
Supplementary Information

Figure S1: Cell receptor analysis for efficient cosmid delivery. Delivery efficiency assays of cosmids harboring Ur- λ wild-type (WT) gpJ and stf, or harboring gpJ chimeras and P2 STF. Transduction of a payload encoding a *sfGFP* fluorescent protein gene was measured in a flow cytometer (excitation: 488 nm, emission: 530/30 BP; Attune NxT Thermo Scientific) at different MOIs. **A)** Delivery efficiency into MG1655 WT, carrying the endogenous OmpC variant in the genome. **B)** and **C)** Delivery efficiency into a MG1655 strain deleted for both *lamB* and *ompC* genes, complemented with two different *ompC* variants on a plasmid (p1471 or p1472). **D)** Delivery efficiencies in *E. coli* MG1655 of λ particles carrying the WT λ STF (orange line), no STF (blue line) and λ -P2 STF chimera (p938) (purple line).

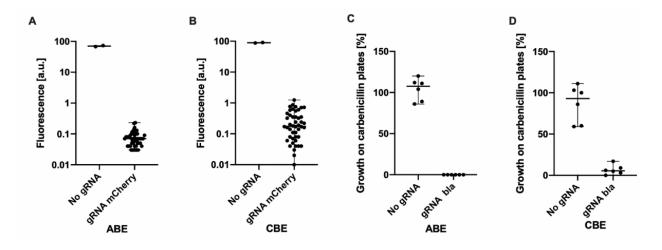
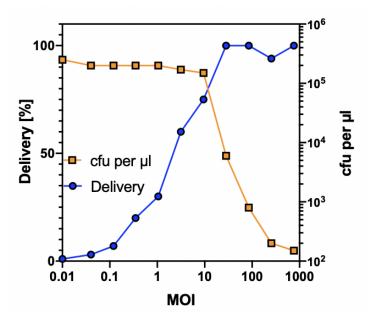
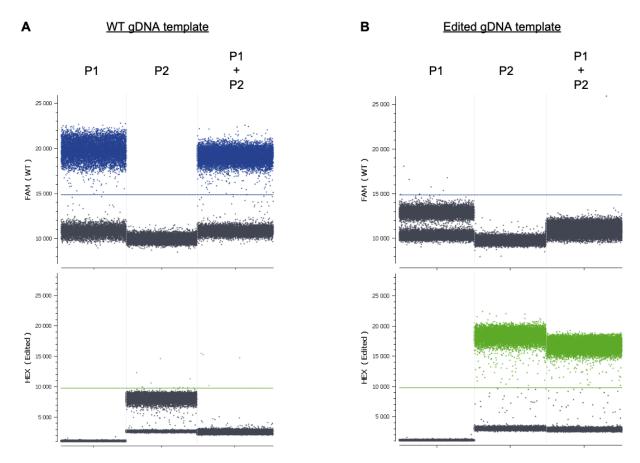
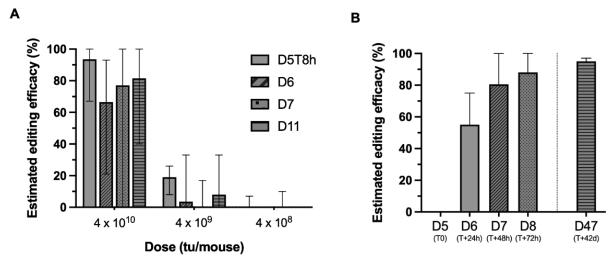


Figure S2: Targeted base editing of the *E. coli* genome *in vitro* after DNA payload transformation and antibiotic selection. A) Adenine base editing (ABE = ABE8e, plasmid p2325) of MG1655-mCherry. The experiment was performed in the presence (48 colonies analyzed) or absence (2 colonies analyzed) of a quide RNA targeting the active site of mCherry (tripeptide: M71, Y72, G73). B) Cytosine base editing (CBE = evoAPOBEC1-nCas9-UGI, plasmid p2326) of mCherry on MG1655-mCherry genome. The experiment was performed in presence (48 colonies analyzed) or absence (2 colonies analyzed) of a guide RNA inserting a stop codon at position Q114* into mCherry. Fluorescence of individual colonies was measured by flow cytometry (excitation: 561 nm, emission: 620/15 BP; Attune NxT Thermo Scientific). Dots represent single colonies after overnight incubation on chloramphenicol plates. C) Adenine base editing of β -lactamase (*bla*) in MG1655-*bla in vitro* (plasmid p1396). The experiment was performed in presence or absence of a quide RNA targeting the active site of β-lactamase (K73E or K73R). D) Cytosine base editing of β -lactamase in MG1655-bla in vitro (plasmid p2327). The CBE inserts a premature stop codon (Q37*) into the target gene, resulting in the re-sensitization of the bacterial population to β -lactam carbenicillin. Adenine and cytosine base editing of β -lactamase was analyzed by colony counting after overnight incubation on chloramphenicol (CA) and CA/carbenicillin agar plates at 30°C. The percentage growth was obtained by dividing the number of colonies on CA/carbenicillin plates by the number on CA plates. One dot represents one transformation after overnight incubation on plates.

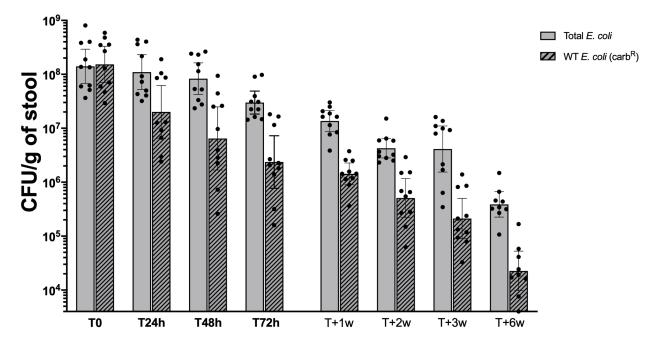

Figure S3: Multiplicity of injection (MOI)-dependent delivery efficiency and corresponding adenine base editing (ABE). Delivery efficiency was obtained by colony counting after overnight incubation on LB and LB (chloramphenicol) agar plates. Left y axis: The percentage delivery was obtained by dividing the number of colonies on chloramphenicol plates by the number on LB plates. Right y axis: Base editing of β -lactamase in strain MG1655-*bla* diminishes cell growth on carbenicillin plates (colony-forming units cfu per µl).

Figure S4: Validation of ddPCR Taqman assay. Probes P1 (wild-type WT target) and P2 (base-edited target) were assessed for their specificity, either individually or when mixed together at a 1:1 molar ratio, using purified genomic DNA (gDNA) from wild-type WT (**panel A**) and *in vitro*-edited (**panel B**) MG1655-*bla* as template.

Figure S5: Estimated efficacy of targeted adenine base editing on the *E. coli* genome in gut of **BALB/c mice after cosmid treatment using a non-replicative payload.** Estimation of the editing efficacy as measured by repatching individual colonies onto agar plate with or without carbenicillin, for the initial dose-response experiment (**panel A**), and for the experiment looking at cumulative effects (**panel B**). Bars represent the group median, with 95% confidence interval.

Figure S6: *E. coli* **s21052 colonization levels over time in the streptomycin-treated BALB/c model during treatment with base-editing cosmid particles.** Total *E. coli* bacteria were quantified by plating resuspended stool samples into Drigalski plates supplemented with streptomycin. Wild-type WT (ie, non-edited) *E. coli* **s21052** were quantified by plating samples onto Drigalski plates with carbenicillin.

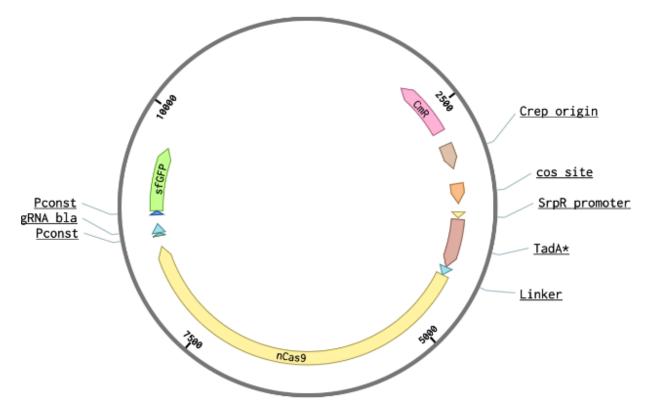


Figure S7: Plasmid map of the non-replicative cosmid encoding the adenine base editor and a guide RNA targeting the active site of β -lactamase (*bla*). Packaging into λ phage particles is enabled by the cohesive end site (*cos*) of the λ genome. The adenine base editor is a fusion gene of *TadA** and *nCas9* under the SrpR promoter. The guide RNA targeting the *bla* gene is under a constitutive promoter. The plasmid carries a constitutively-expressed chloramphenicol resistance gene (CmR) and the non-replicative primase origin of replication (Crep). In addition, the plasmid carries the *sfGFP* gene under a constitutive promoter to investigate cosmid delivery efficiencies. The total plasmid size is 10,747 bp.

Strain	Genotype	Supplier
DH10B	F– mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ (ara-leu)7697 galU galK λ– rpsL(StrR) nupG	Thermo Scientific
CY2120	BW25113 Δ9 λcl857 PaPa Sam7 Δcos lamB-	University of Illinois
CY-1A2	BW25113 Δ9 λcl857 Sam7 Δcos gpJ-1A2 Δstf lacZ::SrpR lamB-	This study
CY-A8	BW25113 Δ9 λcl857 Sam7 Δcos gpJ-A8 ∆stf lacZ::SrpR lamB- ΔOmpC	This study
CY-Ur-λ	BW25113 Δ9 λcl857 orf401::orf314 Sam7 Δcos lamB-	This study
MG1655	K-12 F- λ- ilvG- rfb-50 rph-1	Pasteur Institute
MG1655-∆LamB	K-12 F- λ- ilvG- rfb-50 rph-1 ΔLamB	This study
MG1655- <i>∆LamB-</i> ∆ompC	K-12 F- λ- ilvG- rfb-50 rph-1 ΔLamB ΔompC	This study
MG1655-mCherry	K-12 F- λ- ilvG- rfb-50 rph-1 mCherry	Pasteur Institute
MG1655- <i>bla</i>	K-12 F- λ- ilvG- rfb-50 rph-1 rpsLK42R wbbL::bla-rfp	This study
s14269	K-12 F- λ- ilvG- rfb-50 rph-1 rpsLK42R ompC-EDL933	This study
s14269-bla	K-12 F- λ- ilvG- rfb-50 rph-1 rpsLK42R wbbL::bla-rfp ompC-EDL933	This study
s21052	K-12 F- λ- ilvG- rfb-50 rph-1 rpsLK42R wbbL::bla-rfp ompC-EDL933 rpslK42R	This study
E. coli CFT073	O6:K2:H1	Pasteur Institute

Table S1: Genotypes of *E. coli* strains used in this study.

Table S2: List of	plasmids used	d in this study.
-------------------	---------------	------------------

Name	Plasmid	Class	Resist ance	Source	Notes
p2325	p15A-cos-pSrpR-RBS-ABE8e gRNA1 (mCherry)	Cosmid	CamR	This study	Encodes ABE targeting mCherry in a constitutive origin of replication
p2326	p15A-cos-pSrpR-RBS-CBE gRNA2 (mCherry)	Cosmid	CamR	This study	Encodes CBE targeting mCherry in a constitutive origin of replication
p1396	p15A-cos-pSrpR-RBS-ABE8e gRNA4 (<i>bla</i>)	Cosmid	CamR	This study	Encodes ABE targeting bla in a constitutive origin of replication
p2327	p15A-cos-pSrpR-RBS-CBE gRNA5(<i>b1a</i>)	Cosmid	CamR	This study	Encodes CBE targeting bla in a constitutive origin of replication
p2328	pCrep-cos-pSrpR-RBS-ABE8e gRNA4 (<i>bla</i>)	Cosmid	CamR	This study	Encodes ABE targeting bla in a conditional origin of replication
p1324	pCrep-cos-sfGFP	Cosmid	CamR	This study	Encodes sfGFP in a conditional origin of replication
p513	p15A-cos-sfGFP	Cosmid	CamR	This study	Encodes sfGFP in a constitutive origin of replication
p938	pSC101-pPhlF-RBS-stf P2	Stf	KanR	This study	Encodes an inducible $\lambda\text{-P2}$ STF chimera
p1471	pEco-OmpC MG1655 G1	Receptor	KanR	This study	Encodes OmpC from MG1655
p1472	pEco-OmpC G17	Receptor	KanR	This study	Encodes OmpC from EDL933
p2076	pIncW-RARE7-RBS-primase	Crep system	TpR	This study	Encodes a constitutive primase gene
p1321	pSC101-pPhlF-RBS-primase	Crep system	KanR	This study	Encodes an inducible primase gene

	U			
Name	Editor	gRNA	Position	Target
gRNA1	ABE	CGTACATAAATTGCGGGCTC	4A, 6A, 8A	mCherry (M71T, Y72H)
gRNA2	CBE	CACTCAGGACTCCTCCCTGC	5C	mCherry (Q114*)
gRNA3	CBE	TAGAACCGTACATAAATTGC	6C, 7C	mCherry (G73N or G73D)
gRNA4	ABE	ACTTTTAAAGTTCTGCTATG	1A, 7A, 8A	β -lactamase (K71E or K71R)
gRNA5	CBE	GATCAGTTGGGAGCCCGTGT	4C	β-lactamase (Q37*)

Table S3: List of gRNAs used in this study.

Table S4: Selection of oligonucleotides used for plasmid sequencing and ddPCR. Probes P1 and P2 contained a different fluorophore (FAM or HEX), as well as carefully positioned Locked Nucleic Acid bases (LNA; symbolized by the base A, T, C, or G preceded by a "+" sign in the sequences above).

Name	Oligonucleotide sequence	Gene
F1	ATGGTTTCCAAGGGCGAGG	mCherry
R1	TTATTTGTACAGCTCATCCATGCC	mCherry
F2	ATGAGTATTCAACATTTCCGTGTCGC	Bla
R2	TTACCAATGCTTAATCAGTGATGC	Bla
FЗ	GGATCTCAACAGCGGTAAG	Bla (ddPCR, primer)
R3	GGCATCAACACGGGATAATA	Bla (ddPCR, primer)
P1	FAM-CT+TT+T+A+AA+GTT+C+T+GC	Bla (ddPCR, probe 1)
P2	HEX-CT+TT+T+G+AAGTT+CT+GC	Bla (ddPCR, probe 2)