Ghorbani and Kim et al.

Murine macrophage choline metabolism underpins IL-4 polarization and RELMα up-regulation

Peyman Ghorbani1,2*, Sang Yong Kim3*, Tyler K.T. Smith1,2, Lucía Minarrieta1,2, Marisa K. Kilgour1,2, Maja Ilijevska1,2, Irina Alecu1,2,4, Shayne A. Snider1, Kaitlyn D. Margison1, Julia R.C. Nunes1,2, Daniel Woo3, Ciara Pember1,2, Conor O’Dwyer1,2, Julie St-Pierre1,2,4, Steffany A.L. Bennett1,2,4,6, Meera G. Nair3#, Morgan D. Fullerton1,2,5#

1 Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
2 Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
3 Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, USA
4 Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
5 Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, ON, Canada
6 University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada

* denotes equal contribution, # denotes equal corresponding authorship

Running Title: Choline sustains macrophage IL-4 responses
Abstract

Choline is an essential nutrient and in macrophages, mainly supports phosphatidylcholine (PC) synthesis. Cellular uptake and incorporation of choline into PC is critical for LPS-induced macrophage inflammation. Here, we examined choline metabolism in the context of IL-4 polarization of mouse macrophages in vitro and in vivo. Like LPS, IL-4 increased the levels of choline transporter-like protein 1, the rate of choline uptake, and incorporation into PC. Targeted lipidomics analysis revealed higher PC content in IL-4-polarized macrophages, with enrichment in low-saturated species. Pharmacological inhibition of choline metabolism significantly suppressed the transcription of certain hallmark IL-4 genes (Retnla) but not others (Chil3, Mrc1, Arg1). Blocking choline metabolism diminished the expression and secretion of RELMα protein (encoded by Retnla), while also limiting PD-L2 up-regulation and increasing PD-L1 expression. In vivo administration of RSM-932a, a choline kinase inhibitor, caused a dramatic shift in the peritoneal immune cell profile and up-regulated macrophage CD86 and PD-L1, while down-regulating CD206 and PD-L2. Strikingly, blocking choline metabolism lowered RELMα expression in multiple cell-types and tissues in naïve mice as well as mice infected with the helminth pathogens Heligmosomoides polygyrus and Nippostrongylus brasiliensis. There were no changes in pathogen burden or clearance in the two separate helminth models. In contrast, in dextran sulfate sodium-induced colitis, loss of colon length as a marker of inflammation was mitigated by choline metabolism inhibition. These data demonstrate a critical link between choline and macrophage effector functions and suggest that targeting choline metabolism could be leveraged to fine-tune immunopathology.
Introduction

Macrophages represent a heterogeneous and plastic subset of innate immune cells that perform critical homeostatic, surveillance and effector tasks in almost all tissues. They can dynamically respond to diverse endogenous and exogenous cues, including nutrient and energy availability. Metabolic programming can directly drive macrophage function but can also be rewired in response to various stimuli. While we continue to expand our understanding of how energy-generating pathways and their intermediates underpin immunometabolic function, the importance of nutrients in macrophage biology remains underexplored.

Choline is a quaternary amine and essential nutrient that can form the main eukaryotic phospholipid class, glycerophosphocholines (most abundant of which is phosphatidylcholine (PC)), or form acetylcholine in cholinergic tissues. Additionally, methyl groups from choline contribute to one-carbon metabolism after its mitochondrial oxidation. Given its positive charge, choline requires facilitated transport across cellular membranes, representing the first but least studied step in its metabolism. In immune cells, choline transporter-like protein 1 (Slc44a1/CTL1) is responsible for the majority of choline uptake. Upon uptake, choline is thought to be rapidly phosphorylated by choline kinase (Chkα/Chkβ) and is then committed to the PC biosynthetic (CDP-choline/Kennedy) pathway.

Phospholipid biosynthesis is indispensable for membrane biogenesis, which plays an important role in cellular differentiation and phagocytosis. The first insight into the potential role of choline in macrophage function came over twenty years ago with the observation that deletion of myeloid Pcyt1a, encoding the rate-limiting enzyme in PC synthesis, diminished adaptive responses to endogenous stimuli (free cholesterol) and impaired the secretion of pro-inflammatory cytokines from macrophages. Recent lipidomic analyses of cultured macrophages demonstrated sweeping alterations to phospholipid composition and content in response to various inflammatory stimuli. To begin to address the specific roles of choline as a regulator of macrophage functions, we and others have shown that polarization with the bacterial endotoxin lipopolysaccharide (LPS; termed M[LPS]) in primary mouse macrophages leads to increased choline uptake and PC synthesis in an Slc44a1-dependent manner. While inhibiting choline uptake and metabolism led to more pronounced inflammatory responses in M[LPS], whether choline metabolism is regulated and how it may alter macrophage phenotype in response to Th2 cytokine exposure remains unknown.

Interleukin-4 (IL-4), along with IL-13, is a signature cytokine of type 2 inflammatory responses. In addition to being widely used to polarize macrophages in vitro (termed M[IL-4]), secretion of these cytokines in vivo is a critical response triggered by invading macroparasites or allergens. Since it is now appreciated that macrophage inflammatory and metabolic programs exhibit a dichotomy in response to prototypical pro- and anti-inflammatory stimuli, we sought to characterize the interplay between choline metabolism and IL-4-mediated polarization of macrophages. Interestingly, we found that identical to LPS, choline uptake and incorporation into PC was augmented in M[IL-4]. Moreover, when choline uptake and metabolism was inhibited, we observed select but striking differences in IL-4-specific responses, underpinned by a dramatic reduction in RELMα both in vitro and in mouse parasitic helminth infection.
Materials and Methods

Animals

Mice (C57BL/6J) were originally purchased from Jackson Laboratories (Stock no. 00064) and bred in a pathogen-free facility in the University of Ottawa animal facility or acclimated for 7 days prior to *H. polygyrus* infection at the University of California Riverside. Mice were maintained on a 12-hour light dark cycle (lights on at 7:00 am) and housed at 23°C with bedding enrichment. Male and female mice ages 8-16 weeks were used for the generation of primary macrophages as described below. All animal procedures were approved by the University of Ottawa Animal Care Committee and the University of California Riverside Institutional Animal Care and Use Committee (protocol A-20210017).

Isolation, culturing and polarization of bone marrow-derived macrophages

Bone marrow-derived macrophages (BMDM) were isolated and cultured as previously described. Briefly, bone marrow cells were obtained from the femur and tibia by centrifugation. Cells were differentiated into macrophages using 15-20% L929-conditioned media in complete DMEM (Wisent) containing 10% FBS (Wisent), 1% penicillin/streptomycin. Cells were plated into 15 cm dishes and allowed to differentiate for 6-8 days. Cells were lifted by gentle scraping, counted, and seeded into culture plates for experiments at 1x10^6/mL. Cells were treated for 24 h with DMSO as vehicle or inhibitors: hemicholinium-3 (Sigma-Aldrich), RSM-932a (Cayman Chemicals). Macrophages were polarized with 20 ng/mL recombinant IL-4 (Peprotech or Roche) or 100 ng/mL LPS (*E. coli*:B4, Sigma-Aldrich). Choline-free DMEM was formulated by preparing nutrient-deficient DMEM (US Biologicals, D9809) according to manufacturer’s instructions and supplementing with sodium pyruvate (Gibco), *myo*-inositol, L-methionine, and calcium D-pantothenate (Sigma-Aldrich).

Choline uptake, incorporation, uptake inhibition and degradation

The rate of choline uptake, incorporation into PC, uptake inhibition and degradation were determined in M[0] and M[IL-4] using ^3^H-choline chloride (Perkin Elmer) as previously described.

High-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) Lipidomics

Cells were counted, pelleted, and frozen at -80°C in 15 mL Falcon tubes for 24 h. Pellets were resuspended in 1 mL sodium acetate using a syringe pipette and transferred to Kimble tubes. Tubes were washed two times in sodium acetate to recover all material. All pipette tips were autoclaved glass. MS grade lipid standards, LPC(13:0/0:0) [90.7 ng Avanti Polar Lipids], PC(12:0/13:0) [100 ng, Avanti Polar Lipids], and SM(d18:1/18:1-D9) [75 ng Avanti Polar Lipids] were added to the homogenate at time of extraction. Lipids were extracted using a modified Bligh and Dyer protocol at a final ratio of acidified methanol/chloroform/sodium...
acetate of 2:1.9:1.6 as described.18,19 The organic phase was retained and the aqueous phase successively back-extracted using chloroform three times. The four organic extracts were combined and evaporated at room temperature under a constant stream of nitrogen gas. Final extracts were solubilized in 300 µL of anhydrous ethanol (Commercial Alcohols) and stored under nitrogen gas at -80°C in amber vials (BioLynx).

Lipid quantification was performed on an Agilent 1290 Infinity II liquid chromatography system coupled to a QTRAP 5500 triple quadrupole-linear ion trap mass spectrometer using a Turbo V ion source (AB SCIEX) in positive ion mode. Reverse phase chromatography used a binary solvent gradient of solvent A (water with 0.1% formic acid (Fluka) and 10 mM ammonium acetate (OmniPur)) and solvent B (acetonitrile (J.T. Baker) and isopropanol (Fisher) at a ratio of 5:2 v/v with 10 mM ammonium acetate and 0.1% formic acid). The LC gradient used for glycerophosphocholine analysis started at 30% Solvent B, reached 100% Solvent B at 8 minutes, and remained at 100% B for 45 min. At 45 min, composition was returned to 30% Solvent B and the column was regenerated for 15 min. Samples were prepared for HPLC injection by mixing 5 µl of lipid extract with 2.5 µL of an internal standard mixture consisting of LPC(O-16:0-D4/0:0) [2.5 ng, Cayman], LPC(O-18:0-D4/0:0) [2.5 ng, Cayman], PC(O-16:0-D4/2:0) [1.25 ng, Cayman] and PC(O-18:0-D4/2:0) [1.25 ng Cayman] in EtOH, and 16 µL of Solvent A. Three µL autosampler injections at 4°C were pumped over a nanobore 100 mm x 250 µm (i.d.) capillary column packed in-house with ReproSil-Pur 200 C18 (particle size of 3 µm and pore size of 200 Å, Dr. A. Maisch, Ammerbruch). Transition lists were established using precursor ion scan interrogating a diagnostic fragment ion at m/z 184.1, corresponding to the phosphorylcholine headgroup of the protonated molecular ion ([M+H]⁺). Once all detectable species were established in precursor ion discovery mode, targeted lipid quantification was performed using selected reaction monitoring (SRM), monitoring transitions from [M+H]⁺ to m/z 184.1. ESI-MS/MS acquisition and instrument control were performed using Analyst software (version 1.6.3, SCIEX). The ion source operated at 5500 V and 0°C. Nebulizer/heated gas (GS1/GS2), curtain gas, and collision gas (all nitrogen) were set to 20/0 psi, 20 psi, and medium, respectively, for GPC analysis. Compound parameters (declustering potential, entrance potential, collision energy, and collision cell exit potential) were individually optimized for each transition. MultiQuant software (version 3.0.2 AB SCIEX) was used for peak picking and processing quantitative SRM data. Bayesian Annotations for Targeted Lipidomics (BATL v2.7, https://www.complimet.ca/shiny/batl/) was used to assign peaks.19 Peak areas were normalized to both cell number and either LPC(13:0/0:0) or SM(d18:1/18:1-D9) for PCs and SMs respectively to account for extraction efficiency and instrument response. Data are expressed as pmol equivalents per 10^6 cells.

The identities of all lipid species in our samples were structurally determined in a single LC-ESI-MS/MS analysis of quality control samples composed of an equi-volume pool of all samples analyzed. SRM was used as a survey scan to trigger information dependent acquisition of EPI spectra in the linear ion trap. After acquisition, the EPI spectra were examined for structural determination.
Wound healing

3T3-L1 fibroblasts were passaged in complete DMEM, plated in ImageLock plates (Essen Bioscience) and grown to confluency. Macrophages were pre-treated with vehicle or HC3 for 24 h, washed with PBS, and supernatants were collected after a further 24h in complete DMEM ± 20 ng/mL IL-4. A scratch wound was made in each well of 3T3-L1 fibroblasts, wells were gently washed with warm PBS, and supernatants were added to 4 or 5 replicate scratch wound wells. Wound healing was monitored hourly for >24 h on an IncuCyte ZOOM system (Essen Bioscience).

Flow cytometry

Macrophages were plated in 6-well plates and treated with DMSO or HC3 (250 µM) for 48 h. After washing with PBS, cells were gently scraped or lifted with 10 mM EDTA in PBS. and blocked and stained with anti-CD16/32 (93, BioLegend) and Zombie Aqua dye (BioLegend) in PBS for 30 minutes on ice. Surface staining in PBA-E (1% BSA, 2 mM EDTA, 0.05% NaN₃ in PBS) was done for 20 minutes on ice. Cells were then fixed with 2% paraformaldehyde in PBS or Fix/Perm buffer (ThermoFisher) for 15 minutes. Intracellular staining was performed by permeabilization for 5 minutes on ice with 0.5% saponin in PBA-E (PBA-S) or permeabilization buffer (ThermoFisher) and subsequent staining with antibodies diluted in PBA-S. For intracellular phosphoprotein staining, cells were fixed directly after harvesting with -20°C phospho-flow fix buffer (4% paraformaldehyde/90% methanol in PBS). Surface antibodies were purchased from BioLegend or ThermoFisher: F/80-PE (BM8), F/80-AF488 (BM8), PD-L1-BV421 (10F.9G2), PD-L2-PE (TY25), RELMα-PerCP-eF710 (DS8RELM), Egr2-APC (erongr2), CD38-eF450 (90), pSTAT6(Tyr641)-APC (CHI2S4N), CD11b-APC-eF780 (M1/70), Ly-6C-PE-Cy7 (HK1.4), Ly-6G-AF647 (1A8), CD19-Pacific Blue (6D5), CD86-FITC (GL1). Unconjugated polyclonal rabbit anti-RELMα (Peprotech) was detected with goat anti-rabbit AF647 plus (ThermoFisher). Cells were washed and resuspended in PBA-E and acquired using LSR Fortessa or FACSCelesta flow cytometers (BD) and analyzed using FlowJo v10.7.2 (BD).

For in vivo helminth experiments, peritoneal exudate cells (PECs) were recovered in a total of 5 mL of ice-cold PBS. Cells were blocked with 0.6 µg Rat IgG and 0.6 µg anti-CD16/32 (93) for 5 minutes and stained for 30 minutes with antibodies to Ly6G (1A8), CD3e (145-2C11), PD-L1 (MIH6), CD86 (GL-1), CD4 (RM4-5), MERTK (2B10C42), CD301b (LOM-14), PD-L2 (TY25), CD5 (53-7.3), Ly6C (HK1.4), MHCII (M5/114.15.2) (BioLegend, San Diego, CA); CD8 (3B5), CD11b (M1/70) (Invitrogen); SiglecF (E50-2440) (BD Bioscience); CD206 (MR5D3) (BioRad). Cells were then washed and analyzed on a Novocyte (ACEA Biosciences) followed by data analysis using FlowJo v10.8.1 (BD). Frequencies or geometric mean fluorescence intensity (gMFI) was calculated.

Transcript and protein expression

Total RNA was isolated from BMDM using the TriPure reagent protocol (Roche Life Sciences). Isolated RNA was re-suspended in RNase/DNase-free water (Wisent). QuantiNova™ reverse
transcription kit (Qiagen) or ABM All-in-one RT kit (ABM) was used to synthesize cDNA according to manufacturer’s instructions. To determine transcript expression, the QuantiNova™ Probe PCR kit (Qiagen) was used in combination with TaqMan primer-probe sets or BrightGreen Express MasterMix (ABM) with custom-designed primers. Comparative qPCR reactions were run on the Roto-Gene Q (Qiagen) or Stratagene MX3005p (Agilent). Relative transcript expression was determined using the delta-delta C_t method and normalized to Actb20. Following treatments, macrophage protein expression and phosphorylation status were assessed by immunoblotting as previously described.4

Dextran sodium sulfate (DSS)-induced colitis

Mice were provided 2-2.5% dextran sodium sulfate (MW 40-50 kDa, MP Biomedical) in drinking water *ad libitum* and treated intraperitoneally with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every other day for 6 days and sacrificed at day 7. Colons were dissected out and measured with uniform tension by hanging the caecum from a clamp and applying a weight to the distal end. Liver, white adipose tissue, and 0.5-cm pieces of colon were snap-frozen in liquid N$_2$ or fixed in 10% neutral-buffered formalin (Sigma-Aldrich). Feces was collected daily and hemoccult was assessed by luminescence with ECL substrate (BioRad).

RELMα ELISA

Recombinant RELMα, polyclonal rabbit anti-RELMα capture, and polyclonal biotinylated rabbit anti-RELMα detection antibodies (all Peprotech) were used according to a previously described protocol.21

Heligmosomoides polygyrus (Hp) and Nippostrongylus brasiliensis (Nb) infection models

Hp and Nb life cycle was maintained in mice and rats, respectively, as previously described.22,23 Mice were orally gavaged with 200 Hp L3 stage larvae or with PBS (naive group). Mice were infected subcutaneously with 500 Nb L3 stage larvae or injected with PBS (naive group). Egg burden was measured at indicated day post-infection by counting eggs in feces with McMaster slide. To enumerate L5 stage Hp, the small intestines of infected mice were cut longitudinally, and larvae were isolated by fine forceps. Nb larvae were isolated after incubating the intestine in PBS for \geq 2 hours at 37°C. Isolated larvae were counted on the petri dish with grids under the dissection microscope.

RSM-932A

RSM-932A (Cayman Chemical, Ann Arbor, MI) was reconstituted to 30 mg/mL in DMSO. For *in vivo* injection, RSM-932A was further diluted with DMSO and PBS to 1.5 mg/mL. Mice were injected intraperitoneally with 3 mg/kg of RSM-932A or 40% DMSO in PBS (vehicle group).
Immunofluorescence staining

Intestinal tissue was stored overnight in 4% PFA at 4°C. After 24 hours, tissue was removed from 4% PFA and incubated for 24 hours in 30% sucrose. Intestines were blocked in OCT and sectioned at 10 µm. Tissue sections were incubated with polyclonal rabbit anti-CD86 (ThermoFisher), APC-conjugated anti-RELMA (DS8RELM; Invitrogen), and biotinylated anti-CD206 (C068C2; BioLegend) antibodies overnight at 4°C. Tissue sections were then incubated with Cy3-conjugated goat anti-rabbit antibodies (Abcam) and Cy2-conjugated streptavidin (Jackson ImmunoResearch) for 2 hours at 4°C and mounted with VECTASHIELD HardSet Antifade Mounting Medium (Vector Laboratories) followed by imaging with BZ-X800 microscope (Keyence). Positive cells were counted by QuPath 0.3.2 (University of Edinburgh).

Statistical analysis

Statistical analysis was performed in GraphPad Prism 9 (Dotmatics). Individual tests and sample sizes are described in figure legends.

Results

IL-4 upregulates choline metabolism in macrophages

Macrophages only express two choline transporters, CTL1 and CTL2, and when polarized with LPS (M[LPS]) upregulate Slc44a1 transcript and CTL1 protein expression. Bone marrow-derived macrophages (BMDM) polarized with IL-4 (M[IL-4]) did not show increased Slc44a1 or Slc44a2 mRNA (Figure 1A); however, total (Figure 1B) and surface (Figure 1C) CTL1 protein expression was significantly augmented, suggesting post-transcriptional mechanisms. There were no changes in CTL2 protein levels. Polarization with IL-4 increased the rate of choline uptake (Figure 1D) and incorporation into PC (Figure 1E), without changing choline transport affinity or sensitivity to inhibition (supplemental Figure 1A-B). Moreover, while select phospholipases are upregulated in M[IL-4] we observed no difference in the rate of PC degradation (supplemental Figure 1C), suggesting an overall increase in cellular PC content in IL-4-polarized macrophages, which completely mirrored the effects of LPS polarization.

IL-4 increases PC content and alters choline containing phospholipid composition

We performed targeted LC-MS/MS analysis of choline-containing phospholipids in naïve (M[0]), M[IL-4] and M[LPS]. Surprisingly, the typically divergent polarization states led to a symmetrical increase in PC levels, with no differences found in the level of sphingomyelin (Figure 2 and Figure S2A-B). With respect to lipid fatty acid composition of elevated PCs, we observed a significant increase predominantly in unsaturated and monounsaturated phospholipids (Figure 2B). Interestingly, there were also changes within the choline-containing lipidome in response to either IL-4 or LPS. The levels of platelet activating factors (PAF), their immediate precursor the lyso-PAFs (LPC(O)), as well as the lysophosphatidylcholines (LPCs) did not change in response to IL-4 but were significantly upregulated in M[LPS] (supplemental Figure 2C,D,H). The plasmalogen forms of PC, which have been demonstrated to be important for
downstream lipid signaling, showed divergent changes. Levels of plasmenyl PCs (PC(P)), structurally known as 1-alkenyl,2-acylglycerophosphocholines, as well as their immediate precursors (LPC(P)) were reduced in response to both stimuli while levels of plasmanyl PCs (PC(O)), known as 1-alkyl,2-acylglycerophosphocholines remained unchanged (supplemental Figure 2E-G).

Inhibiting choline metabolism selectively impairs IL-4 polarization

Since M[IL-4] are characterized by the expression of genes involved in dampening inflammation and promoting tissue repair, we sought to understand how limiting choline availability and metabolism may affect these well-known responses. We used an inhibitor of extracellular choline uptake (hemicholinium-3; HC3) and an inhibitor of choline incorporation into PC, the choline kinase inhibitor RSM-932a (RSM). Pre-treatment of BMDM with HC3 for 24 h markedly impaired the induction of Retnla (Figure 3A), whereas other M[IL-4] hallmark genes like Arg1, Mrc1 and Chil3 (Figure 3B-D) were unaffected. Pre-treatment with RSM yielded similar results (supplemental Figure 3A-C). Shorter (6 h) pre-treatment was insufficient to affect Retnla expression (supplemental Figure 3D). Other cytokine genes including Il10 and Tnfa were not affected (not shown).

Given the altered transcriptional responses following interruptions to choline metabolism, we next determined whether there were changes to IL-4R signaling. In naïve macrophages, HC3 pre-treatment to block choline uptake increased basal Akt phosphorylation on S473 compared to vehicle treated (supplemental Figure 3E). In response to IL-4 stimulation, pAkt-S473 increased over 60 min in vehicle-treated BMDMs but was further elevated in HC3 pre-treated cells (Figure S3E). In addition, signaling to pSTAT6-Y641 after IL-4 stimulation, was significantly blunted by pre-treatment with HC3 or RSM (Figure 3E and supplemental Figure 3E). Together, this suggests that relatively acute disruptions of choline metabolism in macrophages could alter JAK1 and/or STAT6 signaling.

To further probe how limiting choline metabolism alters macrophage IL-4 polarization, we used CD38 and Egr2, which have been identified as effective discriminators of M[LPS] vs. M[IL-4], respectively. Blocking choline uptake did not impair the induction of Egr2, nor did it promote CD38 expression in M[IL-4] (supplemental Figure 3F), despite Egr2 being induced in an IL-4/STAT6-dependent manner. We next assessed the expression of the checkpoint ligands PD-L1 and PD-L2, which have also been used discriminate between M[LPS] and M[IL-4] polarization. Inhibiting choline metabolism with either HC3 or RSM led to consistent PD-L1 up-regulation in M[0] and M[IL-4], but not in M[LPS] where expression was already maximal (Figure 3F). In contrast, inhibiting choline metabolism reduced PD-L2 expression in M[IL-4] (Figure 3F). Therefore, by limiting uptake and phosphorylation of choline, there were pointed changes to traditional IL-4-induced cytokines (e.g., Retnla) and a skewing toward a M[LPS]-like profile.

Choline metabolism inhibition impairs macrophage function

The secreted cytokine resistin-like molecule alpha (RELMa) is encoded by Retnla and has pleiotropic functions, including suppression of Th2 responses and promotion of wound healing. In IL-4-polarized macrophages, blocking choline uptake significantly reduced intracellular RELMa levels (Figure 4A-B). Furthermore, to rule out off-target pharmacological effects, culture of M[IL-4] in choline-deficient media also curtailed intracellular RELMa to the same extent as HC3 and RSM (Figure 4A-B). Finally, we confirmed that secreted RELMa in M[IL-4]
conditioned media was significantly lower when choline uptake was inhibited (Figure 4C). Functionally, given that RELMα levels were dramatically reduced in response to altered choline uptake and metabolism, we sought to assess the in vitro wound healing capacity of macrophages. A “scratch wound” was created among 3T3-L1 fibroblasts grown to confluency and when exposed to conditioned media from HC-3-treated M[IL-4], we observed a significantly impaired rate of wound healing (Figure 4D).

RSM-932a treatment in vivo reduces tissue-resident macrophage RELMα

RELMα is strongly up-regulated upon IL-4 treatment in vitro but is also expressed endogenously in tissue-resident macrophages throughout the body, especially serosal cavity macrophages. We next sought to pharmacologically block choline metabolism in vivo to interrogate whether this could mimic changes in IL-4 responses observed in cultured cells. Mice were dosed with RSM (3 mg/kg i.p.) every other day for seven days (Figure 5A). Previously, long-term RSM administration in preclinical tumour models resulted in significant reduction in tumour growth, highlighting its low toxicity and therapeutic potential. Surprisingly, RSM treatment resulted in drastic remodelling of peritoneal exudate cell (PEC) populations (Figure 5B). Uniform manifold approximation and projection (UMAP) plots show a reduction in B cells, macrophages and eosinophils, and an increase in Gr-1+ polymorphonuclear cells (PMNs) and monocytes. Furthermore, intracellular RELMα levels were significantly decreased in PEC macrophages taken from RSM-treated mice compared to vehicle control (Figure 5C, gating in supplemental Figure 4A). Moreover, expression of PD-L1 and PD-L2 was also significantly increased and reduced compared to vehicle-treated mice, respectively, which mirrored in vitro results. The suppressive effect of RSM on large (CD11b$^{\text{high}}$F4/80$^+$; LPM) and small peritoneal macrophages (CD11b$^{\text{int}}$F4/80$^+$; SPM) (Figure 5D-E), which contained high or moderate levels of intracellular RELMα was evident following just two doses, separated by 48 h (supplemental Figure 4B-C). RELMα is further found in white adipose tissue (WAT) and lung, and though previously thought to be an adipokine, RELMα is mainly produced by WAT macrophages. Short-term RSM treatment increased WAT Emr1 expression (supplemental Figure 4D) and matched the pattern of in vitro choline uptake or Chkα inhibited BMDMs with decreased Retnla, increased Chil3, and unchanged Mrc1 (supplemental Figure 4E-G). Finally, we imaged ethyl cinnamate-cleared lungs and found marked reduction in RELMα expression after RSM treatment (supplemental Figure 4H). Thus, in vivo inhibition of choline metabolism restructures endogenous tissue-resident macrophage phenotypes and supresses RELMα in multiple tissue compartments.

Inhibiting choline metabolism with RSM improved measures of chemical-induced colitis

The link between choline metabolism and RELMα was unexpected. To further probe the functional consequences of altering RELMα levels under pathophysiological conditions, we used dextran sodium sulfate (DSS) to chemically induce a state of colitis in female C57BL/6J mice over a 7-day protocol, where mice were given vehicle or RSM (3 mg/kg i.p.) bi-daily (supplemental Figure 5I). While there were no significant differences in body weight (supplemental Figure 5J), colon length was significantly longer and hemoccult was significantly lower in RSM-treated mice compared to control, respectively (supplemental Figure 5K-L). This is entirely consistent with previous reports where Retnla-deficient mice were protected against DSS-induced colitis.

Choline kinase inhibition does not affect helminth burden despite dramatic blunting of RELMα
Our data suggest a role for choline metabolism in supporting IL-4-induced (Th2) responses in vitro and in vivo. To interrogate choline metabolism function in the physiologic setting of a Th2-skewed environment driven by helminth infection, we infected female mice with *Heligmosomoides polygyrus* (*Hp*), a parasitic nematode that colonizes the small intestine and drives protective M[IL-4]-like responses. Mice were orally infected with *Hp* larvae and left for 8 days to allow parasites to develop into adults within the intestinal lumen, followed by treatment with RSM or vehicle every two days. Naïve mice were also treated with RSM at the same dose and interval to serve as controls for infection (Figure 6A). Treatment with RSM had modest effects on the weight of naïve or *Hp*-infected mice, with the trend of decreasing weight gain (shown in supplemental Figure 5A as a percent of initial weight). IL-4-polarized macrophages have been shown to play an important role in reducing helminth parasite burden; yet, neither egg nor worm burden were affected following RSM treatment (Figure 6B-C). *Hp* infection significantly increased RELMα levels in the peritoneal fluid and serum; nevertheless, consistent with in vitro and in vivo observations, RELMα levels were significantly decreased with RSM treatment (Figure 6D-E). Furthermore, the presence of CD206+ and RELMα+ cells in intestinal tissue, the primary site of infection, was also reduced (Figure 6F).

We next probed the effect of chronic RSM treatment in a vaccination model for *Hp* involving secondary infection (supplemental Figure 5B), where IL-4-polarized macrophages are critical for protection. At week 8 post-infection, RSM treatment resulted in significantly increased fecal egg burden, suggestive of some deficiency in optimal immunity to the parasitic worm. However, there were no significant differences in egg burdens at the other timepoints, nor any differences in adult worm burden after secondary challenge (supplemental Figure 5C-D). Remarkably, consistent with the acute regiment, RSM treatment led to a significant drop in peritoneal and serum RELMα (supplemental Figure 5E-F), as well as down-regulated CD206 and upregulated CD86 expression in the intestinal cells of infected mice (supplemental Figure 5G). Together, this data indicates the importance of choline metabolism and choline kinase signaling in promoting M[IL-4] polarization and RELMα expression in intestinal helminth infection.

Choline inhibition shifts peritoneal immunity and impairs M[IL-4] polarization to multiple helminth infections

Intestinal *Hp* infection induces significant peritoneal cavity inflammation and macrophage M[IL-4] responses. The striking RSM-induced changes in the peritoneal immune landscape of naïve mice was exacerbated during *Hp* infection (Figure 7A; supplemental Figure 6A). We detected more than a 10-fold increase in peritoneal cells compared to naïve mice and during infection, there was a significantly lower number total cells when mice were treated with RSM (Figure 7B). There was a substantial drop in eosinophils and B-1 cells in RSM-treated mice, accompanied by a rise in monocytes and neutrophils, both by frequencies and total cell numbers (Figure 7C-F). Peritoneal macrophages were also decreased by RSM treatment in both naïve and infected mice (Figure 7G). In addition, CD206 was significantly decreased in peritoneal macrophages, while both CD86 and PD-L1 were significantly increased, mimicking the suppressive effect of RSM on macrophage M[IL-4] polarization in vitro (Figure 7H-J). These results were directly recapitulated during chronic *Hp* infection and RSM treatment, where differences in resident peritoneal immune populations, as well as changes in macrophage and
intestinal expression of CD86 and CD206 (supplemental Figure 6B-G) in response to RSM were further aggravated.

Finally, to determine if blocking choline metabolism had broader impacts in other helminth infections, we treated mice with RSM following infection with *Nippostrongylus brasiliensis* (*Nb*), a natural rodent parasite that acutely infects the lung and small intestine, and drives macrophage M[IL-4] polarization and RELMα expression.21,43 Treatment with RSM had no significant effects on parasite burden or bronchoalveolar macrophage responses (supplemental Figure 7A-F). However, in keeping with *in vitro* and *Hp* models, immunofluorescent staining of the naïve and infected lungs revealed that *Nb* induction of RELMα expression in the lung airway epithelial cells and parenchyma was completely abrogated with RSM treatment, while increased CD86 expression was observed (supplemental Figure 7G). Despite our previous observations that *Retnla*-deficient mice show lower parasite egg burden in *Nb* infection,44 the complex phenotypic switch caused by inhibiting choline metabolism may mitigate the absence of RELMα for parasite burden outcomes. Taken together, these data support a major role for choline metabolism in sustaining RELMα expression and shaping the composition and phenotype of immune populations *in vivo*.

Discussion

Upon activation, macrophages up-regulate choline metabolism to fuel PC synthesis. LPS and IL-4 both induce expansion of organellar membranes including ER, mitochondria, and endolysosomes,45-48 in addition to a general enlargement of the cell itself.49 Building on our understanding of macrophage choline metabolism during LPS polarization, we show here that stimulation of divergent signaling pathways (i.e., LPS-TLR4 vs. IL-4-JAK/STAT6), both lead to more choline taken into the cell via up-regulated CTL1, which facilitates increased flux through the PC synthetic pathway and more PC levels for membrane biogenesis. How phospholipid composition is affected by macrophage polarization has been addressed in studies using similar but still differential study designs. While the increased accumulation of PC in IL-4/IL13-polarized macrophages (RAW264.7 cells) was shown in a comprehensive assessment of phospholipid content after long term exposure to polarizing stimuli, this was not seen in human THP-1-derived macrophages,50 nor were increases observed before 18 h.46 Coupled with an increase in total PC content, we observed an increase in saturated and monounsaturated fatty acyl chains in PCs elevated in both M[IL-4] and M[LPS]. We and others have previously shown that M[LPS] up-regulate de novo lipogenesis to supply new FA for phospholipid synthesis.4,10 There is now evidence to support a role for both exogenous FA uptake,11,12 as well as de novo lipogenesis in M[IL-4].51 Despite the potentially divergent sources of FA, differences in the side chain composition of choline-containing phospholipids between macrophage polarizations may fuel distinct lipid signaling pathways following phospholipase-specific processing.

A handful of studies have now interrogated the importance of choline metabolism in macrophage biology, though all have been in the context of LPS-induced polarization and inflammation.4,5,9,52,53 Conversely, while macrophage IL-4 polarization is widely used *in vitro* and typically yields a reproducible response, how this might be affected by or might affect...
choline metabolism remained unclear. By blocking choline uptake and/or subsequent metabolism, the transcriptional induction of *Mrc1, Chil3, Arg1* were not changed. However, limiting the availability of choline in the media, or pharmacologically blocking the uptake/phosphorylation of choline caused the targeted reduction in IL-4-induced *Retnla* expression and RELMα secretion. Signaling through STAT6 is essential for proper induction of Th2 cytokines and IL-4-induced RELMα expression. In response to limiting choline availability and PC synthesis, STAT6 phosphorylation as a surrogate for IL-4R signaling efficacy, was decreased. However, while this supports the robust down-regulation of *Retnla*, similarly regulated transcripts such as *Chil3* were not affected or mildly increased. Curiously, *Chil3* has even been suggested to augment *Retnla* expression. The mechanism(s) by which choline availability regulates *Retnla* are likely transcriptional; however, appear to be independent of IL-4 signaling (Figures 6 and S5). Interestingly, transient expression of *Retnla* was recently shown in nearly all tissue-resident macrophages and its induction in PEC macrophages was not IL-4ra-dependent. Consistent with this, other studies report that RELMα is induced by signals other than Th2 cytokines, such as hypoxia or phagocytosis of apoptotic cells. Our findings support the differential induction of canonical M[IL-4] genes, and identify choline metabolism as a specific inducer of *Retnla*. In our study, we found that Chkα inhibition resulted in major changes to PEC populations, akin to the macrophage disappearance reaction upon inflammatory stimuli, pointing to a possible connection between macrophage tissue residence and choline metabolism. In addition, B cells in the peritoneum were drastically reduced, which corroborates previous observations demonstrating that RSM and another Chkα inhibitor (MN58B) dramatically lowered splenic B cell populations upon systemic delivery. How this altered peritoneal immune profile may influence RELMα levels remains to be determined; however, since lung B cells express similar amounts of RELMα during Nb infection as alveolar macrophages, the effect may not be exclusive to macrophages.

Macrophage-derived RELMα has been shown to promote profibrotic collagen cross-linking in fibroblasts, while also contributing to pro-inflammatory processes in intestinal inflammation and infection. Given that limiting choline metabolism in M[IL-4] markedly depleted RELMα levels and that in vivo RSM treatment recapitulated this effect, we reasoned that blocking choline metabolism during helminth infection may phenocopy models of RELMα deficiency, where enhanced resistance to parasites is observed. Contrary to our hypothesis, RSM-mediated choline kinase inhibition had no impact on indices of parasite burden in any of the helminth models we assessed, despite profound reductions in local and systemic levels of RELMα (Figure 6; supplemental Figure 5 and 7). While the explanation for this remains unclear, there may be compensatory changes in RSM-treated mice, such as the altered immune profile, differential activation of macrophages, or direct effects of RSM on the pathogen that could confound the interpretation. The importance of macrophage-specific metabolism for M[IL-4] activation in the context of helminth infection has previously been shown. Inhibition of lysosomal lipolysis in *H. polygyrus*-infected mice reduced M[IL-4] polarization and RELMα expression, leading to increased parasite egg burden. Similarly, our studies indicate that choline metabolism is also important in optimal M[IL-4] polarization in response to *H. polygyrus* infection, but with no effects on parasite burden. Future work could involve genetic and tissue-
specific models to directly address the relevance of macrophage choline metabolism in controlling helminth infections.

In addition to the striking effect on RELMα, we found the costimulatory checkpoint ligands PD-L1 and PD-L2 were coordinately regulated by choline metabolism, which is contrary to conventional IL-4-polarization. In tumour settings, nutrient availability may be heterogenous, especially for infiltrating immune cells, which can explain the wide range of PD-L1 positivity among tumour samples and the relatively poor response to anti-PD-1/PD-L1 immune-checkpoint inhibitor therapies. Up-regulated choline metabolism is a recognized hallmark of certain cancers and targeting Chkα can both inhibit cancer cell growth and render cell death-resistant cancers more susceptible to immunotherapy. The level of PD-L1 induction and PD-L2 suppression upon blocking choline metabolism in the presence of IL-4 suggests a potential immunoregulatory role of choline metabolism that may represent an underappreciated therapeutic potential in cancer treatment.

Macrophages up-regulate choline uptake and incorporation in response to IL-4 stimulation. Reciprocally, when the availability of choline is compromised, normal IL-4 responses are affected. We used two pharmacological approaches to limit choline availability and nutrient deprivation in the media. These approaches carry numerous caveats, including dose, timing, route, and potential off-target effects; however, our in vitro pharmacological approach targeted distinct steps in the CDP-choline pathway. Separately, other fates of choline may be modified by or play a role in mediating the alteration of immune cell function. For instance, phosphocholine may post-translationally modify proteins, and macrophages and other immune cells have been shown to produce acetylcholine. Conversion of choline to betaine may also support osmoregulation or contribute to histone methylation, but these latter mechanisms require deeper investigation in immune contexts and remain speculative. Future work using genetic models to solidify the importance of choline uptake and subsequent metabolism are warranted.

In summary, we describe a critical role for choline metabolism in the mediating the full potential of macrophage M[IL-4] polarization. Moreover, systemic pharmacological inhibition of choline metabolism in mice closely mirrors the dramatic down-regulation of RELMα and PD-L2 and corresponding up-regulation of PD-L1 but fails to affect the pathology of intestinal or lung helminth infection models. This work also highlights that the inhibition of choline metabolism via RSM caused a dramatic shift in immune cell profile and potentially polarization, which may be therapeutically beneficial in other disease settings such as peritoneal metastases or fibrosis.

Acknowledgements

This work benefitted from data assembled by the ImmGen consortium. We thank Dr. Vera Tang and the Faculty of Medicine Flow Cytometry Core Facility, Dr. Chloé van Oostende-Triplet and the Cell Biology and Image Acquisition Core Facility, as well as the Animal Care and Veterinary Services at the University of Ottawa. Figures were created with BioRender.com.

Funding
This research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC, RGPIN-2021-03503 to MDF), the Canadian Institutes of Health Research (CIHR, PJX-179853 to SALB) and National Institutes of Health (NIAID, R01AI153195 to MGN).

Authorship

Conflict-of-interest disclosure: The authors declare no competing financial interests.

Co-Correspondence: Morgan D. Fullerton, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5; morgan.fullerton@uottawa.ca. Meera G. Nair, Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521; meera.nair@medsch.ucr.edu.

Figure Legends

Figure 1 – IL-4 upregulates choline metabolism in macrophages.

A) Relative expression of *Slc44a1* and *Slc44a2* transcripts in M[0] or M[IL-4], normalized to *Actb*. n=8 mice.

B) Expression by Western blot of CTL1 and CTL2 in M[0] or M[IL-4]. n=3, representative of 3 experiments. Unpaired t test (**) p < 0.01).

C) Expression of CTL1 by surface flow cytometry after different IL-4 stimulation times. Representative of 2 experiments.

D) Uptake of 3H-choline over time in M[0] or M[IL-4]. n=2-3 per timepoint, representative of 3 experiments. Linear regression F test (**** p < 0.0001).

E) Incorporation of 3H-choline into phospholipids over time. n=5 per timepoint, representative of 3 experiments. Two-way ANOVA with Šídák's test for multiple comparisons (**) p < 0.01, *** p < 0.001).

Figure 2 – Phospholipid dynamics in polarized macrophages.

A) Schematic of lipidomics analysis.

B) Total lipid content by individual phospholipid subclasses expressed as pmol per 1E6 cells and...
C) heatmaps of the fold change of individual phospholipid species by subclass in M[0], M[IL-4], and M[LPS], relative to the average of M[0]. n=5 mice. LPCs identified as 1-acyl or 2-acyl LPCs were summed to account for in solution acyl-chain migration.

Figure 3 – Choline uptake and phosphorylation is required for normal IL-4 signaling and M[IL-4] phenotype.

A-D) Macrophages were treated with vehicle (DMSO) or HC3 (250 µM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h. Relative expression of M[IL-4] hallmark genes *Retnla, Arg1, Mrc1, Chil3*, normalized to *Actb* and compared to M[0]. n=3, representative of 3-5 experiments. Unpaired t test (*** p < 0.001).

E) Macrophages were treated with vehicle (DMSO), HC3 (250 µM) or RSM-932a (5 µM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 15’ and stained for intracellular pSTAT6 (Tyr641). n=3, representative of 3 experiments. Two-way ANOVA with Tukey's test for multiple comparisons (** p < 0.01, **** p < 0.0001).

F) Surface PD-L1 and PD-L2 expression in M[0], M[IL-4], or M[LPS], treated with vehicle, HC3 (250 µM) or RSM-932a (5 µM). n=2, representative of 3 experiments.

Figure 4 – Inhibiting choline uptake impairs RELMα expression and secretion and reduces wound healing process of fibroblasts exposed to macrophage conditioned media.

A-B) Macrophages were treated with vehicle (DMSO) or HC3 (250 µM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h in complete or choline-deficient (ΔCho) media. B) Quantification of intracellular RELMα staining in live F480+ macrophages. n=3, representative of >4 experiments. One-way ANOVA with Tukey’s test for multiple comparisons (* p < 0.05, ** p < 0.01).

C) Macrophages were treated with vehicle (DMSO), HC3 (250 µM), or RSM-932a (5 µM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h. Detection of supernatant RELMα by ELISA. n=5 (vehicle, HC3, IL-4) or n=2 (RSM). Unpaired t test (*** p < 0.01).

D) Macrophages were treated with vehicle (DMSO) or HC3 (250 µM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h and conditioned media was collected. Confluent 3T3-L1 fibroblast monolayers were scratched, and media was replaced with macrophage conditioned media. Images of wound healing over time, quantified by wound density. n=3, representative of 2 experiments. Sum-of-squares F test of non-linear fit of growth curves (**** p < 0.0001).

Figure 5 – In vivo choline kinase inhibition remodels peritoneal cell populations and impairs RELMα expression
Ghorbani and Kim et al.

A) Schematic of 7-day *in vivo* choline kinase inhibition. Mice were treated intraperitoneally with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every other day for 6 days and sacrificed on day 7.

B) UMAP of peritoneal cell populations. n=9-10, N=2.

C) Intracellular RELMα expression in live CD11b^{hi}Ly6C⁺ and CD11b^{int}Ly6C[−] peritoneal cells. Two-way ANOVA with Šídák's test for multiple comparisons (* p < 0.05, **** p < 0.001).

D-E) PD-L1 or PD-L2 expression (gMFI) in live CD11b⁺F480⁺ and CD11b⁺F480[−] peritoneal cells. Two-way ANOVA with Šídák's test for multiple comparisons (* p < 0.05, ** p < 0.01, *** p < 0.001).

Figure 6 - In vivo choline kinase inhibition during primary intestinal helminth infection impairs systemic and intestinal RELMα and intestinal macrophage alternative activation

A) Schematic of primary infection with 200 *H. polygyrus* (*Hp*) L3 larvae through oral gavage. Mice were treated intraperitoneally with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every other day for 8 days starting on day 8 and sacrificed on day 17.

B-C) Eggs in feces were counted at multiple time points after infection, and C) adult worms were isolated from the small intestine and enumerated on the day of sacrifice. Values represent means ± SEM (n = 3-5 mice per group), representative of 3 experiments. Two-way ANOVA with Šídák's test for multiple comparisons and unpaired t test (ns).

D-E) Detection of serum and E) peritoneal fluid RELMα by ELISA in naïve and *H. polygyrus*-infected mice. n=3-5 per group. Two-way ANOVA with Šídák's test for multiple comparisons (* p < 0.05, *** p < 0.001 for differences between treatment and ## p < 0.01 for differences between naïve and infection).

F) Immunofluorescent staining of intestinal tissue for CD206 and RELMα against DAPI counterstain. Scale bar 50 µm. Quantification of CD206⁺ or RELMα⁺ per DAPI⁺ cell. n=6. Unpaired t test (* p < 0.05).

Figure 7 – In vivo choline kinase inhibition in naïve mice and primary infection alters peritoneal cell populations and macrophage alternative activation

A) UMAP plots of peritoneal cells (PECs) from naïve and *H. polygyrus*-infected mice treated with vehicle or RSM-932a. See Supplemental Figure 6A for population gating.

B-G) Enumeration of B) total PECs, C) eosinophils, D) monocytes, E) B-1 cells, F) neutrophils, G) peritoneal macrophages among live PECs. n=3-4 (naïve) or n=5 (infected). Two-way ANOVA with Šídák’s test for multiple comparisons (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001).
Ghorbani and Kim et al.

H-I) CD206, I) CD86, or J) PD-L1 expression (gMFI) on peritoneal macrophages. n=3-4 (naïve) or n=5 (infected). Two-way ANOVA with Šídák's test for multiple comparisons (* p < 0.05).
References

Ghorbani and Kim et al.

Ghorbani and Kim et al.

Ghorbani and Kim et al.

Figure 1

A

B

C

D

E

Relative mRNA

Relative Protein Expression

% of max

S144a1 S144a2

CTL1 CTL2

CTL1-FITC

IL-4

102

48h

98

24h

91

4h

80

0h

Control

3H-Choline uptake (pmol/mg)

Time (min)

3H-Choline into PC (nmol/mg)

Time (h)

M[0] M[IL-4]

M[0] M[IL-4]

*** *** ***

*** *** ***

*** *** ***

*** *** ***

*** *** ***

*** *** ***

*** *** ***

*** *** ***

*** *** ***
Figure 3

A: Retnla

B: Arg1

C: Mrc1

D: Chil3

E:

8.4 4.2 1.1

75.7 51.5 43.1

M[0] IL-4 15'

SSC-A

pSTAT6

F:

Veh HC3 RSM

M[0]

M[IL-4]

M[LPS]

PD-L1

PD-L2
Figure 4

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SSC-A</th>
<th>RELMa/algG-AF647</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veh→M[0]</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>HC3→M[0]</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Veh→M[IL-4]</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>HC3→M[IL-4]</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>Veh→M[IL-4]Δ Cho</td>
<td>3.3</td>
<td></td>
</tr>
</tbody>
</table>

B

- % RELMa+:
 - Choline: + + + +
 - Vehicle: + - - -
 - HC3: - + + +
 - IL-4: + - + +

C

- RELMa (rel. AU):
 - Vehicle: + - - -
 - HC3: - + - -
 - RSM: - - + -
 - IL-4: + - + +

D

- 24 h
 - HC3 (250 μM)
 - IL-4 (20 ng/ml)

- WASH

- 5h 20h 34h

- IL-4 CM

- Wound density (%)
 - Veh→M[IL-4]
 - HC3→M[IL-4]

 timelines:

- 0 10 20 30 40
Figure 5

A

B

C

D

E

subset name

PMN Ly6C+
PMN F480+
PMN Ly6C+F480+
PMN Ly6C-F480-
CD11b-Ly6G-
CD11b+Ly6C+ Mono
CD11b+F480+ LPM
CD11b+Ly6C-F480-
SigF+ Eos
CD19+ B cell
Figure 6

A

B

C

D

E

F

CD206

RELMa

DAPI

Veh

RSM

Veh

RSM

Veh

RSM

Veh

RSM

Veh

RSM
Figure 7

A

<table>
<thead>
<tr>
<th>Subset Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veh</td>
</tr>
<tr>
<td>RSM</td>
</tr>
</tbody>
</table>

B

PECs

Number of Live Cells (10^6)

C

Eosinophil

Number of Live Cells (10^6)

D

Monocyte

Number of Live Cells (10^6)

E

B-1

Number of Live Cells (10^6)

F

Neutrophil

Number of Live Cells (10^6)

G

Peritoneal Mac

Number of Live Cells (10^6)

H

CD206

gMFI

I

CD86

gMFI

J

PD-L1

gMFI