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ABSTRACT

Biomedical research relies heavily on the use of model organisms to gain insight into

human health and development. Traditionally, the mouse has been the favored vertebrate

model, due to its experimental and genetic tractability. Non-rodent embryological studies

however highlight that many aspects of early mouse development, including the egg-cylinder

topology of the embryo and its method of implantation, diverge from other mammals, thus

complicating inferences about human development. In this study, we constructed a

morphological and molecular atlas of rabbit development, which like the human embryo,

develops as a flat-bilaminar disc. We report transcriptional and chromatin accessibility

profiles of almost 180,000 single cells and high-resolution histology sections from embryos

spanning gastrulation, implantation, amniogenesis, and early organogenesis. Using a novel

computational pipeline, we compare the transcriptional landscape of rabbit and mouse at the

scale of the entire organism, revealing that extra-embryonic tissues, as well as gut and PGC

cell types, are highly divergent between species. Focusing on these extra-embryonic tissues,

which are highly accessible in the rabbit, we characterize the gene regulatory programs

underlying trophoblast differentiation and identify novel signaling interactions involving the

yolk sac mesothelium during hematopoiesis. Finally, we demonstrate how the combination of

both rabbit and mouse atlases can be leveraged to extract new biological insights from sparse

macaque and human data. The datasets and analysis pipelines reported here set a framework

for a broader cross-species approach to decipher early mammalian development, and are

readily adaptable to deploy single cell comparative genomics more broadly across biomedical

research.
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INTRODUCTION

Due to the ethical and technical challenges of experimenting with human and non-human

primate embryos, our understanding of human development is largely influenced by studies

on the mouse. The mouse has dominated as a mammalian model for over 50 years for its

ease of maintenance and genetic manipulation, short generation times and large litter sizes.

However, despite the utility of the mouse model in recapitulating many aspects of human

biology, it has long been recognized that there is significant variability in early development

across mammals and particularly between rodent and non-rodent species. A prominent

example is the egg-cylinder shape of the mouse embryo, which substantially deviates from

the flat-disc morphology of most other amniotes, including humans, and even other rodents 1.

As a result of the cup-shape morphology, the germ layers have an inverted organization

compared to flat-disc species, with early endoderm on the outside of the embryo. These cells

subsequently internalize through a rodent-specific turning process to establish the phylotypic

vertebrate body plan 2. The mouse embryo also diverges in other respects, such as the

topology of its extra-embryonic tissues 3 and method of implantation 4.

Discordance between human and animal models is one of the primary reasons pre-clinical

pharmaceuticals fail efficacy or safety testing5. Thalidomide, for example, causes fetal

malformations in rabbits, non-human primates, and humans, but not in mice 6–8. Differences

in developmental toxicity between mice and non-rodents are indeed widely recognized, and

current regulatory guidelines require that embryo–fetal developmental toxicity (EFDT)

testing is conducted on both a rodent and non-rodent species9.

Despite this, and although rabbits, dogs, sheep, pigs, and non-human primates are all used

in biomedical research, the availability of deep molecular data in mammals is largely limited
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to the mouse. Previous molecular studies have characterized, at single-cell resolution,

gastrulation and subsequent organogenesis in the mouse, enabling delineation of specific

lineage commitment events 10,11 and facilitating an understanding of the role of the epigenome

in cell fate commitment 12,13. However, with advances in genome engineering and molecular

profiling technologies14, more organisms have become accessible to functional

experimentation and disease modeling. This presents an opportunity to gain a comparative

understanding of species at the molecular and cellular level, which will be critical to

determine optimal model systems, improve the translation of animal studies, and gain deeper

insights into early mammalian development more broadly.

As an alternative to the mouse, the European rabbit, Oryctolagus cuniculus, offers many

advantages for studying early mammalian development. Like mice, rabbits have short

reproductive cycles (31 days), large litter sizes, and are well-established as a laboratory

animal in pharmacological, reproductive, and developmental research 15–17 with rabbits being

the most commonly used non-rodent species in developmental toxicity studies. Moreover,

relative to mice, the rabbit embryo is highly accessible at later stages of development due to

its large size and late implantation 15. The embryo implants superficially, rather than

intrusively embedding into the uterine lining, making it tractable to dissect and obtain

embryos. Rabbits are also phylogenetically well-positioned, sharing a more recent common

ancestor to both rodents and primates than other mammalian model organisms, such as the

cow or pig 18. Finally, compared with mice, phylogenetic models predict a smaller branch

length from the Glire ancestor, suggesting that the rabbit genome is also more representative

of the ancestral condition 19,20. Taken together, the more conserved genetic scaffold, the

morphological similarity of early development, and the ready availability of experimental

material, makes studying developmental processes in the rabbit appealing, especially as a
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model of early human development. However, at present, a deep molecular characterisation

of early development in the rabbit, and a thorough molecular comparison of rabbit to humans

and mouse is lacking.

In this paper, we characterize rabbit development, using high-resolution whole-embryo

histology, single-cell transcriptomics and single-cell chromatin accessibility profiling, at three

gestational days (GDs) 7-9 that capture implantation, amniogenesis, and gastrulation. Using a

novel neighborhood-based approach, we place the rabbit transcriptional landscape in context

with the mouse, identifying conserved and divergent cell states, cell types and developmental

trajectories across species. We also investigate the molecular programmes underlying

trophoblast differentiation and yolk sac hematopoiesis in the rabbit and use the fine-grained

cell type annotations of both rabbit and mouse atlases to obtain a more detailed view into the

cell type diversity of sparse human and macaque data. Our transcriptional and chromatin

accessibility atlases can be explored via the interactive website available through

https://marionilab.github.io/RabbitGastrulation2022/.

RESULTS

A time-resolved single cell RNA-seq atlas of rabbit gastrulation and early organogenesis

Gestational Days (GD) 7, 8 and 9 of New Zealand White Rabbit development

encompass implantation, gastrulation and early organogenesis (Figure 1A-C). Individual

embryos across each of these stages were processed to obtain an anatomical and

morphological view of rabbit embryogenesis via high-resolution histology imaging on

transverse and sagittal sections (Figure 1C; Methods). Up until the blastocyst stage, rabbit

and mouse embryos share a largely similar structure with an outer layer of trophectoderm
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surrounding epiblast and hypoblast cell layers21. However, in contrast to the mouse embryo,

which implants around day 4.5 22, the rabbit blastocyst fills with fluid and expands drastically

prior to implantation. The polar trophoblast, known as Rauber’s layer, deteriorates in rabbits,

so the epiblast is directly exposed to the maternal environment and sits on top of this large

bag of fluid (Figure 1C, S1A)23. These patterns can be clearly observed in our histological

reference set: at GD7 the expanded blastocyst and the first signs of implantation are observed

on the anti-mesometrial side of the embryo (Figure 1A,C, S1A,D)24. Additionally, the

primitive streak can clearly be seen and the flat-disk shaped gastrula is similar to the shape of

a CS7 human gastrula 25. By GD8, the first somites can be seen (Figure 1A) and the amnion

regrows from the surrounding trophoblast (Figure 1C, S1B,F,H). Contrasting with mouse

development, this is the stage of development at which implantation completes on the

mesometrial side. Finally, by GD9, the earliest structures corresponding to more mature

organs can be seen, such as the optic vesicle, heart, neural tube, and allantois (Figure 1A,1C,

S1F).

Having generated this anatomical reference, we next looked to molecularly profile

cells of the rabbit embryo across these developmental stages. 6 individual embryos for GD7,

3 individual embryos and 2 pools of 3 embryos each for GD8, and 4 embryos for GD9 were

processed for single-cell RNA-seq using the 10X Genomics Chromium System (Methods,

Figure S3A). All GD9 embryos were dissected into the embryo-proper and extraembryonic

region; two of which were micro-dissected further into the anterior, mid, and posterior

regions providing high-level spatial information (Figure S1C). Following quality control and

initial processing, including substantial improvement of the rabbit transcriptome annotation

(Methods, Figure S2, S3), we obtained high-quality transcriptome profiles for 13,674 cells at
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GD7, 34,686 cells at GD8 and 97,773 cells at GD9, providing deep transcriptomic sampling

along this entire period of rapid embryo growth (Figure 1D, S3).

To assign each profiled cell to a specific cell type, we employed a combination of

automated and manual annotation approaches. In a recent atlas of mouse gastrulation and

early organogenesis, 430,339 cells spanning embryonic day (E) 6.5 to E9.5, were classified

into 87 curated cell type labels 26. Given the overlapping developmental stages (Figure 1B),

we trained a label-transfer model on the full mouse dataset and used this to predict cell type

annotations for the rabbit (Methods, Figure S4A). The automatic transfer of existing

annotations ensured that our rabbit cell types were defined as consistently as possible with the

mouse, facilitating cross-species comparisons downstream. The preliminary annotations

obtained from this automated stage were subsequently verified by manual annotation via

assessment of known cell type markers and by cross-referencing with additional information

such as the developmental stage, histology (Figure 1A, S1D) spatial information via embryo

microdissection (Figure S1C), RNA-scope images and independent data integration (Figure

S4C). Novel cell types not shared between species were also identified in this stage through

examining marker genes, high-resolution in situ hybridization microscopy (Figure S4B), and

thorough consultations with specialist collaborators. In total, we defined 67 cell types across

a library of 146,133 cells which encompass different lineages arising from the three earliest

precursors, namely the epiblast, hypoblast and trophoblast (Figure 1D).

Chromatin and gene-regulatory dynamics capture key processes of

trophoblast-syncytiotrophoblast differentiation in vivo
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From the fertilized zygote, the first fate decision is between the inner cell mass (ICM)

and the trophectoderm. The trophectoderm can be separated into the top, polar trophoblast

layer overlying the ICM, and the bottom mural trophoblast of the blastocyst. It is noteworthy

that in species such as rabbit, cat, dog, sheep, and pig, the polar trophoblast layer degenerates

so that the epiblast becomes contiguous with the mural trophoblast 23. The remaining

trophoblast cells subsequently differentiate to form the amniotic ectoderm, cytotrophoblast

and syncytiotrophoblast, which mediate implantation and restructuring of the maternal

environment to accommodate the developing embryo.

Despite being of vital importance for the successful development of the embryo, the

gene-regulatory programmes underlying trophoblast differentiation and the establishment of

the fetal-maternal interface in vivo remain poorly understood. Moreover, differences in

trophoblast cell types and their key regulators between mice and humans motivate the need

for additional in-vitro and in-vivo models 27, particularly as several pregnancy-related

disorders, including preeclampsia and intrauterine growth restriction, are associated with

abnormal trophoblast development 28. One reason why the process of implantation has been

so difficult to study at the molecular level is that, in humans and mice, it takes place very

early in development (prior to gastrulation), with consequent challenges in capturing enough

cells for rigorous molecular profiling. Moreover, in organisms where the embryo is deeply

embedded within the uterine lining (such as human and mouse), capturing trophoblast cell

types without also capturing a lot of maternal material is experimentally challenging. By

contrast, in the rabbit, implantation occurs alongside gastrulation at GD 7 and 84,24, when the

embryo is larger, enabling the straightforward capture of large numbers of

extraembryonic-ectoderm cells (Figure 1D, S1A-B).
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Consistent with this, in comparison to the mouse gastrulation dataset 10 which only

captures a subset of cells labeled as extraembryonic-ectoderm, we are able to profile a diverse

set of extraembryonic ectoderm cell types (Figure 2A), encompassing the maturation of early

trophoblast cells (characterized by expression of GATA3, HAND1, and DPPA3) 29,30 into

cytotrophoblast (characterized by expression of CD9 and CYP19A1; 31,32 and finally into

syncytiotrophoblast (SCT) progenitors (characterized by expression of GCM1 and of

TFAP2A/C)33,34 that will later fuse with the maternal decidua and become multinucleated. The

multinucleated syncytium would not be captured due to their invasion of the maternal layer

during dissection (Methods).

To complement the transcriptional profiling of different trophoblast cell-types, and

especially given the relatively limited information about trophoblast development in vivo, we

next sought to elucidate the gene-regulatory programmes underlying trophoblast

differentiation in the rabbit. To this end, we performed single-cell assay for

transposase-accessible chromatin-sequencing (scATAC-seq) across the same time points for

which scRNA-sequencing data was generated, resulting in chromatin accessibility profiles of

34,082 cells after quality control (Figure S5; Methods). Using the archR pipeline 35, cells

were clustered and gene accessibility scores were used to perform cell type label transfer

from the transcriptional atlas. Clusters containing cells of the different

extraembryonic-ectoderm cell types were re-analysed and the cell type annotation was

manually curated by inspection of chromatin accessibility of key marker genes and

enrichment of transcription factors (TFs) motifs.

Ordering both the scRNA-seq and scATAC-seq data of the

trophoblast-syncytiotrophoblast trajectory along pseudotime (Figure 2B) allowed us to
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compare the differential TF motif accessibility of known and putative regulators of

trophoblast development and correlate this with differential expression of the matched

scRNA-seq data (Figure 2C). Consistent with trophoblast development in human and mouse,

we see enrichment for the binding motifs of TEAD4 36 and CDX2 37 at regions accessible

during early trophoblast timepoints, which rapidly close as trophoblast cells mature. In cells

assigned a cytotrophoblast identity, corresponding to the middle of the pseudotemporal

ordering, we observed accessibility in regions associated with DLX5/6, ZNF740, and TP63

motifs. Later, during syncytiotrophoblast differentiation, we observed open chromatin in

regions associated with the GCM1 motif 38, a known regulator of CEBPA and syncytin genes,

the latter of which are directly involved in cell-cell fusion with the maternal decidua 39,40.

Finally, in the most mature syncytiotrophoblast cells, motifs associated with the binding of

TFEB and MITF are highly accessible. These TFs are known to form homodimers or

heterodimers, and are involved in vascularization and placental labyrinthine development 41.

Overall, these patterns seen in rabbit in vivo are consistent with the limited information

available for human, not only suggesting conservation of key temporal ordering of changes in

chromatin accessibility during trophoblast development, but also establishing the first

comprehensive in vivo dataset capturing this key process at single cell resolution for both

transcription and open chromatin.

Interestingly, some patterns of changes in chromatin accessibility seen in the rabbit do

not conform with previous mouse data; for example, we observed changes in chromatin

accessibility at motifs associated with DLX5/DLX6 binding during cytotrophoblast

differentiation, as well as corresponding expression (Figure 2D). These genes are known to

be expressed in humans but are not expressed in murine trophoblast42. DLX5 and DLX6 are

also known preeclampsia markers, with 69% of preeclamptic placentas showing upregulation
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in one study42. Moreover, these genes are implicated in proliferation of trophoblast and are

normally downregulated during the differentiation process to syncytiotrophoblast. This

conservation of markers between rabbit and humans reveals the rabbit may be a better model

system for comparison to humans in preeclampsia studies

A neighborhood-based comparison across species identifies rabbit-mouse differences in

embryonic and extra-embryonic cell states and developmental trajectories

In the previous section, we focused on characterizing extraembryonic cell types that

are present in the rabbit but which are underrepresented in mouse datasets at this stage of

development. Next, we focused on cell types and developmental trajectories that are present

across both species and examined which developmental processes were conserved and which

showed divergence. To do this, we developed a computational approach to evaluate

transcriptional similarity between k-nearest neighbor (kNN) graphs, constructed from

scRNA-seq data of different species (Figure 3A). Independently for each species, we defined

neighborhoods of cells across the entire kNN graph43 allowing us to locally approximate the

transcriptional profile in precise regions of the gene expression manifold. In contrast to cell

types or discrete clusters, neighborhoods are typically more granular, are independent of cell

type annotations, and more optimally encapsulate gene expression changes, especially across

continuous trajectories. Having defined neighborhoods within each species, we compute an

average expression profile for each neighborhood before computing a correlation matrix

(using orthologous genes) to measure the similarity between all pairs of neighborhoods across

species (Methods).
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We applied this approach to compare our transcriptional atlas of rabbit development

with the E6.5 - E9.5 single-cell atlas of mouse development used in our cell type annotation

26. These timepoints overlap with our GD7, GD8 and GD9 rabbit samples, as assessed by

Carnegie staging (Figure 3B). Using the matrix of correlations, computed across 5,253 rabbit

and 14,034 mouse neighborhoods (Figure S6A), we first investigated which regions of the

rabbit developmental landscape were conserved or divergent with the mouse. To do this, for

each rabbit neighborhood, we extracted its maximum correlation value across all mouse

neighborhoods (Figure 3C).

The most similar neighborhoods between species correspond to cell types within the

embryo proper, particularly within the anterior and mid sections of the embryo (Figure S6D),

including the neural crest, nervous system and mesodermal cell types (Figure 3D, S6B). By

contrast, we noted that neighborhoods representing extraembryonic cell types, such as the

amnion, parietal and visceral yolk sac endoderm, were among the least correlated cell types

with the mouse, possibly reflective of the known morphological differences and divergent

modes of development described previously, such as the depletion of Rauber’s Layer and

generation of amnion from polar trophoblast. The Yolk Sac (YS) endothelium also shows a

much lower maximum correlation distribution than the embryo proper endothelium (Figure

3D), potentially highlighting the impact of exposure to the extraembryonic environment.

Additionally, several embryonic cell types also showed relatively high divergence

including the gut, primordial germ cells (PGCs) and cell types of the early GD7 embryo

(Figure 3C,D; S6B,D). Interestingly, in the mouse, extraembryonic cell types play critical

roles in the development of both the gut and the PGCs, via cell intercalation and signaling,

respectively44,45. In the former context, previous studies have shown that intercalated
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endoderm cells retain a transcriptional signature of their embryonic and extraembryonic

origin46, indicating that differences in extraembryonic tissues may persist in cells of

embryonic tissues. To investigate these observations in more detail, we examined how

similarities between neighbourhoods vary along trajectories of differentiation. Specifically,

we visualized mappings between maximally correlated neighborhoods along the reduced

dimensional spaces of rabbit and mouse datasets for a subset of cell types relating to the

development of specific lineages (Figure 3E-F, S7B-D). While neighbourhoods map very

strongly across the whole spectrum of mesodermal cell types (Figure 3E), the trajectory of

endoderm development is much less correlated between species (Figure 3F). As in Figure 3D,

the extraembryonic component of the gut trajectory exhibits the lowest similarity between the

rabbit and mouse, whereas neighbourhoods representing the epiblast and definitive

endoderm, are more strongly correlated. Close to the point of intercalation, across

neighbourhoods of the developing gut, the correlation is intermediary between values at the

embryonic and extraembryonic origins, potentially as a result of cell mixing and convergence

of transcriptional signatures. Moreover, many neighborhoods of the rabbit gut tube at GD9,

have highest correlation with mouse neighborhoods at E8, suggesting a change in the timing

of development (Figure S7A).

Taken together, our neighborhood-based analysis provides a general approach to

compare single-cell RNA-seq datasets at a high level of granularity and independently of cell

type annotations. Using correlations in expression, we are able to quantitatively assess

differences between transcriptional profiles, which are often obfuscated, or difficult to

interpret using integration-based methods. Applying this to the rabbit and mouse atlases we

observe differences in extraembryonic tissues and in cell types such as the gut and PGCs,

whose development is known to be influenced by extraembryonic structures and are linked to
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the maternal environment and cup vs disc embryo morphology 47,48. We are also able to map

neighbourhoods along continuous and discontinuous paths of differentiation, where we find

varying dynamics in the conservation of cell states along different trajectories (Figure 3E-F,

S7B-D). These results have implications for how we interpret observations from specific cell

types and lineages in any one species and sets the scene for more extensive cross-species

analysis when suitable datasets are reported for additional species.

Leveraging the rabbit atlas to expand our understanding of early primate development

The quantity of cells, tissues and developmental stages captured in the rabbit and mouse

atlases provide a comprehensive view into the development of these organisms. Given the

scarcity of transcriptomic data from primate embryos, we next investigated whether the

comprehensive mouse and rabbit resources could be leveraged, using automated cell type

annotation tools, to gain deeper insight into the cellular makeup of sparse human and

macaque datasets. Manually annotating cell types de-novo can be a challenging and

time-consuming process, particularly when cell types are represented by small numbers of

cells. In these cases, there is often little statistical power to confidently detect signals in

marker gene expression above transcriptional noise. Being able to overcome these difficulties

using model organism reference atlases will become increasingly relevant as more studies of

early human development take place. To take advantage of our newly generated rabbit data,

as well as the existing mouse datasets, we used SingleR to train cell type annotation models

on the rabbit and mouse atlases. We then used these models to predict cell type annotations
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from the transcriptomic profiles of a representative human and macaque single-cell query

dataset.

Tyser et al. 2021 reported a SMART-seq v2 dataset of 1,195 cells, obtained from a

single CS7 human embryo between 16 and 19 days post-fertilisation 25. At this stage of

development, the human embryo appears as a flat-disc, similarly to the rabbit embryo at day

7. Based on the transcriptomic profiles of these cells, we observe that our rabbit annotation

model assigns several new cell type annotations, in addition to those consistent with the

original publication (Figure 4A, S8A). For instance, cells originally classified as ‘hemogenic

endothelial progenitors’ are subclassified into yolk sac endothelium, erythroid myeloid

progenitors (EMP) and megakaryocytes (Figure 4A), which we were able to validate using

known marker genes (Figure 4B). The model also identifies amniotic ectoderm cells and two

PGCs. In the original study, these cell types were identified via a refined subclustering,

requiring both complex computational analysis and a high-degree of domain expertise.

Interestingly, the mouse-trained annotation model failed to classify these PGCs (Figure S8B).

Given the relatively low neighborhood similarity scores between rabbit and mouse PGC

neighborhoods, this suggests that the transcriptomic profile of rabbit PGCs are closer to that

of the human. This is consistent with a recent study of PGCs in the rabbit which suggests that

key regulators of PGC specification are shared across flat-disc species 49. Other differences

are found in the prediction of epiblast cells, which the mouse-trained model labeled as

ectoderm.

We applied the same approach to a single-cell RNA-sequencing dataset of cultured

in-vitro macaque embryos spanning embryonic days 10, 12 and 14 50. These stages of

development correspond with Carnegie stages 5-6 51 reflecting an earlier developmental stage
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than captured in our rabbit dataset, although partially overlapping with the E6.5-E7.5 stages

of the mouse. Despite this, we find that both mouse and rabbit annotation models are able to

replicate and refine the major cell types annotated in the original publication (Figure 4C,

S8C,D). In addition to the epiblast, primitive streak, nascent mesoderm and amnion cells,

which are concordant with the original labels, both rabbit and mouse trained models separate

cells of the ‘extraembryonic mesenchyme’ cluster into allantois and mesenchyme annotations

and distinguish gut endoderm cells from parietal and extraembryonic endoderm. Furthermore,

the rabbit model predicts two domains of syncytiotrophoblast and syncytiotrophoblast

progenitors within the original trophoblast labeled cluster. These regions overlap with the

expression of the macaque-unique syncytin gene, ERVFRD-1 and TFAP2C (Figure 4Di,ii).

Given that implantation occurs around day 9.5-10.5 in the macaque 52, immediately prior to

the timepoints represented here, it is possible that the trophoblast is transitioning through a

similar differentiation process as observed in our rabbit atlas at GD8.

The ability of the mouse and rabbit references to precisely and accurately annotate

distinct cell types within the human and macaque datasets illustrates the utility of using a

more comprehensive reference set when performing cell type annotation. Since the rabbit

and mouse cell types were annotated consistently, both rabbit and mouse annotation models

provide unique insights, which can either increase confidence in the annotation or highlight

possible cross-species differences. While the rabbit-trained model more accurately identified

human PGCs and epiblast cells, the mouse-trained model predicted a smoother transition of

mesodermal cell types across the UMAP embedding, possibly reflective of the higher

resolution of 6-hour timepoints sampled (Figure S8B). This emphasizes the strengths of using
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both atlases, which we have made available (see Data Availability) to facilitate the annotation

of cell types in other studies of mammalian embryogenesis.

Rabbit Primitive Blood Niche Informs Human Haematopoietic Culturing Conditions

In the previous sections we have shown that the rabbit is an especially advantageous

model system for studying extra-embryonic tissues, facilitating ready access to cell types that

are not easily studied in the mouse. Amongst these cell types, our transcriptomic atlas

contained a large number of yolk sac mesothelium cells, which have not been studied in great

detail. This is of particular interest since the rabbit yolk sac is an important site for

haematopoiesis and early fetal nutrition when the chorioallantoic stalk is not yet formed. The

yolk sac consists of yolk sac endoderm, primitive blood cells, endothelium, and surrounding

mesothelium. The rabbit yolk sac is particularly accessible compared to other mammals due

to superficial implantation. Its large size also makes it easy to work with and characterize.

Given the key role the yolk sac plays in early development, we elected to both characterize

this developmental process and to interrogate how different cell types may interact with one

another.

To this end, we mined our sc-RNAseq dataset for markers genes that are key to

distinguish the different layers of the yolk sac hematopoietic niche in rabbit at GD9, and

spatially resolved their localisation in situ, using single-molecule resolution microscopy

(RNAscope) hybridisation. Using highly-spatially resolved RNAscope experiments, we

identified blood cells, which can be seen inside of vessels formed by CDH5+ endothelium

(Figure 5A). Some of the blood cells are RUNX1- while others are RUNX1+. AHNAKhigh

mesothelium cells can be seen surrounding these CDH5+ endothelium cells (Figure 5A), with
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the blood cells in the center. The layer of large AHNAKlow endodermal cells matching the

morphology of mouse endoderm cells can be seen opposite of the AHNAKhigh layer. Visual

inspection of these layers revealed that this basic structure commonly occurs in pairs,

associated with each other via the endoderm-containing side, thus forming a mirrored bilayer

structure constituting the rabbit blood islands (Figure 5B).

The mesothelium has been overlooked as a potential signaling center for the

maturation of blood cells in the yolk sac with the yolk sac endoderm thought to provide

inductive signaling to the YS endothelium 53,54. By leveraging the resolution of RNAscope,

we observed that AHNAK+ cells are in direct contact with the YS endothelium. We also used

CellPhoneDB 55 to predict the ligand-receptor interactions for these adjacent cell types. By

inputting the cell-types that make up the yolk sac blood islands, we observed that the highest

score of inferred interaction pairs are between mesothelium and YS endothelium (Figure 5E).

This includes various extracellular matrix proteins like nectin, fibronectin-1 (FN1), collagen

genes (Figure S9A,B) and important blood maturation ligands like VEGFA and VEGFC,

expressed by the mesothelium. Having identified putative signaling crosstalk between rabbit

mesothelium and endothelium, we next explored to what extent these interactions might be

conserved in human, taking advantage of our refined annotation of the human CS7 dataset

(Figure 4A). This analysis revealed high expression of VEGFA/C signaling from human

mesothelium and consequent VEGFR1(FLT1) and FLT4 expression in the YS endothelium,

thus supporting the interaction discovered in our rabbit data (Figure 5D)56. Of note, addition

of VEGF was previously shown to promote in vitro primitive blood maturation from human

pluripotent cells, yet the in vivo source of the cytokine had remained a mystery57. Looking

into other regulators, we see that BMP4 is abundantly expressed in the mesothelium relative

to the other cell types in the haematopoietic niche (Figure 5D). Given previous reports on
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BMP4 mediated induction of haematopoietic development 57, these results highlight the key

role mesothelium may play in the yolk sac hematopoietic niche and similarities between

rabbit and in vitro human blood culturing conditions.

In contrast to the mesothelium, analysis of genes that characterize the visceral yolk

sac endoderm revealed hits related to cholesterol efflux and transport, indicating the

endoderm might primarily facilitate provision of nutrition and metabolism to the embryo

rather than being directly involved in blood maturation signaling58 (Figure S9B). Of note,

high resolution RNAscope also reveals clusters of RUNX1+ CDH5+ haemogenic endothelial

cells in the ventral side of the emerging dorsal aorta suggesting that an early wave of

hemogenic endothelium may foreshadow the subsequent development of haematopoietic

stem cells in this anatomical location (Figure 5E).
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DISCUSSION

In this study, we report high-resolution morphological and molecular maps of early

rabbit development, covering gestational days 7, 8 and 9. Using cutting-edge single-cell

genomics approaches, we characterized the transcriptional and chromatin accessibility

profiles of over 180,000 individual cells, isolated from whole rabbit embryos, across

gastrulation and early organogenesis. To our knowledge, this represents the most

comprehensive view into the molecular landscape of early non-rodent mammalian

development to date.

We leveraged these datasets, applying a novel neighborhood-based approach, to

identify what developmental processes were most conserved, at the molecular level, between

the rabbit and the mouse. We observed substantial differences in molecular profiles between

the gut, PGCs and extra-embryonic cell types where transcriptional differences may be

associated with the different embryo topologies, maternal environments, and implantation

strategies of the rabbit and mouse. Related to this, we identified specific differences in genes

regulating implantation and trophoblast differentiation between the two species, including the

use of the transcription factors DLX5/DLX6 in the rabbit, which is similarly detected in the

human trophoblast and is associated with the pathogenesis of pre-eclampsia 42. These results

suggest that the rabbit may be a more suitable model for studying the development of the

trophoblast than the mouse, an observation that is especially important given the lack of good

in vitro models.

In general, we find that the large size and late, superficial implantation of the rabbit

embryo allows for the efficient capture of extra-embryonic tissues. Combining our

transcriptomic atlas with RNAscope in-situ hybridisation, we are able to see that the yolk sac
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mesothelium is in direct contact with haemogenic endothelium and expresses respective

ligand-receptor pairs of key blood maturation genes, such as VEGFA and VEGFC. These

findings suggest that the mesothelium plays a more important role in hematopoietic signaling

than previously recognised.

Altogether, our results highlight the utility of the rabbit as a model for a new wave of

mammalian development research that will combine the power of traditional comparative

embryology with state-of-the-art comparative single cell genomics approaches. When

researching rabbit development for this manuscript, one of the most useful references turned

out to be the 1905 ‘Plate’ of rabbit development, published as one of 16 “Normal Plates of

the Development of the Vertebrates” edited by the German anatomist Franz Keibel (16

volumes, 1897–1938)59. It may have taken over 100 years, but it is now realistic to imagine a

similar compilation of single cell genomics atlases for over a dozen vertebrates within the

next few years. Coupled with innovation in experimental techniques such as embryo culture,

genome modification and lineage tracking, single cell comparative genomics will then likely

emerge as a new energizing force accelerating the use of model organisms to decipher early

human development and drive advances in translational medicine.
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Main Figures
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Figure 1: Rabbit Development at a Glance. a) Representative images of dissected

embryos at gestational day (GD) 7, 8, and 9. Scale bar = 1mm. ps = primitive streak, s =

somites, am = amnion, o = optic vesicle, h = heart, ycs = yolk connecting stalk, al =

allantois b) Relative Carnegie stages of rabbit, mouse, macaque, and human and

corresponding day of development. c) Timeline with schematics and images of key

developmental events that occur between GD6-9 in the rabbit. Implantation and

gastrulation occur simultaneously in the rabbit from GD7-8, with anti-mesometrial

implantation occurring first, marked by the adherence of trophoblastic knobs to the uterine

lining (indicated with arrows). This is shortly followed by mesometrial implantation at

GD8. Image shows implantation sites (arrows) in the mesometrial placental fold. By GD9,

early organs are formed such as the fetal heart, amnion, allantois, and brain. Histology

images representative of each process are shown as well as RNAscope images to show the

amniochorionic fold at GD8 with RNA probes for TFAP2C, OCT4 and DAPI staining to

show the nucleus. ect = ectoderm, en = endoderm, mes = mesoderm, ch = chorion, b =

brain, cm = cranial mesoderm, nt = neural tube. d) UMAP of 146,133 cells captured in a

transcriptional atlas, labeled by annotated cell type. box: the same UMAP labeled by (left)

time point and (right) anatomical region, based on the microdissection of GD9 embryos.

MEP = megakaryocyte–erythroid progenitors; EMP = erythro-myeloid progenitors; FHF =

first heart field; NMPs = neuromesodermal progenitors; PGCs = primordial germ cells;

ExE = extraembryonic; YS = yolk sac.
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Figure 2: Chromatin accessibility and gene expression along the trajectory of early

syncytiotrophoblast differentiation A) Refined cell type annotation of extra-embryonic

ectoderm cells. SCT; syncytiotrophoblast. B) Trophoblast cells/nuclei of the RNA-seq

(top) and ATAC-seq (bottom) datasets are represented in low-dimensional embeddings

which highlight a trajectory towards early syncytiotrophoblast. Cells are coloured by cell

type (left), developmental time point (middle) and pseudotime (right), calculated

independently for the RNA-seq and ATAC-seq atlases using diffusion pseudotime and

ArchR trajectory inference respectively. The RNA-seq data is plotted with respect to the

second and third diffusion components, whereas the ATAC-seq data is represented in a

UMAP embedding. C) Heatmap of smoothed TF expression (left) and motif enrichment

(right) along cells/nuclei of the RNA-seq and ATAC-seq SCT trajectories, ordered by their

respective pseudotimes. The cell type, stage, and pseudotime value for each cell is
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indicated below. D) Expression of DLX5/DLX6 is restricted to trophoblast and

cytotrophoblast cells, shown in the diffusion map embedding. (bottom) Genome browser

view of the region surrounding the DLX5/6 locus, showing downregulation of accessibility

along the differentiation trajectory.
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Figure 3: Rabbit and mouse neighbourhood comparisons identify regions of similarity

and dissimilarity across species. A) Schematic of our neighbourhood comparison
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approach. Index cells (marked by *) are sampled across the kNN graphs of each species.

The k-nearest neighbours of each index cell then collectively define overlapping

neighbourhoods. The average expression profile within each neighbourhood is calculated

and the correlation in expression across all neighbourhoods of both species is represented

in a matrix of neighbourhood similarities. B) The timepoints sampled in both the rabbit and

mouse 26 atlases are related according to Carnegie staging. C) Rabbit neighbourhoods,

positioned with respect to the UMAP embedding of each index cell, are coloured by the

maximum correlation value across all mouse neighbourhoods, highlighting regions of

higher and lower similarity with the mouse. The underlying kNN graph is shown in grey.

D) Maximum correlation scores are aggregated by the cell type of each neighbourhood

index cell. The distribution of maximum correlation scores are shown, for a selected subset

of cell types, in a ranked ridgeline plot. Extra-embryonic cell types are highlighted in

orange. See a complete list in Figure S6B. E, F) A subset of rabbit and mouse

neighbourhoods associated with mesoderm (E) and gut (F) differentiation trajectories are

shown. Maximally correlated rabbit and mouse neighbourhood pairs (computed in both

directions) are connected, where the line colour represents the value of maximum

correlation.
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Figure 4: Automated annotation models trained on the rabbit atlas accurately classify

cell types in sparse human and macaque data. A) UMAP of the Tyser et al. 2021 human
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embryo SMART-seq v2 data coloured according to the original cell type annotations (left)

and the cell type labels predicted from training a SingleR model on the rabbit atlas (right).

B) The rabbit model predictions are consistent with the expression patterns of known i)

PGC, ii) endothelium iii) megakaryocyte and iv) extra-embryonic endoderm marker genes.

C) A UMAP of macaque scRNA-seq data from Yang et al. 2021, coloured according to the

original (left) and predicted (right) cell type annotations. D) i) Expression of the macaque

syncytin gene, ERVFRD-1, and ii) TFAP2C, validate the model predictions of early

syncytiotrophoblast and syncytiotrophoblast progenitors. iii) Predictions of hypoblast and

parietal YS endoderm also overlap with the expression of extra-embryonic endoderm

marker, SPINK1.
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Figure 5: Rabbit yolk sack haematopoiesis exhibits conserved molecular markers

with human in vitro development models and reveals signaling role of mesothelium A)

RNAscope image of yolk sac hematopoiesis with DAPI nuclear staining with probes for

CDH5 and RUNX1 expression (left) and CDH5 and AHNAK expression (right). Cells are

distinguished with RUNX1+ blood, CDH5+ endothelium, AHNAK+ yolk sac mesothelium

and AHNAK-/CDH5- visceral yolk sac endoderm. B) Schematic of the rabbit yolk sac

haematopoietic niche according to the RNAscope images in A). C) Heatmap of

CellPhoneDB interaction pair counts across different cells located within the yolk sac

blood islands D) Violin plots of ligand-receptor expression across the yolk sac blood island

cells for signaling involved in haematopoiesis such as VEGF/VEGFR (FLT1, KDR), and

BMP/BMPR across the rabbit transcriptional atlas (left), CS7 human gastrula (Tyser et al.

2021, middle), and extended mouse transcriptional atlas (Rosshandler et al., manuscript in

preparation, right). The ligands are colored in dark blue-purple, while the receptors are

colored in cyan. E) RNAscope images for CDH5, DAPI, RUNX1, and AHNAK of the

vitelline artery (VA) and dorsal aorta (DA) region with RUNX1+ CDH5+ presumptive

haemogenic endothelium in the ventral portion of the dorsal aorta. mes = splanchnic

mesenchyme.
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Methods

Rabbit Embryo processing for scRNA-Seq

New Zealand White Rabbits (Oryctolagus cuniculus) from Envigo (RMS) UK Ltd, were

mated at Labcorp Early Development Laboratories Limited (Eye, Suffolk; formerly known as

Covance Laboratories Limited) by natural mating. After mating each female was injected

intravenously with 25 i.u. luteinizing hormone. GD0 was defined as the day of mating. On

GD7, 8 or 9 the pregnant rabbits were sacrificed, and the uteri were harvested and shipped

fresh in Phosphate Buffered Saline (PBS) on ice to the Jeffrey Cheah Biomedical Centre.

Embryos were dissected from the uteri at gestational day (GD) 7, 8, and 9 using a Leica

brightfield microscope and fine point tweezers using 10% heat-inactivated Fetal Bovine

Serum (FBS) in PBS. Embryos were selected based on morphology matching developmental

day of dissection as described previously 59. Selected embryos or dissected structures (see

Table S1) were rinsed in PBS, centrifuged for 100 x g for 3 minutes before being individually

dissociated with TrypLE™ Express (Gibco™) by incubating for 6-10 minutes at 37oC with

occasional agitation of the tube by flicking the base of the tube in order to ensure even

dissociation of the embryo. Dissociation was quenched with 5mL 10% heat-inactivated FBS

in PBS and filtered using a 30µm Sysmex CellTrics® filter. Cells were centrifuged for 300 x

g for 3 minutes and resuspended in 0.04% BSA in PBS. Cells were filtered through a 40μm

Flowmi tip strainer (VWR) to minimize volume loss during filtration and then counted using

a haemocytometer.

Six GD7 embryos were dissociated separately, and processed as individual samples.

Two pools of 3 GD8 embryos with no visible somites were processed, as well as 3 GD8

individually processed embryos with 4 somites apiece. Two GD9 embryos were split between
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embryo proper and extraembryonic tissues. Embryo proper portions were dissociated and

split across two separate samples. Another 2 GD9 embryos were individually processed and

split into the anterior, mid, posterior, and yolk-sac region and to provide spatial information.

Pool sizes were chosen to maximize the number of cells recovered per sample while

minimising the doublet rate. Embryos were partitioned if necessary across multiple samples

to prevent exceeding the recommended amount of loaded cells.

Cell solutions and scRNA-seq libraries were processed by the CRUKCI genomics

core facility using Single Cell Gene Expression v3 from 10X Genomics following

manufacturer’s instructions. Samples were sequenced following manufacturer’s

recommendations on an Illumina NovaSeq 6000 platform.

Rabbit embryo processing for scATAC

Embryos dissected from the same time-points for transcriptional profiling were flash

frozen by placing whole embryos into Corning® Cryogenic Vials and immediately

submerging the vials in liquid nitrogen. Embryos were stored at -80C for later use. Nuclei

were extracted following a 10X Genomics demonstrated protocol for nuclei isolation for

single cell ATAC on frozen tissues (CG000212). For each timepoint, two GD7 embryos were

pooled together for nuclear extraction, 1 GD8 embryo was split across two samples, and 1

GD9 embryo was split into the extraembryonic portion for one sample and the embryo

portion was split across four samples. Frozen embryos were placed on ice with 500uL chilled

0.1X lysis buffer and homogenized using RNase-Free Disposable Pellet Pestles (Fisher

Scientific). Samples were filtered using a 70 µm Flowmi Cell Strainer followed by a 40 µm
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Flowmi Cell Strainer. Nuclei were counted in a haemocytometer using Trypan Blue Solution

0.4% (Sigma-Aldrich, Cat. No. T8154-20ML) and were resuspended in 1X Nuclei Buffer

(10X Genomics). Nuclei solutions and libraries were processed by the CRUKCI genomics

core facility using Single Cell ATAC (v1.1) from 10X Genomics following manufacturer’s

instructions. Samples were sequenced following manufacturer’s recommendations on an

Illumina NovaSeq 6000 platform.

Improving transcriptome mapping

After processing the single-cell RNA-sequencing data with Cell Ranger using the Ensembl

OryCun2.0 rabbit reference transcriptome, we observed a low percentage of reads mapping to

the transcriptome. Visualizing read coverage across the genome, we discovered that a large

majority of the 10X sequencing reads were aligning to regions upstream of the 3’ end of

annotated genes (Figure S2A-B). Furthermore, it was evident that several genes, which are

known to be well-conserved, were missing from the rabbit annotation. To improve the

transcriptome mapping, we extended the 3’ annotation of genes by 600bp and added human

genes that aligned to unannotated regions in the rabbit genome.

The decision to extend genes by 600bp was determined by analyzing distances of intergenic

reads from their nearest annotated gene (Figure S2A). Intergenic reads were extracted from

the Cell Ranger BAM output file of the SIGAC11 GD8 (Table S1) sample by filtering on the

‘RE’ BAM alignment tag using SAMtools. This revealed that the majority of reads fell

within 600bp from the 3’ end of the nearest gene, suggesting that a 600bp extension would

provide a reasonable compromise between capturing mising reads and avoiding overlaps with

nearby annotations. We also prevented this explicitly, ensuring that extensions were only
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added to each gene providing they did not overlap with an existing annotation. The GTF file

of the rabbit transcriptome was modified by adding CDS and exon entries to ensure they were

counted by the Cell Ranger pipeline.

To obtain a list of features that may be absent from the rabbit annotation, we identified genes

that have a one-to-one orthology relationship between the mouse and human but were

missing from the rabbit reference. Given the human gene ID for each feature, we located

positions in the human genome relating to transcripts of that gene and specifically, the

positions of each transcript’s 3’ most exon and UTR. Using the Ensembl Compara Perl API,

we then obtained alignments for these sequences in the rabbit transcriptome, taking only

those with maximum alignment scores. Exon and CDS annotations spanning these positions

were then added to the rabbit GTF file, similar to the extended 3’ ends. Additional measures

were taken to ensure that the alignments extracted did not overlap existing annotations

(including the added extensions) and that alignment sequences for the same transcript were

proximal (i.e. not mapping to different chromosomes).

As a result of these changes, the median number of genes and UMIs increased from 1875 to

2661 and from 6987 to 10,126 respectively. Moreover, 1648 additional genes were added

from the alignments, which included several known marker genes, including FOXC1 and

SIX3 (Figure S2D). Together these improvements made a noticeable impact on the quality of

data used downstream (Figure S2C,E).

scRNA-seq preprocessing via Cell Ranger
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The FASTQ sequencing files were processed with Cell Ranger 3.1.0 using default mapping

arguments. Reads were mapped to the OryCun2.0 genome from Ensembl with the modified

3’ extension GTF annotation file mentioned previously.

Swapped molecule removal

Swapped molecular counts were corrected as previously described (Pijuan-Sala et al. 2019).

Briefly, molecule counts that were derived from barcode swapping were removed from all

samples by applying the DropletUtils function ‘swappedDrops’ (default parameters) to

groups of samples that were multiplexed for sequencing.

Cell calling for scRNA-Seq

Cells were called as adapted from (Pijuan-Sala et al. 2019). Briefly, cell barcodes that were

associated with real cell transcriptomes were identified using emptyDrops60, which assesses

cells with RNA content distinct from ambient background RNA, the latter determined from

barcodes associated with fewer than 100 unique molecular identifiers (UMIs). Cells with P <

0.01 (Benjamini–Hochberg-corrected) and at least 3500 UMIs and 900 unique genes were

considered for further analysis.

Additionally, cells with mitochondrial gene-expression fractions greater than 24.03% were

excluded. Rabbit mitochondrial fractions were suspected to be higher than mouse due to

species differences or genome annotation. The thresholds were determined by considering a

median-centred median absolute deviation (MAD)-variance normal distribution; cells with
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mitochondrial read fraction outside of the upper end of this distribution were excluded (where

outside corresponds to P < 0.05; Benjamini–Hochberg-corrected).

Doublet removal for scRNA-Seq

Doublets were scored as previously described 10. First, a doublet score was computed for each

cell by applying the ‘doubletCells’ function (scran R package) to each sample separately.

This function returns the density of simulated doublets around each cell, normalized by the

density of observed cell libraries. High scores indicate high doublet probability. We next

identified clusters of cells in each sample by computing the first 50 principal components

(PCs) across all genes, building a shared nearest-neighbour graph (10 nearest neighbours;

‘buildSNNGraph’ function; scran R package), and applying the Louvain clustering algorithm

(‘cluster_louvain’ function; igraph R package; default parameters) to it. Only HVGs

(calculated separately for each sample) were used for the clustering. This procedure was

repeated in each identified cluster to break the data into smaller clusters, ensuring that small

regions of high doublet density were not clustered with large numbers of singlets. For each

cluster, the median doublet score was considered as a summary of the scores of its cells, as

clusters with a high median score were likely to contain mostly doublets. Doublet calls were

made in each sample by considering a null distribution for the scores using a median-centred

MAD-variance normal distribution, separately for each sample. The MAD estimate was

calculated only on values above the median to avoid the effects of zero-truncation, as doublet

scores cannot be less than zero. All cells in clusters with a median score at the extreme upper

end of this distribution (Benjamini–Hochberg-corrected P < 0.1) were labelled as doublets. A

final clustering step was performed across all samples together to identify cells that shared
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transcriptional profiles with called doublets, but escaped identification in their own samples.

Clusters were defined using the same procedure as was applied to each sample, with the

exceptions that sub-clustering was not performed, and batch-corrected principal components

were used (see ‘Batch correction’, above). To identify clusters that contained more doublets

than expected, we considered for each cluster the fraction of cell libraries that were called as

doublets in their own samples. We modeled a null distribution for this fraction using a

median-centered, MAD-estimated variance normal distribution as described for the median

doublet score in each sample, above, and called doublets from the distribution as in each

sample, above.

Stripped nucleus removal for scRNA-Seq

Cells with considerably lower mitochondrial gene expression and smaller total UMI counts

compared with other clusters were removed as previously described (Pijuan-Sala et al. 2019).

We assumed that these clusters consisted of nuclei that had been stripped of their cytoplasm

in the droplets, and therefore excluded them from downstream analyses.

Normalization for scRNA-Seq

Transcriptome size factors were calculated as previously described (Pijuan-Sala et al. 2019)

using ‘computeSumFactors’ from the scran R package. Cells were pre-clustered with the

‘quickCluster’ function using the parameter ‘method=igraph’ (using the scran R package),

and minimum and maximum cluster sizes of 100 and 3,000 cells, respectively. Raw counts

for each cell were divided by their size factors, and the resulting normalized counts were used

for further processing.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.510971doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.510971
http://creativecommons.org/licenses/by/4.0/


Batch correction for scRNA-Seq

Batch effects were removed using the ‘fastMNN’ function from the batchelor R package. The

top 3000 HVGs were calculated with the ‘modelGeneVar’ and ‘getTopHVGs’ functions in

‘scran’. These HVGs were then used by fastMNN to compute the top 50 principal

components. To ensure that the correct mutually nearest neighbours were identified, we

enforced a particular order in which to combine samples, using the ‘merge.order’ parameter

of ‘fastMNN’. Specifically, we merged samples in reverse order of developmental stage and

in decreasing order of the number of cells within each timepoint. For the GD9 samples, we

took additional care to merge samples of the same anatomical dissection before those from

different parts of the embryo. As a result of this step, all 26 samples were integrated into a

combined principal component space. These principal components were used for all

downstream analysis steps (e.g, constructing nearest-neighbour graphs).

Visualization and clustering

A UMAP embedding of the whole dataset was computed using Scanpy (‘scanpy.api.tl.umap’)

61. The 300 nearest neighbors in the batch-corrected principal component analysis were

considered, with a ‘min.dist’ parameter of  0.9. Force-directed graph layouts were also

computed on the batch corrected PCs with the ‘scanpy.api.tl.draw_graph’ function using the

ForceAtlas2 algorithm.

The whole dataset was clustered using the Leiden algorithm (scanpy.api.tl.leiden) using the

same neighborhood graph constructed for the UMAP embedding. Clusters were generated

using a range of resolution parameters (1 - 10) to assist in making cell type annotations at
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varying levels of coarseness. We also performed clustering within known lineages and

subsets of the data to capture different sources of variation.

Cell type annotation

Cell type annotations were initially predicted at single-cell resolution by training an

automated annotation model on a recent single-cell atlas of mouse gastrulation and early

organogenesis 26. The Rosshandler dataset consists of 430,339 cells across embryonic days

6.5 to 9.5, sampled at 6-hour intervals. These cells were manually curated into 87 different

cell types following consultations with domain experts and a detailed examination of known

marker genes. Given that the rabbit is less-well studied and has fewer known marker genes

than the mouse, transferring labels across species served to provide a fast, initial annotation

that could be scrutinized and validated in more detail.

To transfer annotations from the mouse to the rabbit, we utilized SingleR, an automated

annotation method that assigns cell type labels based on correlation in expression between

reference and query cells 62. In order for the cell type annotation model to relate the rabbit and

mouse datasets, we constructed a common feature set between the atlases using one-to-one

ortholog genes. For each rabbit gene, we extracted its mouse homolog from Ensembl and

cross-referenced it with the Ensembl codes of the mouse atlas. Many-to-one and

many-to-many genes were excluded by filtering on the orthology type also provided by

Ensembl.

We then trained a SingleR model on the mouse atlas (with ‘trainSingleR’ from the ‘SingleR’

package using parameters ‘de.n = 50’ and ‘de.method = Wilcox’), providing the cell type
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annotations from the original study. Given the large number of cells, we opted for the

pseudobulk option within SingleR, which clusters cells of the same cell type into

pseudo-samples, reducing the computational work.

The cell type predictions from SingleR assisted in assigning identities to each cluster. Since

the annotation model makes predictions independently for each query cell, clusters with a

dominant cell type prediction were suggestive of a reliable annotation. We could also assess

the assignment confidence for each cell using the ‘delta’ values provided by SingleR, which

quantify the difference between the assigned annotation and the mean across all other

possible annotations. To validate the cell type predictions we also relied on timepoint

information, spatial information from the GD9 samples and the expression of cell type

marker genes. In some cases, such as in the annotation of parietal endoderm, we also

visualized the expression of marker genes specific to a given cluster, using RNAscope. All of

these different sources of information were considered in order to assign cell type labels to

clusters.

Rabbit-mouse integration

The rabbit and mouse 26 datasets were integrated into a joint embedding using SAMap

version 0.1.6 63. An initial mapping between rabbit and mouse features was first obtained by

reciprocal BLAST aligning the rabbit and mouse transcriptomes. The transcriptomes were

obtained through Ensembl and aligned using the ‘map_genes.sh’ script, provided with

SAMap (https://github.com/atarashansky/SAMap/). This script outputs a table of sequence

similarity scores between rabbit and mouse transcripts, which are used by SAMap as an

initial weighting between features. Since the features of the rabbit and mouse datasets are
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given in terms of Ensembl gene IDs, prior to running SAMap, we linked each Ensembl

transcript ID with its associated gene ID. The SAMap algorithm also utilises self-assembling

manifolds 64 to align datasets and so these were computed for the rabbit and mouse atlases

using Scanpy (scanpy.tl.external.sam). We then constructed a SAMAP object, providing the

rabbit and mouse SAM objects, the transcript to gene mappings and the map_genes output

directory. We then ran the SAMap pipeline on this SAMAP object (SAMAP.run) to integrate

the two datasets. For visualisation purposes, we re-computed a UMAP embedding on the

integrated anndata object (SAMAP.adata) using a minimum distance parameter of 0.8.

RNA-seq trophoblast analysis

Cells annotated as trophoblast, cytotrophoblast, syncytiotrophoblast progenitors and

early syncytiotrophoblast were isolated for trajectory analysis. A diffusion map

low-dimensional embedding65,66 was computed (using ‘scanpy.api..tl.diffmap’) with 30

components on the batch corrected kNN graph. The GD7 trophoblast cell with highest value

in its second diffusion component was then chosen as the root cell for computing diffusion

pseudotime67 (with scanpy.api.tl.dpt) on the 30 diffusion components, specifying 0

branchings.

In Figure 2C, cells were ordered according to diffusion pseudotime. Expression

values for each gene were then smoothed along this pseudotemporal ordering by calculating a

moving average with a window size of 49 cells. These smoothed values were normalised to

between 0 and 1 using min-max scaling. The same procedure was used to plot the ATAC-seq

motif accessibility values, except that cells were ordered along pseudotime calculated in

ArchR (see ‘scATAC-seq trophoblast analysis’) and a z-score normalisation was applied in
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replace of min-max scaling, to account for positive and negative accessibility scores. The

combined heatmap was plotted using the ‘ComplexHeatmap’ package in R.

scATAC-seq pre-processing

FASTQ files of scATAC-sequencing were mapped to the rabbit genome (OryCun2.0) using

cellranger-ATAC version 2.0.0. Full analysis is performed using the ArchR pipeline35, where

reads on unplaced scaffolds in the rabbit genome were ignored in the pipeline. Arrow files

were created from CellRangers fragment files using createArrowFiles, using minTSS=2 and

minFrags=3000, followed by doublet detection and removal using addDoubletScores with

k=15. After inspecting quality distributions, new thresholds were determined (minTSS=2.9

and minFrags=8000). A total of 34,082 cells were used in the analysis. Cell numbers and

quality statistics per sample can be found in Table S1 and Figure S5, respectively.

scATAC-seq dimensionality reduction and peak calling

The TileMatrix, containing read counts per 500 bp bins of the entire genome, was used for a

first round of dimensionality reduction using addIterativeLSI, using dimsToUse=1:45 and

nFeatures=60000 and clustering using addClusters with resolution=1. These clusters were

then used to create ‘Pseudo-Bulk Replicates’ using addGroupCoverages with useLabels set to

TRUE. These Pseudo-Bulk Replicates were subsequently used for peak calling with Macs2 68

(version 2.2.7.1) using addReproduciblePeakSet, with genomeSize=2.7e9, cutOff=0.001, and

extendSummits=250, resulting in a final set of 332,773 peaks. The detected peaks were then

used to create the PeakMatrix, containing read counts per peaks. The second round of

dimensionality reduction and clustering was performed on the PeakMatrix, using the same
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parameters as for the TileMatrix. UMAP was performed with addUMAP, using

nNeighbors=45 and minDist=0.5.

scATAC-seq and scRNA-seq integration

To perform cell-type annotation of the scATAC-seq cells, integration was performed with the

labeled scRNA-seq dataset for each stage separately. For each stage, dimensionality reduction

was performed using addIterativeLSI, using dimsToUse=1:35 and nFeatures=55000 and

clustering was performed using addClusters with resolution=1.5 to create high-resolution per

stage clusters. Imputation matrices were added using addImputeWeights. Next, scRNA-seq

integration was performed using addGeneIntegrationMatrix, which compares the estimated

gene activity stored in the ‘GeneScoreMatrix’ for scATAC-seq with the gene expression of

the scRNA-seq dataset in order to perform label transfer for cell-types and add a

‘GeneIntegrationMatrix’ containing integrated RNA expression counts.

scATAC-seq motif deviations

For each peak, TF motifs were detected using addMotifAnnotations, searching for motifs in

the ‘cispb’ set for Homo Sapiens, as the motifs between human and rabbit are expected to be

highly conserved. To compute motif deviations, first a set of background peaks were detected

using addBgdPeaks, followed by generation of the ‘MotifMatrix’ by addDeviationsMatrix,

which stores the deviation and Z-scores for each motif per cell.

scATAC-seq trophoblast analysis
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Trophoblast and amnion cells were isolated from the total dataset by isolating cells belonging

to clusters 1 to 5. To manually curate the annotation of these cells, dimensionality reduction

and reclustering was performed with addIterativeLSI, using dimsToUse=1:25 and

nFeatures=25000 and addClusters with resolution=1. Markers of the ‘GeneScoreMatrix’ and

‘MotifMatrix’ per cluster were used to relabel Trophoblast, Cytotrophoblast,

Syncytiotrophoblast progenitors, Syncytiotrophoblast, and Amnion cells. Next, Amnion cells

were excluded and dimensionality reduction was repeated on these cells with

dimsToUse=1:10 and nFeatures=15000, and the UMAP was generated using nNeighbors=35

and minDist=0.8. Trajectory analysis was performed by determining pseudotime ordering

using addTrajectory over the UMAP embedding. Motifs with variable accessibility across

pseudotime were subsetted to those of particular interest, which were correlated with TF

expression in the scRNA-seq dataset across trophoblast celltypes, or which are known from

the literature.

Neighbourhood comparisons

To define neighbourhoods, we used the same construction employed for differential

abundance testing 43. Independently for the rabbit and mouse, the top 50 PCA components

were used to construct a kNN graph (with k=30 neighbors).   Neighbourhoods were then

defined by aggregating the k-nearest neighbours of a randomly sampled set of index cells.

The final set of neighbourhoods were refined from this initial selection to prevent

oversampling and to create larger, more representative neighbourhoods (see 43 for details).

These steps were performed by the `buildGraph` and `makeNhoods` functions from the

‘miloR’ package using a sampling proportion of 0.05. From this we obtained 5,253 rabbit and
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14,034 mouse neighborhoods with a mean neighbourhood size of 104.8 and 134.4 cells

respectively (Figure S6A).

We next identified a set of features with which to compare neighbourhoods across the two

species. Specifically, we selected the intersection of the top 2000 highly variable genes,

computed independently for each dataset.  The intersection of genes was chosen to avoid

confounding differences in expression with technical variation resulting from the lower

quality rabbit genome annotation. It ensured that genes selected for comparisons were

expressed and highly variable across both datasets. We also experimented with the number of

highly variable genes but found that our results changed very little above 2000 HVGs.

Features were selected using the ‘getScranHVGs’ function from the scran R package. We

excluded from this mitochondrial genes and those associated with cell cycle GO terms.

Finally we selected only those which are one-to-one orthologs across the rabbit and mouse.

Our final set of features consisted of 796 genes.

Using this set, we computed the mean expression profile within each neighbourhood (using

the normalised and log-transformed gene counts). We also implemented a version of

gene-specificity, used in previous cross-species comparisons,  to account for differences in

quantification and absolute values between datasets 69,70.  Specifically, the

within-neighbourhood averages for each gene ( ) were scaled by the mean across all𝑔
𝑖

neighbourhoods ( ).𝑖 ∈  {1,  ...  𝑁}

𝑠
𝑔

𝑖 =  
𝑔

𝑖

1
𝑁

𝑘=1}

𝑁

∑ 𝑔
𝑘
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The gene specificity values ( ) for each gene, across all neighbourhoods, were then used to𝑠
𝑔

𝑖

compute the Pearson correlation between all pairs of rabbit and mouse neighborhoods

forming a matrix of neighbourhood similarity.

In Figures 3 and S7, we visualised neighbourhood similarities across the rabbit and mouse

UMAP embeddings. For each rabbit neighbourhood we extracted its maximum similarity

score with any mouse neighbourhood (and vice versa).  We then plotted each neighbourhood

according to the UMAP position of its index cell, and coloured each point by the

neighbourhood’s maximum correlation value. In Figures 3D, the maximum correlation values

are aggregated according to the cell type annotation of each index cell, to obtain a distribution

of similarity scores across each cell type. Finally, for the trajectory comparisons, subsets of

neighbourhoods were extracted from both the rabbit and mouse datasets whose index cell was

annotated as one of a specified set of cell types. These neighbourhoods were then plotted in

the same way as Figure 3C and repositioned or reflected to facilitate a clear visual

comparison. Lines were drawn between maximally correlated neighbourhood pairs,

computed in both the rabbit-mouse and mouse-rabbit directions. The line colour indicates the

strength of correlation for each mapping.

Primate cell type annotation

In our cell type annotation analysis we utilised the Tyser et al. 202125 and Yang et al. 2021 50

single-cell datasets of early human and macaque development. The Tyser et al. 2021

SMART-seq dataset consists of 1,195 cells from a single CS7 human embryo acquired

through the Human Developmental Biology Resource. We downloaded the normalised gene
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expression values and UMAP coordinates from http://human-gastrula.net/. Conversely, the

Yang et al. 2020 dataset was generated through 10X genomics single-cell RNA-sequencing of

in-vitro cultured macaque embryos, at days 10, 12 and 14. We accessed raw count data

through the GEO database under accession number GSE148683 and downloaded associated

metadata from the accompanying shiny app at https://www.nhp-embryo.net/. To combine the

day 10, 12 and 14 samples, we performed batch correction with fastMNN with k=20. We also

normalized and log-transformed the raw counts using ‘computeSumFactors’ and

‘logNormCounts’ functions in the ‘scran’ and ‘scuttle’ R package.

To predict cell types in the human and macaque datasets, we applied the same approach used

to annotate the rabbit atlas originally. We trained SingleR annotation models on the rabbit and

mouse datasets both jointly and independently. Datasets were filtered to include only

one-to-one ortholog genes between each reference (rabbit or mouse) and query (human or

macaque) dataset. As before, the training and classification steps were performed using the

‘trainSingleR’ and ‘classifySingleR’ functions from the ‘SingleR’ R package, with the

‘aggr.ref=TRUE’ option. In Figure 4, we display the ‘pruned’ cell type annotations from

SingleR, which have undergone a filtering step to remove low-quality assignments.

Histology

Timed mating: Male/female ratio 1:1. The female and male mated twice (morning and

afternoon). Post-mating, the female rabbit was injected intravenously luteinising hormone

(dose 25 i.u., Luveris (75 IE, Merck)). The day of mating was counted as GD 0.

Embryo collection and processing: Pregnant rabbits from timed matings were euthanized at

gestational days (GD) 7, 8 and 9 by an i.v. administration of a lethal dose of pentobarbital

(0.35 ml/kg, Euthasol (400 mg, Dechra Veterinary Products A/S)). The uteri were dissected

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.510971doi: bioRxiv preprint 

http://human-gastrula.net/
https://www.nhp-embryo.net/
https://doi.org/10.1101/2022.10.06.510971
http://creativecommons.org/licenses/by/4.0/


out and transferred to ice-cold phosphate buffered saline. Some embryos were dissected out

while others were left intact in uterus to preserve extraembryonic structures. Dissected tissues

were transferred to 10% neutral buffered formalin then allowed to fixate for 48 to 96 hours.

After fixation the specimens were processed in an automated tissue processor (Leica

ASP300S) and embedded in paraffin.

The paraffin embedded specimens were serially sectioned on an AS-410M fully automatic

microtome (Axlab) producing 6µm sections spanning the entire embryo in each specimen.

Hematoxilin and eosin staining: Slides were deparaffinized with xylene and rehydrated to

water. Mayer’s hematoxilin solution (Sigma-Aldrich, MHS80) was applied for 5 minutes

followed by washing in tap water for 5 minutes. Eosin (Sigma-Aldrich, HT110280) was then

applied for 5 minutes followed by washing and dehydration in a graded ethanol series to

xylene. The slides were mounted with pertex and whole slide scanned on an Olympus VS200

scanner using a 20x NA 0.8 objective.

RNAscope

mRNAs were detected using the automated RNAscope LS Multiplex Fluorescent Assay on a

Leica Bond RX autostainer with the following sets of probes: TFAP2C-C1, POU5F1-C2,

NANOS3-C3 (ACD, Cat. No.: 1103588-C1, 513278-C2, 1103578-C3), CDH5-C1,

RUNX1-C2, AHNAK-C3 (ACD, Cat. No.: 1043138-C1, 1043148-C2, 1043158-C3) and

LGALS2-C1, DKK1-C2, SERPINC1-C3 (ACD, Cat. No.: 1092968-C1, 1092978-C2,

1092988-C3). The slides were first deparaffinized (Leica Biosystems, AR9222) followed by

pre-treatment with BOND Epitope Retrieval Solution 2 (Leica Biosystems, AR9640) and

protease (ACD, 322800) followed by probe hybridization. The probes were detected using

the RNAscope LS Multiplex Reagent Kit (ACD, Cat. No. 322800) and Opal 520 (C1), Opal
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570 (C2) and Opal 690 (C3) fluorophores (Akoya Biosciences, 1487001KT, FP1488001KT,

FP1497001KT). The slides were counterstained with DAPI (Sigma-Aldrich, D9564),

mounted with Prolong Diamond antifade mountant (Thermo Fisher Scientific, P36970) and

whole slide imaged on an Olympus VS200 slide scanner equipped with DAPI, FITC, Cy3

and Cy5 filter sets using 20x NA 0.8 or 40x NA 0.95 objectives. Images were then

processed for publication using olympusVIA.

CellphoneDB analysis of Yolk Sac Haematopoiesis

Cell-cell interactions were predicted using a previously curated list of ligand-receptor and

receptor-receptor pairs using CellphoneDB v.2.0 55. Due to the exponential nature of possible

interactions across the full dataset, only a subset of cell types corresponding to the rabbit yolk

sac and blood islands were used, covering ‘EMP’, ‘visceral endoderm’, ‘yolk sac

endothelium’, and ‘YS mesothelium’. The visceral endoderm cell type in the CellphoneDB

heat map analysis used the merged cell type of ‘visceral endoderm’, ‘visceral ys endoderm 1’,

and ‘visceral ys endoderm 2’ to cover all possible interaction pairs between different

subtypes of the visceral endoderm as well as other cell types.

Data and code availability

Raw sequencing data are available on ArrayExpress with the following accessions:

scRNA-seq: E-MTAB-11836; scATAC-seq: E-MTAB-11804. Links to the data and code are

available at https://marionilab.github.io/RabbitGastrulation2022/. The web page also links to

processed single-cell transcriptomics data in a variety of formats for loading into both R and

python analysis pipelines. The data is also available to explore interactively via a web app
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accessible through the same link. All other data are available from the corresponding authors

on reasonable request.
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