proinflammatory cytokines including TNF alpha and IL-640. We observe a clear signal for the 

IFIT complex at the expected molecular weight in the LPS stimulated condition and compared 

with only baseline amounts in the differentiated and undifferentiated conditions. As such, the 

increased expression of the IFIT proteins, and their assembly into a complex, is consistent with 

the LPS stimulation employed in our experiment. Interestingly, IFIT1 and IFIT3 (but not IFIT2) 

also appear in an as yet unannotated higher molecular weight assembly. 

Fig. 2g summarizes the number and overlap of proteins that we call as significantly changing in 

each of the CCprofiler analysis modes described for both experimental comparisons 

(Supplementary Table 18). As expected, there is some redundancy between these modes of 

analysis but also much complementarity as each strategy is tuned to detect different aspects of 

protein complex re-organization. This view of the data underscores the magnitude difference in 

the response from the perspective of proteome organization to the chosen biological 

perturbations. Here we expect to capture changes related both to increases in the abundance of 

protein complexes driven primarily by changes in the abundance of their protein subunits (likely 

exclusive to ‘protein-centric (global)’, ‘protein-centric (feature-specific)’, and ‘complex-centric’ 

categories), as well as changes in protein assembly composition (exclusive to ‘protein-centric 

(FMF)’ and ‘assembled mass fraction’, or combinations of those mechanisms that appear in 

multiple categories). This graph also underscores the observation that substantially more 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.12.17.473177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473177
http://creativecommons.org/licenses/by-nd/4.0/


 

 

changes occur in cells that transition from the suspension monocyte state to the adherent 

macrophage state than in the comparison of macrophage cells that are stimulated to upregulate 

immune defenses by LPS stimulation. To obtain a global functional picture of the response to 

these perturbations from the perspective of proteome organization we performed a functional 

enrichment analysis based on the consolidated list of proteins significantly altered in each 

element of the CCprofiler analysis. Fig. 2h shows the results for both comparisons where we find 

enriched terms that are consistent with differentiated vs undifferentiated comparison (i.e. 

extracellular matrix organization, cell adhesion, signal transduction, etc.) and the stimulated vs. 

differentiated comparison (i.e. type I interferon signaling pathway, innate immune response, etc.). 

We examined the distribution of protein SEC feature peak areas and determined that while the 

peak areas of protein features that are detected at >2x the expected monomer molecular weight 

follow the same peak area distribution as all detected protein SEC features, the set of protein SEC 

features that match to protein complexes detected in the complex-centric analysis are shifted 

toward higher peak areas indicating we are somewhat less likely to successfully call complexes 

for lower abundance features (Supplementary Fig. 13). This observation underscores the utility 

of assessing the data in a protein complex hypothesis free manner, as in the AMF and protein-

centric analysis modes, in addition to the complex centric analysis. 

In order to render the data easily accessible and viewed in depth, and enable manual query of 

community-based testing of novel putative interacting proteins supported by the presence of co-

elution profiles, we have made the data accessible to the community via a web portal32 

(https://collins-lab.shinyapps.io/secexplorer_thp1/). This online tool provides the opportunity 

to manually query the SEC profiles of our 3 biological THP-1 conditions by providing an 

interactive viewing. It enables the manual query for locally co-eluting proteins to potentially 

identify de novo interactions and to visualize the results from the 3 differential CCprofiler 

modules.  

 

Discussion 
 
Methods using co-fractionation as a basis have promised characterization of the state of protein 

complexes and their reorganization upon cellular perturbation in a global and quantitative 

fashion. However, with the current state of the workflows this remains a somewhat distant goal 

with respect to routine application, especially for complex experimental designs. While a number 

of studies employing this approach have demonstrated substantial biological insight, the general 

strategy has failed to break into mainstream use. At the outset of this study we identified two 

major factors holding back progress, namely, (i) the resources required per biological sample for 
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typical implementations of this strategy are not practically compatible with complex study 

designs including multiple experimental conditions with biological replication, and, (ii) a lack of 

integrated software solutions that could perform differential statistical analysis at all levels of 

interest (assembled mass fraction, protein-centric, and complex-centric). In this study we 

address both barriers by developing an integrated experimental and computational pipeline for 

rapid quantitative profiling of protein complex states. 

We present an optimized method that facilitates the interrogation of many biological samples in 

perturbation experiments with biological replicates within a feasible time-frame and a robust 

data analysis pipeline. By using robust short gradient liquid chromatographic separation and 

DIA/SWATH data acquisition we could reduce the MS acquisition time of 9 SEC runs of 64 

fractions each, totaling 576 samples down to 9.6 days. This is in comparison to an estimated 50.4 

days for the same project based on the 90 minute gradient and 126 minute injection to injection 

time that we used in the long gradient comparison for this study, although we note many studies 

using this strategy perform 2-4 hour gradients for CoFrac-MS analyses13. In real terms the actual 

increase in throughput is substantially higher because the short gradient chromatography using 

solid phase extraction tips for loading and embedded gradients for separation reduces 

substantially the need for maintenance procedures such as instrument cleaning and column 

changes that typically interrupt data acquisition blocks using classical long gradient methods. As 

such, this represents an order of magnitude reduction in the time required to acquire data for this 

type of experiment and does not require the complexity and experimental design constraints 

associated with multiplex labelling. While the gains in throughput are critical to the further 

development of this strategy, we expect commensurate benefits to data quality as the inevitable 

effect of drift in instrument performance over time will be substantially mitigated by the reduced 

measurement time and reduced need for instrument maintenance during data acquisition30. In a 

benchmarking experiment using HeLa cells we demonstrate that the information content from 

our rapid method is comparable to that of a standard long gradient approach, and we 

demonstrate in our THP-1 perturbation experiment that the across-group variation in our 

quantitative data exceeds the within-group variation indicating we capture biological 

information. Further, since our data was acquired a number of improvements in MS data 

acquisition schemes aimed at maximizing the numbers of peptides/proteins quantified in short 

gradient data have been introduced and we expect our strategy to directly benefit from these, 

increasing sensitivity and protein complex coverage and reducing analysis time41–43.  

We made several algorithmic improvements, embedded in several novel modules of our 

CCprofiler4,20 software pipeline, that maximize the information extracted from the more complex 

experimental designs that are facilitated by our higher throughput method. These include the 
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capability to assess between group differences from 3 perspectives that each have their own 

advantages/disadvantages. Complex-centric analysis provides the richest information on the 

reorganization of protein complexes as a function of the perturbation but is likely missing many 

interesting changes because it relies on the prior information in the form of testable protein 

complex hypotheses that may be incomplete. We note that several tools have been introduced 

recently that leverage machine learning to define protein complex hypotheses from CoFrac-MS 

data14,15,17 and these could be used as input for the CCprofiler complex-centric analysis. The 

protein-centric strategy is free of any such assumptions and simply asks whether a given protein 

feature in the SEC dimension changes between experimental groups. Our results show that this 

comparison can sensitively detect changes that are a proxy for changes in protein complex re-

organization or abundance in a fine-grained manner. The assembled mass fraction strategy 

similarly does not require background protein complex information and further does not require 

feature finding in the SEC dimension, meaning that it may detect changes in proteins/complexes 

which smear across many SEC fractions that would be missed by the other methods. 

The biological perturbations that we chose induce different cellular states that likely rely on quite 

different molecular mechanisms and this difference is reflected in our results. We observed 

evidence for a significantly higher number of changes in protein organization or abundance when 

comparing the monocyte state to the differentiated macrophage state than when comparing the 

unstimulated versus stimulated macrophage cells. This is also apparent from the unsupervised 

clustering which clearly shows the undifferentiated state as clearly distinguished from the 

differentiated and LPS stimulated states. Differentiation from a suspension monocyte-like 

phenotype to an adherent macrophage-like state is a gross and irreversible phenotypic change 

that likely requires the remodeling of many protein complexes that are visible to our method. 

When integrating changes observed at the three levels of CCprofiler analysis we see substantial 

alterations in proteome organization relating to broadly to signaling, cell adhesion, and 

extracellular matrix related functions. Whereas the induction of an inflammatory response may 

be better characterized as a change in signaling/activation in given pathways that rely more on 

PTMs (post translational modifications) or transient changes in protein complex assembly state 

that are more difficult to detect. This observation underscores the idea that data generated from 

this approach would benefit from combination with other data types (e.g. proteoforms or PTMs) 

where their interdependence could be assessed44,45. Nevertheless, while a smaller number of 

changes were observed in macrophage LPS stimulation as compared with differentiation from 

monocyte to macrophage, functional categories related to innate immune response were clearly 

overrepresented in the results integrated from our three level CCprofiler analysis.  
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With the introduction of our rapid integrated method, we anticipate that global profiling of 

protein complex re-organization in perturbation experiments with complex experimental 

designs will be enabled as a primary tool in systems biology research and beyond. 

 

Data and software availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE46 partner repository with the dataset identifier PXD036711.  

Reviewer access pre-publication is available via https://www.ebi.ac.uk/pride/ 

Username: reviewer_pxd036711@ebi.ac.uk 

Password: AGZSowSQ 

The CCprofiler software including differential analysis modules is available at 

https://github.com/CCprofiler/CCprofiler/tree/differential. Analysis scripts for this paper are at 

https://github.com/ibludau/THP_SEC_SWATH_MS. Code for the SECexplorer instance to view 

the THP1 data is implemented via R Shiny and is available at https://github.com/collins-

ben/SECexplorer_THP1. 
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Materials and methods  

Cell culture 

The human monocytic cell line THP-1 (LGC, ATCC-TIB-202) was cultured and expanded in RPMI 

1640 media (Gibco, 61870-010) supplemented with 10% FCS (BioConcept, 2-01F00-I) and 1% 

Penicillin/Streptomycin (Gibco, 15140-122) and kept at a confluency between 0.5 - 1.2 x 106 cells 

per ml at 37°C in a 5% CO2 incubator. 1.5 x 106 THP-1 cells were differentiated when 

supplemented with 50 ng/mL PMA (Sigma, P1585) for 48h and when stated, the differentiation 

treatment included a 24-hour stimulation with 100 ng/mL LPS (Sigma, L2630). The suspension 

cells or differentiated adherent cells were washed with PBS (Gibco, 10010-023) and were 

sedimented in a pellet by centrifugation at 300g kept at 4°C. The cell pellets were immediately 

snap-frozen in liquid nitrogen. 

 

Sample preparation for library generation  

The proteins were extracted from the frozen cell pellets by lysing the cells with 1% SDC (Sigma, 

D6750) in HNN Buffe pH 7.8 (50 mM HEPES, 150 mM NaCl, 50 mM NaF, 200 µM Na3VO4, 1 mM 

PMSF, 1x Protease Inhibitors (Sigma, P8215), 1x Benzonase (Sigma, E1014)), and incubated for 

5 minutes at room temperature. The lysates were centrifugated at 13’000g for 10 minutes to 

remove insoluble materials. The extracted proteins were reduced at 5mM TCEP for 30 minutes 

at 37°C while shaking at 500 rpm and subsequently alkylated in 10 mM Iodoacetamide for 30 

minutes at 37°C. The proteins were precipitated overnight in 100% Acetone at -20°C and pelleted 

by a 30-minute centrifugation step at 4°C. The protein pellets were then resuspended in 1% SDC, 

8M Urea in 0.1 M Ammonium bicarbonate and sonicated for 10 minutes. The proteins were 

diluted to 0.1 M ammonium bicarbonate and digested overnight with Trypsin (Promega, V5113) 

at 37°C with a protein-to-enzyme ratio of 50:1. The digestions were stopped with 50% TFA and 

the SDC was removed by two centrifugation steps of 10 minutes each at 16’000g. The peptides 

were desalted and cleaned-up using C18 columns (The Nest Group, #SEM SS18V) and were 

resuspended in 5% acetonitrile, 0.1% formic acid with iRT peptides (Biognosys, Ki-3002).  

For the spectral library generation, a fraction of all samples was pooled together, dried using a 

vacuum centrifugation at 45°C and resuspended in Buffer A (20 mM ammonium formate, 0.1% 

ammonia solution, pH 10). 200 µg of peptides were injected into an Agilent Infinity 1260 (HP 

Degasser, Vial Sampler, Cap Pump) and 1290 (Thermostat, FC-µS) system and separated on a 25 

cm long C18 reverse-phase column (YMC Triart) with 3µm particle size and 12 nm of pore size. 

The peptides were separated at a flow rate of 12µl/min by a linear 56-min gradient from 5% to 

35% Buffer B (20 mM ammonium formate, 0.1% ammonia solution, 90% acetonitrile in water, 
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pH 10) against Buffer A (20 mM ammonium formate, 0.1% ammonia solution, pH 10) followed 

by a linear 4-min gradient from 35% to 90% Buffer B against Buffer A and 6 min at 90% Buffer B. 

The resulting 36 fractions were pooled into 12 samples. The buffer of the pooled samples was 

evaporated using vacuum centrifugation at 45 °C and the resulting 12 samples were resuspended 

in 2% ACN, 0.1% FA with iRT peptides (Biognosys). 

 

SEC protein complex extraction and fractionation  

Protein complexes fractionation was performed as previously described 31. THP-1 cells were 

thawed and lysed in mild conditions by homogenization with a lysis buffer composed by 0.5% 

NP-40 detergent  and protease and phosphatase inhibitors (50 mM HEPES pH 7.5, 150 mM NaCl, 

0.5% NP-40, 1 mM PMSF, 400 nM Na3CO4, protease inhibitors cocktail (Sigma-Aldrich, MI, USA)). 

Cell debris and membranes were removed by 15 minutes of ultracentrifugation (55,000×g, 4 °C) 

and the detergent was removed by 30 kDa molecular weight cut-off membrane and exchanged 

with the SEC buffer (50 mM HEPES pH 7.5, 150 mM NaCl). The samples were concentrated for a 

final protein concentration between 7-12 µg/µl.  After 5 min of centrifugation at 16,900 ×g at 4 °C, 

the supernatant was directly injected to a Yarra‐SEC‐4000 column (300 × 7.8 mm, pore size 500 

Å, particle size 3 μm, Phenomenex, CA, USA). 0.8 mg of native proteome extract (estimated by 

Pierce™ BCA Protein Assay Kit, Thermo Fisher Scientific, MA, USA) was injected for each SEC run 

at 4 °C with a flow rate of 500 µl/min, for a total chromatographic time of 30 min. Fraction 

collection was performed in the retention time window from 10 to 26 min, at 0.25 min per 

fraction, for a total of 64 fractions collected. 

The molecular weight calibration curve for SEC fractionation was obtained by running a  protein 

standard mix  (Column Performance Check Standard, Aqueous SEC 1, AL0-3042, Phenomenex, CA, 

USA) before each sample injection (Supplementary Table 19). 

 

Sample preparation for Mass Spectrometry analysis  

Sample processing for bottom-up analysis of SEC fractions was performed on a 96-well plate 

MWCO filters (AcroPep Advance Filter Plates for Ultrafiltration 1mL Omega 10K MWCO; Pall 

Corporation, USA) 47. Prior to usage, the filters are washed twice with 200 μl of water that was 

successively removed by centrifugation at 1800 g for 30 min. 64 fractions for each sample (total 

fraction volume 125 μl) were loaded and concentrated on the filters through centrifugation, until 

the complete removal of the SEC buffer.    

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 28, 2022. ; https://doi.org/10.1101/2021.12.17.473177doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.17.473177
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Protein denaturation and reduction was obtained incubating the samples at 37 °C for 30 min with 

5 mM of TCEP in 8M Urea/20 mM ammonium bicarbonate (AMBIC) (pH 8.8). Alkylation of 

cysteine residues was performed adding a final concentration of 50 mM IAA/20 mM AMBIC and 

incubating in the dark and room temperature for 1 h. After the reaction, the plates were 

centrifuged for removing the Urea buffer and washed for three times with 20 mM AMBIC. Protein 

digestion was carried out at 37 °C for 16 h, adding to each well 1 μg of trypsin (Promega, 

Switzerland) and 0.3 μg of Lysyl Endopeptidase (Mass Spectrometry grade, FUJIFILM Wako Pure 

Chemical Industries, Japan). The resulting peptides were collected by centrifugation and the 

plates were washed once more with 100 ul of ddH20. 

 

LC-MS analysis  

DIA/SWATH analysis of the peptide fractions was performed on Evosep One system (Evosep 

Biosystems, Denmark) 30 coupled to an AB Sciex TripleTOF 6600 instrument (Sciex, MA, USA) 

equipped with a NanoSpray III ion source (Sciex). The samples are loaded in Evotips (Evosep 

Biosystems, Denmark), after resuspension in solvent A (0.1% FA water solution, Fisher Scientific 

AG, Switzerland) and the addition of iRTs peptides (Biognosys) in a ratio 1:100 for the retention 

time alignment requested for SWATH acquisition.  75% of the peptide recovered from each SEC 

fraction was loaded. For the loading, the C18 stage tips (Evotips) were soaked with 100 μl of 2-

propanol during the activation and the conditioning steps. The activation step consisted in the 

washing with 20 μl of solvent B (0.1 % FA in ACN, Fisher Scientific AG, Switzerland), followed by 

the conditioning with 20 μl of solvent A. Prior the sample loading step, 10 μl of solvent A is added 

on top of the tips, ensuring that the tips remain wet during the loading step. For each steps, the 

Evotips were centrifuged for 1 min at a speed of 700 g for the elution of the solvents. The last step 

(i. e. washing step) was performed using 100 μl of solvent A, and the loaded tips are added with 

200 μl of solvent A for preserving the samples during the entire injection of the batch. 

The separation of peptides was performed selecting the “60 samples per day” method, consisting 

in 24 minutes of total cycle time, for 21 minutes of gradient length, 3 minutes of overhead time at 

a flow rate of 1 μl/min. A partial gradient is applied (0-35% solvent B) in order to elute the 

peptides from the Evotip by two couples of low pressure pumps. The peptides were then pushed 

in a C-18 nanoConnect LC column (8 cm column, ID 100 μm packed with 3 μm Reprosil, PepSep, 

Denmark) using an high pressure pump and solvent A 30.  The ESI coupling was obtained using a 

Nano Source Emitter Stainless Steel Nano-bore 1/32 (Thermo Fisher Scientific).  
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The ESI tuning parameters were the following: spray voltage, 2800 V; ion source gas flow (GS1), 

16; curtain gas flow (CUR), 35; interface heater temperature (IHT), 100°C and declustering 

potential, 100. 

The Evosep system was controlled by the Axel Semrau Chronos software (Axel Semrau GmbH, 

Germany), while the mass spectrometer acquisition software was Analyst TF 1.7.1 (Sciex).  

Data-independent acquisition (SWATH/DIA) mass spectrometry48 was performed for the 

quantitative analysis of the 576 SEC fractions (64 fractions per sample) obtained from the 9 SEC 

experiment. SWATH scan performed using an updated scheme of 64 variably sized precursor co-

isolation windows 49, covering similar precursor densities (in terms of number and intensity) 

within all SWATH windows. The SWATH windows cover the precursors ions in the range of 350-

1500 m/z and 350-1500 in the MS2 SWATH scans, the accumulation time was 100 ms for the MS1 

and 20 ms for each SWATH window, resulting in a cycle time of 1.38 s. For fragmentation, it was 

applied a rolling collisional energy with a collisional energy spread of 15 eV.  

 

DDA MS analysis for the library generation  

The 12 high pH fractioned peptide samples were separated on an Eksigent nanoLC Ultra AS2 1D 

Plus and expert 400 autosampler system (Eksigent, Dublin, CA) coupled to a TripleTOF 5600 

through a NanoSpray III ion source  using a Data Dependent Acquisition (DDA) scheme. The 20 

cm long nanoLC column was packed in house using a 75 µm inner diameter PicoFrit emitter (New 

Objective, Woburn) with Magic C18 AQ 3 um, 200 Å particles. The separation was performed at 

room temperature with a flow rate of 300 nl/min. All the LC solvents were all of mass 

spectrometry grade. The LC solvent A was composed of 98% water, 2% acetonitrile and 0.1% 

formic acid, LC solvent B was 98% acetonitrile, 2% water and 0.1% formic acid. The peptides 

were eluted over 120 minutes, with a linear gradient from 5% to 35% LC solvent B. One MS1 scan 

with a m/z range of 360-1460 and an accumulation time of 250 ms was followed by 20 MS2 scans 

with m/z ranges of 50-2000 and accumulation times of 100 ms. The dynamic exclusion time was 

set to 20 seconds.  

 

Data processing 

DDA data analysis for the library generation 

DDA-MS data acquired from peptide fractionation of the full THP-1 cell lysates (see above) were 

processed for the SWATH library generation following the protocol previously described 50.   
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MS spectra were searched for peptide matches against the human UniProt/SwissProt reference 

database (reviewed, canonical entries, June 2017) using Comet 2018.01 rev. 0 MS/MS search 

engine. The search was carried out using trypsin cleavage, 30 ppm precursor and 0.05 Da 

fragment ion mass tolerance, carbamidomethyl (C) as static and oxidation (M) as variable 

modification and a maximum of 2 enzyme missed cleavages. The results from the search were 

statistically scored using Peptide Prophet (statistical validation of PSMs) and iProphet (peptide 

sequence validation) of the Trans-Proteomic Pipeline (TPP v5.0.0 POLAR VORTEX rev 0), filtering 

the results at 1% peptide FDR (0.815939 iprob) as determined using the tool Mayu 51. A wider 

peptide-level FDR cut-off (5% FDR on protein level, compared to requiring 1% FDR) was chosen 

in order to increase sensitivity for the recovery of true positive peptide signals.  

The resulting spectra were then gathered for the generation of the consensus spectra library 

using SpectraST including retention time calibration. The 6 most abundant fragment ion 

transitions per precursor from the bn or yn ion series were selected, with a m/z range of 350-2000 

and aa fragment charge states 1-2. The final library contains query parameters for 506,717 

precursors of 73,007 peptides mapping to 9375 protein groups. Moreover, to the spectra 

consensus library reverse decoy (506,581 decoys transitions) were generated for the FDR scoring 

provided by the SWATH/DIA data analysis workflow. 

 

DIA/SWATH data analysis  

For the THP-1 experiment the DIA/SWATH data collected from the analysis of SEC fractions were 

analyzed through peptide-centric analysis, querying 506,717 fragment precursors from the 

sample-specific peptide library generated (see above) in the SWATH MS2 spectra, using 

OpenSWATH v2.152,53 PyProphet and TRIC54 workflow. Initially, one global classifier was trained 

on a subsampled set of SEC fractions across the experiment using pyProphet-cli55. Peptides from 

all fractions were then quantified and scored using the pre-trained scoring function using 

pyProphet and TRIC. The HeLa benchmark dataset was analysed with Spectronaut v14 using a 

previously published HeLa CCL2 spectral library32. 

 

CCProfiler  

The first differential analysis module in CCprofiler is tailored towards detecting proteins that 

differ in their global assembly state, meaning that the relative distribution between monomeric 

and assembled protein mass is different across the conditions. Since this module depends on the 

assignment of the fractionation dimension into a monomeric and assembled range based on the 

monomeric molecular weight of each protein, the analysis is currently only available for SEC 
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datasets and requires both a molecular weight calibration of the fractions and a monomeric 

molecular weight annotation of the measured proteins. The cutoff between the monomeric and 

assembled SEC range is set at the fraction corresponding to two times the expected monomeric 

molecular weight of a protein. Based on this initial division of the SEC dimension, the assembled 

mass fraction (AMF) of each protein can be estimated by the fraction of the detected MS signal in 

the assembled mass range relative to the total, globally detected signal: 

AMF =  
∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑑

∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑙𝑜𝑏𝑎𝑙
 

 

A change in AMF is subsequently estimated by the difference in mean AMF across conditions: 

𝑑𝑖𝑓𝑓𝐴𝑀𝐹 =  𝑚𝑒𝑎𝑛(𝐴𝑀𝐹𝐴) − 𝑚𝑒𝑎𝑛(𝐴𝑀𝐹𝐵) 

Here, AMFA and AMFB denote the AMF values of two conditions A and B. Since AMF values are 

not normally distributed and bound by zero and one, a conventional t-test for significance 

estimation is not applicable. Instead, CCprofiler applies a beta-regression model and p-value 

estimation by a likelihood-ratio test to derive significance estimates (for details see below). 

Multiple testing correction is performed by Benjamini-Hochberg adjustment of the derived p-

values 56. Proteins with significant adjusted p-values and large AMF differences, are indicated to 

have a different proportion of individual proteins associated to higher order assemblies across 

the conditions. Notably, this information is derived independent from any feature (i.e. peak group) 

detection and does not require knowledge of the protein’s exact interaction partners. 

 

Differential analysis of distinct protein assembly states and detection of protein rewiring 

To further gain insights into distinct protein assembly states, we have previously introduced the 

protein-centric analysis concept for CoFrac-MS data within a single condition 31. Here, we extend 

the protein-centric analysis concept to enable the differential assessment of distinct protein 

assembly states. To achieve consistent protein feature (i.e. peptide co-elution peak group) 

detection across conditions and replicates, peptide-level traces are first integrated by summing 

the intensities across all samples in the provided tracesList. The integrated traces are 

subsequently used for protein-centric feature finding, applying random peptide assignments as 

decoy model for p- and q-value estimation 31. Each protein can thereby be assigned to potentially 

multiple distinct assembly states, as indicated by the detection of multiple unique protein 

features. Following this initial protein feature detection, differential analysis is performed to 

compare the signal intensity within each protein feature across conditions. 
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Differential analysis is performed in 5 steps: (i) Peptide-level intensities are computed for each 

protein feature and sample. Missing values in single fractions, replicates or conditions are 

imputed by uniformly sampling values between zero and the minimum detected signal of a 

peptide. The peptide intensity of one feature is then calculated by summing the intensities of all 

fractions across the corresponding protein feature range. (ii) The mean intensity across all 

replicates within a condition (specified by the design matrix) is calculated. (iii) The log2-fold-

change between conditions is calculated based on the mean feature intensities. (iv) If replicates 

are available, p-values are estimated by comparing the summed intensities across conditions by 

a non-paired t-test. If no replicates are available, p-values are estimated by comparing each 

fraction within a feature by a paired t-test across the conditions. (v) To subsequently derive 

protein-level information, the peptide-level tests are aggregated as follows: (1) protein log2-fold-

changes are derived from the median log-2-fold change across all detected peptides of the protein, 

and (2) protein p-values are estimated by determining the fold-change adjusted median p-value 

and applying a beta distribution as described by Teo et al. 57 and Suomi et al. 58 (for details see 

method section). (vi) Multiple testing correction is performed by Benjamini-Hochberg 

adjustment of the protein-level p-values 31.  

 

In addition to the feature-specific differential analysis, global differential assessment is 

performed by comparing integrated intensities across the entire fractionation dimension instead 

of restricting the analysis to a feature-specific range. The same strategies as for feature-specific 

estimation of log2-fold-changes and p-values are performed. To assess whether the signal within 

a protein feature is changing because of a global change in the protein’s expression or due to a 

rearrangement of the proteins relative distribution across different assembly states, an additional 

analysis step is available in CCprofiler. Here, the relative feature-specific mass fraction (FMF) is 

estimated by the fraction of the detected MS signal in the feature-specific mass range relative to 

the total detected signal: 

𝐹𝑀𝐹 =  
∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒

∑ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑔𝑙𝑜𝑏𝑎𝑙
 

A change in FMF is subsequently estimated by the difference in mean FMF across conditions: 

𝑑𝑖𝑓𝑓𝐹𝑀𝐹 =  𝑚𝑒𝑎𝑛(𝐹𝑀𝐹𝐴) − 𝑚𝑒𝑎𝑛(𝐹𝑀𝐹𝐵) 

Here, FMFA and FMFB denote the FMF values of two conditions A and B. Similar to the concept 

introduced for comparing AMF values, CCprofiler applies a beta-regression model and p-value 

estimation by a likelihood ratio test 59 to derive significance estimates for the change in FMF 
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across conditions (for details see methods section). Since the initial assessment of FMF values is 

performed on peptide-level data, protein-level information is derived by aggregation across all 

detected peptides as follows: (1) FMF differences are derived from the median diffFMF across all 

detected peptides of the protein, and (2) p-values are estimated by determining the difference 

adjusted median p-value and applying a beta distribution as described by Teo et al. 57 and Suomi 

et al. 58(for details see method section). Multiple testing correction is performed by a Benjamini-

Hochberg adjustment of the p-values 56. A significant change in the FMF across conditions 

indicates that the protein’s relative contribution to different distinct assembly states has changed 

across the conditions, thus providing insights into protein rewiring which is not observable by 

global proteome analyses. In contrast to complex-centric analyses, described in the following 

section, protein-centric differential analysis enables the assessment of changes in distinct protein 

assembly states independent of actually knowing the protein’s exact interaction partners. 

 

Protein complex detection and differential analysis 

The final analysis module in CCprofiler is focused on the complex-centric detection and 

differential assessment of protein complexes. We have previously introduced the basic concept 

of complex-centric analysis for CoFrac-MS data of a single condition 31. In summary, prior protein 

connectivity information is used to query CoFrac-MS data directly for evidence of pre-defined 

complexes. By using random protein assignments as a decoy model for error rate estimation, 

complex-centric analysis enables the detection of hundreds of protein complexes at high 

sensitivity and under controlled FDR. Here, we expand the complex-centric analysis strategy to 

allow the quantitative comparison between complexes detected across different cellular 

conditions. Analogous to the protein-centric workflow described in the previous section, protein-

level traces are first integrated by summing the intensities across all samples in the provided 

tracesList to ensure consistent signal detection across conditions and replicates. The integrated 

traces are subsequently used for complex-centric feature detection. Only the most complete 

complex feature (i.e. protein co-elution peak group) for each complex query is considered for 

scoring and FDR estimation. After filtering for q-values (e.g.  0.05), the complex features are 

appended by secondary features with high correlation values (peak correlation 0.7). These 

secondary features can for example entail potential sub-complexes or complex variants 31. 

 

Following this initial protein complex feature detection, a differential analysis step can be 

performed to compare the signal intensity within each complex feature across different 

conditions. The analysis concept is analogous to the differential analysis strategy implemented 
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on the level of protein features (see previous section). The initial differential testing is performed 

on peptide level, while results are subsequently aggregated on the protein level. For complex-

centric analysis, the protein-level results are additionally aggregated to the complex level, again 

following the same strategy as compared to aggregation from peptide to protein level. Finally, 

multiple testing correction is performed by a Benjamini-Hochberg adjustment of the p-values 56. 

 

P-value estimation for AMF and FMF differences 

P-value estimation for AMF and FMF differences was performed by first transforming the AMF 

and FMF (y) to values between zero and one, while excluding the extremes (0 and 1) 60,61: 

𝑦′ =  
(𝑦 ∗  (𝑛 − 1) +  0.5)

𝑛
 

Here, n denotes the sample size, which was six for the presented dataset. The resulting y’ values 

were used for fitting a beta-regression model with the betareg R package with default parameters 

60,61. The lrtest function of the lmtest R package 59 was subsequently used for p-value estimation 

by a likelihood-ratio test with default parameters. Multiple testing correction was performed by 

the p.adjust function of the stats base package, using the “fdr” method corresponding to 

correction by Benjamini-Hochberg 56. 

P-value estimation for aggregating peptide-level tests to the protein and complex level 

Peptide-level p-values were aggregated to the protein-level by applying the strategy presented 

by Teo at al. 57 and Suomi et al. 58. First the median of peptide-level p-values is used as a score for 

each protein taking the direction of change into account. The protein-level significance of the 

detection is subsequently calculated using a beta distribution 58. The same strategy is applied to 

aggregate protein-level p-values to the complex level. Multiple testing correction is performed by 

the p.adjust function of the stats base package, using the “fdr” method corresponding to 

correction by Benjamini-Hochberg 56. 

CCprofiler analysis workflow and parameters  

All R-scripts for the CCprofiler analysis are openly available on github. The following provides a 

summary of the most important processing steps and the selected parameters for the presented 

analysis. 

Due to the very low molecular weight of later SEC factions, the data was limited do fractions 1 to 

49 for CCprofiler analysis. Missing peptide intensity values (for which both the previous and 

following fraction contained measured intensity values) were imputed by a spline fit across the 

SEC dimension. After missing value imputation, peptide intensity values were normalized across 
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conditions and replicates by applying a cyclic loess normalization16,62,63. Low-confidence peptides 

were subsequently removed, keeping only peptides with (1) at least three consecutive detections 

across any replicate, (2) at least one high correlating sibling peptide (maximum correlation >= 

0.5), and (3) a good average sibling peptide correlation (>= 0.2). Protein quantification was 

performed by summing the top two most intense peptides consistently across all replicates. 

To determine proteins with a significant change in their assembly state across conditions, a mean 

difference in AMF of >= 30% and a Benjamini-Hochberg adjusted p-value <= 0.05 were required. 

Protein-centric analysis was performed with following parameters: corr_cutoff=0.9, 

window_size=7, rt_height=1, smoothing_length=7, perturb_cutoff=”5%” and 

collapse_method=”apex_only”. Only protein features passing the 5% FDR threshold were further 

considered. For the differential analysis, a minimum log2 fold-change of one and a Benjamini-

Hochberg corrected p-value of 0.05 were required for significance in all pairwise analyses. To 

determine protein features with a significant change in their relative abundance in comparison 

to the total protein intensity across conditions, a mean difference in FMF of >= 30% and a 

Benjamini-Hochberg adjusted p-value <= 0.05 were required. 

For complex-centric analysis, we first defined a set of target protein complex queries. This was 

achieved by combining queries derived from CORUM36 and StringDB37. We derived protein 

complex queries from StringDB v10 (9606.protein.links.v10.txt). Protein identifiers were 

mapped to Uniprot accessions via BioMart. The interactions were filtered for a minimal 

combined_score of 980. We applied the ClusterONE algorithm 38 for PPI network partitioning with 

following parameters: d=0.95. Weights were set to the combined_score divided by 1000. CORUM 

derived protein complex queries were taken directly from within the CCprofiler package 31. The 

complex queries were combined and decoys were generated randomly by requiring a minimum 

edge distance of 3. Complex-centric analysis was performed with following parameters: 

corr_cutoff=0.9, window_size=7, rt_height=1, smoothing_length=7, perturb_cutoff=”5%” and 

collapse_method=”apex_network”. Only complex features with a molecular weight higher than 

two times the largest monomeric molecular weight of any of its participating subunits were 

considered. For each protein complex query, the complex feature with the highest number of 

participating subunits was selected for FDR estimation, filtering for a maximum FDR of 5%. 

Secondary features were appended to the final results based on a minimum peak correlation 

threshold of 0.7. To reduce redundancy across the detected complex features between different 

queries, features were collapsed with following parameters: rt_height = 0 and distance_cutoff = 

1.25. For the differential analysis, a minimum log2 fold-change of one and a Benjamini-Hochberg 

corrected p-value of 0.05 were required for significance in all pairwise analyses. 
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