
A genome-wide mutational constraint map quantified from variation in 76,156 human genomes 
 
Siwei Chen1,2,†, Laurent C. Francioli1,2,†, Julia K. Goodrich1,2, Ryan L. Collins1,3,4, Masahiro Kanai1,2, Qingbo 
Wang1,5, Jessica Alföldi1,2, Nicholas A. Watts1,2, Christopher Vittal1,2, Laura D. Gauthier6, Timothy 
Poterba1,2,7, Michael W. Wilson1,2, Yekaterina Tarasova1, William Phu1,2, Mary T. Yohannes1, Zan Koenig1, 
Yossi Farjoun6, Eric Banks6, Stacey Donnelly7, Stacey Gabriel1,7, Namrata Gupta1,7, Steven Ferriera7, 
Charlotte Tolonen6, Sam Novod6, Louis Bergelson6, David Roazen6, Valentin Ruano-Rubio6, Miguel 
Covarrubias6, Christopher Llanwarne6, Nikelle Petrillo6, Gordon Wade6, Thibault Jeandet6, Ruchi Munshi6, 
Kathleen Tibbetts6, gnomAD Project Consortium*, Anne O’Donnell-Luria1,2,8, Matthew Solomonson1,2, 
Cotton Seed2,9, Alicia R. Martin1,2, Michael E. Talkowski1,3, Heidi L. Rehm1,3, Mark J. Daly1,2,10, Grace Tiao1,2, 
Benjamin M. Neale1,2,9,‡, Daniel G. MacArthur1,2,11,12,‡, Konrad J. Karczewski1,2,9 
 

1Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA 
2Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA 
3Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA 
4Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 
5Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan 
6Data Science Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA 
7Broad Genomics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 
8Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 
9Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA 
10Institute for Molecular Medicine Finland, (FIMM) Helsinki, Finland 
11Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, 
Australia 
12Centre for Population Genomics, Murdoch Children’s Research Institute, Melbourne, Australia 
*Lists of authors and their affiliations appear at the end of the paper 
 
‡These authors contributed equally: Benjamin M. Neale, Daniel G. MacArthur. 
†These authors contributed equally: Siwei Chen, Laurent C. Francioli. 
Correspondence should be addressed to K.J.K (konradk@broadinstitute.org) and S.C 
(siwei@broadinstitute.org) 
 
 
 
Abstract 
 
The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely 
used to investigate protein-coding genes underlying human disorders, but attempts to assess constraint 
for non-protein-coding regions have proven more difficult. Here we aggregate, process, and release a 
dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD), the largest public 
open-access human genome reference dataset, and use this dataset to build a mutational constraint map 
for the whole genome. We present a refined mutational model that incorporates local sequence context 
and regional genomic features to detect depletions of variation across the genome. As expected, protein-
coding sequences overall are under stronger constraint than non-coding regions. Within the non-coding 
genome, constrained regions are enriched for known regulatory elements and variants implicated in 
complex human diseases and traits, facilitating the triangulation of biological annotation, disease 
association, and natural selection to non-coding DNA analysis. More constrained regulatory elements 
tend to regulate more constrained protein-coding genes, while non-coding constraint captures additional 
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functional information underrecognized by gene constraint metrics. We demonstrate that this genome-
wide constraint map provides an effective approach for characterizing the non-coding genome and 
improving the identification and interpretation of functional human genetic variation. 
 
Introduction 
 
The expansion in the scale of human whole-genome or exome reference data has allowed characterization 
of the patterns of variation in human genes. With these data it is possible to directly assess the strength 
of negative selection on loss-of-function (LoF) and missense variation by modeling “constraint,” the 
depletion of variation in a gene compared to an expectation conditioned on that gene’s mutability. Using 
coding variant data from sequencing of more than 125K humans1, we previously developed a constraint 
metric that classifies each protein-coding gene along a spectrum of LoF intolerance1, providing a valuable 
resource for studying the functional significance of human genes2-5. Although of outsized biological 
importance, protein-coding regions comprise less than 2% of the human genome, and the vast non-coding 
genome has been much less characterized, even though the importance of non-coding variation in human 
complex diseases has been long recognized6-10. 
 
Several challenges arise when extending the gene constraint model to the non-coding space. First, the 
sample size of human whole-genome reference data has been relatively small compared to the exome, 
limiting the power of detecting depletions of variation at a fine scale. Second, our detailed understanding 
of coding region exon structure and effect of specific variants on amino acid translation enables a precision 
not available in non-coding analysis. Third, there is a strong expectation from Mendelian genetics and 
existing constraint analyses that the coding regions, while a small fraction of the genome, harbor a 
massively disproportionate amount of rare and common disease mutations under selection. Fourth, the 
mutation rate in non-coding regions is highly heterogeneous, and can be affected not only by local 
sequence context as commonly modeled in gene constraint metrics but also by a variety of genomic 
features at larger scales11,12. 
  
Current methods attempting to evaluate non-coding constraint can be broadly divided into three 
categories: 1) context-dependent mutational models that assess the deviation of observed variation from 
an expectation based on the sequence composition of k-mers (e.g., Orion13, CDTS14, DR15); 2) machine-
learning classifiers that are trained to differentiate between disease-associated variants and benign 
variants (e.g., CADD16, GWAVA17, JARVIS18); and 3) phylogenetic conservation scores that use comparative 
genomics data to infer evolutionary constraint (e.g., phastCons19, phyloP20). While all these methods aid 
in our understanding of the non-coding genome, each suffer from limitations/biases, respectively as 1) 
overlooking the influence of regional genomic features beyond the scale of flanking nucleotides on 
mutation rate; 2) a strong dependence on the availability of well-characterized functional mutations as 
training data; and 3) compromised power to detect regions that have only recently been under selection 
in the human lineage and may have a functional impact on human-specific traits or diseases. 
 
Here we present a genome-wide map of human constraint, generated from a high-quality set of variant 
calls from 76,156 whole-genome sequences (gnomAD v3.1.2 https://gnomad.broadinstitute.org). We 
describe an improved model of human mutation rates that jointly analyzes local sequence context and 
regional genomic features and quantifies the depletion of variation in tiled windows across the entire 
genome. By building a more comprehensive picture of genic constraint rather than solely focusing on 
coding variation, we facilitate the functional interpretation of non-coding regions and improve the 
characterization of gene function in the context of the regulatory network. Our study aims to depict a 
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genome-wide view of how natural selection shapes patterns of human genetic variation and generate a 
more comprehensive catalog of functional genomic elements with potential clinical significance. 
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Results 
 
Aggregation and quality control of genome sequence data 
We aggregated, reprocessed, and performed joint variant-calling on 153,030 whole genomes mapped to 
human genome reference build GRCh38, of which 76,156 samples were retained as high-quality 
sequences from unrelated individuals, without known severe pediatric disease, and with appropriate 
consent and data use permissions for the sharing of aggregate variant data. Among these samples, 36,811 
(48.3%) are of non-European ancestry, including 20,744 individuals with African ancestries and 7,647 
individuals with admixed Amerindigineous ancestries. After stringent quality control (see Supplementary 
Information), we discovered a set of 644,267,978 high-confidence short nuclear variants (single 
nucleotide/indel variants; gnomAD v3.1.2), of which 390,393,900 low-frequency (allele frequency 
[AF]≤1%), high-quality single nucleotide variants were used for building the genome-wide constraint 
map. These correspond to approximately one variant every 4.9 bp (one low-frequency variant every 8 bp) 
of the genome, providing a high density of variation. 
 
Quantifying mutational constraint across the genome 
To construct a genome-wide mutational constraint map, we divided the genome into continuous non-
overlapping 1kb windows, and quantified constraint for each window by comparing the expected and the 
observed variation in our gnomAD dataset. Here, we implemented a refined mutational model, which 
incorporates trinucleotide sequence context, base-level methylation, and regional genomic features to 
predict expected levels of variation under neutrality. In brief, we estimated the relative mutability for each 
single nucleotide substitution with one base of adjacent nucleotide context (e.g., ACG -> ATG), with 
adjustment for the effect of methylation on mutation rate at CpG sites, which become saturated for 
mutation at sample sizes above ~10K genomes21 (Extended Fig. 1a,b; Methods). Meanwhile, we adjusted 
the effects of regional genomic features for each trinucleotide mutation rate based on the occurrence of 
de novo mutations (N=413,304 previously detected in family-based whole-genome sequencing 
studies22,23; Extended Fig. 1c), and then applied it to establish the expected number of variants per 1kb 
across the entire genome (Methods). 
 
We quantified the deviation from expectation for each 1kb window using a Z score24 (Methods; Extended 
Fig. 1d,e), which was centered around zero for non-coding regions (median=0.08), and was significantly 
higher (more constrained) for windows containing any protein-coding sequences (median=1.47, Wilcoxon 
P<10-200; Fig. 1a). The constraint Z score is positively correlated with the percentage of coding bases in a 
window and presented a substantial shift towards higher constraint for exonic sequences from directly 
concatenating coding exons into 1kb windows (median=3.17; Extended Fig. 2a-c). About 3.12% and 0.05% 
of the non-coding windows exhibited constraint as strong as the 50th and 90th percentile of exonic regions 
(Extended Fig. 2d). Comparing our Z score against the adjusted proportion of singletons (APS) score, a 
measure of constraint developed for structural variation (SV)25, we found a significant correlation (linear 
regression beta=0.01, P=4.3×10-65, Fig. 1b; Methods), providing an internal validation of our approach.  
 
Investigating genomic properties of non-coding regions under constraint 
To further validate our constraint metric and investigate the functional relevance of non-coding regions 
under selection, we examined the correlation between our constraint Z score and several annotations of 
functional non-coding sequences (Fig. 2a). First, we found that candidate cis-regulatory elements (cCREs, 
derived from ENCODE26 integrated DNase- and ChIP-seq data) are significantly enriched in the most 
constrained percentile of the genome (Z≥4, OR=2.77 compared to the genome-wide average, Fisher’s 
exact P<10-200); cCREs with a promoter-like signature (cCRE-PLS) presented the strongest enrichment 
(OR=7.28), followed by elements with a proximal/distal enhancer-like signature (pELS OR=4.35, dELS 
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OR=2.14), and as a negative control, elements bound by CTCF but not associated with a regulatory 
signature showed no enrichment (CTCF-only OR=0.82). These patterns indicate that a large fraction of the 
constrained non-coding regions may serve a regulatory role, in line with previous findings13,14,18. Similarly, 
significant enrichment was found for an independent set of active, in vivo-transcribed enhancers 
(identified by FANTOM CAGE analyses27; OR=3.58) and super enhancers28 (OR=3.41), which are groups of 
enhancers in close genomic proximity regulating genes important for cell type specification29. By 
aggregating the regulatory annotations, we estimated that ~10.4% and ~6.3% of promoters and 
enhancers, respectively, are under selection as strong as coding exons on average (Extended Fig. 3a; 
Methods). A much higher proportion, 22.2%, was found for sequences encoding microRNAs (miRNAs), 
which are increasingly recognized as key mediators in various developmental and physiological 
processes30. In contrast, only 3.7% of long non-coding RNAs (lncRNAs) exhibited such strong constraint, 
similar to that of non-coding regions overall (3.1%; Extended Fig. 2d and 3b). 
 
We next examined the distribution of potentially functional non-coding variants on the constraint 
spectrum. There was significant enrichment for non-coding variants implicated by genome-wide 
association studies (GWAS) in the constrained end of the genome: 837/19,471 constrained windows [Z≥4] 
overlapped with GWAS Catalog31 annotations (OR=1.57 compared to the genome-wide average of 
51,430/1,843,559, Fisher’s exact P=2.5×10-32, Fig. 2b; Methods). The enrichment became stronger when 
restricted to the subset of variants that had been replicated by an independent study (OR=2.08, P=4.1×10-

13). Moreover, further strong signals were found for likely causal GWAS variants fine-mapped for 148 
complex diseases and traits in large-scale biobanks32 (OR=3.24, P=3.0×10-10; Methods). Across the 95% 
credible set (CS)-trait pairs, strong enrichment was predominantly seen in disease phenotypes, including 
coronary artery disease (CAD), inguinal hernia, fibroblastic disorders, and glaucoma (ORs 3.31-6.02, Fig. 
2c; Methods). In the 95% CS of CAD, for instance, the highest constraint score was found for rs1897107 
and rs1897109 (both within the same genomic window chr6:160725000-160726000, Z=6.32); high 
constraint (Z≥4) was also found for 26 variants from the same CS (totaling 28/52), which together spanned 
a ~153 kb sequence downstream of the gene PLG (Fig. 2d). PLG encodes the plasminogen protein that 
circulates in blood plasma and is converted to plasmin to dissolve the fibrin of blood clots. While 
dysregulation of the PLG-plasmin system has been frequently associated with CAD33-38, no specific variants 
in PLG have been implicated. Our results prioritized a set of non-coding variants in highly constrained 
regions of PLG, which adds quantitative evidence to the implication of PLG in CAD and may help direct or 
prioritize follow-up functional experiments. 
 
Collectively, these results demonstrated a significant positive correlation between constraint and existing 
functional non-coding annotations, validating our non-coding constraint metric. Yet, we suggest that our 
metric provides additional information for the characterization of non-coding regions. For instance, 
prioritizing ENCODE cCREs by constraint Z score revealed increasingly stronger GWAS enrichment in the 
more constrained cCREs (Extended Fig. 4a), and constrained regions outside cCREs also captured 
significant signals, reflecting the value of non-coding constraint independent of regulatory annotations. 
Moreover, besides prioritizing existing GWAS results, constraint can be used as a prior for statistical fine-
mapping. Using UK Biobank (UKBB) traits as examples, incorporating constraint Z score into the 
functionally informed fine-mapping model39 predicted ~13K variant-trait pairs to have an increased 
posterior inclusion probability of causality (∆PIP≥0.01), in which 164 likely causal associations were newly 
identified at PIP≥0.8 (Extended Fig. 4b; Methods). While only functional tests can ultimately validate the 
underlying causality, our constraint map presents a valuable resource for expanding or refining the catalog 
of functional non-coding variants in the human genome. 
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Comparing constraint Z score to other genome-wide predictive scores 
To benchmark the performance of our constraint map in prioritizing non-coding variants, we extended 
the analyses of GWAS variants to compare constraint Z score to other population genetics-based 
constraint metrics (Orion13, CDTS14, gwRVIS18, and DR15). Specifically, we assessed the performance of 
different metrics in identifying putative functional non-coding variants – as aforementioned, a) GWAS 
Catalog31 variants (N=9,229 with an independent replication); b) GWAS fine-mapping32 variants (N=2,191), 
and additionally, c) a subset of high-confidence causal variants from b (N=140); and d) pathogenic 
Mendelian variants (N=288 from ClinVar40) – against background variants in the population with a similar 
allele frequency (hereafter referred to as “positive” and “negative” variant set, respectively; Methods). 
Overall, constraint Z score achieved the highest performance across all comparisons, as measured by the 
area under curve (AUC) statistic (Fig. 3a,b and Extended Fig. 5). The performance was also more stable 
than others when varying the allele frequency threshold for the negative variant set (Extended Fig. 5). This 
may be due to other metrics being informed by the site frequency spectrum, which made the classification 
performance sensitive to differences in allele frequency between the positive and negative variants. We 
also showed that our performance was robust to the artificial break of genomic windows (non-overlapping 
1kb) by reconstructing constraint Z scores in a sliding-window (1kb stepped by 100bp) approach as 
adopted by other metrics (Extended Fig. 6).  
 
Extending the comparison to include phylogeny-based conservation scores (phyloP20, phastCons19, and 
GERP41) revealed relatively low performance compared to the population genetics-based constraint 
metrics (Fig. 3a,b). The conservation scores were weakly correlated with constraint (Spearman's rank 
correlation coefficient 0.017-0.19, Extended Fig. 7), suggesting that intraspecies (human lineage-specific) 
constrained regions complement, rather than being a subset of, regions that are conserved across species. 
Each individual metric also contributed to the classification when modeled as independent predictive 
variables (Fig. 3c,d; Methods), reinforcing the complementary nature of different approaches. Variants 
that were uniquely captured by constraint Z score, for instance, tended to be in regions with high 
recombination rates (3.45-fold the rest of the positive variant set) and high DNA methylation (2.74-fold; 
Methods), both associated with an increased mutation rate that had been adjusted in our refined 
mutational model. To further illustrate this improvement, we rebuilt our constraint model from solely the 
local sequence context, i.e., without adjustment on mutation rate by regional genomic features, and 
confirmed that constraint Z score outperformed such metrics (Extended Fig. 6). Altogether, we 
demonstrate that constraint Z score is an effective metric for identifying functional variants in the non-
coding genome; at the same time, we suggest that a combination of different metrics is likely to provide 
the most informative results. 
 
Exploring non-coding dosage sensitivity in the constrained genome 
Besides single nucleotide variants (SNVs) that have been extensively studied in GWAS, copy number 
variants (CNVs) causing dosage alterations (deletions/loss or duplications/gain) of DNA represent another  
significant risk factor for human disease42-47. Yet, unlike SNVs, CNVs can be large and determining the 
“minimal critical region”48 with a pathogenic effect has been a major challenge. Although CNVs primarily 
affect non-coding sequences, the most commonly studied mechanism is still the dosage alteration of 
overlapping protein-coding genes49. Using our genome-wide constraint map, we explored the possibility 
that constrained non-coding regions are also sensitive to a dosage effect, which may underlie the 
pathogenicity of corresponding CNVs.  
  
We surveyed a collection of ~100K CNVs from a genome-wide CNV morbidity map of developmental delay 
and congenital birth defects50,51. There was a substantial excess of CNVs that affected constrained non-
coding regions (Z≥4) among individuals with developmental disorders (DD cases) in comparison to healthy 
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controls (42.6% versus 12.5%, OR=5.21, Fisher’s exact P<10-200, Fig. 4a; Methods). Moreover, of the 19 loci 
that had been previously identified as pathogenic50, all but one (94.7%) affected constrained non-coding 
regions; the high incidence was recapitulated in a curated set of ~4K putative pathogenic CNVs (85.5% in 
ClinVar40, Fig. 4a). Importantly, the case-control enrichment remained significant, albeit attenuated, after 
adjusting for the size and gene content of each CNV and when being tested in the subset of CNVs that are 
exclusively non-coding (Fig. 4b; Methods). Non-coding constraint presented high association with DD 
CNVs conditioning on gene constraint (log[OR]=1.06, logistic regression P<10-100 ), lending support to the 
possibility that dosage alteration of constrained non-coding regions may be an alternative explanation for 
the mechanism of CNVs underlying DDs. 
 
One known example of pathogenic non-coding dosage alteration is the duplication of IHH regulatory 
domain in synpolydactyly and craniosynostosis52-54. The four implicated duplications covered a ~102kb 
sequence upstream of IHH, with a ~10kb overlapping region (“critical region”48; Fig. 4c). The region 
contained no genes but exhibited high levels of constraint (median Z=2.52, Wilcoxon P=1.3×10-3 
compared to the rest of the genome). The most constrained window (chr2:219111000-219112000, 
Z=4.12) overlapped with the major enhancer of IHH, the duplication of which has been shown to result in 
dosage-dependent IHH misexpression and consequently syndactyly and malformation of the skull54. This 
result highlights a potential use of the constraint metric to prioritize non-coding regions within large CNVs. 
As a further illustration, we examined a set of non-coding CNVs that had the highest constraint score 
among the DD cases. The most constrained genomic window (chr11:133208000-133209000, Z=8.87) was 
affected by 12 deletions spanning a ~400kb non-coding sequence (Fig. 4d). While of varying size, the 
deletions shared a common region of ~20kb (potential “critical region”), which encompassed the most 
constrained window and overall, showed a significantly higher constraint than the other affected regions 
(median Z = 1.63 vs 0.84, Wilcoxon P=1.6×10-3; Fig. 4d). In addition, the ~400kb sequence also harbored 
two deletions from healthy controls, which interestingly, overlapped with the two lowest constraint 
scores within the region and were significantly less constrained than those from DD cases (median Z = 
1.07 vs 0.62, Wilcoxon P=4.74×10-4). These findings suggest that our constraint metric can be a useful 
indicator of critical regions affected by large CNVs, facilitating the identification of non-coding risk factors 
in CNV disease association studies.  
 
Leveraging non-coding constraint to improve gene function characterization 
Given the significant role of constrained non-coding regions in gene regulation, it is natural to expect that 
more constrained regulatory elements would regulate more constrained genes. To test this, we analyzed 
the constraint for enhancers that had been linked to specific genes55 (Methods). More constrained non-
coding regions were more frequently linked to regulating a gene (Fig. 5a), and as expected, enhancers 
linked to constrained genes (predicted by loss-of-function observed/expected upper bound fraction 
[LOEUF]1, or curated disease genes from 56-58; Methods) were significantly more constrained than those 
linked to presumably less constrained genes (median Z=2.71 versus 1.99, Wilcoxon P=1.3×10-26, Fig. 5b; 
Methods), thus supporting a correlated constraint between genes and their regulatory elements. 
 
On the other hand, a particularly interesting set of associations are the links between constrained 
enhancers and the “unconstrained” genes predicted by LOEUF, because these links may reflect functional 
significance of the “unconstrained” genes that had been previously unrecognized. The lack of predicted 
gene constraint can be explained by the design of LOEUF as a measure of intolerance to rare LoF variation, 
where small genes with few expected LoF variants are likely underpowered. Indeed, stratifying genes by 
the number of expected LoF variants showed a significantly higher enhancer constraint for genes that 
were underpowered (≤5 expected LoF variants)1 compared to genes that were sufficiently powered while 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 10, 2022. ; https://doi.org/10.1101/2022.03.20.485034doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.20.485034
http://creativecommons.org/licenses/by/4.0/


scored as unconstrained (median Z=2.64 versus 2.27, Wilcoxon P=9.8×10-4, Fig. 5a). This suggests that 
certain underpowered genes may be functionally important but were not recognized in gene constraint 
evaluation. For instance, ASCL2, a basic helix-loop-helix (bHLH) transcription factor, had only 0.57 
expected LoFs (versus 0 observed) across >125K exomes1; although being depleted for LoF variation, the 
absolute difference was too small to obtain a precise estimate of LoF intolerance. Yet, we found ASCL2 
had a highly constrained enhancer (Z=5.58), located ~16kb upstream of the gene, where >40% of the 
expected variants were depleted (188.6 expected versus 112 observed, chr11:2286000-2287000). The 
same genomic window also contained an eQTL chr11:2286192:G>T that was predicted to be significantly 
associated with ASCL2 expression59; elevated ASCL2 expression has been implicated in the development 
and progression of several human cancers60-62. This example highlights the value of non-coding constraint 
– as a complementary metric to gene constraint – for identifying functionally important genes. 
 
A practical implementation of this finding is to integrate the constraint of regulatory elements into the 
modeling of gene constraint, which essentially borrows power from extending the functional unit of a 
gene to encompass its regulatory components. As a proof-of-principle, we tested whether adding the 
enhancer constraint Z score to LOEUF improves the prioritization of underpowered genes. The enhancer 
constraint was found a significant predictor of constrained genes (logistic regression P=7.4×10-11 
conditioning on LOEUF) and significantly improved the performance of LOEUF in identifying constrained 
genes that were underpowered (AUC = 0.80 versus 0.73, bootstrap P=0.03, Fig. 5b; Methods). Moreover, 
such approaches would allow incorporation of tissue/cell-type specific information into gene constraint 
modeling given the diverse range of epigenomic data. We explored this by testing whether the constraint 
of tissue-specific enhancers is predictive of tissue-specific gene expression (as a proxy for tissue-specific 
gene function). The enhancer constraint Z score, again conditioning on LOEUF, was a significant predictor 
of the expression level of target genes in matched tissue types (Fig. 5c; Methods). These results further 
support the application of our constraint metric for improving the characterization of gene function. While 
we acknowledge that the biological consequences of mutations in enhancers are not clearly understood 
and thus natural selection may differ in strength depending on mechanistic consequence, an extended 
model to incorporate non-coding variation information in a biologically-informed way holds promise to 
facilitate our understanding of the molecular mechanisms underlying selection. 
 
 
Discussion 
 
We have previously developed constraint metrics that leverage population-scale exome and genome 
sequencing data to evaluate genic intolerance to coding variation for each protein-coding gene1,21. Here, 
we adopted the same principle with an extended mutational model to assess constraint across the entire 
genome, using our latest release of gnomAD (v3.1.2), a dataset of harmonized high-quality whole-genome 
sequences from 76,156 individuals of diverse ancestries. Improvements to constraint modeling include 
unified fitting of the mutation rate for all substitution and trinucleotide contexts and inclusion of regional 
genomic features to refine the expected variation in non-coding regions (Methods). We validated our 
metric using a series of external functional annotations, with a focus on the non-coding genome, and 
demonstrated the value of our metric for prioritizing non-coding elements and identifying functionally 
important genes. We have made the constraint scores publicly accessible via the gnomAD browser 
(https://gnomad.broadinstitute.org).  
 
One key challenge in quantifying non-coding constraint is the estimation of mutation rate under 
neutrality, which can be affected by various genomic features at different scales. To this end, we extended 
our previous mutational model, which computed the relative mutability of each substitution in a 
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trinucleotide context, to include adjustment for the effects of regional genomic features. The adjustment 
was applied to each specific trinucleotide context and allowed a varying genomic scale for each specific 
feature (Methods). The added value of this adjustment was demonstrated by the improved performance 
of the constraint Z score in identifying functional variants (Extended Fig. 6). Our constraint metric also 
outperformed other genome-wide predictive scores, while each metric tended to provide complementary 
information. We note that all comparisons were restricted to non-coding regions for explicitly evaluating 
the metrics in prioritizing non-coding variants, and we further eliminated potential bias from nearby genes 
by recapitulating the results within regions >10kb away from any protein-coding exons (Supplementary 
Information). Overall, our constraint metric presented consistent, high performance in identifying 
functional non-coding variants in the human genome. 
 
Despite the clear constraint signal identified for non-coding regions, many limitations exist. First, the lack 
of prior classification of the molecular consequences of non-coding variants, as analogous to 
“nonsynonymous” versus “synonymous” informed by the genetic code in coding regions, limits the 
resolution of non-coding constraint assessment (e.g., to measure constraint against “LoF” variation). 
While there are rich resources defining regulatory elements in the non-coding genome, no method is 
available for determining the impact of each possible variant on gene expression and the distribution of 
their effect sizes genome-wide. Further, the interpretation of non-coding constraint, especially in the 
context of gene regulation, can only be informative when considered in a particular context, such as a 
tissue/cell type, developmental stage, or environment. Such information is not inherently built into our 
constraint metric nor in the mutational dataset; thus ad hoc integration of external annotations (e.g., 
tissue-specific enhancers as analyzed in this study) is often necessary for justifying specific biological 
implications. Also, since the detection of depletion of variation is immune to negative selection after 
reproductive age, genomic regions involved in late-onset phenotypes are likely to go underrecognized.  
 
Finally, while this is the largest dataset of human genomes examined to date for non-coding constraint, 
our method will substantially increase in power and resolution as sample sizes increase. Benchmarking on 
the depletion of variation seen in coding regions, we are currently well-powered to detect extreme non-
coding constraint as strong as the 90th percentile of coding exons of similar size, and we estimate a sample 
size of ~340K genomes to detect constraint as to the 50th percentile (Extended Fig. 8a; Methods). Much 
larger sample sizes will be required for further increasing the resolution, for instance from 1kb to a 100bp 
scale, we would need ~5.3M samples (Extended Fig. 8b); under the current sample size, 1kb presented 
optimal performance when compared to a various window size tested from 100bp-3kb (Extended Fig. 8c). 
Meanwhile, we emphasize the importance of increasing ancestral diversity in population-scale datasets 
like gnomAD. A more diverse population would identify a larger number of rare variants, thereby 
increasing the power of detecting depletions of variation. We explicitly demonstrated this by 
reconstructing our constraint metric from the subset of European population and comparing it to that 
from an equal-sized subset containing all diverse populations – the latter was proven to achieve a higher 
predictive power (Extended Fig. 8d). Future efforts towards a larger, more diverse human reference 
dataset would empower finer studies of the influence of human demography on constraint metrics, 
facilitating a fuller understanding of the distribution and effect of human genetic variation. 
 
Overall, our study demonstrates the value of the genome-wide constraint map in characterizing both non-
coding regions and protein-coding genes, providing a significant step towards a comprehensive catalog of 
functional genomic elements for humans.  
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Methods 
 
Aggregation, variant-calling, and quality control of gnomAD genome data 
We aggregated whole genome sequence data from 153,030 individuals spanning projects from case-
control consortia and population cohorts, in a similar fashion to previous efforts1. We harmonized these 
data using the GATK Best Practices pipeline and joint-called all samples using Hail63, and developed and 
utilized an updated pipeline of sample, variant, and genotype quality control to create a high-quality 
callset of 76,156 individuals, computing frequency information for several strata of this dataset based on 
attributes such as ancestry and sex for each of 644,267,978 short nuclear variants (see Supplementary 
Information). 
 
Estimation of trinucleotide context-specific mutation rates  
We estimated the probability of a given nucleotide mutating to one of the three other possible bases in a 
trinucleotide context (XY1Z -> XY2Z), by computing the proportion of all possible variants observed per 
context in the human genome. Since CpG transitions begin to saturate (proportion observed approaching 
1) at a sample size of ~10K genomes, we downsampled the gnomAD dataset to 1,000 genomes for this 
calculation. The computed proportion observed values, which represent the relative mutability of each 
trinucleotide context, were further scaled so that the weighted genome-wide average is the human per-
base, per-generation mutation rate (1.2×10-8) to obtain the absolute mutation rates 𝜇. To estimate the 
proportion of variants expected to be observed in the full gnomAD dataset of 76,156 genomes, we fitted 
the actual proportion observed in the dataset against 𝜇, using an exponential regression that caps at 1 for 
refining the estimates of (near-)saturated variant types (R2=0.999, Extended Fig. 1a,b; Supplementary 
Data 1).  
 
A total of 390,393,900 high-quality, rare (AF≤0.1%) variants observed in 76,156 gnomAD genomes, a 
dataset of 6,079,733,538 possible variants at 2,026,577,846 autosomal sites (30-32X coverage), were used 
in the calculation of trinucleotide context-specific mutation rates. The estimates are well-correlated with 
the mutation rates reported in previous independent studies and are highly stable across different AF 
thresholds in gnomAD (Supplementary Information). 
 
Adjustment of the effect of DNA methylation on CpG mutation rates 
Given the strong effect of DNA methylation on increasing the mutation rate at CpG sites, we stratified all 
CpG sites by their methylation levels and computed the proportion observed within each context and 
methylation level. As an improvement to our previous methylation annotation (by averaging different 
tissues1), we analyzed methylation data from germ cells across 14 developmental stages, comprising eight 
from preimplantation embryos (sperm, oocyte, pronucleus, two-cell-, four-cell-, eight-cell-, morula-, and 
blastocyst-stage embryos)64 and six from primordial germ cells (7Wk, 10Wk, 11Wk, 13Wk, 17Wk, and 
19Wk)65. For each stage, we computed methylation level at each CpG site as the proportion of whole-
genome bisulfite sequencing reads corresponding to the methylated allele. To derive a composite score 
from the 14 stages, we regressed the observation of a CpG variant in gnomAD (0 or 1) on the methylation 
computed at the corresponding site (a vector of 14), and we used the coefficients from the regression 
model as weights to compute a composite methylation score for each CpG site. This metric was further 
discretized into 16 levels (by a minimum step of 0.05: [0,0.05], (0.05,0.1], (0.1,0.15], (0.15,0.2], (0.2,0.25], 
(0.25,0.3], (0.3,0.5], (0.5,0.55], (0.55,0.6], (0.6,0.65], (0.65,0.7], (0.7,0.75], (0.75,0.8], (0.8,0.85], (0.85,0.9], 
(0.9,1.0]) to stratify CpG variants in the mutation rate analysis. 
 
Adjustment of the effects of regional genomic features on mutation rates 
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To estimate the effects of regional genomic features on mutation rates under neutrality, we utilized de 
novo mutations (DNMs), as a proxy of spontaneous mutations, and fitted logistic regression models using 
the genomic features as predictive variables. A set of 413,304 unique DNMs were compiled from two 
large-scale family-based whole-genome sequencing studies22,23, and an exclusive set of 4,104,879 
genomic sites (~10× the DNMs) randomly drew from the genome was used as the “nonmutated” 
background. For each DNM or background site, we computed 13 genomic features (see Collection of 
genomic features) at four scales by taking the mean value of 1kb, 10kb, 100kb, and 1Mb windows 
centering at the site. This generated a feature matrix of 13×4=52 columns and 413,304+4,104,879 
=4,518,183 rows. The matrix was further divided based on the trinucleotide context of each DNM or 
background site (by row) to assess the effects of genomic features on context-specific mutation rates. In 
particular, for CpG contexts, features that were correlated with DNA methylation (GC content, 
CpG_island, short interspersed nuclear element, and nucleosome density), which had been used for 
adjusting CpG mutation rates, were excluded from the analysis. 
 
For each trinucleotide context, we first performed univariable logistic regression to select features that 
are significantly associated with an increased/decreased probability of observing a DNM. Features with a 
significant association surpassing the Bonferroni correction for 13×4=52 tests were selected; if a feature 
was significant at multiple genomic scales, the smallest window size was selected for the highest 
resolution (Extended Fig. 1c). Next, we fitted multivariable logistic regression using the selected features 
to predict DNMs from the background. To control for multicollinearity, we transformed the input feature 
matrix using principal components analysis (PCA66) to generate decorrelated predictive variables (i.e., the 
principal components or PCs). The regression coefficients were the primary output of interest, which 
represent the effects of genomic features on increasing (a positive coefficient) or decreasing (a negative 
coefficient) the mutation rate, and were used for adjusting the expected number of variants in a given 
region. The selected features, the PCs, and the coefficients are summarized in Extended Fig. 1c and are 
available as pickle files for implementation (see Code availability in Supplementary Information). 
 
Prediction of expected number of variants per 1kb  
Using the trinucleotide mutation rate estimates and the above adjustments, we computed the expected 
number of variants in a given 1kb genomic window as follow:  

𝐸𝑥𝑝	(𝑤) =.𝑟(𝑤)!

"#

!

.. 𝑛(𝑤)!,%,& × 𝑝!,%,&

'

&()

*

%()

 

where 𝑖 denotes one of the 64 trinucleotide contexts;  𝑗 denotes one of the three bases substituting the 
central nucleotide; 𝑚 denotes one of the 𝑘 DNA methylation levels, where 𝑘=16 for CpG sites (see 
Adjustment of the effect of DNA methylation on CpG mutation rates) and 𝑘=1 for non-CpG sites (i.e., no 
stratification). Essentially, the expected value of variants in a genomic window 𝑤 is calculated by 
multiplying the number of possible variants (𝑛) in 𝑤 by the probability of a variant (𝑝) and summing across 
all trinucleotide contexts (𝑖), substitutions (𝑗), and methylation levels (𝑚);  𝑝!,%,&	is the trinucleotide 
mutation rate estimated in this study (as described in Estimation of trinucleotide context-specific 
mutation rates).  
 
Additionally, 𝐸𝑥𝑝 is adjusted by a factor 𝑟, which represents the effect of regional genomic features of 𝑤 
on mutation rate. For each 𝑖, specific features have been pre-selected and their effects on mutation rate 
have been estimated using logistic regression models (see Adjustment of the effects of regional genomic 
features on mutation rates). Denote the feature values, computed centering 𝑤 and decorrelated by PCA, 
and the regression coefficients by 𝒙 = {𝑥), 𝑥+, . . , 𝑥,} and 𝜷 = {𝛽), 𝛽+, . . , 𝛽,}, respectively, where 𝑡 is the 
number of selected features for 𝑖, the adjustment factor 𝑟 is defined as the ratio of logit given 𝒙(𝑤) to 
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that of the genome-wide average 𝒙=: 𝑟 = 𝜷 ∙ 𝒙(𝑤)/𝜷 ∙ 𝒙=; since the adjustment is specific to each 
trinucleotide context, 𝑟 is further subscribed by 𝑖. 
 
Construction of constraint Z score 
We created a signed Z score to quantify the depletion of variation (constraint) at a 1kb scale by comparing 
the observed variation to an expectation: 
 

𝜒+ = (𝑂𝑏𝑠 − 𝐸𝑥𝑝)+/𝐸𝑥𝑝	

𝑍 = 	 E
F𝜒+		𝑖𝑓	𝑂𝑏𝑠 < 𝐸𝑥𝑝
−F𝜒+		𝑖𝑓	𝑂𝑏𝑠 ≥ 𝐸𝑥𝑝

 

	
The observed variant count (𝑂𝑏𝑠) is the number of unique rare (AF≤0.1%) variants in a 1kb window 
identified in the gnomAD dataset of 76,156 genomes, and the expected number of variants (𝐸𝑥𝑝) is 
established as described above based on the sequence context and the regional genomic features of the 
1kb window.  
 
Constraint Z scores were created for 2,689,987 non-overlapping 1kb windows across the human genome, 
comprising 2,561,056 on autosomes and 128,931 on chromosome X. Due to the lack of DNM data on 
chromosome X, the genomic feature adjustment factor 𝑟 was assessed using autosomal regions and 
extrapolated to chromosome X. We performed downstream analyses separately for autosomes and 
chromosome X and presented the former as primary, with the latter provided in Supplementary 
Information. For the analyses, we filtered the dataset to windows where 1) the sites contained at least 
1,000 possible variants, 2) at least 80% of the observed variants passed all variant call filters (INFO/FILTER 
equals to “PASS”), and 3) the mean coverage in the gnomAD genomes was between 25-35X (or 20-25X for 
chromosome X). This resulted in 1,984,900 autosomal windows (77.5% of initial) for the primary analyses, 
of which 141,341 overlapped with coding regions and 1,843,559 were exclusively non-coding. The 
computed constraint Z scores are available in Supplementary Data 2. We also computed the sores in a 
sliding window approach (1kb stepped by 100bp) and provided them in Supplementary Data 3. 
 
Collection of genomic features 
The 13 regional genomic features used for adjusting trinucleotide mutation rate are 1) GC content67, 2) 
low-complexity region68, 3) short and 4) long interspersed nuclear element67, distance from the 5) 
telomere and the 6) centromere67, 7) male and 8) female recombination rate22, 9) DNA methylation, 10) 
CpG island67, 11) nucleosome density69, 12) maternal and 13) paternal DNM cluster70. Data were 
downloaded from the referenced resources, lifted over to GRCh38 coordinates when needed using 
CrossMap71, and files in .bed or .BigWig format were processed using bedtools72 and 
bigWigAverageOverBed69 to obtain feature values within specific genomic windows.   
 
Correlation between constraint Z score and APS  
As an internal validation, we compared our constraint Z score against the SV constraint score APS25. For 
each SV from the original study25, we assessed its constraint by assigning the highest Z score among all 
overlapping 1kb windows. The correlation between constraint Z and APS was evaluated across 116,184 
high-quality autosomal SVs scored by both metrics, using a linear regression test. In Fig. 1b, the correlation 
was presented by the mean value of APS across ascending constraint Z score bins, with 95% confidence 
intervals computed from 100-fold bootstrapping. 
 
Correlation between constraint Z score and putative functional non-coding annotations 
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We validated the constraint metric using a number of external functional annotations, including 926,535 
ENCODE cCREs26 (34,803 promoter-like [PLS], 141,830 proximal enhancer-like [pELS], 667,599 distal 
enhancer-like [dELS), and 56,766 CTCF-only elements), 63,285 FANTOM527 enhancers, 331,601 super 
enhancers (SEdb28), 111,308 GWAS Catalog31 variants (with an association P	≤5.0×10-8; 9,229 with an 
independent replication), 2,191 GWAS variants fine-mapped across population biobanks with a posterior 
inclusion probability of causality≥0.932, and 100,530 CNVs from a CNV morbidity map of developmental 
delay50,51. 
 
To assess the correlation between constraint Z score and the collected functional elements, we 
intersected each annotation with the scored 1kb windows binned by constraint Z score (<-4, [-4,-3), [-3,-
2), [-2,-1), [-1,-0), [0,1), [1,2), [2,3), [3,4), ≥4), and counted the frequency of overlapping windows within 
each bin. The enrichment of a given annotation (except CNVs) at a constraint level was evaluated by 
comparing the corresponding frequency to the genome-wide average using a Fisher's exact test. In the 
analysis of CNVs, we assessed their enrichment in constrained regions by assigning each CNV the highest 
Z score among its overlapping windows and comparing the proportions of constrained CNVs (Z≥4) from 
cases of developmental delay and healthy controls. The enrichment was further examined using a logistic 
regression model to adjust for the size and gene content (gene constraint1 and gene number) of each CNV. 
We note that we performed all above analyses restricting to exclusively non-coding windows to evaluate 
the use of our constraint metric in characterizing the non-coding genome.   
 
Estimation of constraint for aggregated regulatory annotations 
We estimated how constrained the sequences encoding regulatory elements overall compared to coding 
exons by aggregating the regulatory annotations at a 1kb scale. These included 7,246 promoter-, 154,003 
enhancer-,  117 microRNA (miRNA)-, and 414,084 long non-coding RNA (lncRNA)-1kb elements,  created 
from concatenating ENCODE cCREs-PLS,  cCREs-dELS, GENCODE73 miRNA, and FANTOM674 lncRNA 
annotations, respectively, into 1kb windows. Similarly, 27,875 exonic 1kb elements were created from 
aggregating all protein-coding exons. Constraint Z scores were computed for the created 1kb elements 
and the percentiles of each regulatory annotation were compared against the exonic region. 
Benchmarking on the 50th percentile (median) of exonic regions, we estimated the proportion of the 
regulatory elements that are under selection as strong as the coding exons.  
 
Incorporation of constraint Z score into GWAS fine-mapping 
To demonstrate the use of our constraint metric in statistical fine-mapping, we performed approximate 
functionally informed fine-mapping39 incorporating constraint Z score and our previous fine-mapping 
results for 119 UK Biobank (UKBB) traits32. The constraint Z scores were normalized and used as functional 
prior probabilities to update the posterior inclusion probabilities (PIPs; denoted as PIPZ) based on the 
previous UKBB fine-mapping (using a uniform prior, PIPunif) and SuSiE75. To exclude signals that potentially 
correspond to coding variants, we restricted our analysis to 60,121 non-coding variants in 6,592 SuSiE 95% 
credible set (CS)-trait pairs that do not contain variants within 1 kb of exonic regions. A total of 13,069 
variant-trait pairs were predicted to have an increased PIP (∆PIP≥0.01) of causality. The variants, 
associated traits, and PIP scores (PIPunif and PIPZ) are provided in Supplementary Data 4. 
 
Comparison of constraint Z score and other predictive scores 
We compared our constraint metric with other seven genome-wide predictive scores – Orion13, CDTS14, 
gwRVIS18, DR15, phyloP20, phastCons19, and GERP41. Each score was downloaded from the original study, 
lifted over to GRCh38 coordinates (for Orion) and multiplied by -1 (for CDTS, gwRVIS, and DR) when 
needed so that a higher value represents a higher constraint/conservation for all metrics. Pairwise 
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correlation between the scores was assessed by comparing the mean value of each score on 1kb windows, 
using a Spearman's rank correlation test. 
 
We evaluated the predictive performance of each metric in distinguishing functional non-coding variants 
(“positive” variant set) from background variants (“negative” variant set). Four positive variant sets were 
compiled from public databases: 1) 9,229 variants from GWAS Catalog31 (with an independent 
replication), 2) 2,191 variants from a recent fine-mapping study32 (with a posterior inclusion probability 
of causality≥0.9), 3) 140 high-confidence variants from 2), and 4) 288 variants from ClinVar40 (annotated 
as “pathogenic”). All variants were filtered to non-coding regions; in particular, ClinVar variants were more 
strictly filtered to intergenic/intron variants given its strong predominance of variants close to protein-
coding exons (>90% were splice site/region variants). A further stringent non-coding subset was generated 
by excluding variants within 10kb to any exons, which resulted in 1) 4,379, 2) 967, 3) 59, and 4) 7 variants. 
For each positive variant set, a negative variant set was created by randomly drawing variants from 
gnomAD (to ~10× the size of corresponding positive variant set), of which the most severe molecular 
consequence is intergenic or intron and the AF approximates the positive variant set; AF>5% and allele 
count (AC)=1 were applied respectively for matching positive variant set 1)-3) and 4), based on their AF 
distributions in gnomAD (Fig. 3b). The selected variants were scored by each of the eight metrics, using 
bedtools72 (for .bed files) and bigWigAverageOverBed69 (for .BigWig files), and the performance of each 
metric in classifying positive and negative variants was assessed by the area under curve (AUC) statistic, 
as presented by the receiver operating characteristic (ROC) curve. 
 
To investigate whether different metrics capture complementary information in the classification, we  
fitted logistic regression models using all eight metrics as independent variables. The relative contribution 
of each metric was evaluated by the dominance analysis76,77, which estimates the dominance of one 
predictor over another by comparing their additional 𝑅+contributions across all subset models. We 
further explored whether specific features were particularly captured by (and may have contributed to 
the performance of) our metric. We merged all positive variant sets and focused on a set of variants 
(N=204) that were uniquely prioritized by our metric, defined as being captured in the 99th percentile of 
constraint Z score but not in that of any other scores. Specific features associated with these variants were 
evaluated by comparing values of the 13 genomic features of these variants to the rest of the positive 
variant set. The fold change was used to indicate the extent to which a feature is distinguished in variants 
captured by constraint Z score from others.  
 
Correlation of constraint between non-coding regulatory elements and protein-coding genes 
To examine whether constraint of non-coding regulatory elements informs the constraint of their target 
genes, we compared constraint Z scores of enhancers linked to constrained genes and unconstrained 
genes. The former included well-established gene sets of 189 ClinGen56 haploinsufficient genes, 2,454 
MGI57 essential genes mapped to human orthologs, 1, 771 OMIM58 autosomal dominant genes, and 1,920 
LOEUF1 first-decile genes; and the latter included a curated list of 356 olfactory receptor genes and 189 
LOEUF last-decile genes with at least 10 expected LoF variants (which are sufficiently powered to be 
classified into the most constrained decile1). The LOEUF underpowered list included 1,117 genes with ≤5 
expected LoF variants. Enhancers linked to each gene were obtained from the Roadmap Epigenomics 
Enhancer-Gene Linking database, which used correlated patterns of activity between histone 
modifications and gene expression to predict enhancer-gene links78,79. For each gene, we aggregated and 
merged enhancers predicted from all 127 reference epigenomes and assigned the most constrained 
enhancer to each gene for the analysis of enhancer-gene constraint correlation (Supplementary Data 5). 
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In the analysis of correlation between tissue-specific enhancer constraint and tissue-specific gene 
expression, we processed the enhancer-gene links with the same principle as described above but within 
specific tissue types (as defined in the Roadmap Epigenomics metadata55). For each gene and tissue type, 
we searched for tissue-specific gene expression in the Genotype-Tissue Expression (GTEx59) database 
(RNASeQCv1.1.9) and computed a normalized median expression for each gene (log2(TPM+1)). Enhancer 
constraint and gene expression values were calculated for 11 matched tissue types, and the correlation 
within each tissue type was evaluated by regressing gene expression on enhancer constraint, including 
gene constraint (LOEUF score) as a covariate.  
 
Incorporation of non-coding constraint of regulatory elements into gene constraint modeling  
To demonstrate the practical value of non-coding constraint in improving gene constraint modeling, we 
compared two models – using 1) LOEUF and 2) LOEUF+enhancer constraint Z score (as described in 
Correlation of constraint between non-coding regulatory elements and protein-coding genes) – in 
predicting constrained genes, with a particular focus on genes that were underpowered in LOEUF. A set 
of 3,220 unique constrained genes were curated from ClinGen56, MGI57, and OMIM58 (see Correlation of 
constraint between non-coding regulatory elements and protein-coding genes), and a set of 356 olfactory 
receptor genes was used as the unconstrained genes. We trained logistic regression models on 50% of the 
genes and tested the performance on 77 underpowered genes in the remaining 50%. The predictive 
performance of the two models were measured by AUC, and the significance of the difference in AUCs 
was assessed using a bootstrap test80. 
 
Power of constraint detection 
We estimated the power of our metric in detecting non-coding constraint as the percentage of the non-
coding genome to obtain a high constraint Z score (Z≥4) under a certain strength of negative selection, 
which was quantified by the level of depletion of variation (i.e., 1-observed/expected). For a given 
depletion of variation, the minimum number of expected variants to achieve a Z≥4 was determined, and 
the number of samples required to achieve the expected number of variants was estimated using a linear 
model of log(number of expected variants) ~ log(number of samples) from downsampling the gnomAD 
dataset. The power was estimated at two scales – 1kb (used in this study) and 100bp – and benchmarked 
by the depletion of variation observed in coding exons of similar size.  
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Figure legends 
 
Fig. 1: Distribution of constraint Z scores across the genome. a, Histograms of constraint Z scores for 
1,984,900 1kb windows across the human autosomes. Windows overlapping coding regions (N=141,341 
with ≥ 1bp coding sequence; red) overall exhibit a higher constraint Z (stronger negative selection) than 
windows that are exclusively non-coding (N=1,843,559; blue); dashed lines indicate the medians. b, The 
correlation between constraint Z score and the adjusted proportion of singletons (APS) score developed 
for structural variation (SV) constraint. A collection of 116,184 autosomal SVs were assessed using 
constraint Z score by assigning each SV the highest Z among all overlapping 1kb windows, which shows a 
signficant positive correlation with the SV constraint metric APS. Error bars indicate 100-fold bootstrapped 
95% confidence intervals of the mean values. 
 
Fig. 2: Correlation between constraint Z score and functional non-coding annotations. a,b, Distributions 
of candidate regulatory elements (a) and GWAS variants (b) along the spectrum of non-coding constraint. 
Enrichment was evaluated by comparing the proportion of non-coding 1kb windows, binned by constraint 
Z, that overlap with a given functional annotation to the genome-wide average. Error bars indicate 95% 
confidence intervals of the odds ratios. c, Enrichment of fine-mapped variants in constrained non-coding 
regions (Z≥4). Credible set (CS)-trat pairs with a significant enrichment are shown, ordered by the lower 
bound of 95% confidence interval; only lower bounds are shown for presentation purposes. d, The 
distribution of variants fine-mapped for coronary artery disease (CAD) in constrained regions (Z≥4) of 
PLG. Each bar shows the constraint Z score of a 1kb window (gaps indicate windows removed by quality 
filters); windows containing fine-mapped variants are colored by purple, and the number of variants in 
each window is annotated on top of the bar correspondingly. Ten variants are located within PLG introns, 
four are mapped to the antisense gene of PLG (ENSG00000287558), and 14 reside in the downstream 
intergenic regions. 
 
Fig. 3: Performance of constraint Z score and other predictive scores in prioritizing non-coding variants. 
a,b, Receiver operating characteristic (ROC) curves of constraint Z score and other seven metrics in 
classifying putative functional non-coding variants – 2,191 GWAS fine-mapping variants (a) and 288 
ClinVar pathogenic variants (b) – against background variants in the population. The performance of each 
metric was measured and ranked by the area under curve (AUC) statistic. c,d, The relative contribution of 
different metrics in classifying GWAS variants (b) and ClinVar variants (c). The eight metrics were modeled 
as eight independent predictors for the classification, and the relative contribution of one predictor over 
another was evaluated by estimating their additional 𝑅+contributions across all subset models.  
 
Fig. 4: Contribution of non-coding constraint in evaluating copy number variants (CNVs). a, Proportions of 
constrained CNVs (Z≥4) identified in individuals with developmental delay (DD cases) versus healthy 
controls. Constrained CNVs are more common in DD cases than controls (7,239/17,004=42.6% versus 
10,403/83,526=12.5%) and are most frequent for CNVs previously implicated as pathogenic (18/19=94.7% 
by DD and 3,433/4,014=85.5% by ClinVar). b, Contribution of non-coding constraint to predicting CNVs in 
DD cases versus controls. Non-coding constraint remains a significant predictor for the case/control status 
of CNVs after adjusting for gene constraint (LOEUF score), gene number, and size of CNVs (purple), as well 
as being tested in the subset of non-coding CNVs (blue). Error bars indicate 95% confidence intervals of 
the log odds ratios. c, CNVs at the IHH locus associated with synpolydactyly and craniosynostosis. The four 
implicated duplications (grey horizontal bars) span a ~102kb sequence upstream of IHH. Each vertical bar 
shows the constraint Z score of a 1kb window within the locus, with the highest score overlapping the IHH 
gene (red) and the highest non-coding score overlapping the major IHH enhancers (purple); gaps indicate 
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windows removed by quality filters. d, Non-coding CNVs with the highest constraint Z score identified in 
DD cases. The highest-scored window is located within the potential “critical region”48 (purple vertical 
bars) shared by 12 DD deletions (red horizontal bars; grey indicates two deletions observed in controls). 
The critical region overall, has a significantly higher constraint Z score than the other regions affected by 
DD or control deletions, as shown in the kernel density estimate (KDE) plot on the right. 
 
Fig. 5: Correlation of constraint between non-coding regulatory elements and protein-coding genes. a, 
The proportion of non-coding 1kb windows overlapping with enhancers that were predicted to regulate 
specific genes, as a function of their constraint Z scores. More constrained non-coding regions are more 
frequently linked to a gene. Error bars indicate standard errors of the proportions. b, Comparison of the 
constraint Z scores of enhancers linked to constrained and unconstrained genes. Enhancers of established 
sets of constrained genes (four blue boxes) are more constrained than enhancers of presumably less 
constrained genes (two grey boxes). Enhancers of genes that are underpowered for gene constraint 
detection (“LOEUF underpowered”) present a higher constraint than those powered yet unconstrained 
genes (“LOUEF unconstrained”). c, Improvement of incorporating enhancer constraint into LOEUF in 
prioritizing underpowered genes. ROC curves and AUCs show the performance of two models using LOEUF 
(blue) and LOEUF+enhancer constraint Z score (purple) to classify constrained and unconstrained genes, 
tested on a set of 77 underpowered genes. d, Contribution of enhancer constraint to predicting gene 
expression in specific tissue types. The x-axis shows the linear regression coefficient of tissue-specific 
enhancer constraint predicting the expression level of target genes in matched tissue types, conditioning 
on gene constraint (LOEUF score). Error bars indicate 95% confidence intervals of the coefficient 
estimates. 
 
Extended Data Fig. 1: Construction of mutational model and constraint Z score. a,b, Estimation of 
trinucleotide context-specific mutation rates. The proportion of possible variants observed for each 
substitution and context in 76,156 gnomAD genomes (y-axis) is exponentially correlated with the absolute 
mutation rate estimated from 1,000 downsampled genomes (x-axis). Fit lines were modeled separately 
for human autosomes (a) and chromosome X (b). c, Estimation of the effects of regional genomic features 
on mutation rates. The effects of 13 genomic features at four scales (window sizes 1kb-1Mb; x-axis) on 
the mutation rate of 32 trinucleotide contexts (y-axis) are shown, colored by the coefficient from 
regressing de novo mutations (DNMs) on each specific feature and window size. Red/Blue color indicates 
a positive/negative effect of increasing the feature value on mutation rates; grey crosses indicate 
significant features at the smallest possible window size after Bonferroni correction for 13×4=52 tests. 
Abbreviations: LCR=low-complexity region, SINE/LINE=short/long interspersed nuclear element, 
Dist=Distance, Recomb=Recombination, Methyl=Methylation. d,e, The distribution of constraint Z score 
as a function of expected and observed variation. Each point represents the Z score of a 1kb window on 
the genome (N=1,984,900 on autosomes (d) and  N=57,729 on chromosome X (e)), which quantifies the 
deviation of observed variation from expectation. A positive Z score (red) indicates depletion of variation 
(observed<expected) and the higher the Z score the stronger the depletion; the red dashed line indicates 
the 99th percentile of Z scores across the autosomes (d) or chromosome X (e).  
 
Extended Data Fig. 2: Comparison of constraint Z score between coding and non-coding regions. a, The 
proportion of highly constrained windows (Z≥4) as a function of the percentage of coding sequences in a 
window. The intervals (x-axis) are left exclusive and right inclusive. “Exonic only” refers to the 1kb 
windows created from directly concatenating coding exons into 1kb sequences. b, The exonic-only regions 
(N=27,875; purple) present a significantly higher constraint Z score than regions that are exclusively non-
coding (N=1,843,559; blue). Dashed lines indicate the medians. c, The proportion of highly constrained 
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windows (Z≥4) as a function of the proportion of exonic windows being added to the dataset of non-
coding windows. d, Constraint Z score percentiles of non-coding versus exonic windows. About 0.05% 
(100-99.95%) and 3.12% (100-96.88%) of the non-coding windows exhibit similar constraint to the 90th 
and 50th of exonic regions, respectively. 
 
Extended Data Fig. 3: Estimation of constraint for aggregated regulatory annotations. a,b, Constraint Z 
scores of aggregated promoter (dark purple), enhancer (light purple), microRNA (miRNA; dark blue), and 
long non-coding RNA (lncRNA; light blue) annotations are compared against those of exonic (a) and non-
coding (b) regions at a 1kb scale. The constraint Z score percentiles of each annotation (y-axis) are 
benchmarked by the score deciles of exonic or non-coding regions (10-100 percentiles; x-axis); the grey 
dashed vertical line indicates the median (50th percentile).  
 
Extended Data Fig. 4: Applications of constraint Z score for characterizing non-coding regions in addition 
to existing functional annotations. a, Use of constraint Z score for prioritizing non-coding regions with or 
without a regulatory annotation. Constrained non-coding regions are enriched for GWAS variants, 
independent of the candidate cis-regulatory element (cCRE) annotation from ENCODE. b, Use of 
constraint Z score in statistical fine-mapping. The increase in posterior inclusion probability (PIP) when 
incorporating constraint Z score as a functional prior into previous fine-mapping results (that used a 
uniform prior; denoted as PIPZ and PIPunif, respectively) is shown for 164 new likely causal associations 
with a  PIPZ ≥0.8 as a function of PIPZ. 
 
Extended Data Fig. 5: Comparison of constraint Z score and other predictive scores in prioritizing non-
coding variants. a, Receiver operating characteristic (ROC) curves of constraint Z score and other seven 
metrics in classifying putative functional non-coding variants (“positive” variant set) –  left to right: 9,229 
GWAS Catalog variants, 2,191 GWAS fine-mapping variants, a subset of 140 high-confidence fine-mapped 
variants, and 288 ClinVar pathogenic variants – against “negative” variant set randomly drew from the 
population with a similar allele frequency (AF). AF>5% and allele count (AC)=1 were applied respectively 
for matching the three GWAS variant sets and the ClinVar variant set, based on their AF distributions in 
gnomAD (shown in b). b, AUCs of the classification with a varying AF threshold for the negative variant 
set. As most GWAS variants are common and most ClinVar variants are very rare (not seen in the 
population), AF>5% and AC=1 were applied respectively in the primary analyses shown in a. 
 
Extended Data Fig. 6: Comparison of constraint Z scores built from different mutational models and 
genomic windows. Our constraint Z score (presented in this study) outperforms the scores rebuilt from 
mutational models that only consider local sequence context – trinucleotide (trimer-only) or 
heptanucleotide (heptamer-only) – without adjustment on mutation rate by regional genomic features, 
and the performance is robust to the artificial break of genomic windows when computed at a 1kb sliding 
by 100bp scale. 
 
Extended Data Fig. 7: Pairwise correlations between different constraint/conservation metrics. The 
Spearman's rank correlation between each pair of the eight metrics was computed based on the mean 
value of each score on 1kb windows across the genome.  
 
Extended Data Fig. 8: Power of constraint detection. a,b, The sample size required for well-powered non-
coding constraint detection. The percentage of non-coding regions powered to detect constraint (Z≥4) at 
a 1kb (a) and 100bp (b) scale under varying levels of selection (depletion of variation) is shown as a 
function of log-scaled sample size. Lighter color indicates milder deletion of variation (weaker selection), 
which requires a larger sample size to detect constraint; the grey dashed vertical line indicates the current 
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sample size of 76,156 genomes. Dotted curves (left to right) benchmark the 95th, 90th, and 50th percentile 
of depletion of variation observed in coding exons of similar size. The number of samples required to 
obtain an 80% detection power is labeled at corresponding benchmarks. c, AUCs of constraint Z scores 
computed on different window sizes in identifying putative functional non-coding variants. 1kb (used in 
this study) presents the optimal window size with high performance while maintaining reasonable 
resolution. d, AUCs of constraint Z scores computed from different subsets of gnomAD in identifying 
putative functional non-coding variants. While with an equal sample size, the downsampled dataset with 
diverse ancestries presents higher performance than the Non-Finnish European (NFE)-only dataset.   
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