
OligoArchive-DSM: Columnar Design for Error-Tolerant Database
Archival using Synthetic DNA

Eugenio Marinelli1 Yiqing Yan 1 Virginie Magnone2 Marie-Charlotte Dumargne2
Pascal Barbry2 Thomas Heinis3 Raja Appuswamy1

1Data Science Department, Eurecom, France
2Institut de Pharmacologie Moléculaire et Cellulaire, France
3Department of Computing, Imperial College London, UK

ABSTRACT
The surge in demand for cost-effective, durable long-term archival
media, coupled with density limitations of contemporary magnetic
media, has resulted in synthetic DNA emerging as a promising
new alternative. Today, the limiting factor for DNA-based data
archival is the cost of writing (synthesis) and reading (sequenc-
ing) DNA. Newer techniques that reduce the cost often do so at
the expense of reliability, as they introduce complex, technology-
specific error patterns. In order to deal with such errors, it is im-
portant to design efficient pipelines that can carefully use redun-
dancy to mask errors without amplifying overall cost. In this pa-
per, we present OligoArchive-DSM (OA-DSM), an end-to-end DNA
archival pipeline that can provide error-tolerant data storage at
low read/write costs. Central to OA-DSM is a database-inspired
columnar encoding technique that makes it possible to improve
efficiency by enabling integrated decoding and consensus calling
during data restoration.

1 INTRODUCTION
The global datasphere, or the sum total of all digital data gener-
ated, is expected to reach 125 Zettabytes by 2025, and over 50%
of such data will be enterprise data stored in various databases,
data lakes, and warehouses [9]. Today, over 80% of data generated
is “cold”, or infrequently accessed, and corresponds to data that
needs to be archived in order to meet safety, legal and regulatory
compliance requirements [19]. Archival data is the fastest growing
data segment with over 60% cumulative annual growth rate [26].
As enterprises continue migrate to the cloud, cloud vendors are in
need of archival storage technologies that can provide high-density,
low-cost storage of such data for decades without degradation. As
all current storage media suffer from density scaling and durability
limitations, researchers have started investigating radically new
medium optimized for long-term archival. One such medium that
has received a lot of attention recently is synthetic DNA.

DNA as a storage medium is seven orders of magnitude denser
than tape [8] and can store up to 1 Exabyte of data in a cubic
millimeter [7]. It is extremely durable and can last several millenia
when stored under proper conditions. DNA is read by a process
called sequencing, and the sequencing technology used to DNA is
decoupled from DNA, the storage medium, itself. Thus, DNA will
not suffer from obsolescence issues as we will always be able to read
back data stored in DNA. Finally, using common, well-established
biochemical techniques, it is very easy to replicate DNA rapidly.
Thus, data stored in DNA can be easily copied. Given these benefits,

Figure 1: Read/write pipelines of SOTADNAstorage solutions

several researchers have demonstrated the feasibility of using DNA
as a long-term archival storage medium [1, 3, 6, 7, 10, 13, 15, 21, 25].

The primary obstacle to DNA storage adoption today is the pro-
hibitive cost of reading and writing. The biochemical processes
used for writing (synthesis) and reading (sequencing) DNA today
were originally designed for biological applications that require
very high precision and low scale. Using DNA as a storage medium
requires a different trade off, as one can tolerate more errors in
synthesis in sequencing for improved cost efficiency and scaling.
In order to provide reliable data storage on DNA despite such er-
rors, state-of-the-art (SOTA) approaches rely on using a significant
amount of redundancy in both writing (in the form of parity bits
generated by error control coding) and reading pipelines (in the
form of very high sequencing coverage). The added redundancy,
however, has the undesirable side effect of amplifying the read/write
cost. Thus, efficient handling of errors is crucial to reducing overall
cost.

In this work, we present OligoArchive-DSM(OA-DSM), an end-
to-end pipeline for DNA storage that provides substantially lower
read/write costs than SOTA approaches. The core contributions of
this work, and the two key aspects of OA-DSM that distinguish it
from SOTA approaches are: (i) a novel, database-inspired, columnar
encoding method for DNA storage, and (ii) an integrated consensus
and decoding technique that exploits the columnar organization.
In the rest of this paper, we provide an overview of challenges in
DNA storage (Section 2), present the aforementioned aspects of
OA-DSM design in detail (Section 3), and demonstrate their ability
to achieve better accuracy and higher error-tolerance than SOTA
methods using both simulation studies and a real wetlab validation
experiment where we succesfully encoded and decoded a 1.2MB
compressed TPC-H database archive.

2 BACKGROUND
Figure 1 provides an overview of SOTA DNA storage pipelines.
Digital data is stored on DNA by first encoding bits into quaternary

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

sequence of nucleotides (Adenine, Guanine, Cytosine, Thymine) –
building blocks of the DNA macromolecule. These sequences are
then used to create DNAmolecules, or oligonucleotides (oligos), via
a chemical process called synthesis. Data stored in DNA is read back
via sequencing. Both synthesis and sequencing are approximate in
nature and prone to errors. Thus, what is retrieved back from DNA
are noisy copies of the original sequence referred to as reads. Thus,
SOTA pipelines use consensus calling to infer original sequences
from these reads. The inferred sequences are then decoded back
into bits.

There are several challenges in using DNA as a digital storage
medium. First, not all DNA molecules can be synthesized or se-
quenced. There are several biological constraints (G-C constraint,
homopolymer repeats, secondary structure formation, etc.) that
must be respected during encoding to ensure downstream compati-
bility. Second, current synthesis processes cannot synthesize oligos
longer than a few hundred nucleotides. Thus, as a single oligo can
not store more than a few hundred bits at best, it is necessary to
fragment the data and encode it across several oligos. Third, as DNA
molecule itself has no addressing, it is necessary to add addressing
information explicitly in the oligo during encoding in order to be
able to reorder the oligos later during decoding. Fourth, as men-
tioned earlier, synthesis and sequencing are error prone. There can
be insertion errors, where extra nucleotides are added to the origi-
nal oligo resulting in a read being longer than the oligo, deletion
errors where nucleotides are deleted resulting in shorter reads, and
substitution errors. The error rates can vary depending on the tech-
nology used. Fifth, DNA storage also suffers from a coverage bias,
where some oligos can be covered by multiple reads, and others
can be completely missing (drop out). This happens due to physical
redundancy during synthesis, where multiple DNA molecules are
created for a single oligo, and uneven amplification of different oli-
gos during sequencing library preparation (like Polymerase Chain
Reaction that is used to amplify DNA before sequencing).

In order to ensure reliable data storage despite these errors,
SOTA encoding methods rely on two distinct functionalities: (i)
error control coding and (ii) consensus calling. During the write
pipeline, input data bits are grouped into blocks (Fig 2(a)), and each
block is encoded using error-correction codes, like Reed Solomon
codes, LDPC, or fountain codes, to generate parity bits (Fig 2(b)).
The original data and parity bits are then fragmented to divide
them across oligos and indexed (Fig 2(b)). Finally, each indexed
fragment is converted into an oligo (Fig 2(c)). During the read
pipeline, the noisy reads that are produced by sequencing are fed to
a consensus caller whose goal is to group similar reads and infer the
original sequences. It is important to note here that these consensus
sequences will not be error-free, accurate reproductions of original
oligos. Instead, as the error rate and coverage bias increases, they
will have errors and drop out. Hence, it is the job of the error-control
decoder to use the additional parity bits to recover original input
data despite these errors.

To summarize, all SOTA pipelines share two characteristics: (i)
an error-control-coded block of input data is encoded to generate
a group of oligos that forms a unit of recovery, (ii) an isolated
consensus step is performed before decoding to infer oligos from
noisy reads. The decoding and consensus stages are independent
steps in all SOTA pipelines and do not interact with each other.

1 00101001010

2 1010010101

3
1110100100

(parity)

4 1101001010

5 1111001010

6
010010010

(parity)

7 0100100101

8 0100110111

9
1110010010

(parity)

Index

Motif Motif Motif

Motif Motif Motif

Motif Motif Motif

Motif Motif Motif

Motif Motif Motif

Motif Motif Motif

Column 1

O
lig

o
s

00101001010

1010010101

1101001010

1111001010

0100100101

0100110111

ACGATATGTATAGCA

AGCATTAATTACGAT

GCGTATAATATGCGC

GTATAACGAATATGA

CGATAATAAATAGCT

CGATATACTATAGCT

TATGTATCATGTATTC

TTCAGGATAGGTTTA

CGAATCGTAACGAT

B
lo

c
k
 1

B
lo

c
k
 2

B
lo

c
k
 3

O
lig

o
s

B
lo

c
k
 1

B
lo

c
k
 2

B
lo

c
k
 3

(c)(b)(a) (d)

Column 2 Column 3

Figure 2: Comparison of SOTA versus OA-DSM columnar
layout of oligos. The figures shows the raw input data being
grouped into blocks (a), each block encoded to generate parity
and indexed (b). (c) shows each block of input being mapped
to multiple oligos with SOTA approaches. (d) shows each
block being mapped to one column of motifs with OA-DSM.

3 DESIGN
Our approach to archiving data in DNA differs from SOTA based on
the key observation that the separation of consensus and decoding
is a direct side-effect of the data layout, that is the way oligos
are encoded. Mapping a coded block of data to a group of oligos
results in that group becoming a unit of recovery. Thus, before data
can be decoded, the entire group of oligos must be reassembled
by consensus, albeit with errors. The key idea in OA-DSM is to
change the layout from the row-style SOTA layout (Figure 2(c)) to
a database-inspired columnar layout (Figure 2(d)). A set of oligos
is viewed like a relation, with each oligo being a row. OA-DSM
encodes and decodes data one column at a time. The key benefit
of this, as we show later in this section, is the fact that OA-DSM
can integrate decoding and consensus into a single step, where the
error-correction provided by decoding is used to improve consensus
accuracy, and the improved accuracy in turn reduces the burden
on decoding, thereby providing a synergistic effect. In the rest of
this section, we will explain the OA-DSM design in more detail by
presenting its read and write pipelines.

3.1 OA-DSMWrite Pipeline
The top half of the Figure 3 shows theOA-DSMdatawriting pipeline.
The input to the write pipeline is a stream of bits. Thus, any binary
file can be stored using this pipeline. The first step in processing
the input involves grouping it into blocks of size 256,000 bits. Each
block of input is then randomized. While it is not relevant to this
discussion, we use randomization similar to SOTA to improve the
accuracy of read clustering in the data decoding stage as explained
in Section 3.2. After randomization, error correction encoding is
applied to protect the data against errors. We use Low-Density
Parity Check (LDPC) codes [12] with a block size of 256,000 bits.
Prior work has demonstrated that such a large-block-length LDPC
code is resilient to both substitution/indel errors, that cause reads

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

A-CTACTTGATG …

ACTG

A-TG ATCTGATG …

ATCG

A-CT ACTTGATG

TGTA

TGTATCAATGACTC …

0010100101010

1010100111010

1001001011110

110010100

010010010

110111101

010101010101011

101001010100101 …

110010001010010

010101010101011

101001010100101

110010001010010

ACTG …

ATCG …

……

TGTA …

Synthesis

A-TGATCTGATG …

A-CTACTTGATG …

TGTATCAATACTC …

OA-DSM encoding pipeline

OA-DSM decoding pipeline

Sequencing

Columnar

consensus
LDPC error

correction

LDPC

Reencoding
Read

Realignment

LDPC

encoding
Block randomization

Block

derandomization

ATGA

ACTA

TGTA

ACTG

ATCG

TGTA

Integrated columnar consensus & decoding

DSM oligo

decoding

1001010010101

1011010010100

1001001011110

DSM oligo

reencoding

0010100101010

1010100111010

1001001011110

110010100

010010010

110111101

OneJoin

000000 ACTAG

000001 ATTCC

…

DSM encoding

A-TGATCTGATG …

TGTATCAATACTC…

Cluster 1

Cluster 2

Cluster 3

Figure 3: OA-DSM data writing (top) and reading (bottom) pipelines. The blocks in red are unique to OA-DSM (versus SOTA).

to be noisy copies of original oligos, and synthesis/sequencing-bias-
induced dropout errors, where entire oligos can be missing in reads
due to lack of coverage [6].

The LDPC encoded bit sequence is fed as input to the DSM-oligo-
encoder which converts bits into oligos. While SOTA approaches
design each oligo as a random collection of nucleotides, the DSM-
oligo-encoder designs oligos using composable building blocks
called motifs. Each motif is itself a short oligo that obeys all the bio-
logical constraints enforced by synthesis and sequencing. Multiple
motifs are grouped together to form a single oligo. We use motifs
rather than single nucleotides as building blocks because, as we
will see later in Section 3.2, integration of decoding and consensus
relies on alignment which cannot be done over single nucleotides.

In order to perform the conversion of bits into motifs, the DSM-
oligo-encoder maintains an associative array with a 30-bit integer
key and a 16 nucleotide-length (nt) motif value. This array is built
by enumerating all possible motifs of length 16nt (AAA, AAT, AAC,
AAG, AGA...) and eliminating motifs that fail to meet a given set of
biological constraints. We configure our encoder to admit motifs
that have up to two homopolymer repeats (AA,CC,GG, or TT), and
GC content in the range 0.25 to 0.75. With these constraints, using
16nt motifs, out of 416 possible motifs, we end up with 1,405,798,178
that are valid. By mapping each motif to an integer in the range
0 to 230, we can encode 30-bits of data per motif. Thus, at the
motif level, the encoding density is 1.875 bits/nt. While we can
increase this density by increasing motif size, or relaxing biological
constraints, we limited ourselves to this configuration due to two
reasons: (i) memory limitation of our current hardware, as the
current associative array itself occupies 100GB of memory, (ii) the
motif design is orthogonal to the columnar encoding which is the
focus of this work. In future work, we plan to increase this bit
density by expanding to large motif sets.

The use of motifs as building blocks renders a distinct relational
organization to oligos–just as a set of attributes form a tuple, and a
set of tuples form a relation, a set of motifs (attributes) forms an
oligo (row), and a set of oligos constitutes an OligoArchive. Thus,
the second major difference of our approach to SOTA is the layout
of motifs across oligos which is reminiscent of Decomposition
Storage Model (DSM), or columnar data layout, adopted by modern
analytical database engines. The motifs generated from an error-
control coded data block are used to extend oligos by adding a new
column as shown in Figure 2(d). This process is repeated until the
oligos reach a configurable number of columns after which the
process is reset to generate the next batch of oligos again from
the first column. The generated oligos can then be synthesized to
produce DNA molecules that archive data.

While the figure shows all columns as being of the same size,
a small subtlety in the practical implementation is the distinction
between the first column and the rest. As we need to index the oligos
to enable reordering during decoding, the first column of motifs is
generated by using a 15-bit address and a 15-bit data to generate a
30-bit integer. Thus, the first LDPC encoded block is decomposed
into 15-bit integers. However, from the second column, there is no
need to add addressing information. Thus, rest of the LDPC blocks
are decomposed into 30-bit integers. As a result, all columns except
the first encode 2 LDPC blocks, while the first column encodes only
1 LDPC block. Note that with 15-bit addresses, we can address up to
32,768 oligos. In ongoing work, we are using OA-DSM to develop a
block-addressed, randomly-accessible, DNA file system. Similar to
traditional file systems, OA-DSM allows us to view a column like a
disk block, and a collection of columns like an extent. The 15-bit
address here provides intra-extent addressing. Extents themselves
will be addressed separately using a separate mechanism (nested
primers). We explicitly mention this here to clarify that OA-DSM

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

Error Rate

C
ov

er
ag

e

0

5

10

15

20

25

1% 3% 6% 9% 12%

Column-Based Encoding Row-Based Encoding

10% Redundancy

Figure 4: Min. cov. at 10% redundancy.

Error Rate

C
ov

er
ag

e

0

5

10

15

20

25

1% 3% 6% 9% 12%

Column-Based Encoding Row-Based Encoding

30% Redundancy

Figure 5: Min. cov. at 30% redundancy.

can scale to much larger oligo pools. But for the rest of this paper,
we focus on columnar design and consensus.

3.2 OA-DSM Read Pipeline
Asmentioned before, data stored in DNA is read back by sequencing
the DNA to produce reads, which are noisy copies of the original
oligos that can contain insertion, deletion, or substitution errors.
As each oligo can be covered by multiple reads, the first in decoding
is clustering to group related reads together. In prior work, we
developed an efficient clustering technique based on edit similarity
joins [22, 23] that exploits the fact that due to randomization during
encoding, reads corresponding to the same original oligo are “close”
to each other despite errors and “far” from the reads related to
other oligos. The output of this algorithm is a set of clusters, each
corresponding to some unknown original oligo.

After the clustering stage, other SOTA methods apply consensus
in each cluster followed by decoding in two separate phases as
shown in Figure 1. In OA-DSM, we exploit the motif design and
columnar layout of oligos to iteratively perform consensus and
decoding in an integrated fashion as shown in Figure 3. Unlike
other approaches, OA-DSM processes the reads one column at a
time. Thus, the first step is columnar consensus which takes as
input the set of reads and produces one column of motifs. The
choice of consensus algorithm is orthogonal to OA-DSM design.
We use an alignment-based bitwise majority algorithm we devel-
oped previously for consensus [23], as we found this to provide
accuracy comparable to other state-of-the-art trace reconstruction
solutions [2]. The motifs obtained from consensus are then fed to
the DSM-oligo-decoder which is the inverse of the encoder, as it
maps the motifs into their 30-bit values. Note here that despite con-
sensus, the inferred motifs can still have errors. These wrong motifs
will result in wrong 30-bit values. These errors are fixed by the
LDPC-decoder, which takes as input the 30-bit values correspond-
ing to one LDPC block and produces as output the error-corrected,
randomized input bits. These input bits are then derandomized to
produce the original input bits for that block.

Asmentioned earlier, SOTAmethods do not use the error-corrected
input bits during decoding. OA-DSM, in contrast, uses these bits
to improve accuracy as shown in the bottom part of the integrated
columnar consensus in Figure 3. The error-corrected bits produced
by the LDPC-decoder are reencoded again by passing them through

the LDPC-encoder and DSM-oligo-encoder. This once again pro-
duces a column of motifs as it would have been done during input
processing. The correct column of motifs is used to realign reads so
that the next round of columnar decoding starts at the correct offset.
The intuition behind this realignment is as follows. An insertion
or deletion error in the consensus motifs will not only affect that
motif, but also all downstream motifs also due to a variation in
length. For instance, if we look at the example in Figure 3, we see
a deletion error in read 𝐴 − 𝑇𝐴𝑇𝐶𝑇𝐺.. which should have been
𝐴𝑇𝐶𝐺𝐴𝑇𝐶𝑇𝐺.... This results in the first motif being incorrectly
interpreted as 𝐴𝐶𝑇𝐴 (instead of 𝐴𝐶𝑇𝐺 , and second motif as 𝑇𝐶𝑇𝐺
(instead of 𝐴𝑇𝐶𝑇). Thus, an error early in consensus keeps propa-
gating. Without a knowledge of the correct motif, there is no way
to fix this error. But in OA-DSM, by reencoding the error-corrected
bits, we get the correct motifs. By aligning these motifs against the
reads, we can ensure that consensus errors do not propagate. Note
here that such realignment is only possible because we use motifs,
as two sequences can be aligned accurately only if they are long
enough to identify similar subsequences. Thus, columnar layout
without motifs, or with just nucleotides, would not make realign-
ment possible. Similarly, integrating consensus and decoding is
possible only because of the columnar layout, as the SOTA layout
that spreads a LDPC block across several oligos cannot provide
incremental reconstruction.

4 EVALUATION
In this section, we will present the results from our experimental
evaluation of the OA-DSM pipeline. The evaluation is structured as
follows. First, we show the advantage of using a columnar design
by comparing OA-DSM with a row-based pipeline (Sec. 4.1). Then,
we compare OA-DSM with various SOTA approaches with respect
to read cost and write cost to show that our design can lead to
substantial cost reduction (Sec. 4.2). Finally, we present preliminary
results from ongoing wetlab experiments to validate the end-to-end
OA-DSM pipeline (Sec. 4.3).

We conduct all the experiments on a local server equipped with
a 12-core CPU Intel(R) Core(TM) i9-10920X clocked at 3.50GHz,
128GB of RAM. The core components of the OA-DSM pipeline
shown in Figure 3 has been implemented in C++17. We use TPC-
H dbgen utility to generate compressed, synthetic data that we

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

Read Cost (nts / bits)

W
rit

e
C

os
t (

 n
ts

 /
bi

ts
)

0.50

0.60

0.70

0.80

0.90

1.00

0.50 2.50 4.50 6.50 8.50

This work Other work

Figure 6: OA-DSM vs. SOTA rd/wt costs.
Error Rate

C
ov

er
ag

e

0

5

10

15

20

25

30

3% 6% 9% 12%

OA-DSM Gini Baseline

Figure 7: Comparison to Gini

treat as the archival file that must be stored on DNA. We param-
eterize dbgen to control the generated database size according to
experimental requirements as mentioned later.

4.1 Benefits of Columnar Design
In order to ensure that the benefits of OA-DSM are due to the
columnar design and not other parameters, we have developed a
row-based version of the pipeline shown in Figure 3, where we
fixed all other parameters (clustering and consensus algorithms,
LDPC block size, motif set, etcetera), and only changed two aspects
to make it similar to SOTA: (i) replace DSM encoder with row-based
encoder that maps one LDPC block to multiple oligos, (ii) perform
consensus to infer entire oligos first, and then decode separately.

In order to compare the columnar and row-based pipelines, we
perform an end-to-end DNA storage simulation study using both
pipelines. First, we use both pipelines to generate the oligos for a
3MB TPC-H archive file (3MB size was chosen based on calcula-
tions that ensure that both pipelines produce the same number of
oligos). We configure LDPC encoder to generate two datasets, with
10% and 30% redundancy. Then, we encode the two datasets using
both pipelines, while fixing the oligo length to 50 motifs per oligo
(800nt), generating four OligoArchives, two containing 18773 oligos
(row/column at 10% redundancy), and the other two containing
22187 (row/column at 30% redundancy) oligos.

We compare the row and columnar pipelines by evaluating the
minimum coverage required at 10% and 30% redundancy levels to
achieve 100% error-free reconstruction of the input data at various
the error rates (1% to 12%). We conduct the experiment similar to
SOTA [6, 21] as follows. For each error rate, and for each of the
four oligo sets, we generate read datasets at various coverage levels
(1× to 25×). In order to generate reads, we first duplicate each oligo
a certain number of times according to the configured coverage
level. Then we inject random errors at random positions in each
read. We inject insertion, deletion and substitution with an equal
probability, and the number of errors injected per read follows a
normal distribution with mean set to the configured error rate. We
then decode the read datasets using both pipelines and identify the
minimum coverage level required to fully recover the original data.

Figure 4 shows the minimum coverage for data encoded with
10% redundancy. Clearly, columnar-wise encoding outperforms the

row-wise one, as it reduces the coverage required up to 40% for high
error rates. This reduction in minimum coverage can be intuitively
explained as follows. Row-based encoding maps an LDPC block
into multiple oligos. This implies that a single erroneous oligo can
lead to a data loss of up to 1500 bits (50 motifs per oligo × 30 bits per
motif). As explained in Section 3, all that is required for an oligo loss
is a single insertion/deletion error in the first motif after consensus.
On the other hand, an oligo loss in OA-DSM only causes a loss of 30
bits in each of the LDPC blocks, thanks to the columnar encoding.
Further, the integrated consensus and decoding can fix consensus
errors in early rounds so that they do not affect future rounds. Due
to these reasons, the LDPC decoder works much more effectively
when paired with columnar layout rather than row-based encoding.
The results are similar for data encoded with 30% redundancy as
well, as shown in Figure 5. Notice that in the 30% case, both row and
OA-DSM pipelines have a minimum coverage lower than the 10%
redundancy case. This is expected, as a higher redundancy implies
a higher tolerance to errors.

4.2 SOTA comparison
Having demonstrated the advantage of using a columnar storage
architecture, we will now present a comparison of OA-DSM with
SOTA approaches in terms of reading and writing cost [6, 21, 25].
Writing cost is defined as #𝑛𝑡𝑠−𝑖𝑛−𝑜𝑙𝑖𝑔𝑜𝑠

#𝑏𝑖𝑡𝑠 , where the numerator is
the product of the number of oligos and the oligo length, and the
denominator is the input data size. Thus, higher the redundancy
and encoding overhead, higher the write cost. The reading cost
is defined by #𝑛𝑡𝑠−𝑖𝑛−𝑟𝑒𝑎𝑑𝑠

#𝑏𝑖𝑡𝑠 . The numerator is the sum total of all
read lengths, and denominator is the input size. Thus, higher the
coverage required, higher the read cost.

Figure 6 shows the read and write cost for OA-DSM and other
SOTA algorithms. For OA-DSM, we compute these costs based on re-
sults shown in Figures 4 and 5. For SOTA approaches, we reproduce
the costs from their publications. There are several observations to
be made. First, let us compare the OA-DSM with row-based SOTA
approach that also uses LDPC (by S. Chandak et al. [6]). Both these
cases use the same LDPC encoder configured with 30% redundancy.
The cost reported here is for 1% error rate in both cases. Clearly,
the OA-DSM approach has both a lower write and read cost. The
difference in write cost can be explained due to the fact that in

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

0 500 1000 1500 2000 2500 3000
Coverage

0

100

200

300

400

500

600

700

Nb
. o

f o
lig

os

Figure 8: The histogram of oligos’ coverage.

0 100 200 300
Position

0.000

0.002

0.004

0.006

0.008

Er
ro

r r
at

e

Substitution
Deletion
Insertion

Figure 9: The substitution, insertion and deletion rate per position.

the row-based LDPC approach, the authors also added additional
redundancy in each oligo in the form of markers which they used
in their decoder. OA-DSM is able to achieve 100% data reconstruc-
tion using the same LDPC encoder at a much lower coverage level
without such markers as demonstrated by the lower read cost.

Comparing OA-DSMwith the other two efficient encoders (large-
block Reed-Solomon coding by Organick et al. [25] and fountain
codes by Erlich et al. [10]), we see that OA-DSM provides substan-
tially better read cost, but slightly worse write cost than fountain
coding approach. As we mentioned earlier, we can further improve
the write cost for OA-DSM using several approaches. First, the OA-
DSM results in Figure 6 were obtained with a 30% redundancy based
on its ability to handle even 12% error rate. For lower error rates
(less than 1%), as was the case with the Fountain coding work, even
10% redundancy would be able to fully restore data at extremely
low coverage (3× as shown in Figure 4). Second, as mentioned in
Section 3, scaling the motif set by using longer motifs (17nt and 33
bits) could allow us to increase bit-level density further from 1.87
bits/nt to over 1.9 bits/nt. These two changes would lead to further
reduction in write cost without any adverse effect on the read cost.
As this work was predominantly about reducing the read cost, we
leave open these optimizations to future work.

Finally, Lin et al. [21] recently presented the Gini architecture
which interleaves nucleotides across oligos in order to minimize the
impact of consensus errors. We also tried to compare OA-DSM with
Gini, but we could not derive the read/write cost for Gini, which
was also not reported, due to lack of statistics about reads. However,
as our evaluation methodology is identical to Gini, we present a di-
rect comparison of results in terms of minimum coverage required
by both approaches.Figure 7 shows the minimum coverage required
by OA-DSM, Gini, and a baseline without Gini reported by Lin et
al. [21], to perfectly recover data at various error rates. At 18.4%
redundancy based on Reed-Solomon coding, the reported baseline
needed 30× to recover data 12% error rate. Gini, in contrast, pro-
vided a 33% improvement as it needed a minimum coverage of 20×
at 12% error rate to guarantee full recovery. OA-DSM configured at
30% redundancy with LDPC encoding provides a 40% improvement
over Gini, it requires only 12× coverage. Comparing Figure 7 with

Figure 4, we see that OA-DSM provides 25% less coverage (15×)
even at 10% redundancy compared to Gini. Thus, OA-DSM has
a much lower read cost, thanks to the integrated consensus and
decoding enabled by columnar organization.

4.3 Wetlab validation
Finally, we present the details of our ongoing wetlab validation
experiment, in which we are storing a TPC-H database compressed
in a single archive file of 1.2MB.We limited the size to 1.2MB to limit
the cost of actual synthesis. The cardinality of various relations in
the archive is reported in Table 1. Using OA-DSM configured with
30% LDPC redundancy, we encoded the archive file to generate
44376 oligos, with each oligo of length 160nts (length chosen to
optimize synthesis cost). The oligos were synthesized by Twist
Biosciences for a cost of approximately €10,000. We sequence the
synthesized oligos using Oxford Nanopore PromethION platform
generating approximately 43 millions of noisy reads.

Table Name Number of Rows Size [Byte]
customer 900 142782
lineitem 31220 3717358
nation 25 2199
orders 9000 982200

partsupp 4800 690415
part 1200 140596
region 5 384
supplier 60 8242

Table 1: TPCH database summary for WetLab experiment.

To perform error characterization, we aligned the 43M reads to
the original oligos using BWA-MEM seqence aligner[20]. 99.99%
reads were aligned to a reference oligo, indicating a very high qual-
ity of the generated read set. Figure 8 shows the coverage histogram
(number of oligos that have a given coverage). Each reference oligo
is covered by at least one read, with a median coverage of 951×,
minimum coverage of 8×, and a maximum coverage of 2500×. We

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

0 5 10 15 20 25 30 35 40
Edit distance

0.0

0.5

1.0

1.5

2.0

2.5

Nb
. o

f r
ea

ds

1e7

Figure 10: Distribution of edit distance.

Substitution Insertion Deletion0.000

0.001

0.002

0.003

0.004

0.005

0.006

Er
ro

r p
ro

ba
bi

lit
y

Goldman et al.
Grass et al.
Erlich & Zielinski
Organick et al.
This Work

Figure 11: Comparison of errors with previous work.

deliberately sequenced the oligos at such high coverage to test
recovery at various coverage levels as we present later.

Figure 9 shows the substitution, insertion and deletion rate per
position (as computed by BBmap [5]). Note that while the data-
carrying oligo had a length of 160, our reads are longer as they
include the primers that were appended at both ends of the oligo
for sequencing. As these primers get trimmed out during read pre-
processing, the error rate of relevance to us is the middle portion
of the read which corresponds to the encoded, data-carrying por-
tion of the oligo. We see that in this portion, the substition rate
is dominant, which is 3× higher than insertion and deletion rates.
Figure 11 compares our error rates with those reported in prior
work on DNA storage [11, 14, 16, 17, 24]. While the actual rates
vary due to differences in synthesis and sequencing steps, we see
that the overall trends are similar. Using the aligned reads, we also
report the indel distribution in Figure 10 which shows a histogram
of edit distances between the reads and references. As can be seen,
96.97% reads have edit distance less than 10, indicating that the
error rate is less than 6%.

In order to test end-to-end decoding, we first used the full 43M
read dataset as input to the decoding pipline. Unsurprisingly, we
were able to achieve full data reconstruction, given the ability of
OA-DSM to handle much lower coverage levels and higher error
rates. In order to stress test our decoding pipeline and identify
the minimum coverage that allows fully reconstruction of data,
we repeated the decoding experiment on smaller readsets which
were derived by randomly sampling a fraction of reads from the
43M read dataset. In doing so, we found that OA-DSM was able to
perform full recovery using just 200K reads, which corresponds
to a coverage of 4×. At this coverage, nearly 3500 out of 44376
reference oligos were completely missing. However, the LDPC code
and columnar decoding were able to successfully recover data.
As further reduction in coverage led to data loss, we validate 4×
as the minimum coverage OA-DSM can handle with our wetlab
experiment. Computing the costs for minimum coverage, we get a
read cost of 3.37 nts/bit, and a write cost of 0.72 nts/bit, similar to
the results reported in Figure 6.

5 RELATEDWORK
Biologists have long demonstrated the ability to store data inDNA [27].
However, using DNA as a “large-scale” data storage media is an en-
tirely new area of research that has become possible only recently,
thanks to advances in sequencing and synthesis technologies. Al-
most all prior work on DNA data storage has focused on developing
encoding techniques for mapping binary files to oligos. We only
present an overview of a few key related publications in this section.
A comprehensive survey of approaches can be found here [18].

Pioneering work by Church et al. [7] was the first to prove the
viability of DNA as a large-scale digital storage medium. Using a
simple coding scheme that maps a 0 bit in the input stream to an
A or C and a 1 bit to G or T, they stored a HTML file of 0.65MB.
However, due to errors in sequencing and synthesis procedures,
data retrieval was not fully automated and required manual inter-
vention. Following this, Goldman et al. proposed a variable-length
coding scheme that improves storage density by compressing and
transforming data into an intermediate base-3 representation [13].
Using this procedure, they stored 739KB of digital data and showed
that encoding/decoding of data can be done automated despite
errors.

Follow upwork investigated error-correction techniques that can
provide full recovery while substantially improving storage density.
Bornholt et al. optimized Goldman et al.’s strategy by implementing
simple XOR-based redundancy [4]. Grass et al. [15] proposed an
error-correcting scheme that used concatenation codes with Reed
Solomon codes as both inner and outer codes to store 83KB of
data. Blawat et al. [3] study the error properties of DNA storage
based on the results from the first study by Church et al. Using
a forward error-correction code customized to the DNA erasure
channel, they stored 22MB of data. Organick et al. [25] propose
a new concatenation code with Reed-Solomon as the outer code
and the differential code from Goldman et al. as the inner code.
Using this new code, they stored and recovered 200MB of data. We
compared OA-DSM with several of these methods in Section 4.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

6 CONCLUSION
All SOTA approaches for DNA data archival use a “row-based”
approach for mapping input bits onto oligos. In this paper, we
showed how this approach results in a strict separation of consensus
calling and decoding, and how this separation, in turn, results in lost
opportunity for improving read/write cost. We presented OA-DSM,
an end-to-end pipeline for DNA data archival that uses a novel,
database-inspired, columnar data organization. We showed how
such an approach enables the integration of consensus and decoding
stages so that errors fixed by decoding can improve consensus and
vice versa. Using a full system evaluation, we highlighted the benefit
of our design and showed that OA-DSM can substantially reduce
read-write costs compared to SOTA approaches.

REFERENCES
[1] R. Appuswamy, Kevin Lebrigand, Pascal Barbry, Marc Antonini, Oliver Madder-

son, Paul Freemont, James MacDonald, and Thomas Heinis. 2019. OligoArchive:
Using DNA in the DBMS storage hierarchy. In CIDR.

[2] Tuundefinedkan Batu, Sampath Kannan, Sanjeev Khanna, and AndrewMcGregor.
2004. Reconstructing Strings from Random Traces. In SODA.

[3] Meinolf Blawat, Klaus Gaedke, Ingo Hutter, Xiao-Ming Chen, Brian Turczyk,
Samuel Inverso, Benjamin W. Pruitt, and George M. Church. 2016. Forward Error
Correction for DNA Data Storage. Procedia Comput. Sci. 80, C (2016).

[4] James Bornholt, Randolph Lopez, Douglas M. Carmean, Luis Ceze, Georg Seelig,
and Karin Strauss. 2016. A DNA-Based Archival Storage System. In 21st Confer-
ence on Architectural Support for Programming Languages and Operating Systems
ASPLOS.

[5] Brian Bushnell. 2014. BBMap: a fast, accurate, splice-aware aligner. Technical
Report. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).

[6] Shubham Chandak, Kedar Tatwawadi, Billy Lau, Jay Mardia, Matthew Kubit,
Joachim Neu, Peter Griffin, Mary Wootters, Tsachy Weissman, and Hanlee Ji.
2019. Improved read/write cost tradeoff in DNA-based data storage using LDPC
codes. In 2019 57th Annual Allerton Conference on Communication, Control, and
Computing.

[7] George M. Church, Yuan Gao, and Sriram Kosuri. 2012. Next-Generation Digital
Information Storage in DNA. Science 337, 6102 (2012).

[8] Semiconductor Research Corporation. 2018. 2018 Semiconductor Synthetic Biol-
ogy Roadmap. https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-
1st-edition_e1004.pdf.

[9] John Gantz David Reinsel and John Rydning. [n.d.]. Data age 2025: the digitization
of the world from edge to core.

[10] Yaniv Erlich and Dina Zielinski. 2017. DNA Fountain enables a robust and
efficient storage architecture. Science 355, 6328 (2017).

[11] Yaniv Erlich and Dina Zielinski. 2017. DNA Fountain enables a robust and
efficient storage architecture. science 355, 6328 (2017), 950–954.

[12] Robert Gallager. 1962. Low-density parity-check codes. IRE Transactions on
information theory 8, 1 (1962), 21–28.

[13] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M. LeP-
roust, Botond Sipos, and Ewan Birney. 2013. Toward Practical High-capacity
Low-maintenance Storage of Digital Information in Synthesised DNA. Nature
494 (2013).

[14] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessimoz, Emily M LeP-
roust, Botond Sipos, and Ewan Birney. 2013. Towards practical, high-capacity,
low-maintenance information storage in synthesized DNA. nature 494, 7435
(2013), 77–80.

[15] Robert N. Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wen-
delin J. Stark. 2015. Robust Chemical Preservation of Digital Information on
DNA in Silica with Error-correcting Codes. Angew. Chem. Int. Ed. 54 (2015).

[16] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela Paunescu, and Wen-
delin J Stark. 2015. Robust chemical preservation of digital information on DNA
in silica with error-correcting codes. Angewandte Chemie International Edition
54, 8 (2015), 2552–2555.

[17] Reinhard Heckel, Gediminas Mikutis, and Robert N Grass. 2019. A characteriza-
tion of the DNA data storage channel. Scientific reports 9, 1 (2019), 1–12.

[18] Thomas Heinis and Jamie Alnasir. [n.d.]. Survey of Information Encoding Tech-
niques for DNA. https://arxiv.org/abs/1906.11062. https://doi.org/10.48550/
ARXIV.1906.11062

[19] Intel. [n.d.]. Cold Storage in the Cloud: Trends, Challenges, and Solutions. White
Paper.

[20] Heng Li. 2013. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).

[21] Dehui Lin, Yasamin Tabatabaee, Yash Pote, and Djordje Jevdjic. 2022. Managing
Reliability Skew in DNA Storage. In ISCA.

[22] Eugenio Marinelli and Raja Appuswamy. 2021. OneJoin: Cross-architecture,
scalable edit similarity join for DNA data storage using oneAPI. In ADMS.

[23] Eugenio Marinelli, Eddy Ghabach, Yiqing Yan, Thomas Bolbroe, Omer Sella,
Thomas Heinis, and Raja Appuswamy. 2022. Digital Preservation with Synthetic
DNA.

[24] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey
Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit
Gopalan, Bichlien Nguyen, et al. 2018. Random access in large-scale DNA data
storage. Nature biotechnology 36, 3 (2018), 242–248.

[25] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey
Yekhanin, Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit
Gopalan, Bichlien Nguyen, Christopher N Takahashi, Sharon Newman, Hsing-Yeh
Parker, Kendall Stewart, Gagan Gupta, Robert Carlson, John Mulligan, Douglas
Carmean, Georg Seelig, Luis Ceze, and Karin Strauss. 2014. Random access in
large-scale DNA data storage. Nature Methods 11, 5 (2014).

[26] Horison Information Strategies. 2015. Tiered Storage Takes Center Stage. Report.
[27] Clelland Catherine Taylor, Risca Viviana, and Bancroft Carter. 1999. Hiding

Messages in DNA Microdots. Nature 399 (1999).

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511077doi: bioRxiv preprint

https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-1st-edition_e1004.pdf
https://www.src.org/program/grc/semisynbio/ssb-roadmap-2018-1st-edition_e1004.pdf
https://arxiv.org/abs/1906.11062
https://doi.org/10.48550/ARXIV.1906.11062
https://doi.org/10.48550/ARXIV.1906.11062
https://doi.org/10.1101/2022.10.06.511077
http://creativecommons.org/licenses/by/4.0/

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 OA-DSM Write Pipeline
	3.2 OA-DSM Read Pipeline

	4 Evaluation
	4.1 Benefits of Columnar Design
	4.2 SOTA comparison
	4.3 Wetlab validation

	5 Related Work
	6 Conclusion
	References

