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Abstract

Missense mutations are among the most frequently occurring variants

in exon regions and may lead to pathogenic phenotypes. Computational

methods predicting effects of missense mutations play important roles

in assessing pathogenicity of these variants. While a number of meth-

ods have been developed based on analysis of sequence conservation, co-

evolution, and protein structures, effectively determining mutation effects

on biochemical function remains challenging. Here we report the method

of Structure-Based Pathogenicity Relationship Identifier (SPRI) that can

accurately evaluate pathological effects of missense mutations and identify

those that are deleterious. In addition to sequence analysis, our method

quantifies short-, intermediate-, and long-range topological interactions
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at atomic and residue-level through geometric computation. Our method

also explicitly computes surface pockets, and considers mutagenic changes

in biophysical properties. The SPRI method performs favorably in iden-

tifying deleterious mutations and in quantifying their pathogenicity com-

pared to current state-of-the-art methods in Mendelian diseases, as mea-

sured by several performance metrics. In addition, SPRI captures com-

mon properties among pathological missense mutations of both germline

and somatic origins. Furthermore, the pathogenicity model is transfer-

able across Mendelian diseases and cancer types as SPRI makes accurate

predictions on effects of cancer driver mutations.

1 Introduction

Whole-genome sequencing (WGS) and whole-exome sequencing (WES) provide

powerful means to assess genetic diversity among individuals [1, 2]. On average,

an individual has hundreds of variants in the coding regions [3, 4, 5]. Among

these variants, missense mutations have the highest frequency of occurrence and

can potentially affect molecular functions upon residue substitutions [5, 6, 7, 8].

Therefore, it is important to determine whether a missense mutation leads to

neutral or deleterious phenotypic changes.

A number of methods have been developed to evaluate potential patholog-

ical effects of missense mutations and identify deleterious mutations, including

EVmutation, FATHMM, LIST, PMut, Polyphen-2, PROVEAN, and

SIFT [10, 11, 12, 14, 13, 15, 9]. Based on sequence alignment and analysis of

evolutionary conservation [10, 11, 12, 14, 13, 15, 9], these methods integrate prior

knowledge of protein functions [11], inferred physico-chemical properties [14],

evolutionary distances by taxonomy [12], and sequence co-evolution [10] to iden-

tify deleterious missense mutations. They have been widely used to study muta-

tion effects. However, there are limitations to these methods. Some were trained
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on particular datasets and exhibit deteriorated performance on other datasets,

indicating lack of transferability [12, 11, 17]. Others require annotated knowl-

edge of functional sites and functional domains, resulting in diminished predic-

tion coverage as annotation is not uniformly available for each mutation [10]

(see Table 1).

Complementing the extraordinary progress in sequencing, the structures of

a large number of proteins (over 167,000 as of June, 2021) have been resolved by

X-ray, NMR and Cryo-EM techniques [18, 21, 20, 19]. These structures provide

rich information on how proteins carry out their functions. Several methods,

including topoSNP, Cancer3D, Mutation3D, and Hotspot3D, were de-

veloped to map the spatial positions of mutation sites, to identify clusters of

mutations, or to determine whether mutations are close to known functional

sites or domains [26, 22, 23, 24]. In addition, the methods of Rhapsody and

DAMpred were developed that utilize structural information to predict patho-

logical effects of missense mutations and to identify those that are deleteri-

ous [16, 28, 27]. Rhapsody considers the dynamic behavior of proteins based on

elastic network models constructed from corresponding protein structures [29].

The inferred dynamic properties are then integrated with Polyphen-2-type

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


of sequence analysis for predictions [16, 28]. To addresses the problem that

many proteins lack experimentally determined structures, DAMpred incorpo-

rates homology-modelled protein structures and pharmacophore features, and

employs a Bayesian-guided neutral network to classify mutations [27]. These

methods show that the incorporation of protein structures leads to improved

characterization of the biochemical properties of the mutation sites.

However, it is challenging to determine the relevant factors affecting mu-

tation effects from the myriad of information contained in proteins structures.

Biochemical functions require specific spatial arrangement of residues and atoms

to present a binding or functional surface with required biochemical proper-

ties [30], such as the general properties of electrostatic environment necessary

for electron transfer in enzyme reactions [31]. Mutations may change properties

of the binding surfaces or alter important atomic interactions near binding sur-

faces, which may impact the microenvironment of biochemical reactions. These

mutations are likely to result in altered biochemical reactions and hence may

be deleterious. Such information is encoded in structural properties of proteins,

e.g., atomic interactions, residue effects on the surrounding environment, the

tertiary arrangements of functionally important residues, as well as solvent ac-

cessibility of the surface. These structural features complement evolutionary

signals extracted from sequences. However, current structure-based methods

do not yet consider detailed properties of the binding or functional surfaces of

proteins, where mutational effects may be strong.

Here we present a new method called SPRI (Structure-Based Pathogenicity

Relationship Identifier), which provides quantitative assessment of pathological
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effects of missense mutations and identifies deleterious mutations. Our method

is based on in-depth structure analysis, including novel interaction profiles of

short-range atomic interactions, intermediate-, and long-range residue inter-

action derived from atomic interactions, all are based on computation of the

alpha-shapes of protein structures [33, 32]. We further investigate structures

of surface pockets [32, 34, 26, 35, 36], solvent accessible surface area [37], and

salt-bridge interactions of the proteins. Changes in biophysical properties of the

side-chains between the wild-type and the substituted residues are also consid-

ered. The structural information is then integrated with evolutionary signals of

the mutation site derived from multiple sequence alignment. A random forest

predictor is constructed using this information as input for prediction [38].

We have compared our method with several state-of-the-art methods, includ-

ing EVmutation, FATHMM, LIST, PMut, Polyphen-2, PROVEAN and

Rhapsody [10, 11, 12, 14, 13, 15, 28]. Using benchmark data sets with reduced

inherent bias of uneven representations of neutral and deleterious mutations,

we have examined how well each method performs in predicting deleterious

germline mutations of Mendelian diseases. Overall, our methods outperforms

other methods on most quality metrics, including Area Under the Receiver Op-

erating Curve (AUROC), Area Under the Precision-Recall Curve (AUPRC),

Matthews correlation coefficient (MCC), as well as F-1 score. In addition, our

method is highly transferable and can effectively evaluate pathogenicity of mu-

tations regardless of disease types. Among somatic mutations collected from

cancer samples, our method exhibits strong sensitivity in identifying confirmed

cancer driver mutations, without the need of re-training using different datasets

or requiring additional threshold adjustment. In contrast, current methods

are inconsistent in such predictions, with higher rate of false negative predic-

tions [11, 28].

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


Overall, our method allows detection of deleterious mutations contributing

to single gene disorders such as Mendelian-type diseases, as well as complex-trait

diseases such as cancer. Our results demonstrate that accurate assessment of

pathological effects of missense mutation can be obtained when structural infor-

mation and biophysical constraints are properly extracted and integrated with

evolutionary information. We expect that our method can be broadly applied

to assess missense mutations regardless of the mutational origins (germline or

somatic), or disease types.
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Figure 1: Overview of the SPRI method. SPRI utilizes three types of features,
namely, protein structures, biophysical properties, and evolution signals. Struc-
tural features include the novel atomic and residue interaction profiles computed
using alpha shapes, which capture the physical chemical micro-environment of
the mutation site. In addition, category of geometric shape at the mutation
site and at neighboring residues, as well as solvent accessible surface area are
incorporated. The biophysical properties includes salt bridges formed by ion-
izable residues, changes in charge upon substitutions, as well as changes in
side-chain and backbone atoms. A knowledge database containing ∼24 millions
protein sequences from reference proteomes of eukaryotic species in UniProt
is also constructed to identify homologs, as multiple sequence alignment can
be constructed to obtain site-specific metrics. These features, except geometric
location, are vectorized into numerical values. A random forest classifier is then
trained to generate probability measure of the likelihood of pathological effect,
from which a binary classification is made.
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2 MATERIALS AND METHODS

The overall architecture of our novel method is presented in figure 1.

2.1 Construction of Datasets

We obtain the HumDiv, HumVar datasets from the Polyphen-2 website

http://genetics.bwh.harvard.edu/pph2/, and thePredictSNP dataset from

https://loschmidt.chemi.muni.cz/predictsnp/. We map all mutations to

the same version of the canonical protein sequence of Uniprot Jan 2021 re-

lease [39]. This reconciles occasional sequence inconsistency among different

reference sequences. The human protein sequence and sequence database of

eukaryotic reference proteome is accessed from https://ftp.uniprot.org.

We then discard redundant mutations, remove conflicting mutations with

both neutral and deleterious labels for the same mutation. Furthermore, we

select only those proteins that contain both deleterious and neutral missense

mutations. To retrieve the experimental determined Pdb structures, we employ

the SeqMapPDB tool to obtain full-coverage structures and partial structural

domains, respectively [18, 40]. We then generate the UnifyPDBFull and

UnifyPDBAcceptable benchmark datasets. The former contains proteins

whose full structures are known, and the latter contains proteins with both

full-coverage structures and domains of structures with partial-coverage . The

UnifyPDBFull dataset contains 4,231 deleterious variants and 2,791 neutral

variants, which are derived from 252 proteins and are mapped to 252 polypep-

tide chains in PDB structures. The UnifyPDBAcceptable dataset contains

5,999 deleterious variants and 3,485 neutral variants, which are derived from

377 proteins, and are mapped to 444 Pdb structural chains.
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2.2 Structure-Derived Features

The structural coordinates of proteins are retrieved from the Pdb database

at https://ftp.rcsb.org/pub/pdb/. We calculate the weighted alpha-shape

using the van der Waals (VDW) radius of each chemical element, with water

molecule probe of 1.4 Å radius. Atomic interactions are defined by alpha shapes,

which captures exact near-neighboring atomic contacts that are dual to Voronoi

boundaries separating two inter-residue atoms [41]. We then construct the inter-

residue interaction profiles. For short-range atomic interactions, we define 16

types of element pairs, and vectorize spatial contact information into integer val-

ues for each interaction type. We use the Breadth-First Search (BFS) algorithm

to obtain atom-interactions at residue level in intermediate- and long-distance

range [42]. These are converted to 20-element vectors, where each element rep-

resents the number of each amino acid type occurs at the assigned distance

range. We use the CASTp server to compute the solvent accessible surface

area (SA) and assign property of geometric location for each residue [43]. A

salt bridge is considered to exist if the distance between the oxygen atoms in

an acidic residue and the nitrogen atoms in a basic residue is within 3.2 Å [44].

2.3 Encoding Biophysical Changes Introduced by Vari-

ants

We regard Asp and Glu as negatively (-1) ionizable residues. Arg, His and Lys

as positively (+1) ionizable residues. All remaining amino acids are labelled as

neutrally charged (0). For every mutation pattern, we calculate the change of

charges by taking the difference of the values of charge labels, which are integer

values in the range of -2 to 2.

Changes in atomic composition are also considered, so property changes

between the wild-type amino acid and the substituted amino acid residue are
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incorporated. In most cases, the backbone atomic composition does not change,

except when mutation patterns involve Glycine (Gly), which lacks Cβ . This is

also duly recorded. For side-chains, we count changes in each of the chemical el-

ements, and obtain an overall atomic compositional change for a given mutation

pattern.

2.4 Sequence-Based Features

We employ a standard procedure for multiple sequence alignment (MSA). We

first construct the sequence knowledge database from reference proteomes of

1,553 eukaryotic species, excluding that of human. This database contains about

24 millions protein sequences. For each queried human protein, we use BLASTp

and Clustal-W2 to obtain its homologs, and select those with identity greater

than 30% to the human protein sequence [46, 45]. From the assembled ho-

mologous sequences, we construct the MSA using Clustal Omega [47]. We

then calculate wild-type frequency, and mutated-type frequency at the muta-

tion site, as well as site-specific entropy, from the aligned MSA using Clustal

Omega [47]. Substitution scores are taken from the BLOSUM62 matrix [48].

2.5 Prediction Model and Performance Comparisons

Overall, the features we use for predictions are structural properties, evolution-

ary signals, and biophysical properties and changes upon substitutions. All

are numerical values, except geometric location, which is categorical. We then

train a random forest predictor implemented in R [49]. The number of en-

semble trees is set to 500, with each tree fit to a balanced training set such

that each tree receives an equal number of positive and negative cases. We use

5-fold cross validation on a stratified test dataset for both UnifyPDBFull

and UnifyPDBAcceptable datasets [50]. Prediction results by other meth-
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ods are retrieved from their open-access web servers or released datasets as of

September 18 2021 [10, 11, 12, 14, 13, 15, 28]. Some methods (SPRI, LIST,

PMUT, Polyphen-2 and Rhapsody) provide a probability value explicitly,

others (EVmutation, FATHMM and PROVEAN) provide raw scores, which

are scaled to the range between 0 and 1 using min max normalization [51].

We compare different methods by computing Receiver Operating Characteris-

tic (ROC) curve and Precision-Recall (PR) curve. When no predictions can

be made by a specific method, we employ an imputation method to assign a

random value from uniform distribution in the range of 0 to 1 to compensate

the missing predictions [52].

3 RESULTS

3.1 Benchmark Dataset with Reduced Bias

For reliable prediction of pathological effects and deleterious mutations, a dataset

that accurately reflects the natural landscape of mutations is critical. Several

benchmark datasets have been constructed in previous studies. They are based

on the premises that missense mutations known to result in Mendelian disorders

can be regarded as deleterious mutations, whereas mutations with unknown ef-

fect can be treated heuristically as neutral mutations. These datasets include

HumVar, HumDiv, ExoVar, VariBench, and PredictSNP, and are in

wide used [13, 12, 54, 55, 56]. However, these datasets are highly biased, as

deleterious mutations and neutral mutations are often from different proteins:

there is only a small proportion of proteins possess both deleterious and neutral

variants.

There are inherent biases and uncertainties in these datasets, as genes and

proteins have varying degree of deleteriousness. In addition, lack of function
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knowledge may also introduce biases. First, different proteins have different

level of deleteriousness. As previous studies have shown, mutations at sites

in functional domains are more likely to have pathological outcomes [57, 58].

In addition, proteins with larger functional surfaces are likely to contain more

sites sensitive to substitutions. Hence, proteins with multiple functional do-

mains [59, 60] and larger functional surfaces are less tolerant to mutations,

whereas proteins with single function and smaller functional surfaces are more

tolerant to mutations. Second, many proteins were not fully investigated, thus

variants lacking annotation of pathological effects may be simply a reflection of

lack of knowledge, rather than positive information about these mutations being

neutral. As a result, a significant drawback of predictions trained using existing

datasets is that inconsistent behavior in predictions may result when applied

to different types of data. For example, the FATHMM method performs well

using the dataset VariBench [11], but exhibits high false positive rate when

using the HumDiv dataset [17], indicating that there may be issues of lacks of

robustness and transferability.

To overcome such inherent bias, we construct two data sets based on the

HumDiv, HumVar and PredictSNP datasets as benchmarks [13, 56]. We

select the subset of proteins with annotations of both deleterious and neutral

mutations. This is to ensure that the same level of knowledge of both types

of mutations exist in the selected proteins. We then select proteins with high-

quality structures deposited in the Protein Data Bank (PDB). The smaller

dataset, calledUnifyPDBFull, contains only proteins with full-coverage struc-

tures. The larger dataset, called UnifyPDBAcceptable, contains proteins

with both full coverage and non-overlapping partially covered structures. Each

protein in these datasets has both deleterious and neutral mutations annotated.

Overall, the UnifyPDBFull dataset contains 4,231 deleterious variants and
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2,791 neutral variants, which are derived from 252 proteins with 252 polypep-

tide chains. The UnifyPDBAcceptable dataset contains 5,999 deleterious

variants and 3,485 neutral variants, which are derived from 377 proteins with

444 polypeptide chains, indicating the UnifyPDBFull set as a proper subset.

With the more stringent requirement of annotations of knowledge of both

deleterious and neutral mutations for each protein, our datasets are smaller

compared to other datasets. However, they have much less bias, providing

more accountable representations of the landscape of deleterious and neutral

mutations in proteins.

3.2 Structural, Biophysical, and Evolutionary Properties

for Predicting Mutation Effects

Input features to the machine learning classifier are critical for quantitative

prediction of mutation effect, as they should provide adequate information on

the structural, biophysical, as well as evolutionary properties of the wild-type

residues and changes upon mutations for accurate predictions.

3.2.1 Protein Surface Pocket and Geometric Location of Mutated

Residues.

Surface pockets on proteins provide the local microenvironment for ligand bind-

ing and biochemical reactions [30, 61]. The buried core may contribute to fold-

ing stability [62]. We therefore classify each residue into the categories of sur-

face pockets residues, interior buried residues, and residues on other surface

region [37, 34]. Furthermore, we record the solvent accessible surface area of

each residue. Pocket construction, surface and buried core residues, as well as

solvent accessible surface areas are computed using the alpha shape method
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and are accessible from the Computer Atlas of Surface Topography of Proteins

(CASTp) server [43, 26].

3.2.2 Contact Profiles for Atomic Interactions in Short Range.

An amino acid residue may play its biochemical roles in conjunction with its

spatial neighbors. Together they may form a favorable microenvironment for

biochemical reactions to occur. Patterns of such microenvironments are re-

flected in how side-chains of neighboring residues are arranged and what types

of atomic interactions are involved, including both surface and interior residues.

In previous studies, profiles of residue distances have been used to report the

local environment, which are constructed by recording the frequencies of each

amino acid type appearing within certain Euclidean distances between the cen-

triods of the mutation site residue and the neighboring residue [63, 27]. However,

important patterns in atomic interactions and side-chain packing arrangement

are not fully captured in these distance-based profiles.

Here we construct contact and interaction profiles of mutation site residue

incorporating both atomic and residue interaction information. For atomic in-

teractions, we construct the interaction network derived from the weighted al-

pha shape, which corresponds to the Voronoi diagram with non-empty nearest

neighbor atomic contacts. As only those with physical contacts are selected by

alpha shape [64], this allows us to focus on exact atomic contacts without the

distraction of noise inherent in contacts defined by Euclidean distances.

Specifically, we first computed the weighted Delanuay triangulation of the

protein structure. We then obtain its alpha shape by generating a filtration of

the Delaunay simplicial complex [64, 33]. We further select alpha edges connect-

ing different residues and obtain inter-residue atomic connection network, where

nodes are atoms and alpha edges connect nearest-neighboring atoms whose vol-
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ume overlaps. We then organize these contact interactions into profiles of short-

range, intermediate-range, and long-range interaction, according to the distance

to the mutation site residue measured in the number of alpha edges.

The short-range contact profile is used to capture immediate atomic inter-

action contributed by interacting residues. For simplicity, we consider only four

atom types of carbon (C), nitrogen (N), oxygen (O), and sulfide (S). Atoms pro-

vided by the mutation site residue and the neighboring residue are distinguished.

For example, carbon from the mutation site and nitrogen from the neighbor-

ing residue are recorded as CN, and carbon from the neighboring residue and

nitrogen from the mutation site are recorded as NC, so donor and acceptor in-

formation is encoded. We dispense with detailed chemical information of orbital

hybridisation of chemical element to avoid overfitting [65, 66]. Altogether, we

have 16 types of element pairs for atomic interaction. Furthermore, we record

only number counts of atomic interactions and ignore their distance or volume

overlap measures as proteins often experience conformational fluctuations [67].

3.2.3 Residue Interaction Profile for Intermediate and Long Range.

There are intermediate and long range interactions in proteins where residues in

distance can influence the biochemical environment of the mutation site residue

via electrostatic interactions and indirect steric effects [70, 68, 69]. We con-

struct interaction profiles of intermediate- and long-range at the residue level to

account for such effects. Interacting residues are again identified by the atomic

connection network provided by the alpha shape.

Specifically, we start with residues in direct atom contacts with the mutation

site residue, as recorded in the short-range contact profile. We call this the first

layer contact residues. We then use a Breadth-First Search (BFS) algorithm

to identify residues participating in atomic interactions with these first-layer
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residues [42]. The newly identified residues have intermediate-range interactions

with the mutation site residue. We continue this process, and identify partner

residues that have atomic interactions with residues in the intermediate-range.

Those that are newly identified are termed to have long-range interactions with

the mutation site residue. We then construct the intermediate- and long-range

interaction profiles, each a 20-element feature vector recording the number of

residues interacting with the mutation site residue of each specific amino acid

types.

3.2.4 Salt Bridge Interactions.

It is well-known that non-covalent interactions such as salt bridge plays impor-

tant roles in protein stability and functions. Salt bridge formed between ion

pairs can stabilize protein conformation and provide protons for catalytic reac-

tions [71]. We count the total number of salt bridges that an ionizable residue

participates in. A salt bridge forms between the side-chain oxygen atoms in

an acidic residue and the side-chain nitrogen atoms in a basic residue if their

Euclidean distance is ≤ 3.2 Å.

3.2.5 Changes in Biophysical Properties in Variants.

Substitutions at each mutation site can potentially replace the wild-type residue

with any of the 19 other residue types. Different substitutions occurring at the

same site may have dramatically different effects. It is therefore important to

investigate changes in biophysical properties upon a particular substitution, so

differential effects occurring at the same site that are specific to substitution

types can be assessed.
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To capture changes in biophysical properties, we record differences in occur-

rence of each atomic chemical type in the side-chain upon mutation. If Gly is

involved in the substitution pattern, we record instead the change in Cβ in the

backbone. This provides information that complements atomic interactions in

short-range contact profiles. We further calculate changes in charges upon mu-

tations among ionizable residues and non-ionizable residues. Altogether, these

measures allow us to have finer distinction of mutation effects of different sub-

stitution patterns at a given mutation site.

3.2.6 Evolutionary Signals.

We use Blosum62 substitution matrix to captures general patterns of sub-

stitutions during evolution [48]. To incorporate protein-specific evolutionary

information, we construct multiple sequence alignments (MSA) following exist-

ing methods [27, 10, 12, 13, 15, 14, 16, 28]. Here MSA is constructed using

the full protein sequence instead of domains as the structural coverage of pro-

teins is high. Specifically, we use the query human protein to identify homologs

with full-length sequence identity ≥ 30% in the reference proteomes of other

eukaryotic species. From the assembled homologous sequences, we construct

the MSA using CLUSTAL OMEGA [47]. As results, 94.4% (356 out of the

377 UnifyPDBAcceptable proteins) protein-specific MSAs analyzed in this

study have adequate alignment depth of ≥ 100, ensuring that reliable evolu-

tionary signals can be detected. Detailed alignment depth information can be

found in Supplemental Information. We then calculate the entropy value for

the mutation site using the aligned MSA [47]. In addition, frequencies of oc-

currence of the wild-type residue and the mutated residue type in the MSA for

each mutation site are also recorded.

Our approach is different from that of other methods, in which evolutionary
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analysis is carried out at the domain level, which requires significant align-

ment depth and prior knowledge on functional domain. As a result, difficulties

are often encountered when sequence information of annotated functional do-

mains is sparse [10]. Many mutated residues located at those domains without

annotation are not covered by alignments, therefore no pathogenicity predic-

tions can be made [10]. Furthermore, we eliminate ad-hoc re-weighting or other

post-processings methods, unlike the practice of the LIST and Polyphen-2

methods [13, 12].

3.3 Evaluating Pathological Effects of Missense Mutations

Information extracted from protein structures, biophysical properties, and evo-

lution analysis are then integrated to generate a probability score that measures

the pathological effects of a particular substitution. We use a random forest clas-

sifier for this task [49], it is robust and suffers less from overfitting as each tree

in the forest is regularized by training on a random subset of the data and a

limited subset of features at each branch point [38]. The prediction score πdel

is calculated from the ratio of the number of trees supporting the hypothesis

that the variant is pathological against the total number of trees [38]. It is a

method to be proven effective in evaluating mutation effects, as shown in the

Rhapsody and the Pmut studies [16, 28, 14].

3.4 SPRI Performs Well in Predicting Pathogenic Effects

on Mendelian Mutations
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Table 1: Performance of Predictions on the UnifyPDBFull 5-Fold Test
Datasets

Our method
SPRI

EVmutation FATHMM LIST PMUT Polyphen-2 PROVEAN Rhapsody

Completeness 1.0 0.740 0.987 0.987 0.990 0.987 0.987 0.930
Recall 0.919 0.908 0.868 0.755 0.732 0.875 0.842 0.826

Specificity 0.826 0.767 0.385 0.744 0.703 0.813 0.816 0.926
Precision 0.889 0.861 0.677 0.814 0.788 0.875 0.872 0.947
Accuracy 0.882 0.854 0.674 0.75 0.721 0.85 0.832 0.864
F-1 Score 0.904 0.884 0.761 0.783 0.759 0.875 0.857 0.882
MCC Score 0.752 0.688 0.293 0.492 0.429 0.688 0.654 0.732

Bold indicates the best metric

Table 2: Performance on the UnifyPDBAcceptable 5-Fold Test Datasets

Our Method
SPRI

EVmutation FATHMM LIST PMUT Polyphen-2 PROVEAN Rhapsody

Completeness 1.0 0.711 0.990 0.990 0.987 0.990 0.990 0.941
Recall 0.913 0.902 0.846 0.753 0.747 0.881 0.824 0.822

Specificity 0.828 0.766 0.405 0.766 0.732 0.809 0.817 0.925
Precision 0.902 0.878 0.707 0.846 0.829 0.888 0.884 0.952
Accuracy 0.882 0.854 0.683 0.758 0.742 0.855 0.821 0.859
F-1 Score 0.907 0.890 0.771 0.797 0.786 0.884 0.853 0.882
MCC Score 0.744 0.676 0.281 0.505 0.466 0.689 0.628 0.721

Bold indicates the best metric
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Figure 2: Receiver Operating Characteristic (ROC) Curve and Precision-Recall
(PR) Curve of testing results using SPRI and other methods on the Uni-
fyPDBFull and UnifyPDBAcceptable test datasets. (a) The ROC curve
using the UnifyPDBFull test dataset. SPRI has the highest AU-ROC of
0.949. (b) The PR curve using the UnifyPDBFull test dataset. SPRI has
the highest AU-PRC of 0.966. (c) The ROC curve using the UnifyPDBAc-
ceptable test dataset. SPRI has the highest AU-ROC of 0.943. (d) The PR
curve using the UnifyPDBAcceptable test dataset. SPRI has the highest
AU-PRC of 0.960.
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To evaluate how well our method works, we use stratified k -fold cross-

validations on both the UnifyPDBFull and the UnifyPDBAcceptable

datasets [50]. We focus on the UnifyPDBFull dataset, since it contains

proteins whose structures covers the full sequences, ensuring accurate repre-

sentations of their structural properties. We compare our results with those

from the methods of EVmutation, FATHMM, LIST, PMUT, Polyphen-

2, PROVEAN and Rhaposdy [10, 11, 12, 14, 13, 15, 28]. We use default

thresholds provided by FATHMM, PMUT, Polyphen-2, PROVEAN and

Rhaposdy to distinguish deleterious mutations from neutral mutations [11, 14,

13, 15]. We use the optimal thresholds for EVmutation, LIST, and our method

at the highest Matthews correlation coefficient (MCC) values for evaluation.

We report completeness, recall, specificity, precision, accuracy, F-1 score,

and MCC for comprehensiveness. Among these metrics, MCC is an informative

and balanced metric to symmetrically evaluates both groups of positives and

negatives with adjustment of ratio of subgroups, hence provides a good metric

on summarizing prediction results [72]. Overall, our method SPRI has excel-

lent performance in distinguishing deleterious missense mutations from neutral

mutations. The detailed metric values are listed in Table 1.

The 5-fold average performance of our method on UnifyPDBFull strat-

ified test data has an F-1 score and MCC of 0.904 and of 0.752, respectively,

which are the highest among all 8 methods compared. Our method also has

the highest accuracy (0.882) and highest recall (0.919), indicating it is highly

sensitive in identifying deleterious mutations. In addition, our method has an

excellent specificity of 0.826 in identifying neutral mutations correctly, which are

better than all other methods except Rhapsody (0.926). Our methods outper-

forms Rhapsody in several important regards: Rhapsody has a lower recall of

0.826, and it can make predictions on less variants in UnifyPDBFull (0.930),
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whereas our SPRI method has a higher recall of 0.919 and makes predictions

on all variants.

We also compute the Receiver Operating Characteristic (ROC) and the

Precision-Recall (PR) curves to assess the robustness of the performance of

prediction at different thresholds, which are showing in Figure 2. Both ROC

curve and PR curve are used to examine performance for binary classification

models, with PR curve providing a more informative assessment of imbalanced

dataset. On the stratified UnifyPDBFull test dataset, our method has an

AUC-ROC of 0.946 and an AUC-PRC of 0.966, which are the best among all

methods.

These results demonstrate that our method is robust and performs well

at different thresholds with different settings. Results using the other cross-

validation data (UnifyPDBAcceptable) are similar to that of UnifyPDB-

Full, where our method has the best performance when measured by the met-

rics of F1-score, MCC value, accuracy, and AUCs of ROC and PR curves.

We also identify features that are most important for accurate prediction (see

Supplemental Information). Features from all of the three categories (structural

properties, evolutionary signals from sequence analysis, and biophysical proper-

ties) play important roles in distinguishing deleterious mutations from neutral

mutations. These results suggest that our features capture essential biological

properties that when mutationally disturbed can contribute to pathogenesis.

Overall, our method has the best performance by most measurements among

the 8 methods compared, and is robust in making accurate predictions at differ-

ent thresholds, despite the fact that our model was derived on a training data

set of much smaller size.
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3.5 Transferability in Identifying Cancer Driver Muta-

tions
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Number of Mutations

Our Method

EVmutation

FATHMM

LIST

PMUT

Polyphen-2

PROVEAN

Rhapsody

M
et
ho
ds

Performance on Cancer Driver Mutations
Correct Prediction
Failed Prediction
No Prediction

Figure 3: Predictions of cancer driver mutations among the set of cancer
census mutations (cmc) tier-1 mutations. For each method, the numbers of
correct prediction (pink), failed prediction (light blue), and missing predictions
(gray) are listed. Overall, our SPRI method has the highest number of 110
correct predictions out of 122 driver mutations.
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While SPRI has been developed and evaluated using germline mutations

of Mendelian disorders, we hypothesize that our method predicting mutation

effects trained on Mendelian disorders captures the essential characteristics of

pathological mutations and is transferable to evaluate effects of cancer somatic

mutations.

It is well known that somatic mutations provide one of the most important

means to trigger abnormal cell growth that may lead to tumorigenesis [73, 74,

75]. Identifying somatic mutations that drive cancer development is important,

as it facilitates development of therapeutics targeting these mutated proteins.

For example, sotorasib has been recently approved to treat lung cancer patients

with KRAS G12C mutation [76]. However, it is challenging to identify cancer

driver mutations, as there are millions of missense mutations accumulated in

cancer patients, the majority of which exhibit low recurrence [6]. Approaches

based on frequency counting are therefore not effective.

To test our hypothesis, we examine whether our method can be used to

identify cancer driver mutations. For this task, we take the recently available

annotations of tier 1 cancer census mutation from the COSMIC v92 as the

ground truth on cancer driver mutations [6]. These mutations are designated

by COSMIC as there is strong evidence to support their roles in tumorigenesis

from experimental validation, clinical evidence, and in silico analysis [6]. This

dataset contains 201 missense mutations containing both wild-type residue and

substituted amino acid. Among these, 122 mutations can be mapped to 50

mutated residues from 26 proteins with known structures. For these cancer

driver mutations, we build a separate predictor following the same procedure

but with the 26 cancer relevant proteins excluded from the training process. We

use the same probability threshold for classification.

The evaluation results show that our method has excellent performance in
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identifying cancer driver mutations. Our method can correctly classify 110 mu-

tations out of the 122 structure-mapped mutations as deleterious. We also tested

the methods of PROVEAN, Polyphen-2 and PMUT, which have comparable

performance, identifying 109, 105, and 103 deleterious mutations, respectively.

EVmutation identifies 94 deleterious mutations, with 9 incorrect predictions

and 19 missing predictions. Rhapsody identifies 78 out of the 122 deleteri-

ous mutations, at a significantly reduced level of effectiveness than Mendelian

disorders. FATHMM identifies 65 deleterious mutations, with 54 incorrect pre-

dictions and 3 missing predictions.

Overall, our method has excellent performance in identifying confirmed can-

cer driver mutations. These results demonstrate that our method captures es-

sential properties of disease-causing mutations. It can provide out-of-the-box

functionality to evaluate pathological effects on more complex mutations in can-

cer, without additional training, parameter tuning, or additional prior knowl-

edge.

3.6 A Case Study on Human Glutathione Synthetase
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Figure 4: The catalytic region, its neighboring environment, and outside re-
gion of the human glutathione synthetase. The surface of catalytic region is
colored in orange, the neighboring environment in light orange, and the out-
side region in grey. The correctly predicted deleterious mutations are in pink.
The correctly predicted neutral mutations are in dark blue. and the false pre-
dictions of deleterious mutations are in light blue. All 4 deleterious mutation
site residues (L188P, Y270C, Y270H, R283C) are located within the neighbor-
ing environment of the catalytic region, and are correctly predicted by SPRI.
Eight correctly predicted neutral predictions are located in the outside region,
and the two false deleterious predictions are located at the boundary of the
catalytic neighboring environment.
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To illustrate how our method can be useful for gaining mechanistic insight,

here we discuss detailed analysis of human glutathione synthetase. Glutathione

synthetase catalyses the conversion of gamma-L-glutamyl-L-cysteine and glycine

to phosphate and glutathione in the presence of ATP. The human glutathione

synthetase (UniProt: P48637, PDB: 2HGS chain:A) has 524 residues, 9 of

which form its catalytic region, with Glu144, Asn146 and Glu368 forming the

magnesium binding site, and Arg125, Ser151, Lys305, Lys364, Gly369 and

Arg450 play the role of electrostatic stabilizer [77]. There are 4 deleterious

variants occurring at 3 mutation sites and 10 neutral variants occurring at 10

different mutation sites in the UnifyPDBFull dataset. Among these, the

variant R283C leads to glutathione synthetase deficiency symptom [78]. Our

method provides reliable predictions on these variants. Specifically, all 4 dele-

terious variants (L188P, Y270C, Y270H, R283C) are correctly predicted to be

deleterious, 8 out of 10 neutral variants (K95E, A134T, P202T, H290C, V343M,

R418Q, Q435H, E353K) are correctly predicted to be neutral, and only 2 neutral

variants (S80N, I401T) are incorrectly predicted to be deleterious.

The spatial relationship among deleterious and neutral variants and the in-

teraction profiles of functional residues provides useful insight. We take the 9

residues which form the catalytic region as the center, and compute the 3-layer

interaction profiles using alpha-shape. This profile defines the neighboring en-

vironment of the catalytic region. All other residues removed from the catalytic

region and its neighboring environment are recorded as outside residues. Over-

all, we found that all deleterious variants are located within the neighboring

environment of the catalytic region, 8 neutral variants with correct predictions

are outside this region. The two neutral variants with incorrect predictions are

at the boundary of the neighboring environment of the catalytic region, sug-

gesting that the interaction profile for sites at the boundaries of the catalytic
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region may require further refinement.

We have collected a total of 19 well-studied enzymes from the UnifyPDB-

Full dataset that have accurate information on catalytic residues according to

the manually annotated M-CSA enzyme database [79]. We follow the same

procedure to define the catalytic region, its neighboring environment, and the

outside region. The null hypothesis is that deleterious and neutral mutations

exhibit no difference in preference for locations neighboring the enzyme catalytic

regions. The alternative hypothesis is that deleterious variants are more prefer-

ably located at the catalytic or its neighboring region, while neutral variants

are more likely to occur at the outside region. The p-value of 4.2×10−14 from

Fisher’s exact test strongly rejects the null hypothesis. These results indicate

that the novel interaction profiles can reliably capture information on impor-

tant residues contributing to protein functions. Furthermore, it is important to

note that unlike the detailed analysis presented in this section, our prediction

method does not require any prior knowledge on enzyme catalytic residues.

3.7 Predictions for Mutation Saturation

As SPRI can predict deleterious mutations contributing to both Mendelian

disorders and complex diseases such as cancer, it can be extended to assess

general effects of substitutions of arbitrary sites from the wild type to any of

the other 19 amino acid types, if the structure of the protein is known. Fig 5

depicts an example, where we show the heatmap of pathological effects of all

different substitutions at all positions along the full protein sequence of the

copper transport protein. The color intensity of each square in the heatmap

represents the level of pathological effect of a substitution. Our method is

scalable, and such heatmaps can be computed proteome wide.
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Figure 5: The heatmap of predicted pathological effects of mutation saturation
of copper transport protein ATOX1 (Uniprot: O00244). The horizontal axis
are the residue index along the sequence. The vertical axis represents the sub-
stituted amino acid types. Each square is color coded by the effects of missense
mutation, where the color intensity encodes the likelihood of pathological effect.
A red substitution represents a mutations predicted to be most likely a patho-
logical mutation, whereas a blue substitution represents a mutation predicted
to be most likely a neutral mutation.

4 DISCUSSION and CONCLUSION

As large-scale variant data of exon regions become widely available, computa-

tional methods identifying missense mutations that adversely affect biological

functions are essential for interpretation and for understanding these variant

data. An important source of valuable information for this task is the 3D

structures of proteins. With the rapid expansion of experimental determina-

tion [18, 21, 20, 19] and computational prediction of protein structures [80, 81],

this additional source of information will be available for most proteins of in-

terests. Recent studies showed that important advances beyond sequence-based

analysis can be made when structural properties [27] and structure-derived dy-
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namics [16, 28] are considered. Nevertheless, a number of widely-used methods

are based on sequence analysis alone [10, 11, 12, 14, 13, 15] and do not take

advantage of structural information.

However, how to effectively decipher structural information determining bio-

chemical functions remains challenging. In this study, we report the novel

method SPRI that incorporates properties of explicitly computed surface pock-

ets and other geometric and topological properties of the protein structures.

This approach is motivated by the fact that biochemical functions require spe-

cific spatial arrangement of residues and atoms to present a binding surface with

required biochemical properties [30]. Through geometric computation of both

atomic and residue-level of interactions of short, intermediate, and long ranges,

as well as incorporation of biophysical properties upon missense mutations, our

SPRI method exhibits strong performance in identifying deleterious mutations

and in quantifying pathogenicity in Mendelian disease, which compares favor-

ably to current state-of-the-art methods.

Our method also sheds light on an important question, namely, whether

pathological missense mutations of different varieties are organized by the same

principles, regardless of germline or somatic origin, and whether it manifests

as Mendelian diseases or complex diseases. Previous studies mostly have built

disease-specific pathogenicity models. For example, FATHMM has different

predictors for inherited disease, cancer, and other specific pathologies [11].

PMUT allows user-input customized training datasets to be used so different

predictors for different diseases can be constructed [14]. There are drawbacks

with these approaches. FATHMM has very different answers in evaluating

pathogenic mutations, depending on whether a predictor for inherited diseases

or a predictor for cancer is used. This is likely due to the different level of

available annotated information and the adjustment of thresholds [11]. While
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Rhapsody works well in predicting Mendelian disease related mutations, its

performance in predicting cancer driver mutations lags behind significantly [28].

Therefore it is unclear if overall biochemical principles behind different disease

mutations exist. If so, they are not well-captured by current methods. Our re-

sults presented here suggest different types of pathological missense mutations

are all governed by the same biochemical principles. In addition, the relevant

biophysical properties required are largely encoded in the protein structure and

sequence. Furthermore, they are effectively extracted by SPRI. We show ac-

curate predictions can be made on cancer driver mutations, even though SPRI

was trained using Mendelian disease mutations and there were no parameter

adjustment or re-training using different data.

Our results suggest that the relevant biophysical properties can be effec-

tively extracted from protein structures, robustly for analysis using different

PDB structures of the same protein (see Supplemental Information). This is

illustrated by the analysis of glutathione synthetase, where it is shown that

deleterious variants are more likely to occur in the neighborhood of the cat-

alytic regions, while neutral variants likely occur outside the functional regions.

These neighborhoods can be precisely defined using surface analysis and atomic-

residue interactions profiles. It is important to note that such extraction can be

made without a prior knowledge of functional annotation of specific residues,

indicating characteristics of the functional binding surfaces are encoded in the

protein structures and sequences, and are effectively extracted by our method.

There are limitations in our method. Knowledge of the protein structures is

required for assessing effects of the missense mutations. In fact, our results show

that predictions on proteins with knowledge of the full structures are better than

those on proteins with partial structures: The MCC score on UnifyPDBAc-

ceptable dataset containing incomplete structures is slightly inferior than the
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MCC score on UnifyPDBFull dataset containing full structures. We antici-

pate that as additional structural information become available from techniques

such as cryo-EM or AlphaFold2 [19, 80], this issue will be resolved as more

proteins will have their sequence fully covered by structures. The broad avail-

ability of most protein structures will also allow us to construct a global atlas of

saturation mutation maps, similar to the example of the copper transport pro-

tein illustrated in this study. Such an atlas can provide global views of protein

fitness landscape and mutation effects of the whole protein universe.

Another limitation of our method is currently it is based on analysis of

protein structure of monomeric units. Structures of protein complex contains

valuable information on protein-protein interactions. As structures of protein-

complexes continue to increase [82] and technical issues [83] being resolved, we

anticipate that incorporating knowledge of protein-protein interaction interfaces

will further improve models pathogenicity of missense mutations.
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[33] Edelsbrunner, H. & Mücke, E. Three-dimensional alpha shapes. ACM

Transactions On Graphics (TOG). 13, 43-72 (1994)

[34] Tseng, Y., Dundas, J. & Liang, J. Predicting protein function and binding

profile via matching of local evolutionary and geometric surface patterns.

Journal Of Molecular Biology. 387, 451-464 (2009)

[35] Tseng, Y. & Liang, J. Estimation of amino acid residue substitution rates at

local spatial regions and application in protein function inference: a Bayesian

Monte Carlo approach.Molecular Biology And Evolution. 23, 421-436 (2006)

[36] Dundas, J., Adamian, L. & Liang, J. Structural signatures of enzyme bind-

ing pockets from order-independent surface alignment: a study of metal-

loendopeptidase and NAD binding proteins. Journal Of Molecular Biology.

406, 713-729 (2011)

[37] Liang, J., Edelsbrunner, H., Fu, P., Sudhakar, P. & Subramaniam, S. Ana-

lytical shape computation of macromolecules: I. Molecular area and volume

through alpha shape. Proteins: Structure, Function, And Bioinformatics.

33, 1-17 (1998)

[38] Breiman, L. Random forests. Machine Learning. 45, 5-32 (2001)

37

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


[39] Consortium, U. UniProt: a worldwide hub of protein knowledge. Nucleic

Acids Research. 47, D506-D515 (2019)

[40] Wang, B., Lei, X., Tian, W., Perez-Rathke, A., Tseng, Y. & Liang, J.

SeqMapPDB: A Standalone Pipeline to Identify Representative Structures of

Protein Sequences and Mapping Residue Indices in Real-Time at Proteome

Scale. ArXiv Preprint ArXiv:2202.11551. (2022)

[41] Li, X., Hu, C. & Liang, J. Simplicial edge representation of protein struc-

tures and alpha contact potential with confidence measure. Proteins: Struc-

ture, Function, And Bioinformatics. 53, 792-805 (2003)

[42] Bundy, A. & Wallen, L. Breadth-first search. Catalogue Of Artificial Intel-

ligence Tools. pp. 13-13 (1984)

[43] Tian, W., Chen, C., Lei, X., Zhao, J. & Liang, J. CASTp 3.0: computed

atlas of surface topography of proteins. Nucleic Acids Research. 46, W363-

W367 (2018)

[44] Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,

Chipot, C., Skeel, R., Kale, L. & Schulten, K. Scalable molecular dynamics

with NAMD. Journal Of Computational Chemistry. 26, 1781-1802 (2005)

[45] Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J.,

Bealer, K. & Madden, T. BLAST+: architecture and applications. BMC

Bioinformatics. 10, 1-9 (2009)

[46] Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P.,

McWilliam, H., Valentin, F., Wallace, I., Wilm, A., Lopez, R. & Others

Clustal W and Clustal X version 2.0. Bioinformatics. 23, 2947-2948 (2007)

[47] Sievers, F. & Higgins, D. Clustal omega. Current Protocols In Bioinfor-

matics. 48, 3-13 (2014)

38

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


[48] Henikoff, S. & Henikoff, J. Amino acid substitution matrices from protein

blocks. Proceedings Of The National Academy Of Sciences. 89, 10915-10919

(1992)

[49] Liaw, A., Wiener, M. & Others Classification and regression by random-

Forest. R News. 2, 18-22 (2002)

[50] Zeng, X. & Martinez, T. Distribution-balanced stratified cross-validation

for accuracy estimation. Journal Of Experimental & Theoretical Artificial

Intelligence. 12, 1-12 (2000)

[51] Jain, A., Nandakumar, K. & Ross, A. Score normalization in multimodal

biometric systems. Pattern Recognition. 38, 2270-2285 (2005)

[52] Lin, W. & Tsai, C. Missing value imputation: a review and analysis of the

literature (2006–2017). Artificial Intelligence Review. 53, 1487-1509 (2020)

[53] Landrum, M., Lee, J., Benson, M., Brown, G., Chao, C., Chitipiralla, S.,

Gu, B., Hart, J., Hoffman, D., Jang, W. & Others ClinVar: improving access

to variant interpretations and supporting evidence. Nucleic Acids Research.

46, D1062-D1067 (2018)

[54] Karczewski, K., Weisburd, B., Thomas, B., Solomonson, M., Ruderfer,

D., Kavanagh, D., Hamamsy, T., Lek, M., Samocha, K., Cummings, B. &

Others The ExAC browser: displaying reference data information from over

60 000 exomes. Nucleic Acids Research. 45, D840-D845 (2017)

[55] Nair, P. & Vihinen, M. V ari B ench: A benchmark database for variations.

Human Mutation. 34, 42-49 (2013)

[56] Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E., Zendulka, J.,

Brezovsky, J. & Damborsky, J. PredictSNP: robust and accurate consensus

39

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


classifier for prediction of disease-related mutations. PLoS Computational

Biology. 10, e1003440 (2014)

[57] Guo, H., Choe, J. & Loeb, L. Protein tolerance to random amino acid

change. Proceedings Of The National Academy Of Sciences. 101, 9205-9210

(2004)

[58] Kaminker, J., Zhang, Y., Watanabe, C. & Zhang, Z. CanPredict: a com-

putational tool for predicting cancer-associated missense mutations. Nucleic

Acids Research. 35, W595-W598 (2007)

[59] Gussow, A., Petrovski, S., Wang, Q., Allen, A. & Goldstein, D. The in-

tolerance to functional genetic variation of protein domains predicts the lo-

calization of pathogenic mutations within genes. Genome Biology. 17, 1-11

(2016)

[60] Mani, M., Chen, C., Amblee, V., Liu, H., Mathur, T., Zwicke, G., Zabad,

S., Patel, B., Thakkar, J. & Jeffery, C. MoonProt: a database for proteins

that are known to moonlight. Nucleic Acids Research. 43, D277-D282 (2015)

[61] Billas, I., Iwema, T., Garnier, J., Mitschler, A., Rochel, N. & Moras, D.

Structural adaptability in the ligand-binding pocket of the ecdysone hormone

receptor. Nature. 426, 91-96 (2003)

[62] Gromiha, M., Oobatake, M., Kono, H., Uedaira, H. & Sarai, A. Relation-

ship between amino acid properties and protein stability: buried mutations.

Journal Of Protein Chemistry. 18, 565-578 (1999)

[63] Pires, D., Ascher, D. & Blundell, T. mCSM: predicting the effects of muta-

tions in proteins using graph-based signatures. Bioinformatics. 30, 335-342

(2014)

40

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


[64] Edelsbrunner, H. Shape reconstruction with Delaunay complex. Latin

American Symposium On Theoretical Informatics. pp. 119-132 (1998)

[65] Kirtman, B., Chipman, D. & Palke, W. Orbital hybridization. Journal Of

The American Chemical Society. 99, 1305-1307 (1977)

[66] Zhao, B., Tam, Y. & Zheng, J. An autoencoder with bilingual sparse

features for improved statistical machine translation. 2014 IEEE Interna-

tional Conference On Acoustics, Speech And Signal Processing (ICASSP).

pp. 7103-7107 (2014)

[67] Damjanovich, S., Somogyi, B. & Welch, G. Protein fluctuation and enzyme

activity. Journal Of Theoretical Biology. 105, 25-33 (1983)

[68] Shoulders, M., Hodges, J. & Raines, R. Reciprocity of steric and stereoelec-

tronic effects in the collagen triple helix. Journal Of The American Chemical

Society. 128, 8112-8113 (2006)

[69] Baldridge, A., Samanta, S., Jayaraj, N., Ramamurthy, V. & Tolbert, L.

Steric and electronic effects in capsule-confined green fluorescent protein

chromophores. Journal Of The American Chemical Society. 133, 712-715

(2011)

[70] Nakamura, H. Roles of electrostatic interaction in proteins. Quarterly Re-

views Of Biophysics. 29, 1-90 (1996)

[71] Kumar, S. & Nussinov, R. Salt bridge stability in monomeric proteins.

Journal Of Molecular Biology. 293, 1241-1255 (1999)

[72] Chicco, D. & Jurman, G. The advantages of the Matthews correlation coef-

ficient (MCC) over F1 score and accuracy in binary classification evaluation.

BMC Genomics. 21, 1-13 (2020)

41

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


[73] Greenman, C., Stephens, P., Smith, R., Dalgliesh, G., Hunter, C., Bignell,

G., Davies, H., Teague, J., Butler, A., Stevens, C. & Others Patterns of

somatic mutation in human cancer genomes. Nature. 446, 153-158 (2007)

[74] Ramroop, J., Gerber, M. & Toland, A. Germline variants impact somatic

events during tumorigenesis. Trends In Genetics. 35, 515-526 (2019)

[75] Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z.,

Zhang, S., Zhou, J., Cao, K. & Others Role of tumor microenvironment in

tumorigenesis. Journal Of Cancer. 8, 761 (2017)

[76] Hong, D., Fakih, M., Strickler, J., Desai, J., Durm, G., Shapiro, G., Fal-

chook, G., Price, T., Sacher, A., Denlinger, C. & Others KRASG12C in-

hibition with sotorasib in advanced solid tumors. New England Journal Of

Medicine. 383, 1207-1217 (2020)

[77] Dinescu, A., Cundari, T., Bhansali, V., Luo, J. & Anderson, M. Func-

tion of conserved residues of human glutathione synthetase: implications for

the ATP-grasp enzymes. Journal Of Biological Chemistry. 279, 22412-22421

(2004)

[78] Nj, R., Carlsson, K., Bhansali, V., Luo, J., Nilsson, L., Ladenstein, R.,

Anderson, M., Larsson, A. & Norgren, S. Human hereditary glutathione

synthetase deficiency: kinetic properties of mutant enzymes. Biochemical

Journal. 381, 489-494 (2004)

[79] Ribeiro, A., Holliday, G., Furnham, N., Tyzack, J., Ferris, K. & Thornton,

J. Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme

reaction mechanisms and active sites. Nucleic Acids Research. 46, D618-

D623 (2018)

42

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 28, 2022. ; https://doi.org/10.1101/2022.09.27.508720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.27.508720


[80] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,

O., Tunyasuvunakool, K., Bates, R., Žıdek, A., Potapenko, A. & Others
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