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Temporal dynamics of the multi-omic response 
to endurance exercise training across tissues 
 
MoTrPAC Study Group 

Abstract 
 
Regular exercise promotes whole-body health and prevents disease, yet the underlying 
molecular mechanisms throughout a whole organism are incompletely understood. Here, the 
Molecular Transducers of Physical Activity Consortium (MoTrPAC) profiled the temporal 
transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, 
ubiquitylproteome, epigenome, and immunome in whole blood, plasma, and 18 solid tissues in 
Rattus norvegicus over 8 weeks of endurance exercise training. The resulting data compendium 
encompasses 9466 assays across 19 tissues, 25 molecular platforms, and 4 training time points 
in young adult male and female rats. We identified thousands of shared and tissue- and sex- 
specific molecular alterations. Temporal multi-omic and multi-tissue analyses demonstrated 
distinct patterns of tissue remodeling, with widespread regulation of immune, metabolism, heat 
shock stress response, and mitochondrial pathways. These patterns provide biological insights 
into the adaptive responses to endurance training over time. For example, exercise training 
induced heart remodeling via altered activity of the Mef2 family of transcription factors and 
tyrosine kinases. Translational analyses revealed changes that are consistent with human 
endurance training data and negatively correlated with disease, including increased 
phospholipids and decreased triacylglycerols in the liver. Sex differences in training adaptation 
were widespread, including those in the brain, adrenal gland, lung, and adipose tissue. 
Integrative analyses generated novel hypotheses of disease relevance, including candidate 
mechanisms that link training adaptation to non-alcoholic fatty liver disease, inflammatory bowel 
disease, cardiovascular health, and tissue injury and recovery. The data and analysis results 
presented in this study will serve as valuable resources for the broader community and are 
provided in an easily accessible public repository (https://motrpac-data.org/).  
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Highlights 
● Multi-tissue resource identifies 35,439 analytes regulated by endurance exercise training 

at 5% FDR across 211 combinations of tissues and molecular platforms. 
● Interpretation of systemic and tissue-specific molecular adaptations produced 

hypotheses to help describe the health benefits induced by exercise. 
● Robust sex-specific responses to endurance exercise training are observed across 

multiple organs at the molecular level. 
● Deep multi-omic profiling of six tissues defines regulatory signals for tissue adaptation to 

endurance exercise training. 
● All data are available in a public repository, and processed data, analysis results, and 

code to reproduce major analyses are additionally available in convenient R packages.  
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Abbreviations 
Abbreviation Definition 

ACETYL Acetylproteomics; protein site acetylation  

acetylsites Lysine acetylation 

ADRNL Adrenal gland 

ATAC Chromatin accessibility, ATAC-seq data 

BAT Brown adipose tissue 

BLOOD Whole blood; Blood RNA 

COLON Colon 

CORTEX Cerebral cortex 

CV Coefficient of variation 

ECM Extracellular matrix 

FDR False discovery rate 

GSEA Gene set enrichment analysis 

HEART Heart 

HIPPOC Hippocampus  

HSP Heat shock protein 

HYPOTH Hypothalamus  

IBD Inflammatory bowel disease 

IHW Independent hypothesis weighting 

IMMUNO Multiplexed immunoassays 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KIDNEY Kidney 

LC-MS/MS Liquid chromatography- tandem mass 
spectrometry 

LIVER Liver 

LUNG Lung 

METAB Metabolomics and lipidomics 

METHYL DNA methylation, RRBS data 

MHC Major histocompatibility complex 
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NAFLD Nonalcoholic fatty liver disease 

NASH Nonalcoholic steatohepatitis 

NES Normalized enrichment score 

NK Natural killer 

OVARY Ovaries 

PC Phosphatidylcholine 

PCA Principal component analysis 

PE Phosphatidylethanolamine 

PHOSPHO Phosphoproteomics; protein site phosphorylation  

PLASMA Plasma (from blood) 

PROT Global proteomics; protein abundance 

PTM Post-translational modification 

PTM-SEA PTM signature enrichment analysis 

RIN RNA integrity number 

SKM-GN Gastrocnemius (skeletal muscle) 

SKM-VL Vastus lateralis (skeletal muscle) 

SMLINT Small intestine 

SPLEEN Spleen 

TAG Triacylglycerol 

TESTES Testes 

TF Transcription factor 

TRNSCRPT Transcriptomics, RNA-Seq data 

UBIQ Ubiquitylome; protein site ubiquitination 

ubiquitylsites Lysine diglycine ubiquitin remnants 

VENACV Vena cava 

WAT-SC Subcutaneous white adipose tissue 
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Introduction 
Regular exercise provides wide-ranging health benefits, including substantially reduced risk of 
all-cause mortality1,2 and protection against cardiometabolic and neurological diseases, cancer, 
and other pathologies3–5. Exercise affects nearly all organ systems in either improving health or 
in reducing disease risk3–6. The benefits of regular exercise result from cellular and molecular 
adaptations across various tissues and organ systems6.  

Various “omic” platforms, including transcriptomics, epigenomics, proteomics, and 
metabolomics, have been used to study these events. These studies identified, for example, 
structural and biochemical alterations in skeletal muscle7,8, glycolytic-related remodeling in 
heart9, immune and cell cycle adaptation processes in blood10–12, and changes of gene 
regulation architecture in adipose tissue13. With technological advances, additional omic 
platforms have been applied to study exercise training adaptations. For example, 
phosphoproteomic studies have identified critical kinases in both human and rodent muscle14–16, 
and combined with acetylomic and metabolomic analysis, have identified a link between protein 
acetylation and fatty acid oxidation17. However, extant work typically covers one or two omes at 
a single time point, is biased towards one sex, and often focuses on a single tissue, mostly 
skeletal muscle, heart, or blood, e.g., 7,9,10,17,18, with few studies considering other tissues, e.g., 
19. Accordingly, a comprehensive, organism-wide, multi-omic map of the effects of exercise is 
needed to understand the molecular underpinnings of exercise training-induced adaptations. 

To address this need, the Molecular Transducers of Physical Activity Consortium (MoTrPAC) 
was established with the goal of building a molecular map of the exercise responses across a 
broad range of tissues in animal models and humans20. Here, we present the MoTrPAC animal 
endurance exercise training study conducted in young adult male and female rats. The rat is 
preferred over the mouse as a model organism for endurance exercise21,22, as glucose 
metabolism and cardiac responses are more similar to humans23,24, and their large tissue 
masses enable extensive multi-omic interrogation. Altogether, this work presents the first whole-
organism molecular map of the temporal effects of endurance exercise training and 
demonstrates multiple insights enabled by this multi-omic data resource.  

Results 

Multi-omic approach characterizes the endurance exercise 
training responses 
Six-month-old male and female Fischer 344 rats were subjected to progressive endurance 
exercise training (hereon referred to as “endurance training”) on a motorized treadmill for 1, 2, 4, 
or 8 weeks, with tissues collected 48 hours after the last training bout (Figure 1A). Sex-matched 
sedentary, untrained rats were used as controls (Fig. 1A); all animals were reverse light/dark 
cycle adapted. Training resulted in robust phenotypic changes (Figure S1A-D), including 
significantly increased maximal aerobic capacity (VO2max) by 18% and 14% at 8 weeks in 
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males and females, respectively (q-value < 0.01), with no change in controls (Fig. S1A). Nuclear 
magnetic resonance spectroscopy showed that the absolute percentage of body fat decreased 
by 5% in males at 8 weeks (Fig. S1B), without a significant change in lean mass (Fig. S1C). In 
females, body fat percentage did not change after 4 or 8 weeks of training, while sedentary 
control females increased body fat by 4% (Fig. S1B). Females showed increased body weight 
consistent with growth over all intervention groups while males showed no change in body 
weight (Fig. S1D).  

Whole blood, plasma, and 18 solid tissues were analyzed using genomics, proteomics, 
metabolomics, and protein immunoassay technologies, with most assays performed in a subset 
of these tissues (Figure 1B, Figure S1E). For all omic analyses, tissue samples were 
cryopulverized to provide homogenous samples (Fig. 1A). To reduce the effects of inter-animal 
variation on data integration, the omic assays were performed on tissues from the same 
individual animals whenever possible (Figure S1F). Molecular assays were prioritized based on 
available tissue quantity and biological relevance, with gastrocnemius skeletal muscle, heart, 
liver, and white adipose tissue having the most diverse set of molecular assays performed, 
followed by the kidney, lung, brown adipose tissue, and hippocampus (Fig. S1E). 
Transcriptomic data from RNA sequencing (RNA-Seq) were collected in all 18 solid tissues and 
whole blood (n=5 per sex and time point); epigenomic data from transposase-accessible 
chromatin using sequencing (ATAC-seq) and reduced representation bisulfite sequencing 
(RRBS) were collected in 8 tissues (n=5 per sex and time point). Proteomic data were 
generated by LC-MS/MS for 7 tissues (n=6 per sex and time point) using TMT-based 
quantification where each plex contained a common tissue reference to enable quantification 
across plexes (Figure S2A). Global proteome and phosphoproteome data were acquired in all 7 
tissues, whereas acetylome (acetylated lysines; acetylsites) and ubiquitylome (K-ε-GG ubiquitin 
remnants; ubiquitylsites) were acquired from the liver and heart (Fig. 1B, Fig. S1E). 
Metabolomic data were generated for plasma and all 18 solid tissues using up to seven targeted 
platforms, four untargeted metabolomic platforms, and two untargeted lipidomic platforms (n=5 
per sex and time point). Multiplexed immunoassay panels were applied to 17 tissues to 
accurately quantify low-abundance proteins of biological relevance, including cytokines. These 
datasets were generated using five different rat panels (54 analytes total; n=3 per sex and time 
point). For each omic analysis, QC metrics were used to ensure the data were of high quality 
(Figure S2B-K; Methods). Altogether, datasets were generated from 9466 assays across 211 
combinations of tissues and molecular platforms, quantifying a total of 213,689 and 2,799,307 
unique non-epigenetic and epigenetic (RRBS/ATAC-seq) features, respectively, out of a total of 
681,256 and 14,334,496 distinct non-epigenetic and epigenetic measurements, respectively. 

Differential analysis was used to characterize the molecular responses to endurance training 
(e.g., negative binomial regression via DESeq2 for RNA-Seq count data; see Methods). For 
each molecular feature, a regression model was fit for each sex separately with the training 
group as an explaining variable. Meta-regression models were used for metabolites measured 
on more than one platform (see Methods). Using these models, we quantified the overall 
significance of the training response, denoted as the training p-value. We also computed eight 
sex- and time-specific pairwise contrasts between each group of trained animals and its sex-
matched sedentary controls, denoted as the timewise summary statistics. To select molecular 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

7 

features with any training response, all training p-values within each omics data type (or “ome”) 
were adjusted for multiple hypothesis testing using Independent Hypothesis Weighting (IHW) 
with the corresponding tissue as a covariate25. The 35,439 features at 5% FDR comprise the 
training-regulated differential features (Figure 1C; Table S1).  

Training-regulated molecules were observed in the vast majority of tissues for all omes, 
including a relatively large proportion of transcriptomics, proteomics, metabolomics, and 
immunoassay features (Fig. 1C). The observed fold-changes were modest, where 56% of the 
differential features had a maximum fold-change greater than 0.67 and less than 1.5. Among 
the tissues measured by transcriptomics, the hypothalamus, cortex, testes, and vena cava had 
the smallest proportion of training-regulated genes, whereas the blood, brown and white 
adipose tissues, adrenal gland, and colon showed broader transcriptional effects. For 
proteomics, the gastrocnemius, heart, and liver showed substantial differential regulation in both 
protein abundance and post-translational modifications, with more restricted differential 
regulation of white adipose tissue, lung, and kidney protein abundance. For metabolomics, a 
large proportion of differential metabolites were consistently observed across all tissues, 
although the absolute numbers were related to the number of metabolomic platforms employed 
(Fig. S1E). The number of differential features over the training time course across tissues and 
data types highlights the multi-layered organism-wide molecular adaptations to endurance 
training. 

Multi-tissue integration reveals system-wide molecular responses 
to endurance training 
To identify genes that change across tissues during endurance training, we considered the lung, 
gastrocnemius, white adipose tissue, kidney, liver, and heart. These six tissues had data from 
the following assays: DNA methylation, chromatin accessibility, transcriptomics, global 
proteomics, phosphoproteomics, and multiplexed immunoassays. The 11,407 differential 
features from these datasets mapped to 7,115 unique genes across the six tissues (Figure 2A-
D, Figure S3A; Table S2). These genes were tissue-specific (67%), with the greatest number 
appearing in white adipose tissue. However, 2,359 genes had differential features in at least two 
tissues. For these genes, we characterized the most common tissue combinations (Fig. 2A). 
The largest number of shared genes (m=249) corresponded to the lung and white adipose 
tissue, with predominantly immune-related pathway enrichments (q-value < 1e-05, Fig. 2B). The 
second-largest group of shared genes corresponded to the heart and gastrocnemius with 
enrichment of mitochondrial metabolism pathways (q-value < 1e-03, Fig. 2C).  

Next, we compared the 8-week timewise summary statistics of the transcriptomics and protein 
abundance data for each tissue and sex combination (Figure 2E). This analysis revealed low to 
moderate correlation (Figure S3B). This is in agreement with numerous previous studies 
showing that exercise triggers a transient increase in transcript abundance, with a longer-lasting 
response at the protein level26–28. Nevertheless, gene set enrichment analysis (GSEA) revealed 
a greater concordance between these two omes (Figure S3C-D; Table S3-4; Methods).  
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The two analyses above suggested an up-regulated heat shock response across the organism. 
First, 22 genes were training-regulated in all six tissues, and this set was enriched in heat shock 
response pathways (q-value < 0.01, Fig. 2D). Second, multiple heat shock proteins (HSPs) 
appeared as outliers in our transcriptomics-proteomics comparison (Fig. 2E). The HSP family 
has important cytoprotective functions29, is known to be induced by exercise in various tissues, 
and is dysregulated in metabolic diseases like diabetes30. In humans, higher levels of the major 
HSPs HSPA1A/HSPA1B and HSP90A1AA (a.k.a HSP70 and HSP90, respectively) were 
previously observed in skeletal muscle of lifelong footballers when compared to untrained 
controls31 and were induced following states of increased protein turnover due to either muscle 
damage or states of increased myofiber turnover32. We found a robust increase in HSP 
abundance and virtually no change at the transcript level of the cognate genes, including 
subunits of the major HSPs Hspa1b and Hsp90aa1, as well as Hspb1, Hspe1, and Hsph1 (Fig. 
2E). The transcript and protein discordance suggests that a transient transcript induction or 
post-transcriptional regulation in response to each bout of exercise results in an accumulation of 
HSPs in response to long-term training. Our results also show a similar pattern of simultaneous 
cross-tissue inductions of HSPs in an intensity- or time-dependent manner only at the protein 
level, with a stronger response observed in males (Figure 2F-G). 

Altogether, we find that endurance training induces a heat shock response and HSP 
accumulation across tissues, which can explain some of the cytoprotective effects associated 
with exercise33,34. The alteration of HSPs primarily at the protein level illustrates the importance 
of measuring multiple omes to fully understand the endurance training response. Moreover, our 
organism-wide analysis reveals overwhelmingly tissue-specific responses to endurance training. 

Heart and liver regulatory cascades are modulated by endurance 
training 

To better understand the regulatory behavior behind the responses to endurance training, we 
inferred changes in activity of transcription factors (TFs) and phosphosignaling activities from 
the transcriptomic and proteomic data. TF activities were inferred by TF motif enrichment 
analysis via HOMER35, applied to the set of all differential transcripts in each tissue (see 
Methods). We isolated the most significantly enriched TFs and compared their enrichment 
levels as a proxy for TF activity regulation across tissues (Figure 3A, Figure S4A; Table S5). 
This revealed a cluster of enriched Mef2 family TF motifs in the heart and skeletal muscle (Fig. 
3A). MEF2C is a well-known muscle-associated TF and is involved in skeletal, cardiac, and 
smooth muscle cell differentiation36. Moreover, it has been implicated in vascular development, 
formation of the cardiac loop, and even neuron differentiation37.  

Next, we performed a comprehensive analysis of phosphosignature changes in response to 
training using PTM-SEA38 (Figure 3B; Table S6). Heart and liver tissues showed sex-consistent 
and robust decreased and increased phosphosignaling activity, respectively. In the liver, the top 
regulated phosphosignatures indicated increased growth factor response, including EGF, IGF, 
and the hepatic growth factor, HGF (q-value < 0.01; Figure 3C). The HGF phosphosignature 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

9 

could be explained by an increase in either HGF levels or HGF sensitivity in the liver. Exercise 
enhances liver health and metabolism39,40, yet the mechanism for improved liver health is 
incompletely understood. In rats, HGF treatment improves conditions of alcohol-induced fatty 
liver through reduced fibrosis41–43. STAT3 and PXN, HGF downstream targets involved in cell 
proliferation and migration, were differentially phosphorylated in response to training, suggesting 
a mechanism for activation of cellular maintenance in the liver (Figure S4B). Altogether we 
identify a potential mechanism of exercise-mediated improvement in liver health through HGF 
signaling. 

In the heart, kinases showed bidirectional changes in their predicted basal activity in response 
to endurance training (Figure 3D). Some AGC protein kinases showed a concerted decrease in 
predicted activity, including AKT1 kinase, which is known to be involved in cardiac 
hypertrophy44. In contrast, some tyrosine kinases were predicted to have increased activity 
primarily at earlier time points, including SRC. SRC signaling has been implicated in the 
regulation of heart hypertrophy and structural remodeling45–47. Heart hypertrophy can occur as a 
beneficial physiological adaptation to exercise48,49. The known SRC target phosphosites GJA1 
pY265 (q-value = 0.028) and CDH2 pY820 (q-value = 0.049) showed significantly increased 
phosphorylation in response to training (Figure 3E) with no significant change in the 
concomitant protein (q-value > 0.05; Figure S4C). Both Gja1 (also known as Cx43) and Cdh2 
are known to regulate cell adhesion and communication and have been implicated in heart 
diseases50,51. Importantly, phosphorylation of GJA1 Y265 has previously been shown to disrupt 
gap junctions and regulate interactions with the tight junction protein ZO-152–54. This suggests 
that SRC signaling may in part regulate reorganization of the heart extracellular structure. In 
agreement with this hypothesis, GSEA of extracellular matrix proteins revealed a negative 
enrichment in response to endurance training (Figure 3F; Table S7), showing decreased 
abundance of these proteins, such as basement membrane proteins (Figure S4D-E). Therefore, 
remodeling of the heart structure and ECM in response to endurance training could be 
explained in part through the activation of SRC via GJA1 phosphorylation.  

Temporal dynamics across tissues and omes identify molecular 
hubs for exercise adaptation 
To compare the dynamic multi-omic responses to endurance training across tissues, we 
clustered the 34,244 differential features with complete timewise summary statistics using their 
timewise z-scores. We used the repfdr algorithm55 to assign features to one of nine possible 
combined states per time point, comprising one of three states per z-score (up, unchanged, 
down) for each sex (see Methods). The dynamics of the molecular training response can be 
visualized by constructing a summary graph in which rows represent these nine combined 
states and columns represent the four training time points. Nodes correspond to a combination 
of time, sex, and state. An edge connects two nodes from adjacent time points, representing a 
local temporal pattern. The differential abundance trajectory of any given training-regulated 
feature can then be represented by drawing a path through the nodes in this graph (Figure S5A; 
Table S8; Methods). When analyzing multiple analytes, this graphical analysis can be used to 
query the set of analytes that are associated with a specific node, edge, or a full path.  
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We summarized the node set sizes by tissue and time to identify the main temporal or sex-
associated responses (Figure 4A). We observed that the small intestine, colon, and plasma had 
more changes at the early time points. Conversely, many up-regulated features in brown 
adipose tissue and down-regulated features in subcutaneous white adipose tissue showed a 
delayed response, observed only at week 8. The largest proportion of opposite effects between 
males and females were observed at week 1 in the adrenal gland. Other tissues, including the 
blood, heart, lung, kidney, and skeletal muscles (gastrocnemius and vastus lateralis), had 
relatively consistent numbers of up- and down- regulated features at all training time points.  

We next focused on characterizing the shared molecular responses to endurance training in the 
three striated muscle tissues (heart, gastrocnemius, and vastus lateralis). First, to accommodate 
limited molecular profiling in the vastus lateralis, we visualized the three largest graphical 
trajectories, or paths, of training-regulated transcripts in each tissue (Figure 4B). For all three 
muscle tissues, both the up- and down-regulated paths concordantly converged into a sex-
consistent response. Two of the three vastus lateralis paths represented transcripts that were 
either up- or down- regulated at all time points in females but were unchanged in males until 
week 8, at which time both sexes exhibited the same direction of effect. We next examined the 
full multi-omic set of analytes that were up-regulated in week 8 in these tissues (Figure 4C). In 
the gastrocnemius and heart, where global proteomics and phosphoproteomics data were 
available, a large proportion of the features corresponded to differential proteins and 
phosphosites (Figure 4D). A smaller proportion of the heart features corresponded to differential 
acetylsites. Pathway enrichment analysis of the genes associated with these differential 
features, which was performed separately for features in each tissue and ome (Table S9), 
demonstrated a shared endurance training response that reflected mitochondrial metabolism, 
biogenesis, and translation, and cellular response to heat stress (Table S9; Figure 4E), which is 
consistent with existing literature for skeletal6,56 and cardiac57 muscles.  

We utilized a network analysis framework to further characterize the multi-omic, sex-consistent, 
up-regulated features in the gastrocnemius. After mapping these features to genes, we 
observed modest yet significant overlaps between the transcriptomic, chromatin accessibility, 
and proteomic assays but not with the methylation assays (Figure S5B). We then compared 
three different resources of biological interaction networks: BioGRID58, STRING59, and biological 
pathways, including interactions from Reactome, PathBank, and KEGG60–62. Network 
connectivity analysis showed that all three networks had significant enrichments of interactions 
between genes identified by a single ome and multi-omic genes (i.e., genes identified by two or 
more omes), as well as among these multi-omic genes (Figure S5C; Methods). Network 
eigenvector clustering63 of the BioGRID network, which outperformed the other networks in our 
tests above (Fig. S5C), identified three clusters of nodes (genes or metabolites, Table S10). The 
largest cluster had 181 nodes, was more balanced in its omic representation (Figure S5D), and 
was significantly enriched (at 5% FDR) for multiple muscle adaptation processes (Table S11), 
including: mitochondrion organization, longevity, muscle system processes, and response to 
mechanical stimulus. A subset of the cluster that focuses on these functions is shown in Figure 
4F. This network contains many of the heat shock proteins identified in Fig. 2D-G, including 
HSP90AA1 and HSPA1B as major hubs, as well as the MEF2C transcription factor suggested 
to increase activity in our TF enrichment analysis (Fig. 3A). HDAC4, showing increased 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

11 

phosphorylation with training, is a central network hub. Training-induced phosphorylation of 
HDAC4 by calcium/calmodulin-dependent protein kinase (CaMK) leads to its nuclear export and 
subsequent regulation of target genes64,65, including GLUT4 for glucose uptake in muscle66. In 
the cytosol, non-histone substrates of HDAC4 include the master transcription cofactor for 
mitochondrial and oxidative metabolism, PPARGC1A, and several of the myosin heavy chain 
isoforms67, linking the central network hub to both mitochondrial and structural remodeling in 
skeletal muscle. Thus, this network analysis links the HSPs and MEF2C identified in the 
integrative multi-tissue and regulatory analyses to other major biological processes, revealing 
key multi-omic regulatory hubs.  

Training-regulated features in rats are associated with human 
exercise responses, disease signatures, and complex traits  
To systematically evaluate the translational value of our rat-based data, we integrated our 
results with human exercise studies and disease ontology annotations. First, we compared the 
transcriptomics results from the vastus lateralis to a previously published meta-analysis of long-
term training gene expression studies from similar human skeletal muscle tissue10. A significant 
correlation was observed between the meta-analysis-inferred fold-changes and our results for 
both sexes at 8 weeks post training (p < 1e-20, Figure S6A). Focusing on our training-
differential, sex-consistent genes, we observed a significant and direction-consistent enrichment 
of our gene sets in a GSEA analysis in which genes were ranked by their human meta-analysis 
results (p < 1e-5, Figure S6B). Human gene expression data have been shown to exhibit 
excessive heterogeneity of fold-changes across studies due to observed and unobserved effect 
modifiers, including sex, age, training duration, and transcriptomics platform10. These effects 
substantially limit the power of the meta-analysis, suggesting a high false negative rate10. In our 
analysis we observed a significant overlap between the training-regulated rat genes and human 
genes with high fold-change heterogeneity, suggesting that the rat data may help in identifying 
exercise-responsive genes that were not detected by the human meta-analysis (p < 1e-4, 
Figure S6C).  

We next performed disease ontology enrichment analysis using the DOSE R package68 (Table 
S12; Methods). Down-regulated genes from white adipose tissue, kidney, and liver were 
enriched with several disease terms suggesting a link between the exercise response and type 
2 diabetes (T2D), heart disease, obesity, and kidney disease (5% FDR; Figure S6D), which are 
all epidemiologically related co-occurring diseases69. Leptin (Lep) and methallopeptitase 2 
(Mmp2), which were down-regulated in white adipose tissue, are both associated with 
adipogenesis, T2D, and heart disease70,71. The proinflammatory agent Apolipoprotein C-III 
(Apoc3), down-regulated in white adipose tissue and the kidney, is associated with T2D, heart, 
and kidney diseases. Apoc3 reduction in mice was recently demonstrated to protect white 
adipose tissues against obesity-induced inflammation and insulin resistance72. Overall, these 
results support a high concordance of our rat-based data with human studies and their 
relevance to human disease.   
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Endurance training causes sex-specific responses in multiple 
tissues  
Most tissues showed sex differences in their training responses. To further investigate these 
sex-biased effects, we performed two analyses across all tissues. First, we calculated the 
distributions of the correlations between the male and female timewise effects for all differential 
analytes, where a distribution with a dense non-positive correlation indicates uncorrelated or 
opposite regulation (Figure 5A, Figure S7). Prominent opposite responses were observed in 
training-regulated adrenal gland transcripts, lung phosphosites and chromatin accessibility 
peaks, white adipose tissue transcripts, and liver acetylsites. In addition, proinflammatory 
cytokines exhibited substantial sex-associated changes across tissues (Figure 5B, Figure S8A; 
Table S13). Most female-specific cytokines were differentially regulated between 1 and 2 
weeks, while most male-specific cytokines were differentially regulated between 4 and 8 weeks 
(Figure 5C). 

Next, we examined the the sex-specific or sex-stratified nodes identified in the graphical 
analysis results. Most (58%) of the 8-week training-regulated features demonstrated sex-
associated responses, corresponding to multiple enriched pathways (Table S9). For example, 
several sex-specific changes were observed in the brain (Figure 5D), which may result in 
variable functional changes across the two sexes. In the brain, the cortex showed decreased 
phosphorylation of junction proteins, which may be related to changes in brain-blood-barrier 
functions73. The hippocampus showed decreased serotonin expression which, in agreement 
with previous studies74, may be associated with the antidepressant effects of exercise. These 
high-level analyses identified numerous sex-dependent differences in endurance training 
adaptations across many tissues, emphasizing the importance of studying exercise effects in 
both sexes in humans and model systems. We proceeded to analyze the sex-dependent 
responses in several tissues in detail. 

The adrenal gland undergoes sex-specific adaptations through the 
regulation of steroid and hormone metabolism 

We observed extensive transcriptional remodeling of the adrenal gland, with more than 4000 
differentially regulated genes. Notably, the largest graphical path of training-regulated features 
were negatively correlated between males and females, with sustained downregulation in 
females and transient upregulation at 1 week in males (Figure 5E). Endurance training 
increases adrenal gland mass in both sexes, with more pronounced hypertrophy in male rats75. 
While we did not directly quantify changes in tissue mass, the 1-week induction in males could 
be explained by transient training-induced hypertrophy of the adrenal gland. The genes in this 
path were also associated with metabolism and steroid hormone synthesis pathways, 
particularly those pertaining to mitochondrial function (e.g., oxidative phosphorylation, lipid 
metabolism, and amino acid metabolism; Table S9). This result suggests that the adrenal gland 
additionally undergoes metabolic modifications related to its major function in production and 
release of different steroid hormones and catecholamines in response to endurance training. 
Further, TF motif enrichment analysis of the transcripts in this path showed enrichment of 14 
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TFs (5% FDR, Table S14), including the metabolism-regulating factors PPARg, PPARa, 
estrogen-related receptor gamma (ERRg), and the vitamin D receptor. The mRNA expression 
levels of several significantly enriched TFs themselves followed the same trajectory as this path 
(Figure 5F). PPARs are known regulators of lipid metabolism in response to endurance 
training26, and ERRg regulates mitochondrial metabolism in both cardiac76 and skeletal 
muscles77. Additionally, plasma corticosterone levels mirrored the male response of this adrenal 
path (Figure 5G). Altogether, the adrenal gland shows substantial sex differences in endurance 
training adaptation at the molecular level, likely leading to altered metabolic or hormonal 
functions relevant for the physiology of each of the two sexes. 

Female-specific training adaptations through phosphorylation are 
associated with lung mechanical functions and disease 

In healthy humans, anatomical differences between the sexes cause female-specific 
physiological lung responses to exercise78. In the rat lung, we observed decreased 
phosphosignaling activity with training in males, with opposite effects in females (Fig. 3B). 
Among these, PRKACA had the strongest sex difference in the PTM-SEA analysis at 1 and 2 
weeks, with one of the greatest upregulation patterns in females (Figure 5H; Table S6). 
Consistently, the graphical analysis identified a training phosphosignature in the lung that was 
negatively correlated between the sexes and showed enrichment for PRKACA substrates 
(Figure 5I-J). PRKACA is a kinase involved in signaling within multiple cellular pathways. 
However, the four PRKACA substrates that followed this pattern were in proteins associated 
with cellular structures (e.g., cytoskeleton and cell-cell junctions): DSP, MYLK, STMN1, and 
SYNE1 (Figure 5K). 

The phosphorylation of these proteins support a sex-dependent role of PRKACA in exercise-
mediated regulation of lung structure and mechanical function. For example, both DSP and 
MYLK are associated with physiological modifications in the lung. DSP, a major component of 
desmosomes, gives mechanical strength to the alveolar epithelium in the lung79,80, and DSP 
phosphorylation has previously been associated with desmosome disassembly81. Genetic 
variants in Dsp are associated with various lung diseases82–90. MYLK plays an essential role in 
endothelial cell cytoskeleton rearrangement91–93, and Mylk is a candidate gene for inflammatory 
lung diseases92. Considering these associations and the known physiological sex differences in 
the lung, we hypothesize that increased phosphorylation of DSP and MYLK in the female lung 
during the early weeks of training plays a role in adaptation to increased mechanical stress.  

Immune cells are recruited to male white and brown adipose tissues  
Immune pathway enrichment analysis of the training-regulated transcripts at 8 weeks showed 
limited enrichment in the muscle (heart, gastrocnemius, and vastus lateralis) and brain (cortex, 
hippocampus, hypothalamus) tissues, downregulation in the male lung and female small 
intestine, and strong upregulation in both adipose tissues in males only (Figure 6A, Figure S8B; 
Table S9). While infiltration and activation of immune cells in adipose tissues are typically 
discussed in the context of obesity and insulin resistance94–98, immune cell induction also plays 
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a critical role in tissue remodeling99. Since body fat percentage decreased after 8 weeks of 
endurance training in males only (Fig. S1B), we further investigated the male-specific up-
regulated features at 8 weeks in brown and white adipose.  

First, we observed that many of the same immune pathways were enriched in both the white 
and brown adipose tissues (Table S15). Second, this concordance was also reflected at the 
level of TF activity, where we observed similar enrichments of immune-related TFs in both types 
of male adipose tissue, including PU.1, IRF8, and IRF3 (q-value < 0.001, Table S16). Third, we 
used immune cell markers from external cell typing assays (Table S17; Methods) as proxies for 
immune cell type abundance and correlated their expression profiles with the profiles of our 
male-specific up-regulated transcripts and proteins (Figure 6B, Figure S8C). We observed a 
strong positive correlation for numerous immune cells, including B, T, and natural killer (NK) 
cells, and low correlation with platelets, erythrocytes, and lymphatic tissue at the transcript level 
(Figure 6C). These patterns suggest recruitment of peripheral immune cells or proliferation of 
tissue-resident immune cells as opposed to non-biological variation in blood or lymph content. 
The correlations at the protein level were not as striking (Figure S8D), likely because many of 
the markers were not robustly detected. In complementary analyses, cell type deconvolution 
and enrichment of immune cell type gene expression signatures in the bulk RNA-Seq data with 
CIBERSORTx100 recapitulated the upregulation of multiple immune cell types in males after 8 
weeks of training (Figure S8E-F). 

Endurance training has previously been shown to increase abundance of CD8+ T cells and NK 
cells in rodent adipose tissue101, and adipose tissue may serve as a reservoir for T cells102. NK 
cells are the most exercise-responsive immune cells103 and may play a role in limiting adipocyte 
hypertrophy104. Furthermore, previous studies have identified an association between immune 
cell recruitment and lipolysis105–108. While adipose immune responses are most often associated 
with pathogenic inflammation induced by obesity109,110, our data suggest an important role of 
increased immune cell activity in male adipose adaptation to endurance training. 

Intestine genes associated with inflammatory bowel disease are 
down-regulated in the response to endurance training  
The small intestine was among the tissues with the highest enrichment in immune-related 
pathways (Fig. S8B). The main pattern of differential expression in our graphical analysis 
indicated downregulation of transcripts in females at week 8 (Figure 6D). This transcript set was 
significantly enriched with pathways related to inflammatory bowel disease (IBD), chemokine 
signaling, leukocyte transendothelial migration, and B cell receptor signaling (Figure 6E; Table 
S9). Using the same immune cell type marker correlation analysis described above, we 
observed positive associations between these transcripts and markers of several immune cell 
types, including B cells, T cells, NK cells, monocytes/macrophages, and dendritic cells, 
suggesting decreased abundance of these immune cell populations (Figure 6F). Specifically, 
our gene set included genes involved in B cell receptor signaling activation (Btk, Cd72, Cd79a) 
and B and T cell recruitment and activation (Cd3e, Gata3, Il2rg, Ptpn22, Zap70, Cd5, Card11). 
Endruance training also decreased expression of transcripts with genetic risk loci for IBD 
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(Pntp22, MHC class II [RT1-Dob, RT1-Db2]), Itgal)111. The pathogenesis of IBD and other 
autoimmune disorders is associated with reduced or altered microbial diversity, inflammation, 
and reduced gut barrier integrity, which lead to systemic inflammation and reduced immune 
tolerance112–115. Endurance training is suggested to reduce systemic inflammation and improve 
health, in part by increasing gut microbial diversity and gut barrier integrity116. In accordance, we 
observed decreases in Cxcr3 and Il1a with training (Figure 6G), both implicated in the 
pathogenesis of IBD117–120. CXCR3 increases small intestinal permeability121. Reduced 
expression of Il1a is indicative of improvements in gut tissue homeostasis122 and promotes 
localized immune cell recruitment117,123. Consistent with reduced Il1a expression, the expression 
of transcripts involved in superoxide production in the small intestine (Rac2, Ncf1/Ncf4, 
Cybb)124,125 were decreased with endurance training (Table S1). Reactive oxygen species 
increase intestinal permeability and propagate gut-mediated systemic inflammation126,127. 
Together, these down-regulated immune networks suggest that endurance training has the 
potential to reduce oxidative stress and inflammation in the small intestine, which may decrease 
intestinal permeability and thereby reduce systemic inflammation.  

Endurance training induces changes in mitochondria and lipid 
metabolism 
To investigate organism-wide metabolic changes regulated by endurance training, we 
summarized the sex-consistent significant enrichments at 8 weeks using metabolic 
subcategories of the KEGG pathways (10% FDR, Figure 7A; Table S9). Down-regulated 
transcripts of brown adipose tissue were enriched with many metabolic pathways, suggesting 
an overall decrease in this tissue’s metabolic profile in agreement with a previous mouse 
study128. The heart showed enrichment of various carbohydrate metabolism subcategories 
across many omes, and remarkably, all enzymes within the glycolysis/gluconeogenesis pathway 
showed a consistent increase in abundance, except for GPI, FBP2, and DLAT (Figure S9A). 
The enrichment of oxidative phosphorylation was identified in the greatest number of tissues 
and is consistent with the joint analyses of the muscle tissues (Fig. 4E). We suspected that 
regulation of these mitochondrial pathways could be associated with changes in mitochondrial 
biogenesis due to endurance training. Therefore, we estimated proportional mitochondrial 
changes to endurance training using mitochondria RNA-seq reads (Figure 7B-C, Figure S9B) 
and changes of mitochondrial functions through GSEA using gene expression, protein 
abundance, and protein PTMs (Figure 7D, Figure S9C; Tables S18-S21; Methods). Increased 
mitochondrial biogenesis was consistently observed in the skeletal muscles, heart, and liver 
across these analyses. Moreover, sex-specific mitochondrial changes were observed in the 
adrenal gland, as described above, as well as in the colon, lung, and kidney. These results 
highlight the role of mitochondria in exercise adaptation across many tissues captured in this 
study.  

We summarized training-regulated metabolites across tissues by performing enrichment of 
RefMet metabolite classes (Figure 7E; Table S22). This analysis focused primarily on lipid 
classes, as 2105 out of the total 2430 detected metabolite features in our data were classified 
as lipids (Table S23). The liver showed the greatest number of significantly enriched classes, 
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followed by the heart, lung, and hippocampus. The eicosanoid and octadecanoid lipid classes 
had significant enrichments in 8 and 7 tissues, respectively. Eicosanoids and octadecanoids are 
derived from 20- and 18-carbon polyunsaturated fatty acids, respectively, most frequently 
arachidonic acid (AA)129. The AA pathway plays a key role as an inflammatory mediator involved 
in many molecular and cellular functions under different physiological conditions130. Fatty acids 
and fatty esters, which serve as both energy sources and building blocks for cellular 
membranes, were enriched in 7 tissues. Within fatty esters, acylcarnitines showed unique 
regulation across the plasma, brown and white adipose tissues, heart, and liver (Figure S9D). 
An early increase in medium- and long-chain acylcarnitines occurred in the plasma, white 
adipose tissue, and liver, while a decrease in short-chain acylcarnitines occurred in brown 
adipose tissue and the heart. Together, these analyses reveal the dynamic mobilization of lipids 
across many tissues in response to endurance training. 

In the liver, we observed substantial regulation of metabolic pathways across the proteome, 
acetylome, and lipidome (Fig. 7A, Fig. 7D, Fig. 7E). To investigate the temporal dynamics of 
metabolic regulation in the liver, we focused on the large group of features that increased in 
abundance over time for both sexes, with a larger effect in males (Figure 7F). Most of the liver 
features in this graphical path corresponded to protein abundance and protein acetylation 
changes in the mitochondrial, amino acid, and lipid metabolic pathways (Figure 7G; Table S24). 
Although changes in liver mitochondrial functions have been previously observed during 
exercise131, to our knowledge extensive changes in protein acetylation in response to endurance 
training have not been described. In addition to mitochondria, we observed increased 
abundance and acetylation of proteins from the peroxisome, an organelle with key functions in 
fatty acid beta-oxidation, sterol precursor synthesis, and etherphospholipid production (Figure 
S9E). Lipid metabolism is critical for liver health, and lipid dysregulation can lead to non-
alcoholic fatty liver disease (NAFLD) and eventually to the advanced form of steatohepatitis 
(NASH). Exercise is one of the standard clinical interventions recommended against NAFLD132, 
though the molecular mechanisms are unclear. In our data, the liver showed significant 
enrichment in 12 metabolite classes belonging to “lipids and lipid-related compounds'' (Fig. 7E), 
and we observed an increase in phosphatidylcholines (PCs) and a concomitant decrease in 
triacylglycerols (TAGs) (Figure 7H). Increased PC and decreased TAG are associated with 
healthy liver metabolism, and the opposite is associated with NAFLD133. Moreover, although 
unrelated to exercise, it has been proposed that mitochondrial dysfunction is a key component 
of NAFLD progression134. Therefore, our study indicates that endurance training induces 
profound molecular changes in mitochondrial protein abundance and acetylation, which may be 
associated with improved liver health through the regulation of lipids. 

Discussion 
Mapping the molecular responses to endurance exercise training in a whole organism is critical 
for gaining a holistic understanding of the mechanisms that underlie the benefits of exercise. 
Previous studies have provided valuable findings but are restricted in scope because they used 
limited omics platforms, examined few tissues, interrogated a narrow temporal range, or were 
biased towards a single sex. As large-scale publicly available omic data have proven to be 
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indispensable for rapidly advancing biomedical research, e.g, 135–138, we expect that our new 
resource will similarly accelerate the generation of novel hypotheses pertaining to the molecular 
basis of endurance training. This work illustrates how mining our data resource can both 
recapitulate expected mechanisms and provide novel biological insights. Together, our study 
provides a comprehensive multi-omic, multi-tissue map of the temporal endurance training 
responses in both male and female rats.  

We identified thousands of training-associated molecular alterations within and across tissues. 
We observed genes, proteins, and other molecular analytes that responded to endurance 
training with both shared and specific cellular responses and early and late dynamics. While the 
fold-changes of many training-regulated features associated with tissue remodeling during 
endurance exercise training are modest, they represent coherent processes. We detected wide-
spread effects that likely transduce remodeling of multiple tissues simultaneously, including 
alterations of mitochondrial functions, induction of a global heat shock response, activation of 
tissue-specific response programs, and regulation of immune-related processes.  

The translational aspects of our findings illustrate how our rich dataset can be leveraged to 
deepen our understanding of exercise-related improvement of health and prevention and/or 
reversal of diseases. The global heat shock response to exercise may confer cytoprotective 
effects, including in pathologies related to tissue damage and injury recovery34,139–141. The 
acetylation of liver mitochondria and regulation of lipid metabolism provide a potential 
mechanism for protection against non-alcoholic fatty liver disease and steatohepatitis132. 
Training-modulated cytokines and receptors are linked to intestinal inflammation, including 
transcripts with genetic risk loci for inflammatory bowel disease111. Finally, the regulation of 
kinase activity in the lung may be associated with lung mechanical stress142,143.  

The sex-biased responses to exercise training have not been well characterized. We observed 
sex differences in the training response across the majority of tissues and omes, highlighting the 
critical importance of including both sexes in exercise science research. Though we recognize 
that that sexual dimorphism is substantially greater in rats than in humans144, this work identified 
important sex-specific adaptive processes in the white adipose tissue, brain, adrenal gland, and 
lung, with implications for how endurance training may differentially improve health in males and 
females. 

We note limitations in our experimental design, datasets, and analyses. Our assays were 
performed on bulk tissue and do not cover single-cell platforms. Our resource has limited omic 
characterization for certain tissues, and some omes with emerging biological relevance were not 
performed in this study, for example, microbiome profiling. We analyzed 3-6 animals per time 
point and sex combination, and this sample size may limit our ability to identify modest yet 
physiologically relevant molecular alterations. The findings and associations we describe are 
hypothesis-generating and require biological validation. Towards this end, we have generated a 
tissue bank from this study to facilitate detailed hypothesis-driven work by others. 

This landscape resource provides future opportunities to enhance and refine the molecular map 
of the endurance training response. We expect that this dataset will remain an ongoing platform 
to translate tissue- and sex-specific molecular changes in rats into humans. MoTrPAC has 
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placed extensive effort into facilitating access, exploration, and interpretation of this resource, as 
the program aims to provide key data resources to enable integration with public resources. 
Combined, this first MoTrPAC multi-omic resource sets the landscape for rapid advancement of 
our understanding of the milieu of molecular changes in endurance training adaptation and 
provides transformative opportunities to understand the impact of exercise on health and 
disease. 
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Figure 1. Study design and the dataset.  
A) Experimental design and tissue sample processing. Fischer 344 (F344) inbred rats were 
subjected to a progressive treadmill training protocol. Tissues were collected from male and 
female animals that remained sedentary (SED) or completed 1, 2, 4, or 8 weeks of endurance 
exercise training. For trained animals, samples were collected 48 hours after their last exercise 
bout (red pins). Maximal oxygen consumption (VO2max) and nuclear magnetic resonance 
(NMR) tests are indicated by the blue pins. SED = sedentary. B) Summary of molecular 
datasets included in this study. Up to nine data types were generated for blood, plasma, and 18 
solid tissues, per animal. Tissue labels indicate the location, color code, and abbreviation for 
each tissue. Icons next to each tissue label indicate the molecular data types generated for that 
tissue. C) Number of differential molecular features at 5% false discovery rate (FDR). Each cell 
represents results for a single tissue and data type. Numbers indicate the number of training-
differential features whose abundances significantly changed over the training time course in at 
least one sex; colors indicate the proportion of measured features that are differential, where the 
brightest color means that at least 10% of measured features are differential. Tissues are 
grouped by organ system. Data types are grouped by ome, as defined in (B), and ordered to 
reflect the central dogma. Created in part with BioRender.com. 
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Figure 2. Multi-tissue molecular endurance training responses.  
A) Upset plot of the gene sets associated with the training response of each tissue. Molecular 
features were mapped to gene symbols. Numbers indicate the number of genes regulated by 
training in the tissues indicated by the connected points on the left. Bars and points indicating 
tissue-specific differential genes are colored by tissue. Pathway enrichment analysis is shown 
for selected sets of genes as indicated by the arrows. B-D) Significantly enriched pathways 
(10% FDR) corresponding to (B) genes differential in both LUNG and subcutaneous white 
adipose tissue (WAT-SC), (C) genes differential in both HEART and SKM-GN, and (D) the 22 
genes that are training-regulated in all six tissues considered in (A). Redundant pathways (i.e., 
those with an overlap of 80% or greater) were removed. E) Scatter plots of the protein t-scores 
(PROT) vs. the transcript z-scores (TRNSCRPT), per gene at 8 weeks of training (8W) relative 
to sedentary controls. Data are shown for the seven tissues for which both proteomics and 
transcriptomics was acquired. Red points indicate genes associated with the heat shock 
response, and the labeled points indicate those with a large differential response at the protein 
level. F-G) Line plots showing protein (F) and transcript (G) log2 fold-changes relative to the 
untrained controls for a subset of heat shock proteins with increased abundance during exercise 
training. Each line represents a protein in a single tissue.   
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Figure 3. Regulatory signaling pathways modulated by endurance 
training. 
A) Transcription factor (TF) motif enrichment analysis of the training-differential transcripts in 
each tissue. Heatmap shows the motif enrichment z-score across the differential genes for the 
13 tissues that had at least 300 genes after mapping transcript ids to gene symbols. For each 
tissue, the plot depicts the TFs that were both among the top ten significantly enriched and were 
expressed according to the RNA-seq data. Tissues were ordered based upon their clustering in 
Figure S4A, and TFs were hierarchically clustered by their enrichment across tissues. B) 
Estimate of activity changes in kinases and signaling pathways using PTM-SEA through 
enrichment of phosphoproteomics data. Heatmap shows normalized enrichment score (NES) 
for tissue/sex/time point groups as columns and kinases or pathways as rows. Non-significant 
enrichments are colored white (q-value > 0.1). Rows were sorted using the row sums of the 
absolute NES. C) Filtered PTM-SEA results for the liver showing kinases and signaling 
pathways with increased activity (left). Heatmap showing t-scores for phosphosites within the 
HGF signaling pathway (right). D) Filtered PTM-SEA results for the heart showing selected 
kinases with significant enrichments in at least one time point. Heatmap shows the NES as color 
and enrichment p-value as dot size. Kinases are grouped by kinase family and sorted by 
hierarchical clustering. E) Log2 fold-changes for selected Src kinase phosphosite targets, GJA1 
pY265 and CDH2 pY820, in the heart. These phosphosites show a significant response to 
exercise training (5% FDR). F) Gene Set Enrichment Analysis (GSEA) results from the heart 
global proteome dataset using the matrisome gene set database. Heatmap shows NES as color 
and enrichment p-value as dot size. Rows are clustered using hierarchical clustering.  
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Figure 4. Temporal patterns of the molecular training response. 
A) Number of training-regulated features assigned to groups of graphical states across tissues 
and time. Red points include features that are up-regulated in at least one sex. That is, only in 
males (denoted as F0_M1), only in females (F1_M0), or in both sexes (F1_M1). Blue points 
include features that are down-regulated in at least one sex (states labeled F-1_M0, F0_M-1, 
and F-1_M-1, similarly to the notation for the up-regulated nodes); green points include features 
that are up-regulated in males and down-regulated in females or vice versa (states F-1_M1, 
F1_M-1). Point size is proportional to the number of differential features, scaled across all 
tissues. Point opacity is proportional to the fraction of total differential features represented by 
that point, calculated separately within each tissue. Features can be represented in multiple 
points. The number of omes profiled in each tissue is provided in parentheses next to the tissue 
abbreviation. The six most deeply profiled tissues are shown at the top and are separated from 
all other tissues. B) Graphical representation of the training-differential transcripts in the three 
muscle tissues: heart (HEART), gastrocnemius (SKM-GN), and vastus lateralis (SKM-VL). Each 
node represents one of nine possible states (row labels) at each of the four training time points 
(column labels). Edges are drawn through these nodes to represent the path of differential 
features over the training time course. This graph includes the three largest paths of differential 
transcripts in each of the muscle tissues, with edges colored by tissue. Both node and edge size 
are proportional to the number of features represented by the node or edge. The 8w_F1_M1 
node, i.e., the group of features that are up-regulated in both females and males at 8 weeks, is 
circled. C) Line plots of standardized abundances of training-differential muscle features across 
all omes in the 8w_F1_M1 node. The black line in the center represents the average value 
across all features. D) Number of 8w_F1_M1 training-regulated muscle features shown in (C) 
corresponding to different omes and muscle tissues. E) Network view of pathway enrichment 
results corresponding to the features in (C). Nodes indicate significantly enriched pathways 
(10% FDR); an edge represents a pair of nodes with a similarity score of at least 0.3 between 
the gene sets driving each pathway enrichment. Nodes (pathways) are only included if they are 
significantly enriched in at least two of the muscle tissues, as indicated by node color. Node size 
is proportional to the number of differential feature sets (e.g., gastrocnemius transcripts) for 
which the pathway is significantly enriched. Clusters of enriched pathways were defined using 
Louvain community detection, and are annotated high-level biological themes. F) Clustering 
analysis reveals a connected multi-omic network of stress response and muscle system 
processes. Top left: the input gene and metabolite protein-protein and gene-metabolite 
interactions network corresponding to features from the 8w_F1_M1 node of gastrocnemius (516 
genes, 9 metabolites). Bottom left: the largest cluster identified using the leading eigenvector 
clustering algorithm. Right: a subnetwork of significant enrichments from the largest cluster 
contains genes functionally related to longevity, muscle system processes, and response to 
mechanical stimulus. Node colors indicate the ome through which the gene was identified.  
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Figure 5. Sex differences in the endurance training response.  
A) Violin plots of Pearson correlations between male and female log2 fold-changes for each 
training-differential feature within each tissue and ome (5% FDR), colored by ome. B) Training-
differential cytokines across tissues. 5, 24, and 9 cytokines were annotated as anti-, pro-, and 
pro/anti- inflammatory, respectively. Bars indicate the proportion and number (on top of each 
bar) of annotated cytokines in each category that are differential (5% FDR). C) Counts of early 
vs. (1- or 2-week) late (4- or 8-week) differential cytokines, according to states assigned by the 
graphical analysis, including all tissues. Cytokines with both early and late responses in the 
same tissue were excluded. D) Top five KEGG pathway enrichments (by sum-of-log combined 
p-value per tissue and pathway) in 8-week sex-stratified nodes (i.e., nodes representing 
training-differential features that do not have the same direction of effect in both sexes) in cortex 
and hippocampus. Each point represents a significant pathway enrichment in a given node, 
where the direction of the triangle points in the direction of the training effect (up or down) and 
the color indicates the corresponding sex. E-F) Sex difference in the transcriptional training 
response in the adrenal gland. E) Line plots of standardized abundances of training-differential 
features that follow the largest graphical path in the adrenal gland (i.e., 1w_F-1_M1->2w_F-
1_M0->4w_F-1_M0->8w_F-1_M0 according to our graphical analysis notation). The black line in 
the center represents the average value across all features. F) Line plots of transcript-level log2 
fold-changes corresponding to six transcription factors (TFs) whose motifs are significantly 
enriched by transcripts in (E). TF motif enrichment q-values are provided in the legend. G) Line 
plot of normalized plasma corticosterone levels. H-K) Sex difference in the lung 
phosphosignature. H) Male versus female NES from PTM-SEA in the lung. Anticorrelated points 
corresponding to PRKACA NES are in dark red. I) Line plots of standardized abundances of 
training-differential phosphosites that follow the largest graphical edges of phosphosites in the 
lung (1w_F1_M-1->2w_F1_M-1->4w_F0_M-1). J) Top ten kinases with the greatest over-
representation of substrates (proteins) corresponding to training-differential phosphosites in (I). 
MeanRank scores by library are shown, as reported by KEA3. (K) Line plots showing relative 
abundance of PRKACA phosphosite substrates identified in lung as differential with disparate 
sex responses (Mylk pS1252, Mylk pS1816, Stmn1 pS63, Dsp pS2558, Syne1 pS8729, and 
Syne1 pS2951).  
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Figure 6. Training-induced immune responses.  
A) Enrichment analysis results of the training-differential transcripts at 8 weeks in KEGG 
immune system pathways (10% FDR). Each point represents a pathway enrichment in the set 
of transcripts contained in a particular 8-week node of the graphical clustering results, e.g., a 
blue triangle pointing up indicates an enrichment in the 8w_F0_M1 node. B) Line plots of 
standardized abundances of training-differential transcripts that are up-regulated only in males 
at the 8-week time point (8w_F0_M1) in brown adipose tissue (BAT) and WAT-SC . The black 
line in the center represents the average value across all features. C) Violin plots of the sample-
level Pearson correlation between markers of immune cell types, lymphatic tissue, or cell 
proliferation and the average value of features in (B) at the transcript level. A red point indicates 
that the marker is also one of the differential features plotted in (B). # indicates that the 
distribution of Pearson correlations for a set of at least two markers is significantly different from 
0 (one-sample t-test, 5% BY FDR). When only one marker is used to define a category on the y-
axis, the gene name is provided in parentheses. D) Line plots of standardized abundances of 
training-differential transcripts in the small intestine (SMLINT) that are down-regulated in 
females and either null or down-regulated in males at the 8-week time point (8w_F-1_M0 or 
8w_F-1_M-1). E) Network view of pathway enrichment results corresponding to features in (D). 
Nodes indicate significantly enriched pathways (10% FDR); edges connect nodes if there is a 
similarity score of at least 0.375 between the gene sets driving each pathway enrichment. 
Clusters of enriched pathways were defined using the Louvain algorithm for community 
detection and annotated with high level biological themes. F) Same as (C) but instead for 
features in (D). G) Line plots showing the log2 fold-changes for Cxcr3 and Il1a transcripts in the 
small intestine.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

34 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

35 

Figure 7. Training-induced changes in metabolism. 
A) Significant enrichments for relevant categories of KEGG metabolism pathways from features 
that are up- or down- regulated in both sexes at 8 weeks (8w_F1_M1 and 8w_F-1_M-1 nodes, 
respectively). Triangles point in the direction of the response (up or down). Points are colored by 
ome. B) Boxplots showing the percent of reads across samples in each tissue that map to the 
mitochondrial genome (% MT reads). C) Comparison of % MT reads between untrained controls 
and animals trained for 8 weeks. Plot shows tissues with a statistically significant change after 8 
weeks in at least one sex (red asterisk, Dunnett’s test, 10% FDR). D) GSEA results using the 
MitoCarta MitoPathways gene set database and proteomics (PROT) or acetylome (ACETYL) 
timewise summary statistics for training. NES are shown for significant pathways (10% FDR). 
Mitochondrial pathways shown as rows are grouped using the parental group in the 
MitoPathways hierarchy. E) RefMet metabolite class enrichment calculated using GSEA with 
the -log10 training p-value. Colored cells are significant chemical class enrichments (5% FDR). 
F) Line plots of standardized abundances of liver training-differential features across all omes 
that are up-regulated in both sexes, with a later response in females (!"#$%&'()*+,*-(./'

0)*+,*-(./'1)*+,*-(./'2)*+(*-(). The black line in the center represents the average 
value across all features. G) Network view of pathway enrichment results corresponding to 
features in (F). Nodes indicate significantly enriched pathways (10% FDR); edges connect 
nodes if there is a similarity score of at least 0.375 between the gene sets driving each pathway 
enrichment. Node colors indicate omes in which the enrichment was observed. Clusters of 
enriched pathways were defined using the Louvain algorithm for community detection and 
annotated with the high level biological themes. H) 8-week log2 fold-changes (relative to 
sedentary controls) for metabolites within the “Lipids and Lipid related compounds” category in 
the liver.   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.09.21.508770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.21.508770
http://creativecommons.org/licenses/by-nd/4.0/


 

36 

Methods 
See Additional File 1 for experimental and computational methods.  

Data availability 
MoTrPAC data will be publicly available at time of publication via motrpac-data.org/data-access. 
Data access inquiries should be sent to motrpac-helpdesk@lists.stanford.edu. Additional 
resources can be found at motrpac.org and motrpac-data.org. Processed data and analysis 
results are additionally available in the MotrpacRatTraining6moData R package 
(github.com/MoTrPAC/MotrpacRatTraining6moData). 

Code availability 
Code for reproducing the main analyses are conveniently provided in the 
MotrpacRatTraining6mo R package (github.com/MoTrPAC/MotrpacRatTraining6mo). MoTrPAC 
data processing pipelines for RNA-Seq, ATAC-seq, RRBS, and proteomics will be made public 
at the time of publication: https://github.com/MoTrPAC/motrpac-rna-seq-pipeline, 
https://github.com/MoTrPAC/motrpac-atac-seq-pipeline, https://github.com/MoTrPAC/motrpac-
rrbs-pipeline, https://github.com/MoTrPAC/motrpac-proteomics-pipeline. Normalization and QC 
scripts will be available at https://github.com/MoTrPAC/motrpac-bic-norm-qc.  
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