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SUPPLEMENTAL FIGURES (S1-S18):

Figure S1: T2T-CHM13 inversion callset summary and comparison to GRCh38 (n=373).
A) A donut plot showing the total counts of inversion classes defined based on Arbigent and PAV genotypes. B) A barplot
showing the percentage of inverted bases per inversion category (misorient - misorientation, inv - balanced inversion,
invDup - inverted duplication and complex/lowconf - structurally complex region or low-confidence call) given the
chromosome size. For each chromosome, the left- and right-side bars represent the fraction of inverted bases in GRCh38 and
T2T-CHM13, respectively. Lighter color highlights bases being inverted only in a single sample (see light green color for
chromosome 2 contributed by a single pericentromeric inversion ~23 Mbp in size in sample NA19650).



Figure S2: Differences between GRCh38 and T2T-CHM13 callsets. (join dots only one chr label)
A scatterplot shows the total number of balanced inversions detected per chromosome (y-axis) given the chromosome length
(x-axis) separately per GRCh38 (beige) and T2T-CHM13 (purple) inversion callset. Size of each dot represents the total
number of SD bases reported for a given chromosome and given reference.



Figure S3: Inversion callset summary with respect to CHM13 reference.
A) An upset plot showing the total number of inversions uniquely detected by each technology and those detected by two
and more. B) A donut plot showing the number of inverted kilobases contributed separately by each technology to the final
callset. C) A boxplot showing the size distribution of inversions uniquely detected by each technology and those detected by
two and more (SHARED).



Figure S4: Non-syntenic and likely novel sites in T2T-CHM13 inversion calls.
An ideogram showing the position and size (dot size) of all balanced inversions (n=63) that either fall within (>=90%
reciprocal overlap) non-syntenic regions between GRCh38 and T2T-CHM13 (‘Nonsyn’) or failed to map to GRCh38
reference (‘Unmapped’) (Methods, Table S2). Red dots point to regions whose sequence failed both to map to GRCh38
reference and fall within nonsyntenic regions (n=18).



Figure S5: Enrichment of inversion in pericentromeric regions.
Permutation analysis of inversion falling within the pericentromeric region of each chromosome. Permuted counts of
pericentromeric inversions are shown as black violin plots. Observed values are shown as red dots. Enrichment analysis is
reported separately with respect to T2T-CHM13 (left) and GRCh38 (right) (Methods). For T2T-CHM13 reference we
highlight fold-enrichment values for chromosomes that reached significance after Bonferroni correction (Table S3).



Figure S6: Sequence composition of inversions from pericentromeric regions.
A) The total number of base pairs of various genomic features (such as various classes of human satellites, 'SD.pairs' -
intrachromosomal pairs of SDs no further than 5 Mbp apart and ‘other’ - none of these features) overlapping pericentromeric
inversions (n=60). B) Proportion of genomic features assigned to each brnn region based on the number of ‘burned’
haplotypes within each brnn region. C) An assignment of each pericentromeric inversion to a single feature based on the
majority overlap (proportion of the given feature >0.5) or are labeled as ‘mixed’ if no feature is >0.5.
NOTE: In this analysis we excluded the large pericentromeric inversion on chromosome 2 that is ~23 Mbp in size to prevent
our results being skewed by including such a large genomic region.



Figure S7: Novel pericentromeric inversion on chromosome 1.
A zoomed-in plot on novel pericentromeric inversion on chromosome 1 (highlighted by dotted lines) presented in Fig. 1C.
The read-coverage profiles of Strand-seq data over a chromosome 1 centromeric region summarized as binned (bin size:
50 kbp step size: 10 kbp) read counts represented as bars above (teal; Crick read counts) and below (orange; Watson read
counts) the midline. Dotted lines highlight the novel centromeric inversion detected on chromosome 1 only with respect to
T2T-CHM13. In this region equal coverage of Watson and Crick count represents a heterozygous inversion as only one
homologue is inverted with respect to the reference while reads aligned only in Watson orientation represents a homozygous
inversion. Above is a centromere and SD annotation.



Figure S8: Complete assemblies of chromosome 1 centromeric region.
Dotplots showing the alignment directionality (yellow - reverse, green - forward) between complete assemblies of
chromosome 1 centromere (x-axis) against T2T-CHM13 reference (y-axis). T2T-CHM13 centromere annotation is shown as
colored boxes on the y-axis.



Figure S9: Relative position of alpha satellite array and novel pericentromeric inversion on
chromosome 1.
A) RepeatMasker annotation of centromeric repeats for six complete assemblies of chromosome 1 centromere along with
T2T-CHM13 reference (CHM13v2_1). We highlight alpha satellites (purple), beta satellites (orange) and human satellites
(green). Mapped left (yellow) and right (red) inversion breakpoints are highlighted as vertical bars (Methods). Distances
between boundaries of alpha satellite repeats and left-most inversion breakpoints are shown as an arrow with a distance in
Mbp. Similarly, we show the distance between left and right inversion breakpoints. B) NucFreq validation of assembled
centromeric regions presented in A). Black dots show read depth for the most common base at a given position while red
dots show the second most common base. Regions where we observe high depth of the second most abundant base (red) are
likely assembly collapses. Predicted inversion breakpoints are marked as black arrowheads at the bottom of each plot.



Figure S10: Inversion phasing at pericentromeric region of chromosome 7.
An arrowhead plot showing the inverted status of each defined region reported as colored arrowheads (dark blue - direct,
bright blue - inverted, see the legend) for corresponding regions with respect to GRCh38 (left) and T2T-CHM13 (right).
Gray rectangle in the middle highlights the positions of chromosome 7 centromere in GRCh38.

Figure S11: Evaluation of putative misorients in GRCh38 with respect to T2T-CHM13.
A) Distribution of region sizes of 28 putative misorients in GRCh38 (green) and their respective sizes after mapping onto the
T2T-CHM13 reference genome (Methods). B) Shows fraction of Watson (minus; orange; wReads) and Crick (plus; teal;
cReads) reads mapped to each region separately for reads mapped to GRCh38 and T2T-CHM13 reference genome. Read
counts are concatenated across all unrelated individuals (n=41) reported in this study.



Figure S12: Evaluation of inversion differences between GRCh38 and T2T-CHM13 reference.
A GRCh38 ideogram showing the fraction of Watson (orange; minus) and Crick (teal; plus) reads aligned to both GRCh38
(left side pie) and T2T-CHM13 (right side pie) reference for a selected number of regions. Strand-seq read counts are
summarized across all unrelated individuals (n=41) from this study. Position of putative minor alleles in GRCh38 (n=33,
blue lines) reference with respect to T2T-CHM13. Putative misorientations in GRCh38 (n=26) evaluated with respect to
T2T-CHM13 are highlighted by red lines. Putative minor alleles in T2T-CHM13 (n=11) predicted with respect to GRCh38
are highlighted by green lines. Inset: Shows positions of protein-coding genes that reside within 100 kbp distance from
GRCh38 misorientation (n=8), GRCh38 minor alleles (n=37) or T2T-CHM13 minor alleles (n=14). Gene names colored in
red have been previously reported as part of genome-wide association studies (GWAS).



Figure S13: Structural differences at Xq28 between GRCh38 and T2T-CHM13.
Strand-seq read-coverage profiles over a Xq28 region summarized as binned (bin size: 10 kbp step size: 1 kbp) read counts
represented as bars above (teal; Crick read counts) and below (orange; Watson read counts) the midline. An equal coverage
of Watson and Crick count represents a heterozygous inversion as only one homologue is inverted with respect to the
reference while reads aligned only in Watson orientation represents a homozygous inversion. There is a novel inversion in
sample HG01358 with respect to T2T-CHM13. A horizontal line shows a region where there is a minor allele in GRCh38.

Figure S14: Diverse structural haplotypes at Xq28 region.
Left: An UPGMA tree grouping complete assemblies (n=76) of Xq28 region into structurally similar groups based on their
alignment to T2T-CHM13 (Methods). Superpopulation of origin for each sample is marked by colored dots.
Right: Visualization of alignment directionality (plus - green, minus - orange) of each assembly with respect to T2T-CHM13.
Positions of SD blocks in the Xq28 region are highlighted by vertical dotted lines. Each alignment is plotted with 0.5 level of
transparency such that overlapping alignments are visible as boxes with a darker color or a mixed green and orange color.



Figure S15: Structural differences at 16p12.2 between GRCh38 and T2T-CHM13.
Read-coverage profiles of Strand-seq data for a selected region on chromosome 16 with Strand-seq reads mapped separately
to GRCh38 (left plot) and T2T-CHM13 (right plot) reference. Strand-seq reads are summarized as binned (bin size: 10 kbp,
step size: 1 kbp) read counts represented as bars above (teal; Crick read counts) and below (orange; Watson read counts)
midline. Region with roughly equal coverage of Watson and Crick count represents a heterozygous inversion as only one
homologue is inverted with respect to the reference while region with reads aligned only in Watson orientation represents a
homozygous inversion. Each inverted region is highlighted on chromosome-specific ideogram by a red rectangle.

Figure S16: Diverse structural haplotypes at 15q25.2 region.
From left to right: (i) An UPGMA tree grouping complete assemblies (n=101) of 15q25.2 region into structurally similar
groups based on their alignment to T2T-CHM13 (Methods). Superpopulation of origin for each sample is marked by colored
dots. (ii) Visualization of alignment directionality (plus - green, minus - orange) of each assembly with respect to
T2T-CHM13. (iii) Summary of the total number of base pairs for direct and reverse orientated SD pairs. (iv) Summary of the
fraction of base pairs for direct and reverse orientated SD pairs.



Figure S17: Assembled inversion breakpoints at 15q25.2 and inversion breakpoint mapping.
A) A dotplot showing the alignment directionality (yellow - reverse, green - forward) between HG02257 assembly of
15q25.2 region (x-axis) against T2T-CHM13 reference (y-axis). Reported inversion in T2T-CHM13 coordinates is
highlighted by horizontal dashed lines. The position where one contig ends and another starts is marked by a solid vertical
line. B) Visualization of multiple sequence alignment (MSA) between inversion flanking SDs from direct (T2T-CHM13) and
inverted (HG02257) haplotype. Only paralog specific variants (PSVs) from the proximal (bright green) and distal (dark
yellow) SDs are colored separately. Gaps in the MSA are colored white and alleles not present in the proximal and distal
SDs are shown in black and red, respectively. Vertical solid lines depict detected change points, with numbers showing the
change point position within flanking SDs. We predict that the inversion breakpoints lie between the 59,689 and 64,695 bp
of flanking SDs. Below we zoom into ~5 kbp wide breakpoint region of high homology shown by almost perfect consensus
across inversion flanking SDs.



Figure S18: Example of long-lasting misorientation errors in previous human genome
references.
Here we show a comparison of the FASTA sequences extracted from four misoriented regions (Table S4) across four
versions of human genome reference assembly (from top to bottom: T2T-CHM13v1.1, GRCh38, GRCh37 and GRCh36).
Alignment directionality is highlighted by direct (‘+’, green) and reverse (‘-’, orange) oriented flows between pairs of
FASTA sequences.



SUPPLEMENTAL TABLES (S1-S5):
Table S1: Nonredundant inversion callset reported in this study
Table S2: Putative novel inversions with respect to T2T-CHM13 reference
Table S3: Enrichment of inversion in pericentromeric regions
Table S4: List of minor alleles and resolved orientation errors in GRCh38
Table S5: Novel inversions in HPRC Strand-seq dataset
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