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Abstract 
 

Allele-specific expression, which measures the expression of two alleles of a gene in a diploid 

individual, is a powerful signal to study cis-regulatory effects. Comparing ASE across conditions, or 

differential ASE, can reveal context-specific gene regulation. Recently, single-cell RNA sequencing 

(scRNA-seq) has allowed the measurement of ASE at the resolution of individual cells, but there is a 

lack of statistical methods to analyze such data. We develop DAESC, a statistical method for 

differential ASE analysis across any condition of interest using scRNA-seq data from multiple 

individuals. DAESC includes a baseline model based on beta-binomial regression with random 

effects accounting for multiple cells from the same individual (DAESC-BB), and an extended mixture 

model that incorporates implicit haplotype phasing (DAESC-Mix). We demonstrate through 

simulations that DAESC accurately captures differential ASE effects in a wide range of scenarios. 

Application to scRNA-seq data from 105 induced pluripotent stem cell lines identifies 657 genes that 

are dynamically regulated during endoderm differentiation. A second application identifies several 

genes that are differentially regulated in pancreatic endocrine cells between type 2 diabetes patients 

and controls. In conclusion, DAESC is a powerful method for single-cell differential ASE analysis and 

can facilitate the discovery of context-specific regulatory effects. 
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Introduction 
 

Allele-specific expression (ASE) measures the expression of one parental allele of a gene relative to 

the other in a diploid individual. ASE is a powerful tool to study allelic imbalance caused by cis-

regulatory genetic variation1–3 and epigenetic alterations such as imprinting4. In particular, expression 

quantitative trait loci (eQTL) in or near a gene can cause two alleles to be expressed at different 

levels1,2. Compared to standard eQTL testing, ASE is less susceptible to some confounders including 

environmental and technical conditions. In addition, comparison of ASE across conditions (differential 

ASE or D-ASE) can reveal context-specific cis-regulatory effects. Previous ASE studies found that 

regulatory effects can vary by smoking status, blood pressure medication usage5, stages of CD4+ T 

cell activation6, etc. 

 

ASE has been extensively explored using bulk RNA sequencing, but this cannot capture 

heterogeneity across cell types withing a tissue. Recently, single-cell RNA sequencing (scRNA-seq) 

has enabled the quantification of ASE at the resolution of individual cells7–10 (Figure 1a), often across 

multiple individuals. In this paper, we focus on identifying genes that show differential ASE across 

conditions. Such methods are only beginning to emerge and are currently applicable to a limited set 

of scenarios due to assumptions of the models11,12. scDALI11 uses a beta-binomial mixed-effects 

model to detect differential allelic imbalance across discrete cell types or continuous cell states. 

Another method, airpart12, partitions the data into groups of genes and cells with similar patterns of 

allelic imbalance. Airpart also has a function for differential ASE testing based on a hierarchical 

Bayesian model12.  

 

However, scDALI or airpart is not optimized for analyzing scRNA-seq data of multiple individuals. One 

major challenge that is not addressed is how to align read counts consistently across individuals. In 

the eQTL setting, for example, the eQTL that drives the ASE is not observed. Its expression-

increasing allele can be on the haplotype of either the alternative or the reference allele of the exonic 

SNP where ASE is assessed (eSNP, Figure 1b)5,13,14. As a result, different individuals may have 

opposite allelic imbalance actually representing the same regulatory effect. We refer to this 

phenomenon as “haplotype switching” in the rest of the paper. If not addressed, allelic imbalance will 

cancel each other across individuals, leading to diminished signal. This issue also exists for ASE 

caused by epigenetic factors. Previous cross-individual ASE methods for bulk RNA-seq use a 

majority voting approach, which treats the lower allelic read count as the alternative allele read 
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count5,14. This approach, however, is not applicable to single-cell ASE due to low total read count per 

cell. The scDALI paper avoided this issue with an extra step in the preprocessing, by using phased 

genotype data and pre-identified eQTLs to align read counts11. This approach is not applicable to 

general differential ASE settings where genotypes are not necessarily measured, or if no significant 

eQTL is already identified for the gene. A second challenge arising from scRNA-seq data of multiple 

individuals is the sample repeat structure caused by having multiple cells per individual. This can 

cause false positives if all cells are treated as independent11. scDALI and airpart can account for this 

structure by adjusting donor IDs as fixed-effects covariates11,12. However, this approach is not 

applicable to comparing ASE between groups of individuals, e.g., disease cases vs controls, since 

donor IDs as fixed effects can cause collinearity with the binary variable of disease status.  

 

We develop Differential Allelic Expression using Single-Cell data (DAESC), a statistical framework for 

identifying genes with differential ASE using scRNA-seq data of multiple individuals. DAESC 

accounts for haplotype switching using latent variables and sample repeat structure of single-cell data 

using random effects. Simulations studies show the method has robust type I error and high power for 

differential ASE testing. Applied to single-cell ASE data of 105 individuals10, DAESC identifies 

hundreds of genes with dynamic ASE during endoderm differentiation. A second application to a 

smaller dataset8 identifies 3 genes with differential ASE in pancreatic endocrine cells between type 2 

diabetes (T2D) patients and controls. 

 

Results 
 

Overview of DAESC 

 

DAESC is based on beta-binomial regression model and can be used for differential ASE against any 

independent variable 𝑥!", such as cell types, continuous developmental trajectories, genotype 

(eQTLs), or disease status (Figure 1a). DAESC is comprised of two components (DAESC-BB and 

DAESC-Mix) to be used under different scenarios (Figure 1b). The baseline model DAESC-BB is a 

beta-binomial model with individual-specific random effects (𝑎!) that account for the sample repeat 

structure (Methods), arising from multiple cells measured per individual. DAESC-BB can be used 

generally for differential ASE regardless of sample size. When sample size is reasonably large (e.g. 

N≥20, we introduce a full model DAESC-Mix that accounts for both sample repeat structure and 

implicit haplotype phasing (Methods). For example, when ASE measured at a heterozygous exonic 
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SNP (eSNP) is driven by an eQTL, the expression-increasing allele of the eQTL could be on the 

haplotype of the alternative allele of the eSNP (𝑧! = 1), or the reference allele of the eSNP (𝑧! = −1). 

We account for this possibility using latent variables 𝑧!, which lead to a mixture model (Figure 1b). 

Though it is possible that the true model may have more mixture components especially when the 

gene has multiple eQTLs, we use the two-component mixture model to prevent against overfitting and 

increase computational speed. For both DAESC-BB and DAESC-Mix, parameter estimation is 

conducted using variational EM algorithm (see Methods and Supplementary Notes for details). 

Hypothesis testing for differential ASE (𝐻#:	𝛽$ = 0) is conducted using likelihood ratio test. 

 

Simulation studies 

 

We first conduct simulations from beta-binomial mixture model assuming only one eQTL drives the 

ASE at the eSNP. In the first scenario where we test differential ASE along a continuous variable 

representing cell state (e.g., differentiation stage), we observe that DAESC-BB has well-controlled 

type I error across scenarios (Figure 1c). DAESC-Mix has slight type I error inflation (averaged 8.5% 

across scenarios) but less than a standard GLMM (averaged 10% across scenarios). When there is 

no LD between the eQTL and eSNP (r2=0), we observe a substantial power gain by using DAESC-

Mix compared to DAESC-BB and GLMM. The gain is more pronounced when the sample size is large 

(N=50 or 100). This is likely due to the ability of DAESC-Mix to conduct implicit haplotype phasing. 

When r2=0.1, DAESC-Mix has similar power to GLMM, and both are slightly more powerful than 

DAESC-BB. When the LD between the eQTL and eSNP is strong (r2=0.9), we observe only minimal 

power difference across the three methods. Results from the GTEx Consortium15 show LD r2<0.1 for 

most eQTL-eSNP pairs (Supplementary Figure 1), indicating that for most genes DAESC-Mix is 

likely to lead to improved power. The precision-recall curves show that DAESC-Mix dominates the 

other two methods when r2=0 and 𝑁 ≥ 50 with varying significance thresholds (Figure 1d). In 

addition, the curves for GLMM tend to dip near low recall value, i.e., when the significant threshold is 

stringent. This indicates potential issues with p-value calibration for GLMM. 

 

For differential ASE with respect to binary case-control disease status, we observe mostly similar 

patterns as those in the previous simulation with continuous cell state (Supplementary Figure 2). A 

notable distinction is that all methods have more inflated type I error (~10%) when 𝑁 ≤ 10, and 

GLMM has higher type I error inflation across scenarios. The pseudobulk-based method, EAGLE-PB, 

has similar performance with DAESC-BB except when r2=0.9, where DAESC-BB appears slightly 
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more powerful (Supplementary Figure 2). EAGLE-PB assumes independent samples and is not 

applicable to the continuous-cell-state simulations shown in Figure 1. 

 

Since eQTL studies have found that allelic heterogeneity is widespread16–19, we also investigate the 

performance of the methods when there are multiple eQTLs driving the ASE. Due to the large number 

of scenarios for the LD across multiple eQTLs and the eSNP, here we only investigate the scenario 

where no LD exists among the eQTLs or with the eSNP. Similar to the previous scenario, DAESC-BB 

controls type I error under varying number of eQTLs; DAESC-Mix, though having slightly inflated type 

I error in some settings, is less inflated than GLMM (Figure 2a). This shows that although multiple 

eQTLs introduces extra mixture components into the true model (Methods), it has minimal impact on 

the type I error control. In addition, we observe a substantial power gain by DAESC-Mix compared to 

DAESC-BB or GLMM (Figure 2a), which is more pronounced than when only one eQTL drives ASE 

(Figure 1). This gain exists not only under large sample size, but also under small sample size 

(N=10) despite a smaller margin. In addition, power increases steadily for DAESC-Mix with increasing 

number of eQTLs, showing larger advantage over DAESC-BB and GLMM under allelic heterogeneity 

(Figure 2a). Precision-recall curves show that DAESC-Mix consistently outperforms the other two 

methods across different significance thresholds, with DAESC-BB ranking second (Figure 2b).  

 

When testing differential ASE for binary case-control disease status, DAESC-Mix remains most 

powerful when there are multiple eQTLs per eSNP (Supplementary Figure 3). In fact, DAESC-BB, 

GLMM and EAGLE-PB, which do not conduct implicit phasing, do not appear to have any power to 

detect differential ASE. In contrast to D-ASE along continuous cell state (Figure 2), the power of 

DAESC-Mix changes minimally the number of eQTLs (Supplementary Figure 3). This indicates that 

cell-level variability, which is a special feature of single-cell ASE, could be important for implicit 

phasing. 

 

Dynamic ASE during endoderm differentiation 

 

We apply DAESC-BB, DAESC-Mix and GLMM to single-cell ASE data for 30,474 cells from 105 

individuals collected by Cuomo et al10. In their experiment, induced pluripotent stem cells (iPSCs) 

underwent differentiation for three days into mesendoderm and definitive endoderm cells (Figure 3a). 

To study dynamic regulatory effects along the differentiation trajectory, we conduct differential ASE 

analysis along pseudotime (𝑥!"), which was estimated and provided by the original study (Figure 3b).  
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DAESC-BB identifies 324 dynamic ASE (D-ASE) genes that vary along pseudotime, and DAESC-Mix 

identifies 657 D-ASE genes (FDR<0.05, Figure 3c and Supplementary Table 1). Nearly all genes 

identified by DAESC-BB are also identified by DAESC-Mix (Figure 3d). Since dynamic ASE can be 

driven by dynamic cis-regulatory effects, we use the overlap between our D-ASE genes and dynamic 

eGenes reported by Cuomo et al10 as a validation criterion. Among the genes identified by DAESC-

BB, 35.5% were reported by Cuomo et al, while 27.5% identified by DAESC-Mix were reported 

(Figure 3c). GLMM identifies a large number D-ASE genes (1,995, FDR<0.05), but have low 

validation rate (13.4%), indicating potential type I error inflation. Comparing the same number of top 

genes (smallest p-values) selected by three methods, DAESC-Mix shows higher validation rate than 

DAESC-BB or GLMM across thresholds (Figure 3e). In addition, dynamic ASE genes discovered 

using DAESC-Mix display total expression dynamics similar to those of previously discovered 

dynamic eGenes (Supplementary Figure 4). This shows that DAESC-Mix offers an increase in 

power without biasing discovery toward particular trends in expression or technical factors influencing 

total expression levels. 

 

We further use the phased genotype data to validate the ability of DAESC-Mix to conduct implicit 

haplotype phasing. We conduct the validation on the genes that show suggestive evidence of D-ASE 

by DAESC-Mix (p<0.05) and have at least one eQTL reported by Cuomo et al10. We further restrict to 

179 genes that have significant likelihood ratio test comparing DAESC-Mix to DAESC-BB (p<0.05). 

This restriction in effect selects genes for which DAESC-Mix reports two haplotype combinations (𝑧! =

1 and 𝑧! = −1). Fisher’s exact test shows that for 77 (43%) genes, the mixture labels given by 

DAESC-Mix successfully capture observed haplotype combinations between the gene and the top 

eQTL (p<0.05, Figure 3f). For 39 (22%) genes, mixture labels are not associated with haplotype 

combinations (p>0.5). This could be due to imperfect eQTL calling by the original study, or limitations 

of our method. An example is NMU, for which DAESC-Mix reports highly significant dynamic ASE 

(𝑝 = 	1.93 × 10%&') and captures the haplotype combinations (𝑝(!)*+, = 1.51 × 10%-). We observe that 

allelic fractions move in opposite directions along pseudotime for two clusters of individuals, and 

combining two groups would severely diminish the allelic imbalance (Figure 3g). 

 

Due to its high power and validation rate, and ability to capture haplotype combinations, we choose 

DAESC-Mix as the main method of discovery. 
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Patterns and mechanisms of dynamic ASE 

 

We hypothesize that dynamic ASE during differentiation could be linked to dynamic changes of 

chromatin state. To test this hypothesis, we use the chromatin states learned by ChromHMM20 on the 

Roadmap Epigenomics data21 (see Methods for details). We recode the chromatin states to 0 

(inactive) and 1 (active) based on the criteria described in Methods. For each gene, we compute the 

absolute value of change in chromatin state (0 – inactive, 1 – active) at the transcription start site 

between two endpoints of differentiation: iPSC and definitive endoderm. The D-ASE genes identified 

by DAESC-Mix show an average chromatin state change of 0.132, while the non-D-ASE genes show 

an average change of 0.075 (Figure 4a). This difference is highly significant even after adjusting for 

the read depth of the genes (𝑝 = 3.19 × 10%'). The D-ASE genes identified by DAESC-BB and GLMM 

also show larger change in chromatin state compared to non-D-ASE genes, but the difference is 

smaller (Figure 4a). The patterns persist if we compare the same number of top genes, instead of the 

statistically significant ones, identified by each method (Supplementary Figure 5). In addition, we 

observe significant correlations between the D-ASE effect size (log-OR when pseudotime changes 

from 0 to 1) and the magnitude of change in chromatin state, with DAESC-Mix showing the strongest 

correlation (Figure 4b). Gene-set enrichment analysis found 121 Gene Ontology (GO) biological 

process gene sets enriched in D-ASE genes identified by DAESC-Mix, including those for the 

regulation of mesoderm development and cell development (Supplementary Table 2).  

 

To further study the pattern of dynamic change in ASE, we compute the average allelic fraction for 

iPSCs and definitive endoderms using DAESC-Mix estimates (Methods). We found different genes 

show allelic imbalance at different stages of differentiation (Figure 4c). For example, genes SFRP2 

and NMU have minimal allelic imbalance at the iPSC stage but substantial imbalance at the definitive 

endoderm stage. On the contrary, genes VIM and LEPREL1 only shows allelic imbalance in iPSCs 

but not definitive endoderms. For genes IFITM3, SNHG17 and TRDN the allelic imbalance appears at 

both stages of differentiation but with a different magnitude. Lastly, for genes RAB17 and GATM the 

allelic fraction switches directions across stages, i.e., the highly expressed allele for iPSCs becomes 

the less expressed allele for definitive endoderms. Based on these observations, we classify the 657 

D-ASE genes identified by DAESC-Mix into 6 categories based which differentiation stage shows 

allelic imbalance (Figure 4d). More than half of the genes show stronger allelic imbalance in definitive 

endoderms than iPSCs (51.6% late and increasing, Figure 4d), only 15.8% shows stronger 

imbalance in iPSCs (early and decreasing).  
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Type 2 diabetes and differential ASE in pancreatic islet cells   

 

We obtain the scRNA-seq data from pancreatic islet samples of 4 type 2 diabetes (T2D) patients and 

6 controls8. After preprocessing (Methods), we obtain single-cell ASE data for 2,209 cells of >10 cell 

types (Figure 5a-b). To identify genes potentially dysregulated in T2D patients, we conduct 

differential ASE analysis between cases and controls for four major endocrine cell types: alpha, beta, 

delta, and gamma cells. Due to the small sample size, we use DAESC-BB as the method for 

discovery. We found three genes that show differential ASE between cases and controls (FDR<0.05, 

Figure 5c). Among them, the D-ASE of ARPC1B, SLC37A4 is only found in alpha cells, and the D-

ASE of REEP5 is found in both alpha and beta cells. SLC37A4 and REEP5 show stronger allelic 

imbalance in T2D patients than controls (Figure 5c), indicating regulatory effects that are only 

present in T2D patients. ARPC1B, however, shows stronger allelic imbalance in healthy controls 

(Figure 5c), indicating regulatory effects potentially disabled in T2D patients. 

 

Previous studies indicated potential link between SLC37A4 and T2D. SLC37A4 encodes glucose 6-

phosphate translocase, which transports glucose 6-phosphate from the cytoplasm to the endoplasmic 

reticulum22,23. SNP rs7127212, which is 51.6kb from the TSS of SLC37A4, was reported to be 

associated with the risk of T2D by a previous study24. We did not find strong functional connection 

with T2D for ARPC1B and REEP5 in the existing literature. 

 

Discussion 
 

Differential allele-specific expression is a powerful tool to study context-specific cis-regulatory effects. 

Single-cell RNA-seq has allowed the study of ASE in heterogeneous cell types within a tissue. 

However, there is a lack of statistical tools for single-cell differential ASE analysis. In this paper, we 

describe DAESC, a generic statistical framework for differential ASE detection using scRNA-seq data 

from multiple individuals. The method captures sample repeat structure of multiple cells per individual 

using random effects, and DAESC-Mix further refines differential ASE analysis by incorporating 

implicit haplotype phasing.  Simulation studies show the method has well controlled type I error and 

high power under a wide range of scenarios. Application to single-cell ASE data from an endoderm 

differentiation experiment identifies hundreds of genes that are dynamically regulated during 

differentiation. A second application to single-cell data from pancreatic islets identifies 3 genes with 
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differential ASE between T2D patients and controls in alpha and beta cells, despite the small sample 

size. 

 

Within the DAESC framework, the full model DAESC-Mix is generally more powerful than DAESC-

BB. However, we recommend using DAESC-Mix when the number of individuals is reasonably large 

(e.g., 𝑁 ≥ 20), since the mixture model needs large N to identify different haplotype combinations. 

Indeed, simulation studies show that power gain is more pronounced under large N (Figures 1 and 2, 
Supplementary Figures 2 and 3). When the sample size is small (e.g. 𝑁 ≤ 10), the overall 

performance between DAESC-Mix and DAESC-BB is less distinguishable (see precision-recall 

curves in Figure 1 and Supplementary Figure 2). In that case, we recommend using DAESC-BB 

which has better type I error control. In our first application, the data from endoderm differentiation are 

comprised of 105 individuals and hence DAESC-Mix is chosen. In the second application, the 

pancreatic islet dataset is comprised of only 10 individuals and hence DAESC-BB is chosen. 

 

Note that the two-component mixture model used by DAESC-Mix is a simplifying assumption. When 

the gene has one eQTL, the true model should have an extra component corresponding to the 

individuals of whom the eQTL is homozygous. When the gene has multiple eQTLs, the number of 

mixture components grows exponentially. DAESC-Mix uses a two-component model to prevent 

against overfitting and increase computational speed. Simulation studies show the performance of 

DAESC-Mix remains robust when there are multiple eQTLs (Figure 2 and Supplementary Figure 3). 

This is also due to the limitation of sample size, since the number of individuals in single-cell ASE 

datasets are not enough to robustly fit a mixture model with many components. More complex 

mixture models may become viable as more data are collected. 

 

DAESC has important conceptual and technical differences from scDALI and airpart. First, DAESC is 

designed as a generic tool for differential ASE analysis with respect to any condition, regardless of 

whether the comparison is between cell-types within an individual or across individuals, and 

regardless of whether the condition of interest is continuous or discrete. The random effects that 

account for sample repeat structure is an important component that enables this flexibility. scDALI 

and airpart focus on differential ASE across cell types, not across samples or individuals. They allow 

for adjustment of donor IDs as fixed effects but cannot be used for differential ASE across individual-

level conditions (e.g. disease status). Due to these distinctions, the GLMM fitted by lme4 is more 

comparable to DAESC-BB than scDALI and airpart, and hence used as the main reference method 
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for benchmarking. Second, DAESC-Mix further conducts implicit haplotype phasing to recover allelic 

signals hidden by haplotype switching. Hence DAESC-Mix can be powerful regardless of whether 

genotypes are available or eQTLs have been identified, which is often not the case for case/control 

comparisons. In the scDALI paper11, the application to scRNA-seq data assigned the alternative 

haplotype of the gene based on the alternative allele of the eQTL. This approach is only possible if 

genotype data are available, and there is at least one significant eQTL for the gene. If the gene is 

regulated by multiple weak eQTLs that do not attain genome-wide significance, scDALI does not have 

a mechanism to assign alternative haplotypes. However, DAESC-Mix can still be used and may be 

able to capture the combined effects of multiple eQTLs as shown in the simulations (Figure 2 and 

Supplementary Figure 3). Previous methods for bulk RNA-seq have used a majority voting 

approach for pseudo haplotype phasing5,14,25. However, this approach is not directly applicable to 

single-cell ASE due to multiple cells from each individual and low read depth per cell.  

 

Our method does have some limitations to consider. First, we observe modest type I error inflation for 

DAESC-Mix potentially due to overfitting. However, the inflation seems acceptable given the 

magnitude of power improvement. If provided with enough computational resources, the users can 

choose to conduct permutation tests to further correct type I error. Second, DAESC-Mix is most 

powerful when applied to datasets with a large number of individuals, but such datasets are not 

widely available. For small datasets we recommend using DAESC-BB, which may be conservative 

but has well controlled type I error. In the future, DAESC-Mix could be more widely applied with the 

availability of new technology for large-scale single-cell ASE profiling. Lastly, DAESC is not optimized 

for integrating information across multiple cell types into a unified test. scDALI and airpart both have 

methods for this purpose. A future direction is to combine the strengths of DAESC and scDALI or 

airpart to incorporate sample repeat structure, implicit haplotype phasing and integration of 

information across cell types. 

 

In conclusion, we develop a statistical method, DAESC, for powerful detection of differential ASE 

across a wide variety of conditions. DAESC will be one of the first methods for this purpose and has 

complementary strengths to existing methods. 

 

Methods 
 

DAESC model 
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We describe the DAESC model for differential ASE analysis using scRNA-seq data across multiple 

individuals. For a heterozygous exonic SNP, let 𝑦!" be the alternative allele read count for individual 𝑖 

and cell 𝑗, and 𝑛!" be the total allele-specific read count. Let 𝑥!" be the independent variable, e.g. cell 

types, cell differentiation time, or disease status of the individual. Define 𝒚! = (𝑦!$, … , 𝑦!.!) where 𝐽! is 

the number of cells from individual 𝑖. DAESC is comprised of two components: a baseline beta-

binomial regression model with individual-specific random effects (DAESC-BB), and a full beta-

binomial mixture model that incorporates implicit phasing (DAESC-Mix). 

 

The DAESC-BB model is formulated as follows 

𝑦!"|𝑛!"~𝐵𝐵(𝑛!" , 𝜇!" , 𝜙) 

log H
𝜇!"

1 − 𝜇!"
I = 𝛽# + 𝛽$𝑥!" + 𝑎! 

𝑎! ∼ 𝑁(0, 𝜎/0) 

 

Here 𝐵𝐵(𝑛!" , 𝜇!" , 𝜙) is a beta-binomial distribution with denominator 𝑛!", mean proportion 𝜇!" and 

overdispersion parameter 𝜙. It is equivalent to 𝑦!"|𝑛!"~𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙Q𝑛!" , 𝑝!"R, 𝑝!" ∼ 𝑏𝑒𝑡𝑎 U1!"
2
, $%1!"

2
V 

marginalized over 𝑝!". We model log W 1!"
$%1!"

X as a linear function of 𝑥!". The individual-specific random 

effect 𝑎! accounts for the sample repeat structure introduced by having multiple cells from each 

individual. This model can be used for any differential ASE analysis but may be conservative in some 

scenarios due to unknown causal variants and haplotype information. For example, when the exonic 

SNP is not in strong LD with the causal eQTL, different individuals may exhibit complementary allelic 

fractions which actually reflect the same regulatory effect. Failing to account for this possibility can 

lead to diminished ASE signal when aggregated across individuals. 

 

This issue can be addressed using DAESC-Mix when the sample size (number of individuals) is 

sufficiently large. The model is formulated as follows 

𝑦!"|𝑛!"~𝐵𝐵(𝑛!" , 𝜇!" , 𝜙) 

log H
𝜇!"

1 − 𝜇!"
I = 𝑧!(𝛽# + 𝛽$𝑥!") + 𝑎! 

𝑧! = 2𝛿! − 1, 𝛿! ∼ Bernoulli(𝜋#) 

𝑎! ∼ 𝑁(0, 𝜎/0) 
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This model is an extension of DAESC-BB with the inclusion of an indicator variable 𝑧!. It models the 

scenario where ASE is caused by one regulatory SNP (rSNP). When 𝑧! = 1, the alternative allele of 

the eQTL and the alternative allele of the exonic SNP is on the same haplotype, and the reference 

alleles of the two SNPs are on the same haplotype. When 𝑧! = −1, the alternative allele of the eQTL 

and the reference allele of the exonic SNP is on the same haplotype, and vice versa (Figure 1). 

Though it is possible that the eQTL is homozygous for some individuals, we do not model this 

scenario to protect against overfitting and speed up computation. 

 

Though the models above are described for a heterozygous exonic SNP, it can also be applied to 

gene-level ASE counts generated by aggregating across multiple exonic SNPs. 

 

Model inference by variational EM algorithm 

 

The inference is conducted by variational EM algorithm26. Here we describe the algorithm for DAESC-

Mix. Details of the derivation and the algorithm for DAESC-BB can be found in Supplementary 
Notes. Denote 𝜷 = (𝛽#, 𝛽$)3. We treat 𝑎! and 𝛿! as missing data and the complete data likelihood is 

 

𝑃(𝑦$, 𝑎$, 𝛿$, … , 𝑦4 , 𝑎4 , 𝛿4	|	𝜷, 𝜎/0, 𝜙, 𝜋#)  

 

= ∏ 𝑃(𝑦! , 𝑎! , 𝛿! 	|	𝜷, 𝜎/0, 𝜙, 𝜋#)	!   

∝ ∏ e𝜋#∏
56

#!"$
% 78!",

$&#!"$
% 7:!"%8!";

56
#!"$
% ,

$&#!"$
% ;

	" f!

<!

  

 

× e(1 − 𝜋#)∏
56

#!"'
% 78!",

$&#!"'
% 7:!"%8!";

56
#!"'
% ,

$&#!"'
% ;

	" f
$%<!

(𝜎/0)
%$'exp U− /!

'

0=('
V  

 

Here 𝜇!"$ =
>?@AB)7B$C!"7/!D

$7>?@AB)7B$C!"7/!D
 and 𝜇!"0 =

>?@A%(B)7B$C!")7/!D
$7>?@A%(B)7B$C!")7/!D

. The variational EM iteration goes as 

follows: 

 

In the E-step, we use variational inference27,28 to approximate the posterior distribution 

𝑃(𝑎! , 𝛿! 	|	𝑦! , 𝜷(G), 𝜎/,(G)
0 , 𝜙(G)), where 𝜷(G), 𝜎/,(G)0 , 𝜙(G) are the parameter values at the current iteration. We 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 6, 2022. ; https://doi.org/10.1101/2022.10.06.511215doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511215


 
 

14 

use the mean field approximation 𝑞(𝑎! , 𝛿!) = 𝑞(𝑎!)𝑞(𝛿!) with delta method approximation27. Denote 

the variational distribution by  

𝑞(𝑎!) = 𝑁Q𝑎j!,(G), 𝜎j/!,(G)
0 R,				𝑞(𝛿!) = BernoulliQ𝜋!,(G)R. 

See Supplementary Notes for details of the derivation. 

 

In the M-step, we first update 𝜋# by 𝜋#,(G7$) =
$
4
∑ 𝜋!,(G)!  and update 𝜎/0 by 𝜎/,(G7$)0 = $

4
∑ 𝑎j!,(G)

0 + 𝜎j/!,(G)
0

! . 

Update 𝜷 and 𝜙 by numerical optimization of the following objective function: 

𝑄(𝜷, 𝜙	|	𝜷(G), 𝜙(G)) =m𝐸H(/!,<!){log 𝑃(𝑦! , 𝑎! , 𝛿! 	|	𝜷, 𝜎/,(G)
0 , 𝜙)}

!

. 

Here 𝐸H(/!,<!){⋅} is the expectation under variational distribution 𝑞(𝑎! , 𝛿!). 

 

After the parameter estimation, we test the null hypothesis H0: 𝛽$ = 0 using likelihood ratio test. 

Rejecting this null hypothesis indicates that there is differential ASE with respect to the covariate. 

 

Simulation studies 

 

We conduct simulation studies using total read counts and parameters estimated from a real 

endoderm differentiation dataset10. The dataset is comprised of 4,102 genes and 30,474 cells 

collected from 105 donors. See Methods subsection Single-cell ASE data from endoderm 

differentiation for details of the study. We randomly select 2,400 genes and use the real total allele-

specific read counts as the total allele-specific read counts (𝑛!") in our simulations. This setting 

reflects realistic read depth and number of cells, but does not affect ASE which depends on the 

relative abundance of reference and alternative alleles. We simulate the alternative allele read counts 

assuming that there is only one eQTL driving the ASE 

𝑦!"|𝑛!"~𝐵𝐵(𝑛!" , 𝜇!" , 𝜙) 

log H
𝜇!"

1 − 𝜇!"
I = 𝑧!(𝛽# + 𝛽$𝑥!" + 𝛽$𝜂!) + 𝑎! 

𝑎! ∼ 𝑁(0, 𝜎/0),			𝑧!~categorical([−1,1,0], [𝜋$, 𝜋0, 𝜋I]) 

 

In contrast to the DAESC-Mix model, this simulation model introduces a third possible value of the 

latent variable 𝑧!. Besides two values -1 and 1 which are modeled by DAESC-Mix, the third value 𝑧! =

0 corresponds to the individuals for which the eQTL SNP is homozygous. The haplotype proportions 
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𝜋$, 𝜋0, 𝜋I are simulated based on given LD coefficient (r2) between the eQTL and exonic SNP. We 

vary r2 to 0, 0.1 and 0.9, and simulate 800 genes for each value of r2 including 400 null genes and 

400 non-null genes. The procedure to simulate the mixture probabilities with given r2 is described in 

the Supplementary Notes. 

 

We include two covariates in the simulation to evaluate the performance of DAESC under two types 

of D-ASE. The continuous covariate 𝑥!" is the real pseudotime provided by the original study10; the 

discrete covariate 𝜂! is a simulated sample-level disease status which can take values 0 or 1. A 

randomly chosen half of the individuals are assigned 𝜂! = 0 (control) and the other half are assigned 

𝜂! = 1 (case). 

 

To choose realistic values of other parameters, we apply DAESC-BB to the real data and obtain 

estimates of 𝛽#, 𝛽$, 𝜎/0 and 𝜙. We select the genes with top 500 largest |𝛽$| as potential values of 

parameters for the simulation. For each of the 2,400 genes, we randomly select a set of parameters 

(𝛽#, 𝛽$, 𝜎/0, 𝜙) from the 500 candidate values. For null genes we reset 𝛽$ = 0. The 500 sets of 

candidate values are provided in Supplementary Table 3 distribution of the parameters is visualized 

in Supplementary Figure 6. 

 

We also vary the sample size to N=10, 50, 100. For D-ASE w.r.t. 𝑥!", we randomly sample N 

individuals from the simulated data; for D-ASE w.r.t. 𝜂!, we randomly sample N/2 cases and N/2 

controls. 

 

Simulations with multiple eQTL SNPs per gene 

 

Due to the large number of scenarios for LD among eQTLs and the exonic SNP, we conduct this 

simulation study under a simplified scenario: all the eQTLs are independent from each other and 

independent from the exonic SNP. Similar to the one-eQTL scenario, we simulate the data using 

beta-binomial mixture model. Because the number of mixture components grow with the number of 

eQTLs, we simulate the mixture components indirectly, by simulating the genotypes of the eQTLs. 

The steps are as follows: 

• Randomly choose (𝜎/0, 𝜙) from 500 sets of candidate values (Supplementary Table 3). 

Parameters (𝜎/0, 𝜙) are the same across all mixture components.  
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• Simulate the minor allele frequency (MAF) of 𝑚 eQTLs, from 𝑀𝐴𝐹$, 𝑀𝐴𝐹0, …, 

𝑀𝐴𝐹J~Uniform[0.1,0.5].  

• Simulate the alleles of eQTLs that resides on the haplotype of the reference allele of the 

exonic SNP for N individuals, denoted by 𝑔!K#~𝑏𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑀𝐴𝐹K), 𝑖 = 1,… ,𝑁; 𝑘 = 1,… ,𝑚. 

• Simulate the alleles of eQTLs that resides on the haplotype of the alternative allele of the 

exonic SNP, denoted by 𝑔!K$, 𝑖 = 1,… ,𝑁; 𝑘 = 1,… ,𝑚. 

• Draw 𝑚 pairs of regression coefficients (𝛽#, 𝛽$) from 500 sets of candidate values 

(Supplementary Table 3), denoted by (𝛽$#, 𝛽$$), …, (𝛽J#, 𝛽J$). 

• Compute individual-specific ASE effects size as 𝛽!#LMN = ∑ 𝛽K#(𝑔K$ − 𝑔K#)J
KO$ , 𝛽!$LMN =

∑ 𝛽K$(𝑔!K$ − 𝑔!K#)J
KO$ .  

• Compute 𝜇!" from log W 1!"
$%1!"

X = 𝑧!(𝛽!#LMN + 𝛽!$LMN𝑥!" + 𝛽!$LMN𝜂!) + 𝑎!. For individuals who have the 

same set of 𝑔!K$ − 𝑔𝑖K# (𝑘 = 1,… ,𝑚), 𝛽!#LMN and 𝛽!$LMN are the same and hence the model 

collapses into the beta-binomial mixture model. 

• Generate 𝑦!"~𝐵𝐵(𝑛!" , 𝜇!" , 𝜙). 

 

We vary the number of eQTLs to 𝑚 = 2, 3, 4, 5, 6. 

 

Other methods for comparison 

 

We compare DAESC-BB and DAESC-Mix to two other methods. The first method is generalized 

linear mixed model (GLMM) implemented by the lme4 package in R. The GLMM is formulated as 

follows: 

𝑦!"|𝑛!"~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛!" , 𝑝!") 

log H
𝑝!"

1 − 𝑝!"
I = 𝛽# + 𝛽$𝑥!" + 𝑎! + 𝜖!" 

𝑎! ∼ 𝑁(0, 𝜎/0), 𝜖!" ∼ 𝑁(0, 𝜎P0) 

The R formula is cbind(y,n-y) ~ x + (1|subj) + (1|obs), where subj is the individual ID and obs is the 

unique ID for each cell. Here 𝑎! accounts for sample repeat structure and 𝜖!" accounts for 

overdispersion. 

 

For differential ASE across disease status, we further compare with EAGLE, a method for bulk tissue 

ASE analysis assuming independence across samples. We aggregate cell from each individual into a 
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pseudobulk sample by summing the alternative and total read counts. We then apply EAGLE to test 

for differential ASE using the pseudobulk samples. 

 

Single-cell ASE data from endoderm differentiation 

 

Cuomo et al10 conducted an endoderm differentiation experiment of 125 induced pluripotent stem cell 

(iPSC) lines from the Human Induced Pluripotent Stem Cell initiative (HipSci). Gene expression was 

profiled at 4 differentiation times points using single-cell RNA-seq (Smart-seq2). We obtained SNP-

level allele-specific read counts for 114 donors from (https://zenodo.org/record/3625024#.YnJ-

ivPMKi4), and restrict to 105 individuals for which genotype data are available to us. We remove 

SNPs with low mappability (ENCODE 75-mer mappability < 1), and those with monoallelic expression 

to reduce the effect of potential genotyping error. Monoallelic expression is defined for each SNP in 

each individual by ALT/TOTAL<0.02 or ALT/TOTAL>0.9818, where ALT is the sum of alternative allele 

read counts for all cells from the individual, and TOTAL is the corresponding sum of total allele-

specific read counts.  

 

Aggregating SNP-level ASE counts to gene-level  

 

Since phased genotype data are needed to aggregate SNP-level ASE counts to gene-level ASE 

counts, we impute and phase the genotype data using the Michigan Imputation Server with the 

Haplotype Reference Consortium (HRC) r1.1 data as the reference panel. For each individual and 

each gene, we sum the ASE counts across all SNPs within the exonic regions of the gene for each 

haplotype and obtain two haplotype-specific counts (“hap1” count and “hap2” count). The exonic 

regions are provided by GTEx v729 annotation files (hg19) based on collapsed gene model. After 

removing the genes which have non-zero ASE counts in ≤ 20% of the cells, we obtain ASE counts for 

4,102 genes and 30,474 cells. 

 

For joint analysis across individuals, “alternative” and “reference” haplotypes need to be consistently 

assigned across individuals. In the paper by Cuomo et al10, the haplotype which is on the same 

chromosome as the alternative allele of the eQTL is assigned as the alternative haplotype. However, 

we would like to conduct ASE analysis without calling eQTL first, as is the case in many other studies. 

Therefore, we assign alternative and reference haplotypes based on the exonic SNP which has the 

highest total allele-specific read count across individuals (referred to by “top exonic SNP”), i.e. the 
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haplotype on the same chromosome as the alternative allele of the top exonic SNP is assigned as the 

alternative haplotype. For those individuals for which the top exonic SNP is homozygous, alternative 

and reference haplotypes are assigned randomly. 

 

Comparing DAESC-Mix mixture labels and observed haplotype combinations 

 

Since phased genotype data are available for this study, we can use them to validate the ability of 

DAESC-Mix to capture haplotype combinations. For each gene, we obtain a posterior probability 

(pmix) for each individual to belong to the first group.  We assign the individual to the first group if 

pmix>0.5, or the second group if pmix<0.5. To compare with observed haplotype combinations, we first 

identify the top eQTL reported by Cuomo et al for each of the genes above. The original paper 

identified eQTL for three cell types separately: iPSC, mesendoderms and definitive endoderms. We 

choose the SNP that shows the strongest association p-value in any of the three cell types as the top 

eQTL for the gene. There are three possible observed haplotype combinations: 1) 

alteQTL,altgene|refeQTL,refgene, 2) alteQTL,refgene|refeQTL,altgene, 1) alteQTL,altgene|alteQTL,refgene or 

refeQTL,altgene|refeQTL,refgene. Here refeQTL and alteQTL are the reference and alternative alleles of the top 

eQTL, respectively; refgene and altgene are the reference and alternative haplotypes of the gene, 

respectively. Alleles or haplotypes on same side of “|” are on the same haplotype. We tally the 

number of individuals in two mixture groups vs. three haplotype combinations into a 2 × 3 table 

(Figure 3). Finally, we perform Fisher’s exact test on the 2 × 3 table to test the association between 

mixture clusters and observed haplotype combinations. 

 

Dynamic eGene Clustering 

 

We explore the total expression trends of (1) previously discovered dynamic eGenes by Cuomo et 

al10 and (2) the set of dynamic ASE genes discovered using DAESC-Mix (Supplementary Table 1). 

Pseudotime smoothing was performed as in Cuomo et al10, and spectral clustering was performed on 

pseudotime-smoothed total expression using Pearson correlation as the affinity metric. In order to 

maintain a meaningful comparison with the original analysis, 4 clusters were used for both analyses. 

 

Chromatin state analysis 
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We download the chromatin states learned by ChromHMM20 for the Roadmap Epigenomics Project21 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html). For each gene, we compare 

the chromatin state at the TSS between iPSCs and endoderms. We consider chromatin states ≤ 7	as 

active, including 1_TssA, 2_TssAFlnk, 3_TxFlnk, 4_Tx, 5_TxWk, 6_EnhG, and 7_Enh, and assign 

them value 1 to represent active states in general. The remaining states are considered inactive and 

assigned value 0. Since there are multiple epigenomics for iPSCs (E018-E022, 

https://docs.google.com/spreadsheets/d/1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-

N6gOM/edit#gid=15), we use the average chromatin states (0 to 1) as the chromatin state for iPSC. 

We then compute the absolute difference of chromatin state between iPSC vs. hESC derived 

CD184+ endoderm cultured cells (E011), which we refer to as chromatin state change. 

 

For three D-ASE methods, DAESC-BB, DAESC-Mix and GLMM, we compute the average chromatin 

state change for D-ASE genes (FDR<0.05) and non-D-ASE genes (FDR≥0.05), respectively. There 

are 324 D-ASE genes and 3,778 non-D-ASE genes identified by DAESC-BB, 657 D-ASE genes and 

3,445 non-D-ASE genes identified by DAESC-Mix, and 1,995 D-ASE genes and 2,107 non-D-ASE 

genes identified by GLMM. To test the significance of the difference between D-ASE and non- D-ASE 

genes, we use linear regression adjusting for the total number of allele-specific reads for each gene: 

chromatin state change ~ I(D-ASE) + total read depth of the gene. This adjustment removes the 

effect of total expression, which can be a potential confounder. We also compute the correlation 

between D-ASE effect size (𝛽$) and chromatin state change.  

 

Gene-set enrichment 

 

We conduct gene set enrichment analysis for 657 D-ASE genes identified by DAESC-Mix using 

FUMA GWAS30. We only consider Gene Ontology (GO) biological process pathways31 and use 

protein-coding genes as background. Finally, gene sets with enrichment adjusted p-value <0.05 are 

considered as significantly enriched. 

 

Classification of dynamic ASE genes 

 

We classify the D-ASE genes identified by DAESC-Mix based on the stage of differentiation where 

allelic imbalance occurs. For each D-ASE gene, we first compute the average allelic fraction for 

iPSCs (𝑝!Q)R) and definitive endoderms (𝑝S+(+:ST) estimated by DAESC-Mix as 1/(1 +
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exp(−(𝛽# + 𝛽$𝑡))), where 𝑡 is the average pseudotime of the cell type. See Cuomo et al10 for the 

classification of cell types. Genes are classified into the following categories based on their ASE 

patterns: 

• Increasing: 𝑝S+(+:ST < 𝑝!Q)R < 0.47 or 𝑝S+(+:ST > 𝑝!Q)R > 0.53. 

• Decreasing: 𝑝!Q)R < 𝑝S+(+:ST < 0.47 or 𝑝!Q)R > 𝑝S+(+:ST > 0.53. 

• Late: 	|𝑝!Q)R − 0.5| < 0.03 and �𝑝S+(+:ST − 0.5� > 0.03 

• Early: �𝑝!Q)R − 0.5� > 0.03 and �𝑝S+(+:ST − 0.5� < 0.03 

• Switching: 𝑝!Q)R < 0.47 and 𝑝S+(+:ST > 0.53, or 𝑝S+(+:ST < 0.47 and 𝑝!Q)R > 0.53 

Other genes are classified as unspecified. 

 

Pancreatic islet data 

 

Segerstolpe et al8 collected scRNA-seq data from pancreatic islet samples of 4 type 2 diabetes (T2D) 

patients and 6 controls. Libraries were prepared using Smart-seq2 protocols and sequencing was 

conducted using single-end 43 bp reads. We downloaded raw fastq files from ArrayExpress and 

trimmed the reads with trimmomatic v0.3832. We then aligned the reads to hg19 reference genome 

using STAR 2.7.10a33. We then marked duplicated reads with Picard 2.18. 

 

Before obtaining ASE counts call, we first call genetic variants from scRNA-seq data using GATK 

(4.0.0). We followed the GATK best practices workflow for RNAseq short variant discovery. After 

further preprocessing steps (SplitNCigarReads and base recalibration), we merge the bam files of all 

cells from each individual into a pseudobulk bam file per individual. We then call variants using GATK 

HaplotyperCaller with the 10 pseudobulk bam files as input. We extract biallelic SNPs from the called 

variants. We then obtain single-cell ASE counts using GATK ASEReadCounter. We only retain the 

2,209 cells that passed quality in the original paper8 and discard the rest. 

 

For each individual, we remove SNPs with potential genotyping error. Specifically, we remove SNPs 

with genotyping read depth ≤ 10 and genotyping quality ≤ 15. We further remove the SNPs with 

monoallelic expression, defined by pseudobulk allelic fraction <0.05 or >0.95. The pseudobulk allelic 

fraction is defined as )UJ	T(	/WG+,:/G!X+	/WW+W+	RTU:G)
)UJ	T(	GTG/W	/WW+W+%)Q+R!(!R	RTU:G)	

, where the sums are taken across cells from the 

individual. This step is to further remove genotyping error. 
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To reduce the effect of alignment errors, we remove the SNPs with ENCODE 40-mer mappability <1. 

We then aggregate ASE counts from SNP level to gene level using a pseudo phasing approach used 

by the ASEP paper14. This pseudo phasing approach was performed on four major endocrine cells: 

alpha, beta, gamma and delta cells. We aggregate ASE counts from these four cell types into 

pseudobulk ASE counts. If there are multiple heterozygous exonic SNP within a gene, we sum the 

counts for the expression minor allele (the one with lower allele-specific read count) of all exonic 

SNPs as the alternative haplotype read count for the gene. 

 

For cell-type-specific D-ASE analysis, we only analyzed genes that are available for a reasonably 

large number of cells and individuals. For each gene, we first remove individuals with <3 cells or <5 

reads from the cell type. We drop the gene from D-ASE analysis if there are <50 cells or <2 cases or 

<2 controls remaining. 

 

Data and code availability 
 

The DAESC R package and other analysis scripts is available on github: 

https://github.com/gqi/DAESC. The ASE data from endoderm differentiation is available on 

https://zenodo.org/record/3625024#.YnJ-ivPMKi4. Other HipSci data are available on 

https://www.hipsci.org/. The pancreatic islet data are available on ArrayExpress via accession 

number E-MTAB-5061. 

 

URLs 
 

HipSci: https://www.hipsci.org/ 

ArrayExpress: https://www.ebi.ac.uk/arrayexpress/ 

ENCODE mappability: https://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeMapability 

Trimmomatic: http://www.usadellab.org/cms/?page=trimmomatic 

STAR: https://github.com/alexdobin/STAR 

Picard: https://broadinstitute.github.io/picard/ 

GATK: https://gatk.broadinstitute.org/hc/en-us 

GATK Best Practices Workflows: https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-

Best-Practices-Workflows 
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Figures  
 
 
 
 

 
Figure 1. Schematic of DAESC and simulation studies. A) Schematic of allele-
specific expression (ASE) measured in bulk tissue and single cells, and three types of 
differential ASE analysis. Pie charts represent the relative expression of two alleles. b) 
DAESC models. DAESC accounts for sample repeat structure (multiple cells per 
sample) using random effects 𝑎! and implicit haplotype phasing using latent variables 𝑧!. 
c) From simulations, type I error and power under significance threshold p<0.05 and d) 
precision-recall curves for differential ASE detection along a continuous variable 
observed in simulations. Allele-specific read counts are simulated from beta-binomial 
mixture model assuming only one eQTL drives ASE at an exonic SNP. The linkage 
disequilibrium between the eQTL and the exonic SNP is varied to 𝑟" = 0, 0.1, 0.9, and 
the sample size (number of individuals) is varied to N=10, 50, 100. 
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Figure 2. Simulation studies with multiple eQTL SNPs per gene. A) Type I error and 
power and b) precision-recall curves for differential ASE detection along a continuous 
variable observed in simulations. Allele-specific read counts are simulated from beta-
binomial mixture model assuming multiple eQTLs drives ASE of an exonic SNP. We 
assume no linkage disequilibrium among the eQTLs and exonic SNP. The sample size 
(number of individuals) is varied N=10, 50, 100. 
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Figure 3. Dynamic ASE during endoderm differentiation. UMAP plot colored by a) 
cell type and b) pseudotime. Cell types include induced pluripotent stem cells (iPSCs), 
mesendoderm cells (mesendo) and definitive endoderm cells (defendo). c) Proportion of 
dynamic ASE (D-ASE) genes identified by three methods that were also dynamic 
eGenes reported by Cuomo et al. Number of D-ASE genes identified by each method 
are annotated in the parentheses. d) Number of D-ASE genes identified by DAESC-Mix 
but not DAESC-BB (first bar), both methods (second bar), and DAESC-BB but not 
DAESC-Mix. e) Proportion of dynamic eGenes reported by Cuomo et al among varying 
number of top D-ASE genes identified by three methods. f) Fisher’s exact test p-values 
testing whether DAESC-Mix cluster labels capture haplotype information between the 
top exonic SNP and top eQTL reported by Cuomo et al. Schematics of three haplotype 
combinations are used as column names of the example 2 × 3 table (from left to right: 
het1, het2, homo). Green and blue circles are the reference (ref) and alternative (alt) 
alleles of the eQTL, respectively; red and pink rectangles are the alt and ref for the 
exonic SNP, respectively. g) An example (NMU gene) of mixture clusters capturing 
haplotype information. Alt: alternative allele read count; total: total allele-specific read 
count. 
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Figure 4. Patterns and mechanisms of dynamic ASE genes during endoderm 
differentiation.  a) Average change of chromatin state at transcription start site from 
iPSC to definitive endoderm cells for D-ASE genes (Y) and non-D-ASE genes (Y). At 
FDR<0.05, the number of D-ASE genes (Y) is 324 for DAESC-BB, 657 for DAESC-Mix, 
and 1,995 for GLMM. For each method, the genes that do not reach FDR<0.05 are 
considered non-D-ASE genes (see Methods for details). Chromatin states are from 
ChromHMM analysis of the Roadmap Epigenomics data and recoded to 0 (inactive) or 
1 (active). D is the difference between D-ASE and non-D-ASE genes, and p-values are 
calculated using linear regression: chromatin state change ~ Y/N + total read depth of 
the gene. b) Correlation between D-ASE effect size (𝛽#) and change in chromatin state. 
Error bars represent 95% confidence intervals. c) Top 30 genes identified by DAESC-
Mix (smallest p-values) and average allelic ratio of iPSCs vs definitive endoderm cells 
estimated by DAESC-Mix, computed as 1/(1 + exp(−(𝛽$ + 𝛽#𝑡))) where 𝑡 is the 
average pseudotime of the cell type. d) Types of D-ASE genes and their proportions. 
See Methods for details. 
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Figure 5. Differential ASE between type 2 diabetes patients and controls in 
pancreatic endocrine cells. UMAP colored by a) cell type b) disease status. c) Three 
D-ASE genes in two cell types identified by DAESC-BB and distribution of allelic fraction 
in each individual donor. Alt: alternative allele read count; total: total allele-specific read 
count. 
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