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Abstract 24 

The immediate and delayed effects of density are key in determining 25 

population dynamics, since they can positively or negatively affect 26 

the fitness of individuals. These effects have great relevance for 27 

polyphagous insects for which immature stages develop within a 28 

single site of finite feeding resources. Drosophila suzukii is a crop 29 

pest that induces severe economic losses for agricultural production, 30 

however little is known about the effects of density on its life-history 31 

traits. In the present study, we (i) investigated the egg distribution 32 

resulting from females’ egg-laying strategy and (ii) tested the 33 

immediate and delayed effects of larval density on emergence rate, 34 

development time, sex ratio of offspring, fecundity and adult size (a 35 

range of 1 to 50 larvae was used). We showed that most of fruits 36 

contain several eggs and aggregate of eggs of high density can be 37 

found in some fruits. This high density has no immediate effects on 38 

the emergence rate, but has effect on larval developmental time. 39 

This trait was involved in a trade-off with adult life-history traits: 40 

the larval development was reduced as larval density increased, but 41 

smaller and less fertile adults were produced. Our results should 42 

help to better understand the population dynamics of this species and 43 

to develop more successful control programs. 44 

 45 

Keywords: Density, Drosophila, Life-history traits, Trade-off.  46 
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Introduction  47 

Density-dependence is a key driver of demographic parameters 48 

(Hixon & Johnson, 2009). It may have positive or negative effects 49 

on a population growth rate (Mueller, 1997). These effects can 50 

participate in the early stages of the invasion process by establishing 51 

minimum population sizes that, when exceeded, promote the spread 52 

of pests (Fagan et al., 2002). Among these invasive, pest or 53 

biocontrol auxiliaries species, many are insects (Ferguson & Joly, 54 

2002; Pickens, 2007). Density-dependent effects are therefore 55 

common features that define invasive or pest population dynamics’ 56 

as well as the success of biocontrol programs.  57 

 58 

Density-dependent effects on demographic parameters emerge from 59 

the combination of effects occurring at lower levels of biological 60 

organization (Mueller, 1997; Ponton & Morimoto, 2020). Effects 61 

observed at the individual level can be classified into immediate and 62 

delayed effects. Immediate effects typically occur at immature 63 

stages and are associated with resource acquisition (Dethier, 1959; 64 

Putman, 1977). For many insect species, nutritional resources may 65 

be in limited quantity when females lay their eggs in a finite volume 66 

of food such as fruits or seeds, and when the whole immature 67 

development occurs in a given seed/fruit. Therefore, female 68 

oviposition strategies affect early developmental conditions and 69 
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thus larval fate as well as adult traits (Nestel et al., 2016). Delayed 70 

effects are the result of trade-offs that emerge in response to density-71 

dependence conditions during development and that are expressed 72 

at later life stages (Agnew et al., 2002). Both immediate and delayed 73 

effects can positively or negatively affect individual fitness (Peters, 74 

2003) by altering life-history traits and promoting trade-offs (Parker 75 

& Gilbert, 2018). For example, in the lepidoptera Sesamia 76 

nonagriodes, the high density experienced during the larval stages 77 

does not affect the mortality of juveniles, but extends larval 78 

development, and results in reduced pupal weight (Fantinou et al., 79 

2008). In this species, adult fitness is also affected with reduced 80 

fecundity and longevity of females reared in high larval densities. In 81 

general, individuals that develop in low density environments are 82 

predicted to have an advantage in later life due to expecting low 83 

levels of competition for resources (the "silver spoon" effect; Angell 84 

et al., 2020; Grafen, 1988). For example, in the speckled wood 85 

butterfly, Pararge aegeria, larvae reared at low densities have 86 

higher survival rate, shorter development times and result in bigger 87 

adults compared to larvae reared at high densities (Gibbs et al., 88 

2004). Nevertheless, high density may also be beneficial, for 89 

example when individuals express a greater performance in defense 90 

against predators (Aukema & Raffa, 2004), in cooperative feeding 91 
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(Denno and Benrey 1997), or when beneficial horizontally 92 

transmitting microbiota are present (Correa et al., 2018).  93 

 94 

These examples highlight the need to study both the immediate and 95 

delayed effects of density to understand and predict population 96 

dynamics, especially for pest species, in order to more efficiently 97 

manage and control their populations (Alkema et al., 2019). In this 98 

study, we focus on Drosophila suzukii, a pest of many berry and 99 

stone fruit crops in Asia, Europe and America (Dos Santos et al., 100 

2017; Lee et al., 2011). Females possess a serrated ovipositor 101 

(Atallah et al., 2014) that allow them to lay eggs in healthy fruits 102 

without any wounds, unlike most other Drosophilidae that oviposite 103 

on ripe or damaged fruits (Mitsui et al., 2006). This polyphagous fly 104 

thus induces severe economic losses for agricultural production 105 

(Knapp et al., 2021). Despite its main agricultural impacts, the 106 

immediate and delayed effects of density on life-history traits have 107 

not been deeply investigated in this species. Few publications 108 

indicate that at high larval densities, the weight (Kienzle et al., 2020) 109 

and survival (Wang et al., 2019) of adults decrease. A high density 110 

can also alter the chemical composition and microbial diversity of 111 

the food medium in which larvae developed due to foraging and 112 

excretion of conspecifics (Henry et al., 2020).  113 

 114 
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In the present study, we aimed at characterizing the immediate and 115 

delayed effects of larval density on major life history traits of D. 116 

suzukii. To fulfil this objective, we first investigated how females 117 

distribute their eggs in fruits in order to establish a relevant range of 118 

larval density per fruit to test the effect of larval densities on larval 119 

and imaginal life-history traits. Densities ranging from 1 to 50 larvae 120 

were thus tested in two resource volumes mimicking two sizes of 121 

fruit. Due to the absence of relevant literature, we had two opposite 122 

predictions: high densities have positive effects due to feeding 123 

facilitation or negative effects on life-history traits due to larval 124 

competition. Likewise, we expected that, according to the larval 125 

density and the volume of food resource, developmental time, adult 126 

emergence rate, sex ratio of offspring, fecundity and adult size, 127 

should change. Finally, we also tested whether the microbial 128 

diversity and colony counts changed with the larval density.  129 

 130 

Materials and methods 131 

Drosophila suzukii line and rearing conditions 132 

We used a Wolbachia-free line of D. suzukii originated from the 133 

Agricultural Entomology Unit of the Edmund Mach Foundation in 134 

San Michele All’Adige, Trento Province, Italy (Nikolouli et al., 135 

2020). Before and after the experiments, the absence of Wolbachia 136 

was checked by PCR (see TableS1 for protocol). The flies were 137 
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reared on a cornmeal diet containing: 0.9% agar, 5% sugar, 3.3% 138 

cornmeal, 1.7% dried yeast, 0.4% nipagine, and maintained in an 139 

incubator at constant temperature (22.5 °C) and humidity (60%) 140 

with a 12-hours light/dark cycle.  141 

 142 

Oviposition assays 143 

Egg-laying behaviour was observed on blueberries. In a plexiglass 144 

box (23.8 x 17.8 x 2 cm), 3 groups of two blueberries (from organic 145 

farm) were placed using double-sided tape at equal distance from 146 

each other (FigureS1). A piece of sugar agar medium was placed in 147 

the center of the box to ensure the nutrition of the flies and 148 

hydration. In each box, one 7 days-old mated female was placed for 149 

18h (32 replicates were done) and then the number of eggs per fruit 150 

was counted under a binocular loupe. 151 

 152 

Experimental protocol for immediate and delayed effects of larvae 153 

density on life-history traits 154 

Effect of larval density was tested using 1, 5, 10, 20 and 50 larvae 155 

and two volumes of medium, 2 or 5mL, in 25mL tubes (Eppendorf® 156 

Conical Tubes). For each of these 10 combinations of modalities, at 157 

least 8 replicates were performed (Figure1). The larval development 158 

conditions were standardized by allowing mated females at least one 159 

week old to oviposit for 24h. After egg hatching, larvae of the first 160 

stage (L1) were collected and then randomly assigned to one of the 161 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 7, 2022. ; https://doi.org/10.1101/2022.10.06.511120doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.06.511120
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

ten experimental modalities. The experiments were conducted in 162 

two temporal blocks.  163 

 164 

Several larval and adult life history traits were measured:  165 

 166 

Preimaginal developmental time and adult emergence rate: 167 

Tubes were checked twice a day in order to detect adult 168 

emergencies. For each tube, the emergence rate was calculated by 169 

comparing the number of adult flies with the number of larvae sown. 170 

Developmental time was estimated for each individual between L1 171 

and adult stages.  172 

 173 

Potential fecundity: 174 

Potential fecundity was assessed on 3-days-old emerging females by 175 

dissection of their abdomen in PBS. To put them sleep, females were 176 

first placed for at least 30 min in the freezer. The number of mature 177 

eggs was counted in the two ovaries (20 females per modality) with 178 

a binocular loupe as described in Plantamp et al. (2017). 179 

 180 

Wing length and width: 181 

Prior to dissection, the right wing of females, a classical proxy of 182 

the adults’ size in Drosophila (David et al., 1994), was taken and 183 

placed on a microscope slide. Coverslips were sealed using nail 184 
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polish. Images of the wings were acquired using the AxioVisio 4.8 185 

software on a Zeiss Imager.Z1. microscope. Two measures were 186 

performed (see FigureS2) on 20 females per modality: the length 187 

corresponds to the distance between the tip of the wing, and the R4+5 188 

vein, and width to the distance between the R2+3 and the CuA1 veins 189 

(https://commons.wikimedia.org/wiki/File:Drosophilidae_wing_ve190 

ins-1.svg).  191 

  192 
Diversity and quantity of microorganisms 193 

In order to test whether the larval density (and thus feeding and 194 

excretion) changes the diversity of bacteria in the food medium, we 195 

inoculated medium from the vials where the larvae developed in. 196 

Using an inoculation loop, around 10µL of food medium were 197 

sampled under sterile conditions and diluted in 100µL of ultrapure 198 

water. These mixtures were then streaked on two solid growth 199 

media, LB (Lysogeny Broth amended with 5% Agar) and TSA 200 

(Tryptone Soy Agar), in 90 mm Petri dishes (8 boxes per modality 201 

and per medium, i.e. 160 Petri dishes in total). After sealing with 202 

parafilm to limit drought and cross-contaminations, the Petri dishes 203 

were incubated aerobically for 7 days at 37 °C in the dark. The 204 

counts were realized on ¼ randomly chosen part of the Petri dishes 205 

at the end of the incubation. Control Petri dishes were incubated to 206 

evaluate potential contamination during incubation. All controls 207 

remained blank until the end of the experiment.   208 
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 209 
Statistical analysis 210 

To test whether, after 18h of oviposition period, the distribution of 211 

eggs laid by a female was aggregated or random, we fitted different 212 

theoretical distributions (GLMs with Poisson, negative binomial 213 

(NB) distributions, and zero-inflated negative binomial (ZINB) 214 

distributions, with log and logit link, respectively) to the number of 215 

eggs deposited per fruit, and to the number of fruits infested per 216 

female. NB and ZINB are usually used to fit aggregated 217 

distributions. ZINB is used for overdispersed count variables, 218 

allowing to model data with excessive zeros. The AIC values were 219 

used to compare the different fitted models.  220 

We tested whether there was a differential oviposition rate between 221 

females with two mixed generalized linear models (GLMM) 222 

adjusted with a Poisson distribution. For each GLMM, the total 223 

number of eggs and the number of infected blueberries were the 224 

dependent variables, respectively, while the box was the 225 

independent variable. In both models, the date was included as a 226 

random factor.  227 

The effects of larval density on emergence rate (i.e. the total number 228 

of emerging adults per tube) were analyzed with a GLMM (binomial 229 

distribution, logit link). We included the volume, the density and the 230 

sex of the individuals as independent variables, as well as all the 231 

double interaction, and the block as a random factor.  232 
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The effects of larval density on the number of microbial colonies per 233 

medium plate were analyzed by the means of a GLMM (Poisson 234 

distribution, log link). We also included the volume and the growth 235 

medium as independent variables, as well as all the double 236 

interactions; the tube where the aliquot was taken was included as a 237 

random factor. A Tukey test was used for comparisons between 238 

treatments.  239 

To test the effect of density and volume on life-history traits, four 240 

different GLMs were performed. Because of the unbalanced 241 

designs, we performed type-III analysis of variance (Shaw & 242 

Mitchell-Olds, 1993) for each of these models. Development time, 243 

fecundity and size of the wings (length and width) were used as 244 

dependent variables, while volume, density and block corresponded 245 

to the independent variables. In the case of development time, the 246 

sex of the emerging individuals was also used as an independent 247 

variable. We compared treatments using the post-hoc Least 248 

Significant Difference (LSD) test with Benjamini-Hochberg (1995) 249 

procedure, whereby a separate analysis for each treatment and 250 

corresponding interactions are obtained (Engqvist, 2005). In the 251 

case of density, the control was 1 larva. Pairwise Spearman 252 

correlation was calculated between wings’ length and wings’ width. 253 

All analyses were performed in R version 4.0.2 (Team, 2020) with 254 
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the “emmeans” (Lenth & Lenth, 2018), “multcompView” (Graves 255 

et al., 2015) and “car” (Fox & Weisberg, 2019) packages.  256 

 257 

Results  258 

Oviposition assays 259 

The objective of this first experiment was to have an estimation of 260 

the range of larval density per fruit. Globally, 44.27% of the 261 

blueberries were infested (per box 2.65±1.75). The number of eggs 262 

per infested fruit varied from 1 to 11 (1.34±0.4). 31.77% of females 263 

oviposited more than one egg per fruit.  264 

ZINB turned out to be the best model to explain the distribution of 265 

the number of eggs per fruit (TableS2), showing that the distribution 266 

of eggs was in aggregates with an extra number of non-infested 267 

fruits than expected under classical negative binomial distribution 268 

(z=6.47, p<0.001; FigureS3). No significant differences (χ2
1=2.887, 269 

p=0.089) between females were found in the number of eggs 270 

deposited per box (1 to 24 eggs, 8.03±6.34). We draw the same 271 

conclusion for the number of blueberries infected per box 272 

(χ2
1=2.155, p=0.142).  273 

 274 

Immediate effects of larval density 275 

Effect of larval density and resource volume on adult emergence  276 
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The average emergence rate was 0.59±0.06. Neither larval density 277 

nor the volume of food affected emergence rate (χ2
1=0.277, 278 

p=0.598; χ2
1=2.444, p=0.118 respectively; Figure2A and 279 

FigureS4A), and there was no significant interaction between these 280 

two variables (χ2
1=3.198, p=0.073). Fly emergence did not vary 281 

with the sex of the emergent individuals (χ2
1=0.167, p=0.682), and 282 

we did not detect interactions between sex and density (χ2
1=1.992, 283 

p=0.158) or between sex and volume (χ2
1=0.441, p=0.506). 284 

 285 

Effect of larval density and resource volume on larval development 286 

time 287 

The larval development time was affected by volume of resource 288 

available for larval feeding (F1,940=50.632, p<0.001), density 289 

(F4,940=32.437, p<0.001), sex (F1,940=47.53, p<0.001) and block 290 

(F1,940=82.843, p<0.001; TableS3). In general, individuals that have 291 

grown in the lowest larval density (i.e. 1 larva) took more days 292 

(0.83±0.21) to develop compared to the other densities (Figure2B). 293 

Also, the emerging females took more days to develop than males 294 

(mean difference=0.45±0.03; FigureS6). The interaction between 295 

volume and block (F1,940=37.803, p<0.001; TableS4) and density 296 

and block (F4,940=10.778, p<0.001; TableS5) were significant. The 297 

individuals raised in the block1 took longer time to develop than 298 

individuals tested in block2 in both resource volume (FigureS5B). 299 
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The same pattern was observed in the interaction with density, 300 

excepted for density 50 where developmental times were the same 301 

for the two blocks (TableS6, FigureS4B). 302 

 303 

Effect of larval density and resource volume on microbial diversity 304 

and colony counts 305 

Whatever the larval density and the volume of resources, all 306 

colonies harbored an identical morphology, suggesting a limited 307 

diversity in all modalities (FigureS7).  308 

However, the colony counts differed with a significant interaction 309 

between larval density and the bacterial growth medium 310 

(χ2
4=112.858, p<0.001; TableS7, FigureS8). The number of 311 

colonies (174.23±140.07) increased with the density of larvae 312 

(TableS8, Figure3), and globally colonies were more numerous in 313 

the LB medium as compared to the TSA medium (TableS8, S9). 314 

Likewise, the interaction between the volume of food and the 315 

growth medium was significant (χ2
1=21.323, p<0.001), mainly due 316 

to a fewer number of colonies grown on TSA medium compared to 317 

LB medium in samples from 2 mL of resources.  318 

 319 

Delayed effects of larval density 320 

Effect of larval density and resource volume on female fecundity 321 
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Females developed in low density laid more eggs (7.91±4.62) 322 

compared to those raised at high densities (5.41±4.31). Both, larval 323 

density (F4,241=4.246, p<0.01; Figure2C) and volume of resources 324 

(F1,241=27.493, p<0.001) have an impact on fecundity. However, 325 

there were differences between blocks (F1,241=4.525, p<0.05; 326 

TableS10; FigureS4C) with a significant interaction (F4,241=2.868, 327 

p<0.05; TableS11): at density 5, the individuals that developed in 328 

block 2 had more eggs than those that developed in block 1 (z=-329 

3.339, p<0.001; TableS12, FigureS4C).  330 

 331 

Effect of larval density and resource volume on wing length and 332 

width 333 

As the length and the width of the wings were positively correlated 334 

(Spearman’s r255=0.84, p<0.001, FigureS9), we presented only 335 

results of the length (FigureS10 and see sup mat for width TableS17-336 

TS20). Globally, individuals that have developed with few larvae 337 

have a wider wing length than the other ones (F4,241=31.408, 338 

p<0.001). However, there is a significant interaction between larval 339 

density and resource volume (F4,241=4.756, p<0.01; TableS13, 340 

TableS14, Figure2D) which is mainly due to the differences at 341 

density 50: the individuals that had grown in 2 mL emerged with the 342 

smallest wings which is the contrary at the other larvae densities 343 

(z=-4.17, p<0.0001; TableS15). The interaction between volume 344 
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and block was also significant (F1,241=26.586, p<0.001; TableS16, 345 

FigureS5D), but there were no differences between the blocks 346 

(F4,241=0.256, p=0.61).  347 

 348 

Discussion 349 

Our study gives insights into the range of eggs or larvae that can be 350 

found in fruits infested by D. suzukii, and the potential effects of the 351 

larval density on major life-history traits of this pest and their related 352 

trade-offs.  353 

 354 

In phytophagous species, for which immature develop within a finite 355 

volume of resources (e.g. fruits or seeds), mothers’ oviposition 356 

strategy determines the fate of offspring and their fitness (Doak et 357 

al., 2006). Our results showed that the oviposition strategy of D. 358 

suzukii females results in an aggregative distribution of eggs in 359 

fruits: until 11 eggs have been laid by one female in the same 360 

blueberry, with an average of more than 2.5 eggs per infested fruit. 361 

This suggests that, in conditions where fruits could be limiting (for 362 

instance in the beginning of the fruit season or in greenhouses 363 

cultures), high densities of immature in a given fruit is likely. It is 364 

surprising, that for this major pest species, the density of larvae per 365 

fruit in the field is still unknown. Only indirect measures are 366 

available (Elsensohn et al., 2021) and confirm the possibility of high 367 
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larval density per fruit (e.g. per berry 4.2±1.3 in raspberries (Burrack 368 

et al., 2013) and 2.6±0.8 in mulberries (Yu et al., 2013)). However, 369 

our results are not informative about the oviposition strategy sensu 370 

stricto (i.e. choice of fruits, number of eggs laid at each oviposition 371 

bout, sequence of eggs deposition). Indeed, as shown by Desouhant 372 

et al. (1998) (on the chestnut weevils, Curculio elephas), different 373 

oviposition strategies (random, aggregate or uniform) can lead to 374 

aggregated distributions of eggs. However, our results strongly 375 

suggest that, at least in our lab conditions (i.e. few available fruits), 376 

a D. suzukii female does not avoid fruits already containing its own 377 

eggs.  378 

 379 

Usually larval density affects immediately lifespan and other fitness 380 

traits such as development time like in D. melanogaster (Horváth & 381 

Kalinka, 2016). Here, we observed contrasted effects of density on 382 

larval life history traits. We did not find any change in preimaginal 383 

survival (from L1 to adult emergence) between densities or between 384 

sexes. This conclusion is valid regardless of the resource volume 385 

(mimicking two sizes of fruits) while we expected an increase of 386 

negative density dependent effects in the small resource volume. In 387 

contrast, the larval development time of flies was negatively 388 

affected when density increased: D. suzukii larvae raised in high 389 

densities developed faster. Two mutually non-exclusive hypotheses 390 
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could explain this result. First, a shorter developmental time could 391 

result from facilitation effect. The food medium is more intensively 392 

digested, allowing an increase in food intake rate that results in a 393 

reduction of the developmental time. Feeding facilitation and short 394 

development has been documented in the Queensland fruit fly 395 

Bactrocera tryoni (Morimoto et al., 2018). Second, a faster 396 

development could allow escaping competition and avoid mortality 397 

driven by the risk of running out of resources before metamorphosis, 398 

as shown in the dung fly Scathophaga stercoraria (Blanckenhorn, 399 

1999). However, in our experiments, larvae reared in the smallest 400 

volume of food (2 mL, i.e. the highest competition intensity) took 401 

more days to reach adult stage than those reared in 5 mL, regardless 402 

of larval density. This clearly means that, when facing to a greater 403 

intra-specific competition intensity (due to a reduction of available 404 

resource), the larvae strategy is to compensate for reduced nutrient 405 

intake by increasing their development time. Several species of 406 

phytophagous insects display this strategy with an extension of the 407 

larval period, potentially allowing through an extension of the 408 

feeding time to reach a size threshold compatible with 409 

metamorphosis and viable physiological conditions (Yang et al., 410 

2015). This developmental plasticity (Mackay, 2001) is expected to 411 

be selected for when immature have no opportunity to find food 412 

resource outside the oviposition site chosen by their mother, such as 413 
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in D. suzukii. A similar pattern was observed in the tropical butterfly 414 

Bicyclus anynana. Its larval development time was also reduced 415 

when the larvae were reared at high densities, but the development 416 

time was prolonged when experiencing food stress, suggesting more 417 

time available for feeding (Bauerfeind & Fischer, 2005). At last, we 418 

showed that males emerged before females, but the sex ratio was not 419 

affected. The sex-specific differences in development time, where 420 

females take more days to reach the adult stage, may be associated 421 

with maximizing the number of matings for males (protandry) 422 

(Teder et al., 2021). In addition, a longer timing of maturation would 423 

allow females to reach a bigger size, which entails an advantage in 424 

their fecundity (Honěk, 1993; Teder et al., 2021).  425 

 426 

Larval density also had an immediate effect on the bacterial 427 

community of the larval food medium: though apparent diversity did 428 

not change, the number of bacterial colonies increased with the 429 

larval density, without any negative effect on the preimaginal 430 

survival. Moreover, as we did not observe any changes in bacterial 431 

morphotypes according to the different larval densities tested, a 432 

confounding effect due to the appearance of another bacterial type 433 

is not to be considered. This indicates that the changes in life traits 434 

observed are indeed due to the density. A complete picture of the 435 

potential interactions between density effects and the emergence of 436 
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different bacterial or fungal types, as would occur in natural 437 

conditions, would require complementary experiments and more 438 

discriminating approaches (e.g. using molecular affiliations). They 439 

would also permit to test the susceptibility of insects to bacteria in 440 

their environment.  441 

 442 

Density effects detected on immature stages had also consequences 443 

on the adult life-history traits. One of the most remarkable effects of 444 

crowding during larval development is the decline of female 445 

fecundity. In our study, the females that experienced high larval 446 

densities had a lower number of mature eggs present in their 447 

ovarioles. This negative impact is observed in numerous species (see 448 

Vamosi & Lesack, 2007). As observed in other species (e.g. in C. 449 

vomitoria, (Ireland & Turner, 2006); and in B. tryoni, (Morimoto et 450 

al., 2019)), in D. suzukii, the decrease in the number of eggs 451 

produced is positively correlated to a reduction of the wing size, a 452 

proxy of body size (Sokoloff, 1966). Our study also corroborates 453 

that body size is an important determinant of female fecundity (see 454 

also Honěk, 1993; Leather, 2018).   455 

 456 

The results presented above showed a phenotypic trade-off between 457 

larval and adult life-history traits. High larval density led immature 458 

to develop faster as the expense of adults’ size and fecundity. 459 
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Throughout the genus Drosophila, this trade-off between juvenile 460 

developmental rate and adult viability is described (Prasad et al., 461 

2000). For example, D. melanogaster has an antagonistic pleiotropy 462 

between developmental rate and early- and late-life survival 463 

(Chippindale et al., 2004). We assume that, at high density, female 464 

fitness is negatively affected by a reduction in flight ability and thus 465 

in the search for suitable oviposition sites, as well as by the risk of 466 

becoming egg-limited due to reduced egg load (Rosenheim, 2011). 467 

This reasoning implies a negative correlation between size and 468 

reproductive success in the field that is not always proven (Ellers et 469 

al., 1998; West et al., 1996). In addition, an estimate of the impact 470 

of larval density on adult longevity would be relevant to an accurate 471 

estimation of density dependent effects on fitness.  472 

 473 

Conclusion 474 

The females of D. suzukii laid their eggs in an aggregate distribution 475 

which promotes crowding of the larvae. Contrary to expectations, 476 

preimaginal survival to adult emergence was not affected. However, 477 

larval development time shortened as density increased and 478 

resources became more limited. Furthermore, rearing at high larval 479 

densities negatively affected the fitness of adults which were smaller 480 

and had reduced fecundity. Our results support the existence of 481 

trade-off between larvae and adult life-history traits. A greater 482 
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understanding of the effect of density on the population dynamics of 483 

this pest may result in more successful alternative control measures. 484 
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 734 

Figure1. Experimental protocol for testing immediate and delayed 735 

effects of larval density on life-history traits. 736 

 737 

 738 

739 

Figure2. Effect of larval density and resource volume (2 (green) and 740 

5 (yellow) mL of food medium) on immediate (A, B) and delayed 741 

(C, D) life-history traits (mean ± SE) of D. suzukii. Panel (A) shows 742 

emergence rate. Panel (B) shows the developmental time for larvae 743 
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to emerge in days. Panel (C) shows fecundity measured as the 744 

number of eggs. Panel (D) shows wings’ length. 745 

 746 

 747 

 748 

Figure3. Effect of larval density and resource volume (2 (green) and 749 

5 (yellow) mL of food) on the number of microbial colonies (mean 750 

± SE) present in the medium where D. suzukii larvae develop. Above 751 

are the colonies grown in LB medium and below those grown in 752 

TSA medium. 753 

 754 
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