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Highlights 
● A single cell RNA-sequencing time course of day 3 to day 5 mouse gastruloids 

reveals multiple mesodermal and neural differentiation trajectories hitherto 
uncharacterised in gastruloids 

● Single gastruloid, single cell RNA-sequencing of mouse gastruloids reveals that 
gastruloids are either mesodermally- or neurally-biased 

● The two classes of gastruloid arise from differences in response strength to the 
WNT-agonist chiron 

● At day 5, mesodermal gastruloids start making more neural cells, while neural 
gastruloids do not make more mesodermal cells, aligning with previously studied in 
vivo feedback loops 

● We show using simulations that understanding interorganoid heterogeneity is a 
crucial consideration in the design and analysis of well-powered organoid-based 
perturbation studies 

Abstract 
Recent advances in organoid and genome editing technologies are allowing for perturbation 
experiments at an unprecedented scale. However, before doing such experiments it is 
important to understand the gene expression profile in each of the organoid’s cells, as well as 
how much heterogeneity there is between individual organoids. Here we characterise an 
organoid model of mouse gastrulation called gastruloids using single cell RNA-sequencing of 
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individual organoids at half-day intervals between day 3 and day 5 of differentiation (roughly 
corresponding to E6.5-E8.75 in vivo). Our study reveals multiple differentiation trajectories that 
have hitherto not been characterised in gastruloids. Intriguingly, we observe that individual 
gastruloids displayed a strong bias towards producing either mesodermal (largely somitic) or 
ectodermal (specifically neural) cell types. This bifurcation is already seen at the earliest 
sampled time point, and is characterised by increased activity of WNT-associated pathways 
in mesodermally-biased gastruloids as compared to neurally-biased gastruloids. Notably, at 
day 5, mesodermal gastruloids show an increase in the proportion of neural cells, while neural 
gastruloids do not produce notably more mesodermal cells. This is in line with previous studies 
on how the balance between these cell types is regulated. We demonstrate using in silico 
simulations that without proper understanding of the inter-organoid heterogeneity, perturbation 
experiments have either very high false positive or negative rates, depending on the statistical 
model used. Thus in future studies, modelling of inter-organoid heterogeneity will be crucial 
when designing organoid-based perturbation studies. 

Introduction 
Organoids are a powerful tool for studying cell fate decisions in the context of development 
and disease. In particular, the ability to grow organoids in large quantities in combination with 
the ever expanding set of genetic editing tools makes them ideal for perturbation screens. 
However, before performing such perturbation screens it is important to not only understand 
how the organoid cell types relate to their in vivo counterparts, but also to quantify the inherent 
inter-organoid heterogeneity (Fleck et al., 2021).  
 A number of recent studies have characterised both gene expression and epigenetic 
states during mouse gastrulation at single cell resolution (Argelaguet et al., 2019; Guibentif et 
al., 2021; Mittnenzweig et al., 2021; Pijuan-Sala et al., 2019). This has yielded a large number 
of novel candidate genes and putative regulatory regions with potentially important roles in 
development. However, validating such a large number of candidates in vivo remains 
challenging, and instead organoid models are required. Gastruloids are an example of an 
organoid model that models mouse gastrulation (van den Brink et al., 2014). Each gastruloid 
is generated from a pool of 300 mouse embryonic stem cells that are aggregated for 48hrs, 
during which time they downregulate pluripotency factors (Baillie-Johnson et al., 2015). 
Subsequently, Wnt signalling is activated by a 24hr Chiron pulse, mimicking key signalling 
activity in the early mouse embryo (van den Brink et al., 2014). In response, gastruloids 
reproducibly break symmetry and produce all three main germ layers (ectoderm, mesoderm, 
endoderm) (van den Brink et al., 2014). Within five days of aggregation, gastruloids make 
posterior neural cells, neuromesodermal progenitors, and somitic tissues, as well as limited 
amounts of endoderm, PGC-like cells, cardiopharyngeal cells, and endothelium, but do not 
form anterior neural cells (Beccari et al., 2018; van den Brink et al., 2020). Extensions of the 
standard protocol exist that take gastruloids beyond the standard five days of differentiation 
(Beccari et al., 2018) or that bias their differentiation profile towards specific lineages, such as 
cardiac cell types (Rossi et al., 2021; Veenvliet et al., 2020).Thus far, however, neither the 
differentiation trajectories that lead to the generation of these cell types, nor intergastruloid 
heterogeneity have been profiled. Previous studies have either bulk sequenced pools of 
gastruloids (Beccari et al., 2018), profiled single cells from a pool of gastruloids (Anlaş et al., 
2021; van den Brink et al., 2020; Rossi et al., 2021; Veenvliet et al., 2020) or spatially 
characterised very limited numbers of individual day five gastruloids (van den Brink et al., 
2020).  
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More generally, the inherent variability of few organoid models has been rigorously 
studied. Quantifying inter-organoid heterogeneity is not only important for understanding the 
biology of the model, but also critical when using organoids in perturbation studies. Many 
previous studies comparing cell type abundance in perturbed versus wild type samples have 
assumed Poisson noise, an assumption that may well be violated (Haber et al., 2017; 
Ramachandran et al., 2019). Indeed, using single organoid sequencing, Gehling et al. 
reported that in hepatocyte organoids inter-organoid variability was very high relative to batch 
effects (Gehling et al., 2021). Similarly, using single cell RNA sequencing, Velasco et al. and 
Quadrato et al. showed that brain organoids had more than randomly expected variability 
(Quadrato et al., 2017; Velasco et al., 2019), though this variability was comparable to the one 
observed in vivo (Velasco et al., 2019). Other studies in epithelial intestinal organoids similarly 
showed a high degree of inter-organoid variability (Criss et al., 2021; Hof et al., 2021; 
Mohammadi et al., 2021). These findings suggest that there is significant, uncharacterised 
interorganoid heterogeneity across organoid systems, which is important to understand and 
subsequently model ahead of perturbation. 
 Here we profile day 3 to day 5 mouse gastruloids at half-day time points at single cell 
and single gastruloid resolution. We generated the first fine-grained time course of gastruloid 
development, identifying hitherto uncharacterised, earlier differentiation pathways. 
Furthermore, by assigning cells to individual gastruloids using MULTI-seq, we identified two 
classes of gastruloid with one making predominantly mesodermal and the other predominantly 
neural cell types, with further non-Poisson variance within each class, and identified potential 
drivers of this process. Finally, we demonstrate the importance of considering this 
heterogeneity when using organoids as a model for perturbation screens. 
 

Results 
To investigate the developmental trajectory, and heterogeneity in gastruloid differentiation, we 
characterised single cells from individual gastruloids spanning differentiation day 3 to 
differentiation day 5 at half day time points by adapting MULTI-seq (McGinnis et al., 2019), an 
extension of the 10X single cell RNA-sequencing framework, for use with low cell numbers 
(Figure 1A). In MULTI-seq, cells from individual samples are barcoded prior to pooling, so that 
multiple samples can be sequenced together, and demultiplexed after sequencing (Figure 2A). 
77,683 cells passed stringent quality control measures (Supplementary Figure S1A-H). 

A time series of gastruloid development reveals multiple differentiation trajectories 
towards neural and mesodermal cell types 

To identify the cell types that are present in gastruloids we generated a preliminary annotation 
by performing coarse-grained Louvain clustering combined with reference based cell type 
annotation using an atlas of mouse development spanning E6.5 to E9.5 (Imaz-Rosshandler 
et al., 2022). We further refined this annotation using marker genes. In total, we identified 25 
cell types spanning primordial germ cells (PGCs), multipotent cell types, and other cell types 
derived from all three main germ layers (Figure 1B-D). Notably, gastruloid differentiation at all 
time points was highly reproducible between our replicates (each a pool of many gastruloids) 
(Supplementary Figure S1I) and gastruloid cell types at day 5 were concordant with previous 
single cell sequencing data (Supplementary Figure S2) (van den Brink et al., 2020), as well 
as qualitatively with Beccari et al. (Beccari et al., 2018), highlighting the reproducibility of the 
protocol. Consistent with previous observations in gastruloids and with in vivo data, few 
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endodermal cells were observed relative to the number of mesodermal and ectodermal cells 
(Beccari et al., 2018; van den Brink et al., 2020). Furthermore, the ectodermal cells were 
primarily of a neural nature and the mesodermal cells followed either a somite or anterior 
mesoderm differentiation trajectory.  
 To characterise the differentiation dynamics of gastruloids in comparison to the mouse 
embryo we integrated our gastruloid time course data with the aforementioned mouse atlas. 
This revealed that day 3 gastruloids roughly corresponded to E6.75-E7.25, while day 3.5 
gastruloids roughly corresponded to E7.5-E8.0 (Figure 1E). Day 4 gastruloids roughly 
corresponded to E7.75-E8.25, while both day 4.5 and day 5 gastruloids corresponded to 
E8.25-E8.75, with day 5 only slightly later. This is in agreement with data from bulk gastruloid 
and embryo sequencing (Beccari et al., 2018). However, the single cell data revealed that 
developmental time varied systematically by annotated gastruloid cell type (Supplementary 
Figure S3A). For example, spinal cord cells can be found in gastruloids as early as day 3, 
whereas this cell type is only present from E8.25 in mouse embryos. 
 Leveraging the time course data, we inferred differentiation trajectories using CellRank 
(Lange et al., 2022), which integrates RNA Velocity (Bergen et al., 2020; La Manno et al., 
2018) and connectivity graph inferences (Figure 1F). This demonstrated that gastruloids 
followed three separate mesoderm differentiation trajectories: An anterior mesodermal 
trajectory that gives rise to head mesoderm, cardiopharyngeal mesoderm, and endothelium; 
a neuromesodermal progenitor (NMP)-dependent somitic trajectory, and an NMP-
independent somitic trajectory (Figure 1G). Furthermore, it suggests that there was an NMP-
independent neural pathway giving rise to non-spinal cord neurons as well as spinal cord, 
together with an NMP-dependent pathway giving rise to spinal cord (Figure 1G). These 
inferences are in line with previously known lineage relationships. 

Thus, our single cell analysis of a time course of gastruloids has revealed the 
differentiation trajectories that are followed in gastruloids in detail, highlighting new avenues 
for the use of gastruloids to model mouse development. Our data also demonstrate 
heterochronicity in gastruloid cell type differentiation compared to equivalent in vivo data. 

Single gastruloid sequencing reveals two classes of gastruloid 
To investigate the heterogeneity between gastruloids, we next assigned cells to individual 
gastruloids using their MULTI-seq barcode identity (Figure 2A). In total, we assigned cells to 
136 individual gastruloids across our entire time series (d3, d3.5, d4, d4.5, d5; Supplementary 
Figure S4A) with a median of between 182 and 473 cells per gastruloid being recovered 
(Supplementary Figure S4B). 
 Upon first inspection, it was immediately clear that substantial heterogeneity in cell 
type proportions exists between gastruloids (Supplementary Figure S5). Therefore, we 
calculated the individual cell type proportions for each gastruloid, and plotted these in PCA 
space (Figure 2B,C, Supplementary Figure S6P). The PCA embedding not only separated the 
gastruloids according to their respective differentiation days (along the first principal 
component), but also revealed that gastruloids could be split into two classes along the second 
principal component, one making predominantly mesodermal, and the other making 
predominantly neural cell types. This is in line with Beccari et al. not detecting expression of 
mesodermal and endodermal markers in all profiled gastruloids using in situ hybridisation 
(Beccari et al., 2018). 

Performing PCA on only differentiation day 3 (24hr post chiron pulse) gastruloids 
revealed, even at this earliest time point, a clear bifurcation into mesodermal and neural 
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gastruloids (Supplementary Figure S5A, S6A, F, K), with even clearer separations being 
observed at later time points (Supplementary Figure S6A-O). Interestingly, despite these 
substantial differences, all gastruloid classes contained cells from all three main germ layers, 
just at vastly different proportions (Figure 2D, Supplementary Figures S5-7). We confirmed 
the statistical significance of these two classes by subsetting the gastruloids to only cells 
assigned a mesodermal or neural identity (Supplementary Figure S6Q), and running k-means 
on the proportions with k between 1 and 10 clusters. We then calculated the corrected Akaike 
Information Criterion (AICc) for this number of clusters, based on a binomial distribution on 
the number of mesodermal and neural cells per gastruloid (Figure 2E). This confirmed the 
bifurcation, with clear evidence for two clusters of gastruloids being preferred over one cluster 
at all time points. Interestingly, there was also clear evidence that at differentiation day 5 there 
were three clusters instead of two clusters (Figure 2E). Taken together with the PCA analysis 
(Supplementary Figure 6J,P), this third class of gastruloids appears to be an intermediate 
between the mesodermally-biased and neurally-biased classes (Supplementary Figures 6J 
and 6P). We thus classified each gastruloid as either being mesodermal or neural, or, in the 
case of the third day 5 cluster, “intermediate” (Supplementary Figure S6F-I). 

We then performed Waddington OT trajectory inference as implemented in CellRank 
(Lange et al., 2022; Schiebinger et al., 2019) in mesodermal and neural gastruloids separately, 
excluding the day 5 intermediate gastruloids owing to their ambiguous day 4.5 origin, to 
investigate transitions between subsequent time points (Figure 2F,G), as well as an integrated 
CellRank analysis of RNA velocity, connectivity, and Waddington OT (Supplementary Figure 
S8A,B). This confirmed the velocity-based CellRank findings (Figure 1F), but interestingly 
identified NMPs as a terminal state (Supplementary Figure S8C,D), with the somites and 
spinal cord predominantly derived from the NMP-independent trajectories. Furthermore, 
Waddington OT inferred that at day 4 in mesodermal gastruloids, a small pool of caudal 
epiblast, NMPs and spinal cord cells proliferate and differentiate, driving the convergence 
towards a more balanced cell type distribution at later time points. Similarly, in neural 
gastruloids a population of early posterior presomitic mesoderm cells persists between day 
3.5 and day 4, which subsequently differentiate, though with less relative proliferation (Figure 
2F,G, Supplementary Figure S8C,D). 

Varying WNT responses at day 3 explain gastruloid bifurcation 
To investigate the origins of the intergastruloid heterogeneity, we used Weighted Gene Co-
Expression Network Analysis (WGCNA) to find biological properties significantly associated 
with our phenotype of interesty (Barker et al., 2022; Langfelder and Horvath, 2008). For this 
we first ran single cell WGCNA (Feregrino and Tschopp, 2021) on only the day 3 MULTI-seq 
cells. This revealed 34 gene coexpression modules, with each module containing a mutually 
exclusive set of between 17 and 499 genes. We then pseudobulked the day 3 gastruloids and 
calculated how much of the variance in the pseudobulked gastruloid by gene matrix each 
module explained. Based on this, we identified 20 modules that explained a significant amount 
of variance (p<0.05 after Bonferroni correction). These modules could be clearly separated 
into those that were enriched in either neural or mesodermal gastruloids, with three 
mesodermal and three neural modules being particularly associated with gastruloids near the 
start of the bifurcation (Figure 3A). We classified these as “early mesodermal” and “early 
neural” modules, and combined the genes in each of the two groups. Comparative GO 
enrichment analysis of the two groups found five significant terms (Fisher exact test on GO 
terms that were significant at an adjusted p-value threshold of 0.05 in at least one of the two 
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classes, with a p-value threshold of 0.05 and an FDR threshold of 0.1; Figure 3B). These terms 
were all enriched in the mesodermal modules and not in the neural modules, and are 
associated with Wnt signalling and establishment of planar cell polarity. WNT signalling is the 
key pathway of gastrulation, and AP-axis establishment an important consequence thereof, 
which suggests that the mesodermal gastruloids receive new signals that stimulate 
gastrulation. Given that gastruloids are generated using a chiron pulse (a Wnt agonist) 
between differentiation days 2 and 3, the higher WNT signalling in day 3 mesodermally-biased 
gastruloids suggests that these gastruloids responded more strongly to the chiron pulse, while 
gastruloids that respond less strongly to these signals defaulted along a more neural 
trajectory. This is in line with previous, primarily in vitro, studies that find that the neural fate is 
the default (Tropepe et al., 2001). Interestingly, neuron differentiation is also associated with 
mesodermal gastruloids. However, this is not unexpected, since WNT signalling promotes 
neural progenitor maintenance and neuron maturation (Edri et al., 2019). This could either be 
caused by differences in chiron pulse strength, or by differences in competence to respond to 
chiron signals. This interpretation agrees with the findings of Sáez et al. that in a 2D 
differentiation system, small differences in chiron concentration can lead to the formation of 
either predominantly posterior neural or predominantly mesodermal tissues (Sáez et al., 
2022). 
 To further investigate the hypothesis that differences in chiron response are the cause 
of this bifurcation we compared our gastruloids to bulk RNA-seq data where cells in similar 
culture conditions were either differentiated towards anterior neural fates in the absence of 
chiron, or towards mesodermal and posterior neural fates in the presence of chiron (Gouti et 
al., 2014). For this we pseudobulked each day 3 and day 3.5 gastruloid and then projected it 
into the bulk RNA-seq PCA space (Figure 3C). We found that day 3 neural gastruloids fell 
along the trajectory of cells cultured without chiron between day 3 and day 4. In contrast, day 
3 mesodermal gastruloids were more similar to the day 3 cells cultured with chiron. By day 3.5 
all gastruloids spanned a range between the day 4 non-chiron cultured cells and day 4 cells 
that had been cultured with chiron between day 2 and day 3 (the condition most similar to 
gastruloids), with the mesodermal gastruloids still more similar to those that had been cultured 
with chiron, and the neural gastruloids more similar to those cultured without. This provides 
additional evidence that the difference between mesodermal and neural gastruloids is driven 
by differing strengths of the chiron response. 

Day 5 intermediate gastruloids are derived from mesodermally-biased gastruloids 
To better understand the previously-identified day 5 intermediate gastruloid class, we ran PCA 
on the cell type proportions of all day 4.5 and day 5 gastruloids. Interestingly, all intermediate 
gastruloids are closer in PCA space to the day 4.5 mesodermal gastruloids than they are to 
the day 4.5 neural gastruloids (Figure 3D). This means that there would have to be less 
change in the cell type proportions if the intermediate gastruloids were derived exclusively 
from the mesodermal lineage, than if they were derived from both mesodermally- and neurally-
biased gastruloids. Additionally, when comparing each day 5 gastruloid’s mean distance to 
the day 4.5 neural versus the day 4.5 mesodermal gastruloids, the intermediate gastruloids 
form a continuous trajectory with the day 5 mesodermal gastruloids, while the day 5 neural 
gastruloids cluster separately (Figure 3D). Combined with the fact that the intermediate 
gastruloids are further from the day 4.5 mesodermal gastruloids than are the day 5 
mesodermal gastruloids (Figure 3D), this suggests that the intermediate gastruloids are 
developmentally later forms of the day 5 mesodermal gastruloids. Furthermore, as the day 5 
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neural gastruloids develop further away from the day 4.5 neural gastruloids, they also move 
further in PCA space from the day 4.5 mesodermal gastruloids (Figure 3D), suggesting that 
they acquire a stronger neural identity. Together, this suggests that at the latest developmental 
time points, mesodermal gastruloids begin to produce more neural cells, while neural 
gastruloids do not produce notably more mesodermal cells. 

These observations are consistent with a previous study that investigated the gene 
regulatory networks that underpin the choice between posterior mesoderm and neural 
differentiation and proposed that an abundance of mesodermal cells stimulates neural 
differentiation through the induction of retinoic acid signalling (Figure 3E) (Gouti et al., 2017). 
Conversely, though a low abundance of mesodermal cells reduces retinoic acid signalling and 
neural cell differentiation, it does not stimulate Wnt signalling and mesodermal differentiation. 
Thus, neural gastruloids which display low levels of Wnt signalling are not able to increase 
mesoderm differentiation and remain mostly neural. Importantly, both gastruloid classes make 
all three main germ layers, thus there are small numbers of neural cells in mesodermal 
gastruloids that are able to differentiate, as shown by the Waddington OT analysis (Figure 
2F). Similarly there are small numbers of mesodermal cells in the neural gastruloids that are 
able to proliferate (Figure 2G). Consistent with the proposed explanation, mesodermal cells in 
neural gastruloids proliferate less relative to the neural cells do in neural gastruloids than the 
neural cells in mesodermal gastruloids do, relative to the mesodermal cells in mesodermal 
gastruloids (Supplementary Figure 8A,B). 

Interorganoid heterogeneity critically influences statistical power in perturbation 
experiments 
Increasingly, organoids are being used as models in which to perform perturbation 
experiments with single cell readout, due to the relative ease of perturbing them, combined 
with the relative ease of generating large numbers of organoids. However, thus far the 
interorganoid heterogeneity has not been considered in these experiments beyond generating 
standard wild type controls, this is particularly pertinent in a diverse, differentiating, 3D system 
like the gastruloid. In its simplest form, an organoid perturbation experiment with single cell 
readout involves generating some number of wild type samples, and some number of samples 
from a perturbed condition. Each sample consists of a pool of organoids, that are sequenced 
using single cell RNA sequencing, cell types assigned, and differential abundance testing, 
usually using a Poisson linear model, is performed (Figure 4A). 

When designing these studies, there are a number of key parameter choices, including 
the number of samples and the number of organoids per sample. These choices are critically 
influenced by the expected signal to noise ratio, i.e., the strength of a perturbation effect 
relative to the inherent null distribution. To demonstrate this using the example of gastruloids, 
we simulated such a perturbation experiment with varying parameter choices. To this end, we 
bootstrap sampled cell type proportions from day 4.5 gastruloids that were pooled in silico to 
form n WT samples and n perturbed samples. In the perturbed samples a single cell type was 
decreased in abundance at various fold changes. 

Using a Poisson model for differential abundance testing leads to many false positives 
(Figure 4C), while using a negative binomial model for differential abundance testing leads to 
many false negatives (Figure 4D,E), across a typical range of sample and gastruloid number 
choices when the fold change is 0.5, and across a wide range when the fold change is 0.75. 
However, given a large enough number of gastruloids per sample and large enough number 
of samples, the negative binomial model is able to gain power to detect fold changes of 0.5. 
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This shows that knowing the inherent variability that is to be expected, as well as the expected 
fold change, is crucial before designing a perturbation experiment. 

However, it is possible to improve the sensitivity by leveraging prior knowledge about 
the cell type composition of individual gastruloids. Here we propose a model inspired by cell 
type deconvolution (Young et al., 2021), in which we explicitly model the structure of the inter-
gastruloid heterogeneity. Each sample in the perturbation experiment is comprised of multiple 
gastruloids (Figure 4A). These gastruloids are either mesodermally- or neurally-biased. In 
addition there is heterogeneity within each class largely driven by how mature each individual 
gastruloid is. In the proposed model, we deconvolve what proportion of the cells of each 
sample come from each gastruloid class, and within each class, we model the continuous 
variance (Figure 4B). We then use this inferred distribution to find cell types that diverge from 
the expected heterogeneity structure in the perturbed samples relative to the wild type 
samples, which are called as differentially abundant. This model had a lower false positive 
rate when no cell type was perturbed than both the Poisson and negative binomial models 
(Figure 4C), while being more sensitive to small changes in cell type abundance than the 
negative binomial model (Figure 4E). While this model does have systematic false discoveries, 
caused by attempting to fit mean values, when one cell type is perturbed, these false 
discoveries can easily be identified and removed (Supplementary Figure 9A). Therefore, 
understanding the underlying heterogeneity of the organoid model allows for both powerful 
experimental design, as well as more power in the downstream statistical analysis. 

Discussion 
Our study provides the first single cell time course of gastruloid development, revealing 
hitherto unknown gatruloid differentiation trajectories. In addition, our results show that 
gastruloids develop along one of two trajectories, either making primarily mesodermal, or 
primarily neural cell types, with mesodermal gastruloids starting to make more neural cells at 
day 5. This interorganoid heterogeneity not only reveals key features of gastruloid biology, but 
the convergence of day 5 mesodermal, but not neural, gastruloids makes them an attractive 
system in which to study the mechanisms by which embryos make the correct proportion of 
each cell type. 
 Organoids are increasingly used as systems in which to perform perturbation screens. 
Our findings demonstrate that it is critical to quantify the inherent interorganoid heterogeneity 
before performing such perturbation screens, or else the variance will be incorrectly estimated 
leading to a large number of false positives or false negatives, depending on the statistical 
model used. However, we show that the structure of the heterogeneity can be leveraged using 
a deconvolution-based differential abundance testing approach to obtain higher power. 
Importantly, considering inter-organoid heterogeneity is important beyond differential 
abundance testing. Firstly, it is important to also consider whether a perturbation may have 
different effects in different classes of organoid. Secondly, if a perturbation makes only one 
group of organoid less fit, this could lead to unaffected cell types being assumed to be affected. 

More broadly, organoid models are being used to study, via large-scale CRISPR 
screens, the mechanisms that underpin disease, including in the context of personalised 
medicine. Our study provides a two-pronged framework for performing such screens: one part 
focuses on understanding the intrinsic heterogeneity of the system, with the second involving 
a larger CRISPR screen involving pooling of individual organoids into a single sample. 
Critically, our results demonstrate that data generated by the screen can only be properly 
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analysed using the first component, outlining a path forward for extracting the most biological 
insight from such studies. 

Code and Data availability 
All code is available at https://github.com/MarioniLab/gastruloids2022 and all RNA and MULTI 
sequencing datasets are deposited in the Gene Expression Omnibus (GEO) under accession 
number GSE212050. The data can be interactively explored at 
https://marionilab.cruk.cam.ac.uk/GastruloidTimecourseShiny/. 
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Methods 

Mouse ESC and gastruloid culture 
Mouse E14Tg2A (E14) Embroynic Stem Cells (ESCs) obtained from the Cambridge Stem Cell 
Institute (CSCI) were cultured in ESLIF medium (DMEM (Life Technologies, 10566-016), 15% 
fetal bovine serum (Sigma-Aldrich, Lot #BCCC3714), 1x MEM Non-Essential Amino Acids 
(Life Technologies, 11140050), 2 mM GlutaMAX (Life Technologies, 35050061), 10 U/ml 
Penicillin-Streptomycin (Life Technologies, 15140122), 0.1 mM 2-Mercaptoethanol (Life 
Technologies, 31350010), and 10 ng/ml  mLIF (Department of Biochemistry, University of 
Cambridge)) on gelatin-coated (0.1% in H2O) tissue culture treated 10 cm plates in a 
humidified incubator at 37 ℃, 5% CO2. Cells were passaged every other day.  
 
Gastruloids were grown as described previously (Girgin et al. 2018 Protocol Exchange). 
Briefly, ESLIF-grown mouse ESCs were dissociated to a single cell suspension using Trypsin-
EDTA (Thermo Fisher Scientific, 25300096). Trypsin was inactivated in 5 ml ESLIF medium 
and cells were spun down. The cell pellet was washed and spun down in 5 ml pre-warmed 
PBS (14190144) twice to remove remaining traces of ESLIF medium. After the second wash, 
cells were resuspended in 5 ml N2B27 medium (50/50 mix of DMEM-F12 (Thermo Fisher 
Scientific, 11320033) and Neurobasal (Thermo Fisher Scientific, 21103049), supplemented 
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with 0.5x N-2 Supplement (Cell Therapy Systems, A1370701), 0.5x B-27 (Thermo Fisher 
Scientific, 12587010), 2 mM GlutaMAX, 10 U/ml Penicillin-Streptomycin and 0.1 mM 2-
Mercaptoethanol) and counted using a haemocytometer. Cells were diluted in N2B27 medium 
to a density of 7500 cells/ml. This cell suspension was transferred to a reservoir and 40 μl of 
the suspension was added to each well of a U-bottom suspension culture 96-well plate 
(Greiner Bio-One, 650185) to reach a cell density of 300 cells/well. These cells were left to 
aggregate for 48 hours, at which point 150 μl of N2B27 medium with 3 μM of the GSK3 inhibitor 
CHIR99021 (Chiron, Department of Biochemistry, University of Cambridge) was added. 
Subsequently, 150 μl of the medium was exchanged for N2B27 medium (without CHIR99021) 
every 24h and gastruloids were grown up to 120h (5 days). Gastruloids were collected for 
sequencing at d3, d3.5, d4, d4.5 and d5. Gastruloids for half-day time points were set up in 
the evening to allow collection of full- and half-day time points at the same time.  

Sample preparation: scRNA-seq 
Gastruloids were grown as described above. At d3 or d4, gastruloids were transferred to an 
eppendorf tube, washed with PBS and dissociated using Accutase (StemPro, A1110501) to 
obtain a single cell suspension. To remove Accutase, cells were washed twice in 5 ml PBS + 
0.04% BSA (Gibco, 15260037) and filtered through a 50 um strainer (Sysmex, 1050553). Cell 
number and viability was assessed using the Countess II Automated Cell Counter and 
samples were diluted to submit for 10x 3’ scRNA sequencing at a targeted cell capture rate of 
10,000 cells per lane. 

Sample preparation: MULTI-seq 
Gastruloids were grown as described above. At the collection time point, up to 32 
representative gastruloids were selected and individual gastruloids were transferred to wells 
of a U-bottom suspension culture 96-well plate with 80 μl Accutase (StemPro, A1110501) per 
well. Gastruloids from multiple time points were combined on a single plate to minimise batch 
effect. Gastruloids were incubated at 37 ℃ for three minutes and were dissociated through 
repeated pipetting using a multichannel pipette. Low-retention pipette tips were used for this 
and all subsequent steps to minimise cell loss. Incubation and pipetting were repeated until a 
near single-cell suspension was achieved in each well.  

To label the cells of individual gastruloids with MULTI-seq barcodes, the MULTI-seq 
protocol (McGinnis et al., 2019) was adapted for low cell numbers as follows. First, 10 μl of 
unique 10x Anchor:Barcode solution was added to each well. Samples were mixed by 
pipetting and incubated on ice for 5 minutes. Henceforward, samples were kept on ice. Next, 
10 μl 10x Co-Anchor solution was added, mixed in by pipetting and incubated on ice for 5 
minutes. Anchor/Co-Anchor stock concentrations were calculated based on estimated cell 
numbers per gastruloid (7500 cells at d3, 13000 cells at d4, 25000 cells at d5). Used barcodes 
can be found in Supplementary table 1 (see supplementary note 1 for how these were 
selected). Barcode labelling was quenched by adding 100 μl ice cold PBS with 1% BSA 
(Gibco, 15260037) (PBS/BSA) per well. Next, cells from individual wells were combined into 
a 15 ml Falcon tube with 5 ml ice cold PBS/BSA to further quench barcode labelling. Cells 
were spun down at 300g in a precooled centrifuge at 4 ℃. The cell pellet was washed with 5 
ml ice cold PBS/BSA and spun down again. Next, the cell pellet was resuspended in 1 ml ice 
cold PBS/BSA and passed through a Flowmi cell strainer (Bel-Art, H13680-0040) into a clean 
precooled 15 ml Falcon tube. The volume was topped up to 5 ml with ice cold PBS/BSA for a 
final wash and the cells were spun down again. All but approximately 50 μl of PBS/BSA was 
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aspirated and the cells were resuspended in the remaining volume. Cell number and viability 
was assessed using the Countess II Automated Cell Counter and samples were diluted to 
submit for 10x 3’ scRNA sequencing at a targeted cell capture rate of 10,000 cells per lane. 

Single cell MULTI-seq 
After dissociation and labelling with MULTI-seq barcodes, cells were processed using 10x 
Genomics Chromium single cell 3’ RNA sequencing v3.1 according to manufacturer’s 
instructions. For MULTI-seq, the MULTI-seq primer was added during cDNA amplification and 
the supernatant was collected during 0.6x SPRI clean-up to obtain the barcode fraction as 
described by McGinnis et al. MULTI-seq barcode libraries were prepared according to 
McGinnis et al. Libraries were amplified between 11 and 16 times. The number of amplification 
cycles required was empirically determined for each sample. scRNA and barcode libraries 
were sequenced on either HiSeq or NovaSeq 6000 instruments according to 10x Genomics 
instructions (read 1, 28 cycles; index i7, 8 cycles; and read 2, 91 cycles). 

Importantly, owing to MULTI-seq barcoding we were able to pool gastruloids from 
multiple time points across three experiments. The first experiment involved 24 day 5 
gastruloids spread over 3 10X lanes. In the first experiment (“exp1_d5”), barcodes 1 to 24 
were used. After the first experiment, the optimal barcodes were used, as selected using the 
method described above. The second experiment involved 3 pools of day 3 and day 3.5 
gastruloids (“exp2A_d3_d3.5”, “exp2C_d3_d3.5”, “exp2D_d3_d3.5”; note pool B was not sent 
for 10X sequencing), as well as 3 pools of day 4 and day 4.5 gastruloids (“exp3A_d4_d4.5”, 
“exp3B_d4_d4.5”, “exp3C_d4_d4.5”). Unfortunately, the day 3 and day 3.5 gastruloid data 
quality was too poor and these experiments were excluded. For the day 4 and day 4.5 
gastruloids, out of the 3 pools (pool A, B, and C), only pools B and C were sequenced, and 
from these only lanes (samples) 2 and 3 from pool B, and lanes 1 and 2 from pool C. For the 
second experiment, the top 24 barcodes were used. The third experiment involved 1 pool of 
24 day 3 gastruloids, spread across 2 10X lanes (“exp4_d3”), as well as one pool of 16 day 
3.5 and 16 day 4 gastruloids, spread across 4 10X lanes (“exp5_d3.5_d4”), and finally 16 day 
4.5 and 16 day 5 gastruloids, spread across 3 10X lanes (“exp6_d4.5_d5”). The MULTI-seq 
barcodes for this third experiment were additionally resequenced at higher depth and using 
16 PCR amplification cycles during library preparation due to low yield. 

10x Genomics data pre-processing 
Raw FastQ files were processed with Cell Ranger 6.0.0 using default mapping arguments, 
and the mm10-2020-A genome and annotation (provided by 10X Genomics). 
 

Quality Control 
CellRanger called cells were subjected to stringent quality control metrics on a sample-by-
sample basis. They were selected for minimum number of UMI, minimum number of genes 
detected, as well as minimum and maximum mitochondrial percentage. Furthermore, cells 
that passed this initial QC were processed using the hybrid method from the scds doublet 
calling R package (Bais and Kostka, 2020). All cells that the method called as doublets were 
removed, along with any cell which had more than 10 of its 30 nearest neighbours called as 
doublets by the hybrid method. After stringent QC, we retained 77,683 cells. 72,176 of these 
cells were sequenced using MULTI-seq. The remaining 5,507 cells were sequenced using 3’ 
RNA sequencing. 
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 For comparison purposes across experiments (shown in supplementary figure 1 B, D, 
F, and H), QC metrics were normalised across samples, to have equal mean and standard 
deviation. In the case of the mitochondrial percentage and the number of UMI this was done 
on the log2 of the values. 
QC thresholds: 

 10X MULTI-seq 

 gastr_d3, 
gastr_d4 

exp1 exp3 exp4, 
exp5, 
exp6 

Minimum number of UMI 4000 8000 

Minimum number of genes 1500 2500 

Minimum percent mitochondrial 3 1 

Maximum percent mitochondrial 10 

 

MULTI-seq demultiplexing 
Cells were assigned MULTI-seq barcodes from the R1 and R3 fastq files using the published 
MULTI-seq demultiplexing method for barcode alignment and classification, with the slight 
modification that only cells whose barcodes passed RNA QC were included in the 
demultiplexing. This increased the sensitivity of the method. In all but the first MULTI-seq 
experiment the barcode yield was low, probably due to a loss of MULTI-seq anchor/co-anchor 
efficiency over time. However, it was still possible to classify these cells using the k-means 
based negative cell reclassification method as implemented in MULTI-seq for all but 
exp3C_d4_d4.5. A sample-specific reclassification stability was chosen based on identifying 
local maxima in diagnostic plots (no reclassification was done for exp1; for exp3B_d4_d4.5 
sample2: 3; exp3B_d4_d4.5 sample3: 6; exp4_d3 sampleA: 6; exp4_d3 sampleB: 6; 
exp5_d3.5_d4 sampleA: 9; exp5_d3.5_d4 sampleA: 10; exp5_d3.5_d4 sampleA: 18; 
exp5_d3.5_d4 sampleA: 8; exp6_d4.5_d5 sampleA: 4; exp6_d4.5_d5 sampleB: 4;  
exp6_d4.5_d5 sampleC: 5). In experiment 4 many cells spuriously associated with barcode 6 
and barcode 14 in sample A, and barcodes 12, 24, and 30 in sample B. All cells assigned to 
these barcodes whose top detected barcode was not the barcode they were assigned were 
reassigned as negative and included in the negative cell reclassification. The attractor 
barcodes were excluded from negative cell reclassification, as well as barcode 61 in sample 
A, and barcode 13 in sample B, as these also acted as spurious attractors during 
reclassification. These issues led to only around 50% of these cells being confidently assigned 
a barcode (Supplementary Figure S4C). 
 

Sample integration 
Subsequently, the samples were concatenated, 1274 cell-cycle associated genes were 
removed based on their associated GO terms, and the samples normalised using 
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multiBatchNorm from the batchelor R package (Haghverdi et al., 2018). Highly variable genes 
were selected using the modelGeneVar function from batchelor, with a minimum mean of 
0.001 and a maximum p-value of 0.05. Subsequently, multiBatchPCA was used to calculate 
the first 50 PCs. The PCA space was then batch effect corrected using MNN, first correcting 
samples within a time point (ordered from most cells to fewest), and then correcting across 
time points (ordered from day 5 to day 3). 

Joint QC 
The 50-dimensional corrected PCA space was clustered using Seurat Version 4’s 
FindNeighbors function with a k of 30, followed by the FindClusters function with a resolution 
of 1 (Hao et al., 2021). A low mitochondrial, high ribosomal cluster was subsequently further 
removed. The data was then reintegrated as above, but without cells contained in this low-
quality cluster. 

Visualisation 
A UMAP was generated using the “naive” method with default parameters from the R package 
umap version 0.2.8 (Konopka, Tomasz, 2022), based on the corrected 50-dimensional PCA 
space using random state 2402. 

Mapping to embryo atlas 
The gastruloid data was integrated with the Pijuan-Sala (Pijuan-Sala et al., 2019) and the 
Imaz-Rosshandler extended (Imaz-Rosshandler et al., 2022) mouse gastrulation and 
organogenesis atlases. In both cases, and as previously described, cell cycle genes were 
removed for integration, and the two datasets were subset to common genes. For label 
transfer, each sample was mapped individually to the atlas; to obtain a joint embedding, all 
samples were mapped at the same time. The samples were normalised using multiBatchNorm 
from the batchelor R package version 1.6.3. Highly variable genes were selected using the 
modelGeneVar function from batchelor, with a minimum mean of 0.001 and a maximum p-
value of 0.05. Subsequently multiBatchPCA from batchelor was used to calculate the first 50 
PCs. The PCA space was then batch effect corrected using reducedMNN, first correcting the 
atlas (first samples within a time point from those with the most cells to those with the fewest 
cells, then across time points, in order of latest time point to earliest time point). In the case 
where all gastruloid samples were mapped at the same time, subsequently the gastruloid 
samples were iteratively mapped to the integrated PCA space, in order of last time point to 
first time point, and within each time point ordered based on number of cells (from most to 
fewest). In the case where the samples were mapped individually, the sample was integrated 
with the atlas PCA-space. Cell types were then assigned based on the majority vote of the 30 
nearest atlas cells to each gastruloid cell. In the original atlas, these cell types were further 
refined using the Guibentif et al. somite reannotation (Guibentif et al., 2021). For this, the 
dataset was subset to all cells that were originally assigned as paraxial mesoderm, somitic 
mesoderm, or intermediate mesoderm, and remapped to just the annotated E8.5 atlas cells. 

Clustering and cell annotation 
The initial reference-based cell type annotation was used, together with marker gene 
expression, to guide a de novo cell type annotation. For this, the gastruloid-only integrated 
PCA space was clustered using Seurat Version 4’s FindNeighbours function with a k of 30, 
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and Seurat Version 4’s FindClusters function with a resolution of 0.6 and random seed  of 0 
(Hao et al., 2021). This yielded 16 clusters which were given preliminary annotations. 
Subsequently, the borders between cell types were refined, and clusters subclustered, in a 
biologically-informed, supervised manner. For this, each cell’s log-normalised gene 
expression was stabilised by averaging each gene over the cell’s 30 nearest neighbours. 

The cluster annotated as primitive streak was further refined into PGCs, primitive 
streak, and epiblast, by subsetting the smoothed gene expression matrix to that cluster and 
the genes Dppa5a, Utf1, Zfp42, Pou5f1, Brachyury (T), and Wnt3. PCA dimensionality 
reduction was performed on this space, and k-means clustering using the first two principal 
components, and a k of 10 was performed, using 10 random initialisations. One of the resulting 
clusters was classified as PGCs, while a second was assigned epiblast. The remaining two 
clusters retained a primitive streak identity. 
 A similar procedure was done to distinguish between caudal neurectoderm, primitive 
streak, early neurectoderm, and caudal epiblast using Thy1, Hes3, Nrp2, Epha5, Gbx2, Sfrp1, 
Ncam1, Pou5f1, Hoxc8, Hoxb9, Hoxaas3, Pim2, T, and Wnt3 as marker genes. In this case a 
mixture of 4 ellipsoidal Gaussians of varying volume, shape, and orientation was fit, and each 
cluster assigned one cell type. 
 To distinguish between anterior primitive streak and nascent mesoderm, T, Foxa2, 
Cyp26a1, Lhx1, and Mesp1 were used as marker genes. Only the second principal component 
was used as an input to a k-means clustering with 10 random initialisations and a k of 2. 
 Similarly, to distinguish between nascent mesoderm and head mesoderm, Cyp26a1, 
Lhx1, Mesp1, Igfbp5, and Sox9 were used as marker genes, and the first two principal 
components used as input to fitting a mixture of 2 ellipsoidal Gaussians of varying volume, 
shape, and orientation. 
 The spinal cord was subset into early and late by reclustering the spinal cord cells 
using Seurat’s FindNeighbors (k=30), and FindClusters with a resolution of 0.2 and a random 
seed of 0. 
 Similarly we distinguished between early anterior PSM, late anterior PSM, and somites 
by clustering those cells using Seurat’s FindNeighbors (k=30) and FindClusters with a 
resolution of 0.3 and a random seed of 0. 
 We distinguished between Caudal Epiblast and NMPs using Pou5f1, Pim2, Cyp26a1, 
and Sox2 as marker genes, and the first two principal components used as input to fitting a 
mixture of 2 ellipsoidal Gaussians of varying volume, shape, and orientation. We further 
refined the distinction by requiring that all caudal epiblast cells have a stabilised Cyp26a1 
expression of less than 0.1. 

Visualising Marker Gene Expression by Cell Type 
To visualise marker gene expression, we used the normalised and 30-nn stabilised gene 
expression matrix as above. For each of the marker genes, we calculated the per cell type 
mean. We subsequently scaled each gene individually by subtracting the mean of the per cell 
type means, and dividing by the standard deviation of the per cell type means. This was then 
plotted as a heatmap. 

Calculating each cell’s equivalent embryonic day 
For each gastruloid cell, the number of its 30-nearest cells of each embryonic day in the 
extended atlas (after individual sample integration) was recorded. This yielded a cell-by-
embryonic day matrix, with each row summing to 30. This matrix was then normalised by the 
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number of cells in the atlas that were of that embryonic day, to control for varying detection of 
each embryonic day. Thus the columns summed to 1. This was then divided by the rowSums, 
so that each gastruloid cell was equally weighted. Based on this, each gastruloid cell was 
assigned an embryonic day, calculated as the weighted average of the embryonic days (the 
sum of its row values multiplied by the column names). 

Comparison with Previous Gastruloid scRNA-seq Dataset 
The van den Brink coutb UMI count tables were downloaded from GEO, along with the 
metadata. 458 cells that were in the metadata were not in any of the samples downloaded 
from GEO, from 2 CelSeq “bulk” samples. Furthermore, 7959 cells that were not in the 
metadata were in the count matrices, presumably cells that had been removed at the QC 
stage. All downloaded data were re-QCed using the above method, with custom, experiment-
specific, thresholds. Based on visual inspection, it was clear that 4 samples had been assigned 
an incorrect batch, and were manually altered. Additionally, there were 2 batches with only 1 
and 2 samples assigned respectively. Further investigation revealed that these were actually 
samples belonging to other, bigger batches. The QC-ed dataset was integrated with the 
present data, using the same code as had been used to integrate just the present data, except 
that the genes were subset to just common genes in the two datasets. A UMAP with random 
state 2402 was run on the first 30 PCs of the integrated PCA space. Colours were assigned 
to the van den Brink cell types to align with the closest match in the present data. 
 To quantitatively compare the similarity between the datasets, for each day 5 cell in 
the integrated dataset, the batch of its 30 nearest neighbours was recorded, to produce a cell-
by-batch matrix with the rows summing to 30. The batches were the two day 5 experiments in 
the present data (sequenced using 10X), as well as the single van den Brink 10X experiment, 
and the IB10 and Lfng CEL-seq experiments. This was then divided by the number of cells in 
each experiment to control for the varying numbers of cells in each experiment, and then 
divided by the row sums so that each cell would be equally weighted. We then plotted this 
normalised nearest neighbour score. 

Trajectory Inference 
Velocyto (La Manno et al., 2018) was run with default parameters for each chromosome 
separately, to obtain the spliced and unspliced count matrices. For trajectory inference, data 
were subset to only cells confidently assigned either a neural or a mesodermal gastruloid. The 
inference was performed separately for neural and mesodermal gastruloids, under the 
assumption that a cell in one gastruloid class will never give rise to a cell in another gastruloid 
class. All cell cycle-associated genes were removed. 
 First, the data were preprocessed according to scVelo (Bergen et al., 2020). The data 
were filtered and normalised using the top 2000 genes, with a minimum shared count of 20. 
Subsequently, the neighbourhood graph was constructed using the 50 PCs from the 
gastruloid-only integrated PCA space, and 30 nearest neighbours. This was also used to 
generate moments. scVelo was then run in the dynamical mode, and the velocity graph was 
approximated. CellRank (Lange et al., 2022) was used to turn the output into a kernel, and 
compute the transition matrix. For the flow plots, the resulting anndata objects were 
concatenated and their velocity embedding streams plotted. Figure 1G was produced 
manually. 
 The Waddington OT (Schiebinger et al., 2019) implementation in CellRank was used. 
For each cell, proliferation and apoptosis scores were calculated based on the marker genes 
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provided in CellRank, and used to calculate initial growth rates. The Waddington OT transition 
matrices were then calculated using 10 growth iterations. The Waddington OT flow plots were 
generated from the resulting transition maps, separately for neural and mesodermal 
gastruloids. Additionally, the Waddington OT-estimated growth rates were separately plotted. 
 For the terminal state plots, CellRank was used to generate a connectivity kernel, using 
GPCCA, and a combination of 0.5 velocity, 0.4 Waddington, and 0.1 connectivity. Based on a 
Schur decomposition computing 20 macrostates, 10 macrostates were chosen for the neural 
gastruloids, and 12 for the mesodermal gastruloids. Terminal states were manually identified 
from macrostates, by excluding any macrostates not in the final time points (epiblast in the 
case of neural gastruloids, and one of the two mature endoderm macrostates in the case of 
the mesodermal gastruloids). Absorption probabilities were calculated using default 
parameters. 

PCA on gastruloid cell type proportions 
To investigate the inter-gastruloid heterogeneity, we generated a count matrix of cell type by 
gastruloid, with entries corresponding to the number of cells of each cell type assigned to each 
gastruloid. We divided each row by the total number of cells in each gastruloid to obtain the 
proportion of cells in each gastruloid assigned a certain cell type. We then ran centred, but not 
scaled, PCA on this, to embed each gastruloid in a principal component space. We did this 
both for all gastruloids, as well as for each time point separately. When investigating the day 
5 intermediate gastruloids, we used the same approach but subset to all day 4.5 and day 5 
gastruloids. 
 Where gastruloids are listed in a linear order, they are sorted based on their principal 
curve in their PC space (the number of PCs used, between 2 and 4, was manually chosen 
based on elbow plots). This was calculated using the principal_curve function from R’s 
princurve package. 

Binning cell types into lineages 
To simplify visualisations, cell types were given broader classifications as multipotent, 
mesoderm, endoderm, or ectoderm (Supplementary Figure 6Q) : PGCs, Epiblast, Primitive 
Streak, Caudal Epiblast, and NMPs were classified as multipotent; Notochord, Early Nascent 
Mesoderm, Late Nascent Mesoderm, Head Mesoderm, Cardiopharyngeal Mesoderm, 
Endothelium, Early Posterior PSM, Late Posterior PSM, Early Anterior PSM, Late Anterior 
PSM, Somites, and Mature Somites were classified as mesodermal; Anterior Primitive Streak 
and Mature Endoderm were classified as endoderm; Caudal Neurectoderm, Early Spinal 
Cord, Late Spinal Cord, Early Neurectoderm, Late Neurectoderm, and Neurons were 
classified as ectoderm. 

AICc calculation 
To statistically confirm the existence of multiple gastruloid classes, we calculated the corrected 
AIC of a binomial model based on a k-means clustering, with varying k. We used the corrected 
AIC to account for our small sample size, and a simplification into a binomial model to ensure 
that the number of gastruloids remained greater than the number of parameters to be fit. For 
this, we obtained the number of cells in each gastruloid that were mesodermal, and the 
number of cells in each gastruloid that were neural, based on the coarse cell type binning 
described above. At each time point, we classified the cells into n classes using k-means 
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clustering with five random initialisations. We then calculated the binomial log likelihood for 
each of the n classes as follows: 
𝐿𝐿 =  ∑ 𝑙𝑜𝑔((∑ 𝑛𝑐,𝑔

 
∀𝑐 )

 
!)  

∀𝑔 −  ∑ 𝑙𝑜𝑔(𝑛𝑐,𝑔!)  
∀𝑔,𝑐 +  ∑ 𝑛𝑐,𝑔

 
∀𝑔,𝑐 ∗ 𝑙𝑜𝑔(𝑝𝑐) , ∀𝑔 assigned class i by 

the k-means clustering 
𝑝𝑐 = ∑ 𝑛𝑐,𝑔

 
∀𝑔 / ∑ 𝑛𝑐,𝑔

 
∀𝑔,𝑐  is the probability of each cell type (mesodermal or neural) in each 

class 
𝑛𝑐,𝑔is the number of cells of a given cell type, c, that gastruloid g has, given that gastruloid g 
was assigned class i. 
The model log likelihood was calculated as the sum of the individual class log likelihoods, and 
used as input to the AICc, with k=2*n classes: 

𝐴𝐼𝐶𝑐 = 2𝑘 − 2𝐿𝐿 + 2𝑘2+2𝑘
𝑠−𝑘−1

, where s is the number of gastruloids. 

Separation into gastruloid classes 
Based on the results of the AICc analysis, we manually classified the day 3 to day 4.5 
gastruloids as either neural or mesodermal, and the day 5 gastruloids as neural, mesodermal, 
or intermediate. This was done based on visual inspection of the cell type proportion PCA 
plots, and agreed with the k–means clustering. 

Differential abundance testing between gastruloid classes 
For each cell type at each time point, to compare if cell types are differentially abundant 
between two classes of gastruloid, we compared, for each cell type of interest, the proportion 
of cells in each gastruloid between each class using a Mann-Whitney U test. The p-values 
were then corrected for multiple hypothesis testing using a Benamini-Hochberg correction, 
and only comparisons with p<0.05 and FDR<0.1 displayed. 

scWGCNA 
The day 3 gastruloid data were pseudobulked and cell cycle genes removed. The pseudobulk 
data was subsequently normalised to counts per million, and outlier genes removed using 
WGCNA’s goodSamplesGenes function (Langfelder and Horvath, 2008). The day 3 single cell 
data was then normalised, variable features selected, 50 PCs calculated, a neighbourhood 
graph constructed, and clusters found with a resolution of 1 using Seurat with default 
parameters. Subsequently, we followed the Feregrino and Tschopp method for scWGCNA 
(Feregrino and Tschopp, 2021). 

Significant module selection 
The day 3 gastruloid data were randomly pseudobulked by permuting the gastruloid labels 
10000 times. The amount of variance explained by each WGCNA-identified module 
eigengene in the pseudobulked gastruloid by gene matrix was then compared with the amount 
of variance that eigengene explained in the 10000 random pseudobulked matrices. This was 
done by using the variance explained in each of the 10000 random matrices as an empirical 
null distribution, and obtaining the p-value for the variance explained in the real data matrix. 
Modules that were significant at a Bonferoni-corrected 0.05 level were considered as 
explaining significant amounts of inter-gastruloid variance. 
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GOEA 
The significant modules were manually classified as late mesodermal (6 modules), early 
mesodermal (3 modules), late neural (6 modules), early neural (3 modules), and other (2 
modules) based on their expression in the day 3 gastruloids. The 3 early neural modules were 
merged, and the 3 early mesodermal modules were merged. GO enrichment analysis was run 
separately on the mesodermal genes and the neural genes using enrichR (Xie et al., 2021) 
and the 2021 biological process annotation. Terms that were significant in either the 
mesodermal or the neural genes at an adjusted p-value of 0.05 (p-value adjustment performed 
in enrichR) were then compared using a Fisher exact test. In the Fisher exact test, the number 
of mesodermal genes in the GO term relative to the number of mesodermal genes was 
compared to the number of neural genes in the GO term relative to the number of neural 
genes. The resulting p-values were Benjamini-Hochberg corrected, and the terms that were 
significant at an FDR of 0.1 and a p-value of 0.05 reported. 

Comparison to bulk 2D differentiation data 
Fastq files for the Gouti et al. 2014 paper were downloaded from the EBI Array express 
database (Gouti et al., 2014). Each sample was aligned to the mm10 genome using tophat 
followed by htseq. The count tables were then merged. The resulting count table was 
concatenated with the day 3 and day 3.5 gastruloid pseudobulk count matrices. These were 
then processed using DESeq, with the design matrix including only experiment of origin (with 
all Gouti et al. samples considered as coming from one experiment, and the MULTI-seq data 
separated based on whether they came from exp4_d3 or exp5_d3.5_d4) as a variable. Size 
factors were estimated, and genes whose total counts were less than 10 were removed. VST 
normalisation was performed, followed by Limma batch effect correction, with only organoid 
of origin (gastruloid or 2D) input as the batch variable. The resulting PCA space was plotted. 

Comparing day 4.5 and day 5 PCA distances 
PCA was run on the day 4.5 and day 5 cell type proportion by gastruloid matrix as described 
above and the Euclidean distances between all gastruloids were calculated. For each day 5 
gastruloid, its mean Euclidean distance to the day 4.5 mesodermal gastruloids was calculated, 
as well as its mean Euclidean distance to the day 4.5 neural gastruloids. 

Simulating perturbation experiments 
We simulated perturbation experiments with varying numbers of samples per condition, and 
varying numbers of gastruloid per sample. For each gastruloid, the number of cells per 
gastruloid in each sample is generated from a Gamma-Poisson with a mean of 5000/’number 
of gastruloids to sample’ and an index of dispersion (IoD) of 500. Additionally, for each 
organoid the proportion of each cell type is obtained by sampling with replacement (i.e. 
bootstrapping) from the day 4.5 gastruloid cell type proportions. In the case where there is a 
fold change, this probability is additionally multiplied by the fold change and the resulting 
vector is renormalised to sum to 1 again. This probability vector is then multiplied by the 
previously obtained number of cells for that gastruloid. This was repeated for however many 
gastruloids there were in each sample, and again for however many samples were present in 
each experiment. For the simulations, 100 trials were run for each parameter combination. 
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Poisson differential abundance testing 
For Poisson differential abundance testing, the code was based on benchmarking code from 
miloR (Dann et al., 2022). A Poisson glm was fit for each cell type, with the covariates condition 
and offset. The offset was the log of the number of cells in that sample. Resulting p-values 
were Benjamini-Hochberg corrected, and all cell types whose FDR was less than 0.2 were 
classified as differentially abundant. 

Negative binomial differential abundance testing 
For negative binomial differential abundance testing, again the code was based on 
benchmarking code from miloR (Dann et al., 2022). EdgeR normalisation factors were 
calculated using the TMM method, and subsequently edgeR was used to estimate dispersion 
for each cell type, and a quasi-likelihood model fit, and used for differential abundance testing. 
Again, all cell types whose FDR was less than 0.2 were classified as differentially abundant.  

Deconvolution differential abundance testing 
The differential abundance testing approach was based on Young et al. code initially written 
for cell type deconvolution of bulk RNA-seq samples based on single cell references (Young 
et al., 2021). In this approach, prior knowledge from individual gastruloid sequencing is used 
to construct a PCA space for each gastruloid class, which is subsetted based on manual 
inspection of elbow plots. The PCA space is based on the log(x) of the cell type proportions,  
where any zero values of x are replaced by the minimum non-zero value of x, to allow for 
exponentiation of the fitted values to force the counts to be strictly positive. This accounts for 
the correlated, non-uniform variance structure. 

For testing each cell type, that cell type was removed from the data, and a 
deconvolution model fit to the data. This deconvolution model modelled each sample’s cell 
type count vector as follows: 
𝑦 = 𝛽𝑚𝑒𝑠𝑜𝑒𝑥𝑚𝑒𝑠𝑜𝑆𝑚𝑒𝑠𝑜+𝑏𝑚𝑒𝑠𝑜 + 𝛽𝑛𝑒𝑢𝑟𝑎𝑙𝑒𝑥𝑛𝑒𝑢𝑟𝑎𝑙𝑆𝑛𝑒𝑢𝑟𝑎𝑙+𝑏𝑛𝑒𝑢𝑟𝑎𝑙, where the 𝛽 scalars and 𝑥 vectors 
are fit, and the 𝑆 matrices and 𝑏 vectors are the previously-calculated principal components 
and offsets of the respective mesodermal and neural gastruloid PCA spaces. 𝛽 represents the 
number of cells that come from each respective gastruloid type, while 𝑥 is the embedding of 
the sample in the respective PCA spaces 𝑆 (this represents the mean of the pool of gastruloids 
of that class). 
 The model is fit by optimising a Poisson log-likelihood using stochastic gradient 
descent (SGD), adapting code from (Young et al., 2021). In particular, Adam, as implemented 
in tensorflow, was used for optimisation. As in the original implementation, the 𝛽 scalars are 
fit as an exponential (𝛽 = 𝑒𝑧) to enforce non-negativity, and two conditions are required for 
the optimisation to be terminated: The fractional decrease in the log likelihood needs to be 
less than some threshold parameter, and the fractional change in the sum of the sigmoid 
transformation of 𝑒𝛽 must be less than some sparsity threshold parameter. This second 
condition forces small 𝛽 parameters to be optimised down to 0. The model is very resilient to 
initialisations. However, the 𝑧 scalars were randomly initialised to the log of two positive values 
that sum to the total number of cells in the sample. The 𝑥 vectors are intialised to 0. 

After fitting the model, for each sample the error when applying the model for the tested 
cell type is recorded and a t-test performed on the residuals for the control versus the 
perturbed samples. The resulting p-values are then Benjamini-Hochberg corrected and all cell 
types whose adjusted p-value is less than 0.2 are classified as differentially abundant.  
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Supplementary Figure 4
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Supplementary Figure 6
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Supplementary Figure 7
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Figure 4
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Supplementary Figure 9
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Figure Legends 

Figure 1 - A single cell time course of mouse gastruloid development 
A - Schematic of gastruloid development, along with indication of the five sampling time points. 
B - Uniform manifold approximation and projection (UMAP) plot showing all cells of the time-
course (77,683 cells). Cells are coloured by their annotated cell types, as explained in the 
legend below. 
C - Bar plot showing the number of cells assigned to each cell type at each of the five sampling 
time points. 
D - Heatmap showing standardised mean marker gene expression in each of the cell types. 
E - Violin and boxplot showing the embryonic day each gastruloid cell corresponds to, grouped 
by gastruloid sampling time point (day 3, n=15,144 cells, day 3.5, n=4,679 cells, day 4, 
n=17,718 cells, day 4.5, n=7,295 cells, day 5, n=20,811 cells). 
F - scVelo UMAP embedding streams overlaid on UMAP, coloured by assigned cell type, with 
a schematic of the 8 key trajectories. 
G - Schematic of the inferred trajectories on the UMAP. 

Supplementary Figure 1 (related to Figure 1) - Quality Control Metrics for the scRNA-
seq data 
A - Box plot showing the number of unique molecular identifiers (UMI) per cell for each sample. 
Y axis is on a log2 scale. Samples are coloured based on the legend below. 
B - UMAP coloured by the log2 of the number of UMI per cell, normalised so each sample has 
the same mean and variance. 
C - Box plot showing the number of features (genes) per cell for each sample. Samples are 
coloured based on the below legend. 
D - UMAP coloured by the number of features (genes) per cell, normalised so each sample 
has the same mean and variance. 
E - Box plot showing the percentage of reads coming from mitochondrial genes per cell for 
each sample. Y axis is on a log2 scale. Samples are coloured based on the below legend. 
F - UMAP coloured by the log2 of the percentage of reads coming from mitochondrial genes 
per cell, normalised so each sample has the same mean and variance. 
G - Box plot showing the percentage of reads coming from ribosomal genes per cell for each 
sample. Y axis is on a log2 scale. Samples are coloured based on the below legend. 
H - UMAP coloured by percentage of reads coming from ribosomal genes per cell, normalised 
so each sample has the same mean and variance. 
I - UMAP showing all cells, with cells from specific time points highlighted, and coloured based 
on the experiment that they came from. 

Supplementary Figure 2 (related to Figure 1) - Comparison to previous scRNA-seq 
dataset of day 5 mouse gastruloids 
A - UMAP of all cells from both datasets, with day 5 cells from each dataset highlighted, and 
coloured based on their respective time points. The separate cell type labels from both 
datasets were maintained but colours were chosen to highlight the parallels between cell 
types. 
B - Bar chart showing the number of day 5 gastruloid cells assigned each cell type. As above, 
cell type labels were chosen to ease comparison between datasets. 
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C - Box plot showing the proportion of each cell’s neighbours (k=30) that come from a given 
experiment, after normalising for varying number of cells in each experiment. The x axis 
groups the data based on the experiment that the reference cell belonged to, and the data are 
coloured based on which experiment is being compared to. 
D - Heatmap showing the mean proportion of each cell’s neighbours that were from a given 
experiment. The reference cell’s experiment is on the x axis, and the experiment being 
compared to is on the y axis. 

Supplementary Figure 3 (related to Figure 1) - Different gastruloid cell types develop 
at different rates 
A - Boxplot showing the embryonic day each gastruloid cell corresponds to, grouped by 
gastruloid sampling time point as well as gastruloid cell type 
B - UMAP of all cells, with cells from each time point highlighted separately, and coloured 
based on assigned cell type, according to the legend below. 

Figure 2 - MULTI-seq reveals multiple classes of gastruloid 
A - Overview of the gastruloid MULTI-seq experimental design. Two gastruloid time points are 
grown in two separate 96-well plates, started 12 hours apart. These are then replated into the 
same 96-well plate, where they are dissociated, and then labelled with MULTI-seq barcodes 
before being pooled and 10X sequenced. Barcodes and mRNA are separated based on size 
and sequenced separately (methods). After sequencing it is possible to know which gastruloid 
each cell came from. 
B - Embedding of individual gastruloids in a PCA space calculated based on the proportion of 
cells of each gastruloid assigned each cell type. Gastruloids are coloured based on the time 
point and experiment that they came from. 
C - Feature loadings of the PCA space shown in (B). Each point is a cell type, coloured 
according to the legend on the right. 
D - Bar plot of the proportion of cells of three representative gastruloids per time point that 
come from each lineage. Cell types are grouped into lineages for ease of visualisation. The 
selected gastruloids are highlighted in S5 and S6. 
E - Plot of the corrected Akaike Information Criterion (AICc) for each time point as increasing 
numbers of gastruloid clusters are fit. The AICc is based on a binomial distribution, with 
number of mesodermal versus number of neural cells tested. The lower the AICc, the more 
evidence for that number of clusters. 
F - Flow of cell types between time points according to Waddington OT inference in 
mesodermal gastruloids. 
G - Flow of cell types between time points according to Waddington OT inference in neural 
gastruloids. 

Supplementary Figure 4 (related to Figure 2) - Quality Control Metrics for the MULTI-
seq Data 
A - Bar plot showing the number of gastruloids in each MULTI-seq experiment and time point 
(note that 3/5 experiments spanned two time points) 
B - Jitter plot showing the number of cells recovered for each gastruloid after MULTI-seq 
demultiplexing. The x axis shows the gastruloid’s time point, and the colour shows the t ime 
point and experiment of the gastruloid. 
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C - Stacked box plot showing the number of cells from each experiment given each MULTI-
seq assignment: A single unique barcode assigned, a MULTI-seq-called doublet (2 or more 
barcodes detected beyond their threshold values), a MULTI-seq called negative cell (no 
barcode detected above its threshold value), or unassigned, in the case of exp3C, for which 
the barcode data quality was not sufficient to attempt demultiplexing. 
D - A heatmap of the barcode expression counts in all the cells in exp1 that MULTI-seq 
identified as doublets, sorted on the y axis based on each cell’s top 2 barcodes. 
E - Table with the p-value of all barcode pairs that were overrepresented in the MULTI-seq-
called doublets, based on an FDR threshold of 0.1. 
F - Plot comparing the counts of six of the overrepresented barcode pairs for singlets of each 
barcode, and doublets of both barcodes. 

Supplementary Figure 5 (related to Figure 2) - Bar plots of cell type abundance for 
each gastruloid 
A-E - Bar plot showing the number of cells assigned to each cell type in each individual 
gastruloid, split by time point. Gastruloids are coloured based on whether they were assigned 
as mesodermal, neural, or intermediate, and the gastruloids selected as representative in 2D 
are highlighted. Gastruloids were sorted based on their ordering along the principal curve in 
their time point’s cell type proportion PCA space. Representative gastruloids shown in Fig. 2D 
are highlighted with red boxes and labelled. 

Supplementary Figure 6 (related to Figure 2) - PCA space for each gastruloid 
A-E - Embeddings of individual gastruloids from a given time point in a PCA space calculated 
based on the proportion of each gastruloid’s cells assigned each cell type. Gastruloids are 
coloured based on the time point and experiment that they came from. Representative 
gastruloids shown in Fig. 2D are labelled. 
F-J - Same embeddings as A-E but coloured by the class assigned to each gastruloid 
K-O - Feature loadings of the PCA spaces shown in (A-J). Each point is a cell type, coloured 
according to the legend below. 
P - Full PCA space based on all time points, as in Fig. 2B, coloured based on the class 
assigned to each gastruloid 
Q - UMAP of all cells showing the lineages each cell is assigned 

Supplementary Figure 7 (related to Figure 2) - Differential abundance testing between 
gastruloid classes 
Box plot showing proportion of cells of a given cell type in each gastruloid. Boxes are split by 
gastruloid time point and cell type, and coloured by gastruloid class. Stars indicate significance 
levels of comparisons between gastruloid classes based on a Wilcox rank sum test (***: p=0-
0.001; **: p=0.001-0.01; *: p=0.01-0.05), only comparisons with an FDR<0.1 are annotated. 

Supplementary Figure 8 (related to Figure 2) - Separate trajectory inference for each 
gastruloid class 
A - jitter plot showing the square root of the WOT-inferred estimated growth rates for each cell 
assigned a mesodermal gastruloid (roughly equivalent to estimated number of descendant 
cells), grouped and coloured based on assigned cell type, and split based on time point. Dotted 
line indicates 1 descendant cell. 
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B - As A, but for cells assigned a neural gastruloid. 
C - CellRank terminal state plots showing the probability of each cell assigned a mesodermal 
gastruloid to be absorbed by a given terminal stage. 
B - As C, but for cells assigned a neural gastruloid. 

Figure 3 - Separate trajectory inference for each gastruloid class 
A - Heatmap showing the value of each module eigengene in the pseudobulked day 3 
gastruloids. scWGCNA was run on the single cell gastruloid data, and modules that explained 
significant amounts of variance between gastruloids selected. Gastruloids were sorted based 
on their ordering along the principal curve in the day 3 cell type proportion PCA space, and 
their class annotated. Modules are sorted based on hierarchical clustering of the gastruloid by 
module eigengene matrix. Modules were manually classified. 
B - Plot showing all GO terms, and their Benjamini-Hochberg adjusted p-value based on 
enrichR GO enrichment analysis in the early mesodermal and early neural modules. GO terms 
are coloured based on whether they were differentially significant in the early mesodermal 
versus the early neural modules based on a Fisher exact test. The significant GO terms are 
labelled. 
C - Limma-integrated gene expression PCA space of Gouti et al. bulk RNA-sequencing data 
of 2D differentiated cells, and individual pseudobulked day 3 and day 3.5 gastruloids. Gouti et 
al. samples are circles, coloured based on their time point and differentiation conditions. 
Individual gastruloids are triangles, coloured based on their time point and whether they were 
assigned a mesodermal or neural identity. Arrows show the Gouti et al. differentiation 
conditions. 
D - Plot of individual day 5 gastruloids showing each gastruloids mean distance, in cell type 
proportion PCA space, to the day 4.5 mesodermal gastruloids, and the day 4.5 neural 
gastruloids. Gastruloids are coloured based on their assigned class, and the x=y line is 
highlighted. 
E - Schematic of the proposed model explaining the increased proliferation of neural cells in 
mesodermal gastruloids at later differentiation time points. 

Figure 4 - Effect of inter-organoid variability on statistical power in perturbation 
experiments 
A - Schematic of the simulation and DA testing approach. G gastruloids are simulated twice 
the number of sample times, by randomly sampling the cell type proportion of day 4.5 
gastruloids with replacement. In the perturbed condition, one cell type is downregulated at 
some fold change, and then the entire proportion matrix re-normalised to sum to 1. Based on 
the number of cells per cell type in each sample, either a Poisson, a negative binomial, or a 
custom deconvolution-based differential abundance test is performed. 
B - Schematic of the deconvolution-based differential abundance testing method. The input 
distribution is modelled from the observed, aggregate cell counts, by modelling the proportion 
of cells coming from mesodermal gastruloids, and the proportion coming from neural 
gastruloids, as well as how mature the mesodermal and neural gastruloids are, respectively. 
C - False positive rate of the three differential abundance testing approaches for varying 
numbers of samples per condition, and gastruloids per sample, when no cell type is perturbed. 
Colours indicate which cell type is being tested, according to the legend in the bottom right. 
The horizontal line shows the position of a 0.05 false positive rate. The rate is based on 100 
simulations. 
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D - True positive rate of the three different differential abundance testing approaches for 
detecting that a given cell type is differentially abundant at a fold change of 0.5, for varying 
numbers of samples per condition and gastruloids per sample. Colours indicate which cell 
type is differentially abundant, according to the legend to the right. The rate is based on 100 
simulations. 
E - As E, but the given cell type is differentially abundant at a fold change of 0.75. 

Supplementary Figure 9 (related to Figure 4) - Systematic false positives in the 
deconvolution-based approach 
A - Schematic of the deconvolution-based differential abundance testing method. Counts are 
modelled as the linear combination of gastruloids from the two classes. Within each class, the 
null distribution of gastruloids is modelled as falling along a PCA-space continuum (𝑆), with 
offset (𝛽) and some number of dimensions. The sample embedding location is represented as 
𝑥. 
B - The deconvolution-based approach leads to systematic false positives when one cell type 
is perturbed owing to the correlation between cell types. The heatmaps show the median false 
positive rate across varying numbers of samples and gastruloids, for each cell type on the y 
axis, when a given cell type is perturbed (on the x axis). The data are shown for the x-axis cell 
type being perturbed at a fold change of 0.5 and at a fold change of 0.75. Median FPRs below 
0.05 are removed. Each false positive rate is based on 100 simulations. 
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Supplementary Notes 

Supplementary Note 1 - MULTI-seq Barcode Selection 
 
In the first MULTI-seq experiment (exp1_d5), the first 24 MULTI-seq barcodes from McGinnis 
et al. were used. However, after demultiplexing, we observed that a large number of MULTI-
seq doublets were detected (Supplementary Figure S5D). We found that eight pairs of 
barcodes were overrepresented according to the following hypothesis test, after Benjamini-
Hochberg correction, and at an FDR threshold of 0.1 (Supplementary Figure S4E) 

𝑋𝐴𝐵~𝐵𝑖𝑛𝑜𝑚(𝑛, 𝑝𝐴𝐵) 

𝑝𝐴𝐵 =
𝑃𝑟(𝐵𝑎𝑟𝐴) ∗  𝑃𝑟(𝐵𝑎𝑟𝐵)

∑ 𝑃𝑟(𝐵𝑎𝑟𝑋) ∗  𝑃𝑟(𝐵𝑎𝑟𝑌)∀𝑋,𝑌,𝑠.𝑡.𝑋>𝑌
, ∀𝐴, 𝐵, 𝑠. 𝑡. 𝐴 > 𝐵 

𝑃𝑟(𝐵𝑎𝑟𝑋) = Proportion of singlets assigned barcode X 
𝑛 = total number of doublets 
𝑘 = number of AB doublets observed 
P-value = 𝑃𝑟(𝑋𝐴𝐵 ≥ 𝑘) 

Barcodes 8 and 18 were most overrepresented. Inspection of their sequence revealed that 
they were reverse complements of each other. Additionally, barcodes 14 and 16 were also 
overrepresented, and they were 2 basepairs off from being reverse complements of each 
other. No other barcode pair was 2 or fewer base pairs from being reverse complements. The 
remaining overrepresented barcode pairs were sequential, aside from barcodes 9 and 18. 

To explore this further, we plotted, for each barcode pair AB, the raw barcode counts 
for the barcode A singlets, barcode B singlets, and barcode AB MULTI-seq-called doublets 
(Supplementary Figure S4F). This revealed that the 8 and 18 MULTI-seq-called doublets, as 
well as the 14 and 16, and 9 and 18 MULTI-seq called doublets seemed to be true doublets, 
while the sequential MULTI-seq called doublets did not seem to be true doublets, but rather 
that there was contamination of the previous barcode in the subsequent barcode. The only 
plausible hypothesis for these two behaviours is that the reverse complement barcodes cause 
cells to stick together, forming true doublets, while when pooling the gastruloids, the previous 
barcode was not fully quenched, thus leading to contamination. This explains the behaviour 
of barcode 9 and barcode 18 MULTI-seq-called doublets: Contamination of barcode 8 in cells 
from gastruloid 9 caused them to anneal to cells from gastruloid 18, thus forming true doublets. 
As a result, in subsequent experiments we used barcodes selected to be at least 4 base pairs 
off of being reverse complements (see above), and made sure to use new pipette tips for each 
individual sample when pooling. 

To avoid this issue, barcodes were selected to be optimally distant. Starting from the 
set of possible MULTI-seq barcodes identified by McGinnins et al., Hamming, Levenshtein, 
and longest common substring distances were calculated between barcodes; additionally the 
same distances were computed between barcodes and the reverse complement of all other 
barcodes. These were then given the following individual penalty functions: 

● Hamming, Levenshtein, and reverse complement Levenshtein distance (given the 
least weight):  

𝑃(𝑑) = 𝑑 + 16(
1

1 + 𝑒𝑥𝑝(−0.5(𝑑 − 2)) − 0.5), 𝑖𝑓 𝑑 < 4, 𝑒𝑙𝑠𝑒 𝑃(𝑑) = 8 

● Reverse complement hamming distance:  
𝑃(𝑑) = 𝑑 − 2, 𝑖𝑓 𝑑 < 4, 𝑒𝑙𝑠𝑒 𝑃(𝑑) = 8 

● Substring distance (weighted as important): 
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𝑃(𝑑) = 32(
1

1 + 𝑒𝑥𝑝(−0.5(𝑑 − 4)) − 0.5), 𝑖𝑓 𝑑 < 4, 𝑒𝑙𝑠𝑒 𝑃(𝑑) = 8 

● Reverse complement substring distance (weighted as most important): 
𝑃(𝑑) = 64( 1

1+𝑒𝑥𝑝(−2(𝑑−4))
− 0.5), 𝑖𝑓 𝑑 < 4, 𝑒𝑙𝑠𝑒 𝑃(𝑑) = 8  

The minimum distance after penalty function application was used in a barcode-
barcode distance matrix. Barcodes were then selected using a greedy algorithm: At each 
iteration, the barcode with the lowest sum score was removed. From this, the barcodes that 
were eliminated last were selected. However, owing to a previous computational error, the 32 
optimal barcodes used were selected from a smaller set of barcodes that had already been 
purchased (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 
25, 28, 30, 39, 41, 45, 47, 49, 52, 55, 56, 59, 61, 65, 66). These 32 barcodes were used for 
all subsequent MULTI-seq experiments. 
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