
Inferring Neural Activity Before Plasticity: A Foundation1

for Learning Beyond Backpropagation2

Yuhang Song1,2,*, Beren Millidge2, Tommaso Salvatori1, Thomas Lukasiewicz1,*, Zhenghua Xu1,3, and3

Rafal Bogacz2,*
4

1Department of Computer Science, University of Oxford, Oxford, United Kingdom5
2Medical Research Council Brain Networks Dynamics Unit, University of Oxford, Oxford, United Kingdom6
3State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China7
*Corresponding authors: yuhang.song@bndu.ox.ac.uk; thomas.lukasiewicz@cs.ox.ac.uk; rafal.bogacz@ndcn.ox.ac.uk8

Abstract9

For both humans and machines, the essence of learning is to pinpoint which components in its information
processing pipeline are responsible for an error in its output — a challenge that is known as credit
assignment. How the brain solves credit assignment is a key question in neuroscience, and also of
significant importance for artificial intelligence. It has long been assumed that credit assignment is
best solved by backpropagation, which is also the foundation of modern machine learning. However,
it has been questioned whether it is possible for the brain to implement backpropagation and learning
in the brain may actually be more efficient and effective than backpropagation. Here, we set out a
fundamentally different principle on credit assignment, called prospective configuration. In prospective
configuration, the network first infers the pattern of neural activity that should result from learning, and
then the synaptic weights are modified to consolidate the change in neural activity. We demonstrate
that this distinct mechanism, in contrast to backpropagation, (1) underlies learning in a well-established
family of models of cortical circuits, (2) enables learning that is more efficient and effective in many
contexts faced by biological organisms, and (3) reproduces surprising patterns of neural activity and
behaviour observed in diverse human and animal learning experiments. Our findings establish a new
foundation for learning beyond backpropagation, for both understanding biological learning and building
artificial intelligence.

10

The credit assignment problem1 lies at the very heart of learning. Backpropagation2–5, as a simple11

yet effective credit assignment theory, has powered notable advances in artificial intelligence since its12

inception6–11. It has also gained a predominant place in understanding learning in the brain1, 12–21. Due to13

this success, much recent work has focused on understanding how biological neural networks could learn in14

a way similar to backpropagation22–31: although many proposed models do not implement backpropagation15

exactly, they nevertheless try to approximate backpropagation, and much emphasis is placed on how16

close this approximation is22–28, 32–34. However, learning in the brain is superior to backpropagation17

in many critical aspects — for example, compared to the brain, backpropagation requires many more18

exposures to a stimulus to learn35 and suffers from catastrophic interference of newly and previously19

stored information36, 37. This raises the question of whether using backpropagation to understand learning20

in the brain should be the main focus of the field.21

Here, we propose that the brain instead solves credit assignment with a fundamentally different22

principle, which we call prospective configuration. In prospective configuration, before synaptic weights23

are modified, neural activity changes across the network so that output neurons better predict the target24

output; only then are the synaptic weights (weights, for short) modified to consolidate this change in25

neural activity. By contrast, in backpropagation the order is reversed — weight modification takes the lead26

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

and the change in neural activity is the result that follows.27

We identify prospective configuration as a principle that is implicitly followed by a well-established28

family of neural models with solid biological groundings, namely, energy-based networks. They include29

Hopfield networks38 and predictive coding networks39, which have been successfully used to describe30

information processing in the cortex40–46. To support the theory of prospective configuration, we show31

that it can both yield efficient learning, which humans and animals are capable of, and reproduce data32

from experiments on human and animal learning. Thus, on the one hand, we demonstrate that prospective33

configuration performs more efficient and effective learning than backpropagation in various situations34

faced by biological systems, such as learning with deep structures, online learning, learning with a35

limited amount of training examples, learning in changing environments, continual learning with multiple36

tasks, and reinforcement learning. On the other hand, we demonstrate that patterns of neural activity37

and behaviour in diverse human and animal learning experiments, including sensorimotor learning, fear38

conditioning and reinforcement learning, can be naturally explained by prospective configuration, but not39

by backpropagation.40

Guided by the belief that backpropagation is the foundation of biological learning, previous work41

showed that energy-based networks can closely approximate backpropagation. However, to achieve it, the42

networks were set up in an unnatural way, such that the neural activity was prevented from substantially43

changing before weight modification, by constraining the supervision signal to be infinitely small (e.g., as44

in equilibrium propagation24 and in previous studies employing predictive coding networks25, 47) or last an45

infinitely short time33, 48. In contrast, we reveal that the energy-based networks without these unrealistic46

constrains follow the distinct principle of prospective configuration rather than backpropagation, and are47

superior in both learning efficiency and accounting for data on biological learning.48

Below, we first introduce prospective configuration with an intuitive example, show how it originates49

from energy-based networks, describe its advantages and quantify them in a rich set of biological-relevant50

learning tasks. Finally, we show that it naturally explains patterns of neural activity and behaviour in51

diverse learning experiments.52

Results53

Prospective configuration: an intuitive example54

To optimally plan behaviour, it is critical for the brain to predict future stimuli — for example, to predict55

sensations in some modalities on the basis of other modalities49. If the observed outcome differs from the56

prediction, the weights in the whole network need to be updated so that prediction in the “output” neurons57

are corrected. Backpropagation computes how the weights should be modified to minimize the error on58

the output, and this weight update results in the change of neural activity when the network next makes the59

prediction. In contrast, we propose that the activity of neurons is first adjusted to a new configuration, so60

that the output neurons better predict the observed outcome (target pattern); the weights are then modified61

to reinforce this configuration of neural activity. We call this configuration of neural activity “prospective”,62

since it is the neural activity that the network should produce to correctly predict the observed outcome. In63

agreement with the proposed mechanism of prospective configuration, it has indeed been widely observed64

in biological neurons that presenting the outcome of a prediction triggers changes in neural activity — for65

example, in tasks requiring animals to predict a fruit juice delivery, the reward triggers rapid changes in66

activity not only in the gustatory cortex, but also in multiple cortical regions50, 51.67

To highlight the difference between backpropagation and prospective configuration, consider a simple68

example in Fig. 1a. Imagine a bear seeing a river. In the bear’s mind, the sight generates predictions of69

hearing water and smelling salmon. On that day, the bear indeed smelled the salmon but did not hear70

2/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Fig. 1| Prospective configuration avoids interference during learning. ▶ a | An abstract (top) and a concrete
(bottom) example of a task inducing interference during learning. One stimulus input (seeing the water) triggers
two prediction outputs (hearing the water and smelling the salmon). One output is correct (smelling the salmon),
while the other one is an error (not hearing the water). Backpropagation produces interference during learning: not
hearing the water reduces the expectation of smelling the salmon (panel b), although the salmon was indeed smelled.
Prospective configuration, on the other hand, avoids such interference (panel c). ▶ b | In backpropagation, negative
error propagates from the error output into hidden neurons (left). This causes a weakening of some connections,
which on the next trial improves the incorrect output, but it also reduces the prediction of the correct output, thus
introducing interference (middle and right). ▶ c | In prospective configuration, neural activity settles into a new
configuration (purple of different intensity) before weight modification (left). This configuration corresponds to
the activity that should be produced after learning, i.e., is “prospective”. Hence it foresees the positive error on the
correct output, and modifies the connections to improve the incorrect output, while maintaining the correct output
(middle and right).

the water, perhaps due to an ear injury, and thus the bear needs to change its expectation related to the71

sound. Backpropagation (Fig. 1b) would proceed by backpropagating the negative error, so as to reduce72

the weights on the path between the visual and auditory neurons. However, this also entails a reduction73

of the weights between visual and olfactory neurons that would compromise the expectation of smelling74

the salmon, the next time the river is visited; even though the smell of salmon was present and correctly75

predicted. These undesired and unrealistic side effects of learning with backpropagation are closely related76

with the phenomenon of catastrophic interference, where learning a new association destroys previously77

learned memories36, 37. This example shows that, with backpropagation, even learning one new aspect of78

an association may interfere with the memory of other aspects of the same association.79

In contrast, prospective configuration assumes that learning starts with the neurons being configured80

to a new state — which corresponds to a pattern enabling the network to correctly predict the observed81

outcome. The weights are then modified to consolidate this state. This behaviour can “foresee” side82

effects of potential weight modifications and compensate for them dynamically — Fig. 1c: to correct the83

negative error on the incorrect output, the hidden neurons settle to their prospective state of lower activity,84

and as a result, a positive error is revealed and allocated to the correct output. Consequently, prospective85

configuration increases the weights connecting to the correct output, while backpropagation does not86

(cf. middle plots of Fig. 1b and c). Hence, prospective configuration is able to correct the side effects of87

3/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

learning an association effectively, efficiently, and with little interference.88

Fig. 2| The energy machine reveals a new understanding of energy-based networks, the mechanism of
prospective configuration, and its theoretical advantages. A subset of energy-based networks can be visualized
as mechanical machines that perform equivalent computations. Here, we present one of them, predictive coding
networks25, 40, 52. In the energy machine, the activity of a neuron corresponds to a height of a node (represented by a
solid circle) sliding on a post. The input to the neuron is represented by a hollow node on the same post. A synaptic
connection corresponds to a rod pointing from a solid to a hollow node. The synaptic weight determines how the
input to a post-synaptic neuron depends on the activity of pre-synaptic neuron, hence it influences the angle of the
rod. In energy-based networks, relaxation (i.e., neural dynamics) and weight modification (i.e., weight dynamics)
are both driven by minimizing the energy, thus correspond to relaxing the energy machine by moving the nodes and
tuning the rods, respectively. ▶ a-b | Predictions (a) and learning (b) in energy-based networks, visualized by the
energy machine. The pin indicates that the neural activity is fixed to the input or target pattern. Here, it is revealed
that the relaxation infers the prospective neural activity, towards which the weights are then modified, a mechanism
that we call prospective configuration. ▶ c | The physical implementation (top) and the connectivity of a predictive
coding network25, 40, 52 (bottom), which has a dynamics mathematically equivalent to the energy machine in the
middle (see Methods for details). ▶d | The learning problem in Fig. 1, visualized by the energy machine, which
learns to improve the incorrect output while not interfering with the correct output, thanks to the mechanism of
prospective configuration.

Origin of prospective configuration: energy-based networks89

To shows how prospective configuration naturally arises in energy-based networks, we introduce a physical90

machine analog, that provides an intuitive understanding of energy-based networks, and how they produce91

the mechanism of prospective configuration.92

4/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Energy-based networks have been widely and successfully used in describing biological neural93

systems38, 39, 53–55. In these models, a neural circuit is described by a dynamical system driven by reducing94

an abstract “energy”, e.g., reflecting errors made by the neurons; see Methods. Neural activity and synaptic95

weights change to reduce this energy, hence they can be considered as “movable parts” of the dynamical96

system. We show below that energy-based networks are mathematically equivalent to a physical machine97

(we call it energy machine), where the energy function has an intuitive interpretation and its dynamics are98

straightforward — the energy machine simply adjusts its movable parts to reduce energy.99

As shown in Fig. 2a–b, the energy machine includes nodes sliding on vertical posts, connected with100

each other via rods and springs. Translating from energy-based networks to the energy machine, the neural101

activity maps to the vertical position of a solid node, a connection maps to a rod (blue arrow) pointing102

from one node to another (where the weight determines how the end position of the rod relates to the initial103

position), and the energy function maps to the elastic potential energy of springs with nodes attached104

on their both ends (the natural length of the springs is zero). Different energy functions and networks105

structures result in different energy-based networks, corresponding to energy machines with different106

configurations and combinations of nodes, rods, and springs. In Fig. 2, we present the energy machine of107

predictive coding networks25, 40, 52, because they are most accessible and established to be closely related108

to backpropagation25, 33.109

The dynamics of energy-based networks, which are driven by minimizing the energy function, maps to110

the relaxation of the energy machine, which is driven by reducing the total elastic potential energy on the111

springs. A prediction with energy-based networks involves clamping the input neurons to the provided112

stimulus and updating the activity of the other neurons, which corresponds to fixing one side of the energy113

machine and letting the energy machine relax by moving nodes (Fig. 2a). Learning with energy-based114

networks involves clamping the input and output neurons to the corresponding stimulus, first letting the115

activity of the remaining neurons converge and then updating weights, which corresponds to fixing both116

sides of the energy machine and letting the energy machine relax first by moving nodes and then by tuning117

rods (Fig. 2b).118

The energy machine reveals the essence of energy-based networks: the relaxation before weight119

modification lets the network settle to a new configuration of neural activity, corresponding to those that120

would have occurred after the error was corrected by the modification of weights, i.e., prospective activity121

(thus, we call this mechanism prospective configuration). For example, the second layer “neuron” in122

Fig. 2b increases its activity, and this increase in activity would also be caused by the subsequent weight123

modification (of the connection between the first and the second neurons). In simple terms, the relaxation124

in energy-based networks infers the prospective neural activity after learning, towards which the weights125

are then modified. This distinguishes it from backpropagation, where the weights modification takes the126

lead, and the change in neural activity is the result that follows.127

The bottom part of Fig. 2c shows the connectivity of a predictive coding network25, 40, 52, which has a128

dynamics mathematically equivalent to the energy machine shown above it. Predictive coding networks129

include neurons (blue) corresponding to nodes on the posts, and separate neurons encoding prediction130

errors (red) corresponding to springs. For details, see Methods and Extended Data Fig. 1, where we list131

equations describing predictive coding networks, show how they map on the neural implementation and132

the proposed energy machine.133

Using the energy machine, Fig. 2d simulates the learning problem from Fig. 1. Here, we can see that134

prospective configuration indeed foresees the result of learning and its side effects, through relaxation.135

Hence, it learns to avoid interference within one iteration, which would otherwise take multiple iterations136

for backpropagation.137

5/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Advantages of prospective configuration: reduced interference and faster learning138

Fig. 3| Learning with prospective configuration changes the activity of output neurons in a direction more
aligned towards the target. ▶ a | Simulation of network from Fig. 1 showing changes of the correct and incorrect
output neurons during training (“Iteration”), trained with both learning rules. Here, learning with prospective
configuration (purple solid vector) aligns better with the target (red vector), than for backpropagation (purple dashed
vector). ▶b | The interference can be quantified by “target alignment”: the cosine similarity of the direction
of target (red vector) and the direction of learning (purple vector). ▶ c | Higher target alignment indicates less
interference and vice versa. ▶d | The same experiment as in panel a repeated with a learning rate ranging from
0.005 to 0.5 represented by the size of the markers, where it is shown that the choice of learning rate slightly
changes the trajectories for both methods but the conclusion holds irrespective of the learning rate. ▶ e | Target
alignment of randomly generated networks trained with both learning rules, as a function of depth of the network.
Here, target alignment drops as the network gets deeper, demonstrating the difficulty of training deep structures.
However, prospective configuration maintains much higher target alignment along the way. ▶ f | Classification error
during training on FashionMNIST56 dataset containing images of clothing belonging to different categories, for
both learning rules, with a deep neural network of 15 layers. ▶ g | Mean of the classification error over training
epochs (reflecting how fast test error drops), as a function of learning rate. Results in the panels f and h are for
the learning rates giving the minima of the corresponding curves in this panel. ▶h | Mean of classification error
of other network depths. Each point is from learning rate independently optimized for each learning rule in the
corresponding setup of network depth. In panels e–h, prospective configuration demonstrates notable advantage as
the structure gets deep.

Here we quantify interference in the above scenario and demonstrate how the reduced interference139

translates into an advantage in performance. In all simulations in the main text prospective configuration140

is implemented in predictive coding networks (see Methods, other energy-based models are considered in141

Extended Data Figures and Supplementary Information). Fig. 3a compares the activity of output neurons142

in the example in Fig. 1, between backpropation and prospective configuration. Initially both output143

neurons are active (top right corner), and the output should change towards a target in which one of the144

neurons is inactive (red vector). Learning with prospective configuration results in changes on the output145

(purple solid vector) that are aligned better with the target than those for backpropagation (purple dotted146

vector). Following the first update of weights, we simulate multiple iterations until the network is able to147

6/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

correctly predict the target. Here, “iteration” refers to each time the agent is presented with stimuli and148

conducts one weight update because of the stimulus (a trial-by-trial iteration). Within each iteration, it149

contains: (1) numerical integration procedure of relaxation of energy-based networks, which captures its150

continuous process; (2) one update of weights at the end of the above procedure. Although the output from151

backpropagation can reach the target after multiple iterations, the output for the “correct neuron” diverges152

from the target during learning and then comes back - it is particularly undesired effect in biological153

learning, where networks can be “tested” at any point during the learning process, because it may lead154

to incorrect decisions affecting chances for survival. By contrast, prospective configuration substantially155

reduces this effect.156

Although backpropagation modifies the weights to directly reduce the cost in the space of weights157

(i.e., performs gradient descent), surprisingly and rather subversively, it does not push the resulting158

output activity directly towards the target. To illustrate this, Fig. 3a visualizes the cost with contour lines.159

Changing the activity of output neurons according to the gradient of the cost would correspond to a change160

orthogonal to the contour lines, i.e., that indicated by the red arrow. However, backpropagation changes the161

output in a different direction shown by a dashed arrow. Since the network is a complex cascaded system,162

optimizing the weights independently, without considering the effect of update of other weights, leads to163

the output activity not updating towards the target directly, due to different weight updates to different164

layers interfering with each other. By contrast, when updating each weight, prospective configuration165

considers the results of update of other weights by finding a desired configuration of neural activity first,166

and such mechanism is missing in backpropogation but natural in energy-based networks. Extended Data167

Fig. 2 shows a direct comparison of how these two models evolve in weight and output spaces during168

learning.169

The interference can be quantified by the angle between the direction of target (from current output to170

target) and learning (from current output to output after learning, both measured without target provided),171

and we define “target alignment” as the cosine of this angle (Fig. 3b), hence high interference corresponds172

to low target alignment (Fig. 3c). It is useful to highlight that the target alignment is little affected by the173

learning rate, as shown by Fig. 3d, demonstrating that the learning rate has little effect on the direction174

and trajectory output neurons take. The difference in target alignment demonstrated in Fig. 3a is also175

present for deeper and larger (randomly generated) networks, as shown in Fig. 3e. When a network has no176

hidden layers, the target alignment is equal to 1 (proved in section 2.4.1 of Supplementary Information).177

The target alignment drops for backpropagation as the network gets deep, because changes in weights in178

one layer interfere with changes in other layers (as explained in Fig. 1) and the backpropagated errors179

do not lead to appropriate modification of weights in hidden layers (Extended Data Fig. 2). By contrast,180

prospective configuration maintains a much higher value along the way. This higher target alignment181

of prospective configuration can be theoretically explained by the following: (i) there exists a close link182

between prospective configuration and an algorithm called target propagation57 (shown in Extended Data183

Fig. 3 and section 2.2 of Supplementary Information); and (ii) under certain conditions target propagation57
184

has target alignment of 158 (demonstrated in Extended Data Fig. 4 and Section 2.4.2 of Supplementary185

Information). Thus, the link with target propagation57 provides a theoretical insight (with numerical186

verification) on why prospective configuration has a higher target alignment.187

The effectiveness of target alignment directly translates to the efficiency of learning: Fig. 3f shows188

that the test error during training in a visual classification task with a deep neural network of 15 layers189

decreases faster for prospective configuration than backpropagation. (“test error” refers to the ratio of190

incorrectly classified samples in all samples on the test set).191

Throughout the whole paper, if learning rate is not presented in a plot, the plot corresponds to the best192

learning rate optimized independently for each rule under the setup, via a grid search. The optimization193

7/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

target is either the learning performance or approximation to experimental recordings, depending on194

the nature of the experiment (details can be found in method section for each experiment). Thus for195

example, Fig. 3f shows the test errors as training progress, and they are with the learning rates optimized196

independently for each learning rule. The optimization target is the “mean of test error” during training197

(reflecting how fast the test error decreases during training). Fig. 3g plots this “mean of test error” for198

different learning rates for both learning rules, and the learning rates giving the minima of the curves have199

been used in Fig. 3f.200

Fig. 3h repeats the experiment on networks of other depths, and shows the mean of the test error201

during training (reflecting how fast the test error drops), as a function of network depth. The mean error202

is higher for low depths, as these networks are unable to learn the task, and for greater depths, because203

it takes longer to train deeper networks. Importantly, the gap between backpropagation and prospective204

configuration widens for deeper networks, paralleling the difference in target alignment. Efficient training205

with deeper networks is important for biological neural systems, known to be deep, e.g., primate visual206

cortex59.207

In the Supplementary Information we develop a formal theory of prospective configuration and provide208

further illustrations and analyses of its advantages. Extended Data Figs. 5 formally defines prospective209

configuration and demonstrates that it is indeed commonly observed in different energy-based networks.210

Extended Data Figs. 6 and 7 empirically verify and generalize the advantages expected from the theory:211

they show that prospective configuration yields more accurate error allocation and less erratic weight212

modification, respectively.213

Advantages of prospective configuration: effective learning in biologically relevant scenarios214

Inspired by these advantages, we show empirically that prospective configuration indeed handles various215

learning problems that biological systems would face better than backpropagation. Since the field of216

machine learning has developed effective benchmarks for testing learning performance, we use variants217

of classic machine learning problems that share key features with the learning in natural environments.218

Such problems include online learning where the weights must be updated after each experience (rather219

than a batch of training examples)60, continual learning with multiple tasks61, 62, learning in changing220

environments63, learning with limited amount of training examples, and reinforcement learning10. In all221

the aforementioned learning problems, prospective configuration demonstrates a notable superiority over222

backpropagation.223

Firstly, based on the example in Fig. 1, we expect prospective configuration to require fewer episodes224

for learning than backpropagation. Before presenting the comparison, we describe how backpropagation225

is used to train artificial neural networks. Typically, the weights are only modified after a batch of training226

examples, based on the average of updates derived from individual examples (Fig. 4a). In fact, back-227

propagation relies heavily on averaging over multiple experiences to reach human-level performance66–68
228

as it needs to stabilise training69. By contrast, biological systems must update the weights after each229

experience, and we compare the learning performance in such a setting. The sampling efficiency can be230

quantified by mean of test error during training, which is shown in Fig. 4b as a function of batch size231

(number of experiences that the updates are averaged over). The efficiency strongly depends on batch232

size for backpropagation, because it requires batch-training to average out erratic weight updates, while233

this dependence is weaker for prospective configuration, where the weight changes are intrinsically less234

erratic and the batch-averaging is less required (see Extended Data Figs. 7). Importantly, prospective235

configuration learns faster with smaller batch sizes, as in biological settings. Additionally, the final236

performance can be quantified by the minimum of the test error, which is shown in Fig. 4c, when trained237

with batch size equal to one. Here, prospective configuration also demonstrates a notable advantage over238

8/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Fig. 4| Prospective configuration achieves a superior performance over backpropagation in various learning
situations faced by biological systems. These situations are: online learning60 (a–c), continual learning of multiple
tasks61, 62 (d–e), learning in changing environments63 (f–g), learning with a limited amount of training examples
(h), and reinforcement learning10 (k). Panels corresponding to each situation are grouped together with the same
background colour. Simulations of each situation differ from the “default setup” described in the Methods in a single
aspect unique to this task. For example, the default setup involves training with mini-batches, so the batch size was
only set to 1 in (a–c) for investigating online learning, while it was set to a larger default value in rest of the groups
(panels). In supervised learning setups, fully-connected networks (a–h) are evaluated on FashionMNIST56 dataset
and convolutional neural networks64 (i–j) are evaluated on CIFAR-1065 dataset. In reinforcement learning setup (k),
fully-connected networks are evaluated on three classic control problems. If the learning rate is not presented in a
plot, each point (a setup of experiment) in the plot corresponds to the best learning rate optimized independently
for the each rule under that setup. ▶ a | Difference in training setup between computers that can average weight
modifications for individual examples to get a “statistically good” value, and biological systems which must apply
one modification before computing another. ▶b | Mean of the test errors during training, as a function of batch
size. ▶ c | Minimum of the test error during training as a function of learning rate. ▶ d | Test error during continual
learning of two tasks. ▶ g | Mean of test error of both tasks during training as a function of learning rate. ▶ f | Test
error during training when learning with concept drifting. ▶ g | Mean of test error during training with concept
drifting as a function of learning rate. ▶h | Minimum of the test errors during training, with different amounts of
training examples (datapoints per class). ▶ i | Minimal of test error during training of a convolutional neural network
trained with with prospective configuration and backpropagation on CIFAR-1065 dataset. ▶ j | The structure detail
of the convolutional neural network used in the last panel. ▶k | Sum of rewards per episode during training on
three classic reinforcement learning tasks (insets). An episode is a period from initialization of environment to
reaching a terminate state.

9/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

backpropagation.239

Secondly, biological organisms need to sequentially learn multiple tasks, while artificial neural240

networks show catastrophic forgetting: when trained on a new task, performance on previously learnt241

tasks is largely destroyed36, 70–72. Fig. 4d shows the performance when trained on two tasks alternately242

(task 1 is classifying five randomly selected classes in FashionMNIST dataset, and task 2 is classifying243

the remaining five classes). It shows that prospective configuration outperforms backpropagation in both244

terms of avoiding forgetting previous tasks and re-learning current tasks. Fig. 4e summarizes the results.245

Thirdly, biological systems often need to rapidly adapt to changing environments. A common way246

to simulate this is “concept drifting”63, where a part of the mapping between the output neurons to the247

semantic meaning is shuffled every period of time (Fig. 4f left). Fig. 4f right shows the test error during248

training with concept drifting. Before epoch 0, both learning rules are initialized with the same pre-trained249

model (trained with backpropagation), thus, the epoch 0 is the first time the model experiences concept250

drift. Fig. 4g summarizes the results, and shows that for this task there is a particularly large difference in251

mean error (for optimal learning rates). This large advantage of prospective configuration is related to252

it being able to optimally detect which weights to modify (see Extended Data Figs. 6), and to preserve253

existing knowledge while adapting to changes (Fig. 1). This ability to maintain important information254

while updating other is critical for survival of animals in natural environments that are bound to change,255

and prospective configuration has a very substantial advantage in this respect.256

Furthermore, biological learning is also characterized by a limited data availability. Fig. 4h show that257

prospective configuration outperforms backpropagation when the model is trained with fewer examples.258

To demonstrate the advantage of prospective configuration also scales up to larger networks and259

problems, we evaluate convolutional neural networks64 on CIFAR-1065 trained with both learning rules260

(Fig. 4i), where prospective configuration shows notable advantages over backpropagation. The detailed261

structure of the convolutional networks are given in Fig. 4j.262

Another key challenge for biological systems is to decide which actions to take. Reinforcement263

learning theories (e.g., Q-learning) propose that it is solved by learning the expected reward resulting from264

different actions in different situations73. Such prediction of rewards can be made by neural networks10,265

which can be trained with prospective configuration or backpropagation. The sum of rewards per episode266

during training on three classic reinforcement learning tasks is reported in Fig. 4k, where prospective267

configuration demonstrates a notable advance over backpropagation. This large advantage may arise268

because reinforcement learning is particularly sensitive to erratic changes in network’s weights (as the269

target output depends on reward predicted by the network itself for a new state - see Methods).270

Based on the superior learning performance of prospective configuration, we may expect that this271

learning mechanism has been favored by evolution, thus in the next sections we investigate if it can account272

for neural activity and behaviour during learning better than backpropagation.273

Evidence for prospective configuration: inferring of latent state during learning274

Prospective configuration is related to theories proposing that before learning, the brain first infers a275

latent state of environment from feedback74–76. Here, we propose that this inference can be achieved in276

neural circuits through prospective configuration, where following feedback, neurons in “hidden layers”277

converge to a prospective pattern of activity that encodes this latent state. We demonstrate that data from278

various previous studies, which involved the inference of a latent state, can be explained by prospective279

configuration. These data were previously explained by complex and abstract mechanisms, such as280

Bayesian models74, 75, while here we mechanistically show with prospective configuration how such281

inference can be performed by minimal networks encoding only the essential elements of the tasks.282

The dynamical inference of latent state from feedback has been recently proposed to take place during283

10/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

sensorimotor learning75. In this experiment, participants received different motor perturbations in different284

contexts, and learned to compensate for these perturbations. Behavioural data suggest that after receiving285

the feedback, the participants were first employing it to infer the context, and then adapted the force for286

the inferred context. We demonstrate that prospective configuration is able to reproduce these behavioural287

data, while backpropagation cannot.288

Fig. 5| Prospective configuration explains contextual inference in human sensorimotor learning. ▶ a | The
structure of an experimental trial, where participants were asked to move a stick from the starting point to the target
point while experiencing perturbations. ▶ b | The minimal network for this task, including six connections encoding
the associations from the backgrounds (B and R) to the belief of contexts ([B] and [R]), as well as from belief of
contexts to prediction of perturbations (+ and -). ▶ c-e | A sequence of sessions the participants experienced: training,
washout, and testing. Inside each panel, the darker box demonstrates the expected network after the session, where
thickness represents the strength of connections. In the testing session, the darker box explains how the two learning
rules learn differently on the R+ trial, leading to the differences in panel f. ▶ f | Predictions of the two learning rules
compared against behavioural data measured from human participants, where prospective configuration reproduces
the key patterns of data but backpropagation cannot.

Specifically, in the task (Fig. 5a), participants were asked to move a stick from a starting point to289

a target point, while experiencing perturbations. The participants experienced a sequence of blocks of290

trials (Fig. 5c-e) including training, washout, and testing. During the training session, different directions291

of perturbations, positive (+) or negative (-), were applied in different contexts, blue (B) or red (R)292

backgrounds, respectively. We denote these trials as B+ and R-. These trials may be associated with latent293

states, which we denote by [B] and [R]; e.g., the latent state [B] may be associated with both background294

B and perturbation +. The next stage of the task was designed to investigate if this latent state [B] can be295

activated by the perturbation + even if no background B is shown. Thus, participants experienced different296

trials including R+ (i.e., perturbation + but no background B). Specifically, following a washout session297

(during which no perturbation was provided), in the testing session the participants experienced one of298

the four possible test trials: B+, R+, B-, and R-. To evaluate learning on the test trials, motor adaptation299

(i.e., the difference between the final and target stick positions) was measured before and after the test300

trial, on two trials with blue background (Fig. 5e). The change of the adaptation between these two trials301

is a reflection of learning about blue context that occurred at the test trial. If participants just associated302

11/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

feedback with the colour of background (B), then the change of adaptation would only occur with test303

trials B+ and B-. However, experimental data (Fig. 5f, right) show that there was substantial adaptation304

change also with R+ trials (which was even bigger than with B- trials).305

To model learning in this task, we consider a neural network (Fig. 5b) where input nodes encode the306

colour of background, and outputs encode movement compensations in the two directions. Importantly,307

this network also includes hidden neurons encoding belief of being in the contexts associated with the308

two backgrounds ([B] and [R]). Trained with the exact procedure of the experiment75 from randomly309

initialized weights, prospective configuration with this minimal network can reproduce the behavioural310

data, while backpropagation cannot (cf., Fig. 5f left and middle).311

Prospective configuration can produce change in adaptation with R+ test trial, because after + feedback,312

it is able to also activate context [B] that was associated with this feedback during training, and then313

learn compensation for this latent state. To shed light on how this inference takes place in the model, the314

bottom parts of Fig. 5c-d show evolution of the weights of the network over sessions (thickness represents315

the strength of connections). Fig. 5e bottom, shows the difference between the two learning rules at the316

exposure to R+: although B is not perceived, prospective configuration infers a moderate excitation of317

the belief of blue context [B], because the positive connection from [B] to + was built during the training318

session. The activity of [B] enables the learning of weights from [B] to + and -; while backpropagation319

does not modify any weights originating from [B].320

For simplicity of explanation, we simulated the above experiment with minimal networks necessary to321

perform the task, but networks in the brain include multiple neurons, and it is important to establish if322

task structure that was reflected in these minimal networks can be discovered and learned by the networks323

themselves. Indeed, Extended Data Fig. 8 shows that networks with general fully-connected structure324

and more hidden neurons can replicate the above data on motor learning when employing prospective325

configuration, but not when using backpropagation. Thus, prospective configuration can discover task326

structure automatically and learn the task, while backpropagation cannot.327

Fig. 6| Prospective configuration infers latent state during fear conditioning. ▶ a | The fear conditioning
task, where rats are first trained to associate fear (electric shock) with noise and light; then in one of the groups,
fear related to light is eliminated in extinction session; finally, the predicted fear (percentage of rats freezing) of
noise is measures in test session. ▶b | The predicted fear from networks trained with prospective configuration
and backpropagation, compared against the fear (percentage freezing) measured in rats. Prospective configuration
reproduces the key finding that eliminating the fear to light changes the fear to noise. ▶ c | The architecture of
simulated networks.

Studies of animal conditioning have also observed that feedback in learning tasks involving multiple328

12/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

stimuli may trigger learning about non-presented stimuli77–81. For example, in one study77 rats were329

trained to associate fear (electric shock) with noise and light; and then, in one group, fear related to330

light was eliminated in an extinction session (Fig. 6a). Remarkably, the data suggested that eliminating331

the fear to light increased the fear to noise (Fig. 6b). Such learning is not predicted by the standard332

Rescorla-Wagner model82. We consider a neural network (Fig. 6c) that includes two input neurons333

encoding the two stimuli, two hidden neurons, and one output neuron encoding the fear. Trained with334

the exact procedure of animal experiment77 from randomly initialized weights, prospective configuration335

with this simple network can reproduce the data, while backpropagation cannot (cf., Fig. 6b blue and336

orange). In the network employing prospective configuration, the feedback changes the activity of a337

hidden neuron previously associated with this feedback and with non-presented stimulus (noise), and338

hence enables modification of connections of this neuron (a learning mechanism analogous to that in339

sensorimotor learning Fig. 5, see Extended Data Figs. 9 for details).340

Evidence for prospective configuration: discovering task structure during learning341

Prospective configuration is also able to discover the underlying task structure in reinforcement learning.342

Particularly, we consider a task where reward probabilities of different options were not independent74.343

In this study humans were choosing between two options, whose reward probabilities were constrained344

such that one option had higher reward probability than the other (Fig. 7a). Occasionally the reward345

probabilities were swapped, so if one probability was increased, the other was decreased by the same346

amount. Remarkably, the recorded fMRI data suggested that participants learned that the values of two347

options were negatively correlated, and on each trial updated the value estimates of both options in opposite348

ways. This conclusion was drawn from the analysis of the signal from medial prefrontal cortex which349

encoded the expected value of reward. Fig. 7c, right compares this signal after making a choice on two350

consecutive trials: a trial on which reward was not received (“Punish trial”) and the next trial. If the351

participant selected the same option on both trials (“Stay”), the signal decreased, indicating the reward352

expected by the participant was reduced. Remarkably, if the participant selected the other option on the353

next trial (“Switch”), the signal increased, suggesting that negative feedback for one option increased the354

value estimate for the other. Such learning is not predicted by standard reinforcement learning models74.355

This task can be conceptualized as having a latent state encoding which option is superior, and this356

latent state determines the reward probabilities for both options. Consequently, we consider a neural357

network reflecting this structure (Fig. 7b) that includes an input neuron encoding being in this task (equal358

to 1 in simulations), a hidden neuron encoding the latent state, and two output neurons encoding the reward359

probabilities for the two options. Trained with the exact procedure of the experiment74 from randomly360

initialized weights, prospective configuration with this minimal network can reproduce the data, while361

backpropagation cannot (cf., Fig. 7c left and middle).362

To shed light on the difference between the models, we simulate an “idealized” version of the task363

in Fig. 7d-e: the network shown in the inset starts from ({W0 = 1,W1 = 1,W2 =−1}) and is trained for364

64 trials in total. The rewards and punishments are delivered deterministically, and the reversal only365

occurs once at the beginning of training. Fig. 7d inspects prospective configuration at the first few training366

iterations: during relaxation, the hidden neuron is able to infer its prospective configuration, i.e., negative367

hidden activity encoding that the rewarded choice has reversed. In Fig. 7e, such inference by prospective368

configuration results in an increase of W1: since it has inferred from the punishment that the rewarded369

choice has reversed to a non-rewarded one, such punishment strengthens the connection from the latent370

state representing non-rewarded choice to a punishment. By contrast, in backpropagation W1 is decreased:371

since it receives a punishment without updating the latent state (still encoding that the rewarded choice has372

not changed), it weakens the connection from the latent state to a reward. Fig. 7f shows the W1 and W2373

13/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Fig. 7| Prospective configuration can discover the underlying task structure during reinforcement learning.
▶ a | The reinforcement learning task, where human participants need to choose between two options, leading to
either reward (gaining coins) or punishment (losing coins) with different probabilities. The probability of reward
is occasionally reversed between the two options. ▶b | The minimal network encoding the essential elements
of the task. ▶ c | The activity of output neuron corresponding to the selected option, from networks trained with
prospective configuration and backpropagation, compared against the fMRI data measured in human participants,
i.e., peak blood oxygenation level-dependent (%BOLD) signal in the medial prefrontal cortex (mPFC). Prospective
configuration reproduces the key finding that the expected value (encoded in %BOLD signal in mPFC) increases if
the next choice after a punishing trial is to switch to the other option. ▶d | Prospective configuration at the first
few training iterations in an “idealized” version of the task: during relaxation, the hidden neuron is able to infer
its prospective configuration, i.e., negative hidden activity encoding that the rewarded choice has reversed. ▶ e |
Such inference by prospective configuration results in an increase of W1. By contrast, in backpropagation W1 is
decreased. Similar behavior also applies to W2. ▶ f | The W1 and W2 in the simulation of the full task with stochastic
rewards. Different lines correspond to different simulations. ▶ g | The evolution of W0 in the full task. In prospective
configuration, this weight remains closer to 0 than W1 and W2. Inset shows W0 on one of the simulation in the main
plot, where it is demonstrated that prospective configuration easily flips W0 as the rewarded choice changes, while
backpropagation has difficulty in accomplishing this.

in the simulation of the full task with stochastic rewards. The weights follow a similar pattern as in the374

simplified task, i.e., their magnitude increases in prospective configuration. This signifies that the network375

learns that the rewards from the two options are jointly determined by a hidden state. This increase of the376

magnitude of W1 and W2 enables the network to infer the hidden state from the feedback, and learn the377

task structure (as described for panel b). Fig. 7g shows the evolution of W0 in the full task. In prospective378

configuration, this weight remains closer to 0 than W1 and W2. Inset shows W0 on one of the simulation379

in the main plot, where it is demonstrated that prospective configuration easily flips W0 as the rewarded380

choice changes, while backpropagation has difficulty in accomplishing this. The reason of such behavior381

is as follows: thanks to large magnitude of W1 and W2 in prospective configuration, an error on the output382

unit results in a large error on the hidden unit, so the network is able to quickly flip the sign of W0 whenever383

the observation mismatches the expectation. This results in an increased expectation on the Switch trials384

14/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

(panel c).385

Taken together, presented three simulations illustrate that prospective configuration is a common386

principle that can explain a range of surprising learning effects in diverse tasks.387

Discussion388

Our paper identifies the principle of prospective configuration, according to which learning relies on389

neurons first optimizing their pattern of activity to match the correct output, and then reinforcing these390

prospective activities through synaptic plasticity. Although it was known that in energy-based networks the391

activity of neurons shifts before weight update, it has been previously thought that this shift is a necessary392

cost of error propagation in biological networks, and several methods have been proposed to suppress393

it24, 25, 33, 47, 48 to approximate backpropagation more closely. By contrast, we demonstrate that this394

reconfiguration of neural activity is the key to achieving learning performance superior to backpropagation,395

and to explaining experimental data from diverse learning tasks. Prospective configuration further offers a396

range of experimental predictions distinct from those of backpropagation (Extended Data Figs. 10–11). In397

sum, we have demonstrated that our novel credit assignment principle of prospective configuration enables398

more efficient learning than backpropagation by reducing interference, superior performance in situations399

faced by biological organisms, requires only local computation and plasticity, and can match experimental400

data across a wide range of tasks.401

Our theory addresses a long-standing question of how the brain solves the plasticity-stability dilemma,402

e.g., how it is possible that despite learning and adjustment of representation in primary visual cortex83,403

we can still perceive the world and understand the meaning of visual stimuli we learned over our lifetime.404

According to prospective configuration, when some weights are modified during learning, compensatory405

changes are made to other weights, to ensure the stability of previously acquired knowledge. Previous406

computational models have also proposed mechanisms reducing interference between different pieces of407

learned information72, 84, and it is highly likely that these mechanisms operate in the brain in addition to408

prospective configuration and jointly reduce the interference most effectively.409

From one view, prospective configuration could be seen as moving machine learning closer to in-410

ference and learning procedures in statistical modelling and system identification. For example, if the411

“energy” in energy-based schemes is variational free energy, i.e., the evidence lower bound (ELBO),412

prospective configuration can be seen as an implementation of variational Bayes that subsumes inference413

and learning85–89. Perhaps the closest example of this is dynamic expectation maximization90, 91. Dynamic414

expectation maximization (DEM) can be regarded as a generalization of predictive coding networks, in415

which the D-step optimizes representations of latent states (cf., relaxation till convergence), while the416

E-step optimizes model parameters (cf., weight modification). These two steps can be read as inference417

and learning respectively. This lends an interesting interpretation to prospective configuration, in the sense418

that the neuronal dynamics can be understood as inference (that prospectively precedes learning), while419

weight dynamics underwrite learning. This can be contrasted with backpropagation and amortization in420

standard machine learning approaches, which is limited to learning. In short, prospective configuration421

introduces inference into the optimization procedure to ensure optimal learning. It therefore shares with422

predictive coding networks a dual aspect optimization that can be regarded as a Bayesian filter with learn-423

able parameters. One might ask what the M-step comprises in DEM. This corresponds to optimization424

of precision parameters that play the role of learning rates. In the computational neuroscience literature425

this corresponds to attention; namely, selecting precise prediction errors for local optimization of both426

neural and weight dynamics. We hope to consider this kind of extension by pursuing the close relationship427

between prospective configuration and (generalized) predictive coding networks in future work.428

15/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Other recent work92, 93 also noticed that the natural form of energy-based networks (“strong control”429

in their words) perform different learning comparing to backpropagation or approximations of backpropa-430

gation. Their analysis concentrates on an architecture of deep feedback control, and they demonstrated431

that particular form of their model is equivalent to predictive coding networks93. The unique contribution432

of our paper is to show the benefits of such strong control and explain why they arise.433

Predictive coding networks require symmetric forward and backward weights between layers of434

neurons, so a question arises how such symmetry may develop in the brain. If predictive coding networks435

are initialized with symmetric weights (as in our simulations), the symmetry will persist, because the436

changes of a weight between neurons A and B are the same as for the feedback weight (between neurons437

B and A). Even if the weights are not initialized symmetrically, the symmetry may develop if synaptic438

decay is included in the model94, because then the initial asymmetric values decay away and weight439

values become more influenced by recent changes that are symmetric. Nevertheless the weight symmetry440

is not generally required for effective credit assignment, as it has been demonstrated that multilayer26
441

and recurrent95 neural networks can learn from errors propagated by feedback weights that are randomly442

generated, and hence asymmetric. Similarly weight symmetry is not essential for prospective configuration,443

as energy-based networks similar to predictive coding networks can work even if the weights are not444

symmetric96.445

In this paper, we assumed for simplicity that the convergence of neural activity to an equilibrium446

happens rapidly after the stimuli are provided, so that the synaptic weight modification after convergence447

may take place while the stimuli are still present. However, the stimuli biological brains receive may448

be present very briefly or constantly change. Nevertheless, predictive coding networks can still work449

even if weight modification takes place while the neural activity is converging. Specifically, Song et al.450

demonstrate that if neural activities are only updated for the first few steps, the update of the weights is451

equivalent to that in backpropagation33. While, as a reminder, this manuscript demonstrates that if the452

neural activities are updated to equilibrium, the update of the weights follows the principle of prospective453

configuration, distinct from backpropagation and possesses the desirable properties demonstrated. Thus, a454

learning rule where neural activities and weights are updated in parallel will experience weights update455

that is equivalent to backpropagation at the start and then moves to prospective configuration as the system456

converges to equilibrium. We call this variant parallel predictive coding, which has been extensively457

studied in the Chapter 5 of the thesis from Song97. Furthermore, predictive coding networks have been458

extended to describe recurrent structures98–100, and it has been shown that such networks can learn to459

predict dynamically changing stimuli even if weights are modified before the activity converged for a460

given “frame” of the stimulus99.461

The advantages of prospective configuration suggest that it may be profitably applied in machine462

learning to improve the efficiency and performance of deep neural networks. An obstacle for this is that the463

relaxation phase is computationally expensive. However, in recent work on parallel predictive coding we464

demonstrated that by modifying weights after each step of relaxation, the model becomes comparably fast465

as backpropagation and easier for parallelization97. Another approach to making energy-based networks466

more computationally efficient is to train them to predict their state following the relaxation101. Most467

intriguingly, it has been demonstrated that the speed of energy-based networks can be greatly increased468

by implementing the relaxation on analog hardware102, 103, potentially resulting in energy-based network469

being faster than backpropagation. Therefore, we anticipate that our discoveries may change the blueprint470

of next-generation machine learning hardware — switching from the current digital tensor base to analog471

hardware, being closer to the brain and potentially far more efficient.472

16/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

References473

1. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. Backpropagation and the brain. Nat. Rev.474

Neurosci. 21, 335–346 (2020).475

2. Werbos, P. Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph. D.476

dissertation, Harv. Univ. (1974).477

3. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning internal representations by error propagation.478

Tech. Rep., California Univ San Diego La Jolla Inst for Cognitive Science (1985).479

4. Parker, D. B. Learning-logic: Casting the cortex of the human brain in silicon. Tech. report TR-47 (1985).480

5. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).481

6. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks.482

In Advances in Neural Information Processing Systems (NeurIPS), vol. 25, 1097–1105 (2012).483

7. He, H., Boyd-Graber, J., Kwok, K. & Daum III, H. Opponent modeling in deep reinforcement learning. In484

Proceedings of the International Conference on Machine Learning (ICML) (2016).485

8. Hannun, A. et al. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567486

(2014).487

9. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS),488

5998–6008 (2017).489

10. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature (2015).490

11. Silver, D. et al. Mastering the game of go with deep neural networks and tree search. Nature 529, 484–489491

(2016).492

12. Richards, B. A. et al. A deep learning framework for neuroscience. Nat. Neurosci. 22, 1761–1770 (2019).493

13. Zipser, D. & Andersen, R. A. A back-propagation programmed network that simulates response properties of494

a subset of posterior parietal neurons. Nature 331, 679–684 (1988).495

14. Singer, Y. et al. Sensory cortex is optimized for prediction of future input. Elife 7, e31557 (2018).496

15. Cadieu, C. F. et al. Deep neural networks rival the representation of primate it cortex for core visual object497

recognition. PLoS Comput. Biol. 10, e1003963 (2014).498

16. Yamins, D. L. et al. Performance-optimized hierarchical models predict neural responses in higher visual499

cortex. Proc. Natl. Acad. Sci. 111, 8619–8624 (2014).500

17. Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain it501

cortical representation. PLoS Comput. Biol. 10 (2014).502

18. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nat.503

Neurosci. 19, 356 (2016).504

19. Kell, A. J., Yamins, D. L., Shook, E. N., Norman-Haignere, S. V. & McDermott, J. H. A task-optimized505

neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing506

hierarchy. Neuron 98, 630–644 (2018).507

20. Whittington, J. C. et al. The tolman-eichenbaum machine: Unifying space and relational memory through508

generalization in the hippocampal formation. Cell 183, 1249–1263 (2020).509

21. Banino, A. et al. Vector-based navigation using grid-like representations in artificial agents. Nature 557,510

429–433 (2018).511

22. Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic cortical microcircuits approximate the512

backpropagation algorithm. In Advances in Neural Information Processing Systems (NeurIPS), 8721–8732513

(2018).514

17/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

23. Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with segregated dendrites. Elife 6,515

e22901 (2017).516

24. Scellier, B. & Bengio, Y. Equilibrium propagation: Bridging the gap between energy-based models and517

backpropagation. Front. Comput. Neurosci. 11, 24 (2017).518

25. Whittington, J. C. & Bogacz, R. An approximation of the error backpropagation algorithm in a predictive519

coding network with local hebbian synaptic plasticity. Neural Comput. 29, 1229–1262 (2017).520

26. Lillicrap, T. P., Cownden, D., Tweed, D. B. & Akerman, C. J. Random synaptic feedback weights support521

error backpropagation for deep learning. Nat. Commun. 7, 1–10 (2016).522

27. Roelfsema, P. R. & Ooyen, A. v. Attention-gated reinforcement learning of internal representations for523

classification. Neural Comput. 17, 2176–2214 (2005).524

28. Pozzi, I., Bohté, S. & Roelfsema, P. A biologically plausible learning rule for deep learning in the brain. arXiv525

preprint arXiv:1811.01768 (2018).526

29. Körding, K. P. & König, P. Supervised and unsupervised learning with two sites of synaptic integration. J.527

Comput. Neurosci. 11, 207–215 (2001).528

30. Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol.529

54, 28–36 (2019).530

31. Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R. Burst-dependent synaptic plasticity can531

coordinate learning in hierarchical circuits. Nat. Neurosci. 1–10 (2021).532

32. Whittington, J. C. & Bogacz, R. Theories of error back-propagation in the brain. Trends Cogn. Sci. (2019).533

33. Song, Y., Lukasiewicz, T., Xu, Z. & Bogacz, R. Can the brain do backpropagation?—Exact implementation534

of backpropagation in predictive coding networks. In Advances in Neural Information Processing Systems535

(NeurIPS), vol. 33, 22566 (Europe PMC Funders, 2020).536

34. Salvatori, T., Song, Y., Lukasiewicz, T., Bogacz, R. & Xu, Z. Reverse differentiation via predictive coding. In537

Proceedings of the AAAI Conference on Artificial Intelligence (2022).538

35. Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B. & Gershman, S. J. Human learning in atari. In 2017539

AAAI Spring Symposium Series (2017).540

36. McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: The sequential learning541

problem. In Psychology of Learning and Motivation, vol. 24, 109–165 (Elsevier, 1989).542

37. McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and543

neocortex: Insights from the successes and failures of. Psychol. Rev. 102, 419–457 (1995).544

38. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc.545

Natl. Acad. Sci. 79, 2554–2558 (1982).546

39. Friston, K. A theory of cortical responses. Philos. Transactions Royal Soc. B: Biol. sciences 360, 815–836547

(2005).548

40. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: A functional interpretation of some549

extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).550

41. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).551

42. Hohwy, J., Roepstorff, A. & Friston, K. Predictive coding explains binocular rivalry: An epistemological552

review. Cognition 108, 687–701 (2008).553

43. Auksztulewicz, R. & Friston, K. Repetition suppression and its contextual determinants in predictive coding.554

Cortex 80, 125–140 (2016).555

18/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

44. Watanabe, E., Kitaoka, A., Sakamoto, K., Yasugi, M. & Tanaka, K. Illusory motion reproduced by deep neural556

networks trained for prediction. Front. psychology 9, 345 (2018).557

45. Feldman, H. & Friston, K. Attention, uncertainty, and free-energy. Front. human neuroscience 4, 215 (2010).558

46. Kanai, R., Komura, Y., Shipp, S. & Friston, K. Cerebral hierarchies: predictive processing, precision and the559

pulvinar. Philos. Transactions Royal Soc. B: Biol. Sci. 370, 20140169 (2015).560

47. Millidge, B., Tschantz, A. & Buckley, C. L. Predictive coding approximates backprop along arbitrary561

computation graphs. arXiv preprint arXiv:2006.04182 (2020).562

48. Bengio, Y. & Fischer, A. Early inference in energy-based models approximates back-propagation. arXiv563

preprint arXiv:1510.02777 (2015).564

49. O’reilly, R. C. & Munakata, Y. Computational explorations in cognitive neuroscience: Understanding the565

mind by simulating the brain (MIT Press Cambridge, 2000).566

50. Quilodran, R., Rothe, M. & Procyk, E. Behavioral shifts and action valuation in the anterior cingulate cortex.567

Neuron 57, 314–325 (2008).568

51. Wallis, J. D. & Kennerley, S. W. Heterogeneous reward signals in prefrontal cortex. Curr. opinion neurobiology569

20, 191–198 (2010).570

52. Buckley, C. L., Kim, C. S., McGregor, S. & Seth, A. K. The free energy principle for action and perception: A571

mathematical review. J. Math. Psychol. 81, 55–79 (2017).572

53. Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural computation 14,573

1771–1800 (2002).574

54. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M. & Huang, F. A tutorial on energy-based learning. Predict.575

structured data 1 (2006).576

55. Hinton, G. E. A practical guide to training restricted boltzmann machines. In Neural networks: Tricks of the577

trade, 599–619 (Springer, 2012).578

56. Xiao, H., Rasul, K. & Vollgraf, R. Fashion MNIST: A novel image dataset for benchmarking machine learning579

algorithms. arXiv preprint arXiv:1708.07747 (2017).580

57. Bengio, Y. How auto-encoders could provide credit assignment in deep networks via target propagation. arXiv581

preprint arXiv:1407.7906 (2014).582

58. Meulemans, A., Carzaniga, F. S., Suykens, J. A., Sacramento, J. & Grewe, B. F. A theoretical framework for583

target propagation. arXiv preprint arXiv:2006.14331 (2020).584

59. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb.585

Cortex 1, 1–47 (1991).586

60. Fontenla-Romero, Ó., Guijarro-Berdiñas, B., Martinez-Rego, D., Pérez-Sánchez, B. & Peteiro-Barral, D.587

Online machine learning. In Efficiency and Scalability Methods for Computational Intellect, 27–54 (IGI588

Global, 2013).589

61. Hinton, G. E. et al. Learning distributed representations of concepts. In Proceedings of the eighth annual590

conference of the cognitive science society, vol. 1, 12 (Amherst, MA, 1986).591

62. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-inspired artificial intelligence.592

Neuron 95, 245–258 (2017).593

63. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. A survey on concept drift adaptation.594

ACM Comput. Surv. (CSUR) 46, 1–37 (2014).595

64. O’Shea, K. & Nash, R. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458596

(2015).597

19/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

65. Krizhevsky, A. & Hinton, G. Learning multiple layers of features from tiny images. Report (2009).598

66. Jia, X. et al. Highly scalable deep learning training system with mixed-precision: Training imagenet in four599

minutes. arXiv preprint arXiv:1807.11205 (2018).600

67. Puri, R., Kirby, R., Yakovenko, N. & Catanzaro, B. Large scale language modeling: Converging on 40gb of601

text in four hours. In 2018 30th International Symposium on Computer Architecture and High Performance602

Computing (SBAC-PAD), 290–297 (IEEE, 2018).603

68. Berner, C. et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint arXiv:1912.06680 (2019).604

69. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate605

shift. In Proceedings of the International Conference on Machine Learning (ICML) (2015).606

70. Ratcliff, R. Connectionist models of recognition memory: Constraints imposed by learning and forgetting607

functions. Psychol. review 97, 285 (1990).608

71. French, R. M. Catastrophic forgetting in connectionist networks. Trends cognitive sciences 3, 128–135 (1999).609

72. Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelligence. In International610

Conference on Machine Learning, 3987–3995 (PMLR, 2017).611

73. Sutton, R. S. & Barto, A. G. Introduction to Reinforcement Learning, vol. 2 (MIT Press Cambridge, 1998).612

74. Hampton, A. N., Bossaerts, P. & O’doherty, J. P. The role of the ventromedial prefrontal cortex in abstract613

state-based inference during decision making in humans. J. Neurosci. 26, 8360–8367 (2006).614

75. Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference underlies the learning of sensorimotor615

repertoires. Nature 600, 489–493 (2021).616

76. Larsen, T., Leslie, D. S., Collins, E. J. & Bogacz, R. Posterior weighted reinforcement learning with state617

uncertainty. Neural computation 22, 1149–1179 (2010).618

77. Kaufman, M. A. & Bolles, R. C. A nonassociative aspect of overshadowing. Bull. Psychon. Soc. 18, 318–320619

(1981).620

78. Matzel, L. D., Schachtman, T. R. & Miller, R. R. Recovery of an overshadowed association achieved by621

extinction of the overshadowing stimulus. Learn. Motiv. 16, 398–412 (1985).622

79. Matzel, L. D., Shuster, K. & Miller, R. R. Covariation in conditioned response strength between stimuli trained623

in compound. Animal Learn. & Behav. 15, 439–447 (1987).624

80. Hallam, S. C., Matzel, L. D., Sloat, J. S. & Miller, R. R. Excitation and inhibition as a function of posttraining625

extinction of the excitatory cue used in pavlovian inhibition training. Learn. Motiv. 21, 59–84 (1990).626

81. Miller, R. R., Esposito, J. J. & Grahame, N. J. Overshadowing-like effects between potential comparator627

stimuli: Covariation in comparator roles of context and punctate excitor used in inhibitory training as a function628

of excitor salience. Learn. Motiv. 23, 1–26 (1992).629

82. Rescorla, R. A. A theory of pavlovian conditioning: Variations in the effectiveness of reinforcement and630

nonreinforcement. Curr. research theory 64–99 (1972).631

83. Poort, J. et al. Learning enhances sensory and multiple non-sensory representations in primary visual cortex.632

Neuron 86, 1478–1490 (2015).633

84. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in634

the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning635

and memory. Psychol. review 102, 419 (1995).636

85. Dauwels, J. On variational message passing on factor graphs. In 2007 ieee international symposium on637

information theory, 2546–2550 (IEEE, 2007).638

20/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

86. Dayan, P. & Hinton, G. E. Using expectation-maximization for reinforcement learning. Neural Comput. 9,639

271–278 (1997).640

87. Hinton, G. E. & Zemel, R. Autoencoders, minimum description length and helmholtz free energy. Adv. neural641

information processing systems 6 (1993).642

88. Neal, R. M. & Hinton, G. E. A view of the em algorithm that justifies incremental, sparse, and other variants.643

In Learning in graphical models, 355–368 (Springer, 1998).644

89. Winn, J., Bishop, C. M. & Jaakkola, T. Variational message passing. J. Mach. Learn. Res. 6 (2005).645

90. Anil Meera, A. & Wisse, M. Dynamic expectation maximization algorithm for estimation of linear systems646

with colored noise. Entropy 23, 1306 (2021).647

91. Friston, K. Hierarchical models in the brain. PLoS computational biology 4, e1000211 (2008).648

92. Meulemans, A., Farinha, M. T., Cervera, M. R., Sacramento, J. & Grewe, B. F. Minimizing control for credit649

assignment with strong feedback. arXiv preprint arXiv:2204.07249 (2022).650

93. Meulemans, A., Zucchet, N., Kobayashi, S., von Oswald, J. & Sacramento, J. The least-control principle for651

learning at equilibrium. arXiv preprint arXiv:2207.01332 (2022).652

94. Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T. & Tweed, D. B. Deep learning without weight transport.653

Adv. neural information processing systems 32 (2019).654

95. Gilra, A. & Gerstner, W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural655

network. Elife 6, e28295 (2017).656

96. Millidge, B., Tschantz, A. & Buckley, C. L. Relaxing the constraints on predictive coding models. arXiv657

preprint arXiv:2010.01047 (2020).658

97. Song, Y. Predictive coding inspires effective alternatives to backpropagation. Ph.D. thesis, Department of659

Computer Science & Medical Research Council Brain Network Dynamics Unit (2022).660

98. Friston, K. J., Trujillo-Barreto, N. & Daunizeau, J. Dem: a variational treatment of dynamic systems.661

Neuroimage 41, 849–885 (2008).662

99. Millidge, B., Tschantz, A., Seth, A. & Buckley, C. Neural kalman filtering. arXiv preprint arXiv:2102.10021663

(2021).664

100. Salvatori, T. et al. Learning on arbitrary graph topologies via predictive coding. arXiv preprint665

arXiv:2201.13180 (2022).666

101. Haider, P. et al. Latent equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily667

slow neurons. In Advances in Neural Information Processing Systems (NeurIPS), vol. 34, 17839–17851668

(2021).669

102. Foroushani, A. N., Assaf, H., Noshahr, F. H., Savaria, Y. & Sawan, M. Analog circuits to accelerate the670

relaxation process in the equilibrium propagation algorithm. In 2020 IEEE International Symposium on671

Circuits and Systems (ISCAS), 1–5 (IEEE, 2020).672

103. Hertz, J., Krogh, A., Lautrup, B. & Lehmann, T. Nonlinear backpropagation: Doing backpropagation without673

derivatives of the activation function. IEEE Transactions on Neural Networks 8, 1321–1327 (1997).674

104. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning (MIT Press Cambridge, 2016).675

105. O’Reilly, R. C. Biologically plausible error-driven learning using local activation differences: The generalized676

recirculation algorithm. Neural Comput. 8, 895–938 (1996).677

106. Almeida, L. B. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment.678

In Artificial Neural Networks: Concept Learning, 102–111 (IEEE Computer Society Press, 1990).679

21/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

107. Pineda, F. Generalization of back propagation to recurrent and higher order neural networks. In Advances in680

Neural Information Processing Systems (NeurIPS), 602–611 (1987).681

108. Pineda, F. J. Dynamics and architecture for neural computation. J. Complex. 4, 216–245 (1988).682

109. Hebb, D. O. The organisation of behaviour: A neuropsychological theory (Science Editions New York, 1949).683

110. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In684

Proceedings of the thirteenth international conference on artificial intelligence and statistics, 249–256 (JMLR685

Workshop and Conference Proceedings, 2010).686

111. Tolstikhin, I. O. et al. Mlp-mixer: An all-mlp architecture for vision. Adv. Neural Inf. Process. Syst. 34,687

24261–24272 (2021).688

112. Žliobaitė, I. Learning under concept drift: An overview. arXiv preprint arXiv:1010.4784 (2010).689

113. Tsymbal, A. The problem of concept drift: Definitions and related work. Comput. Sci. Dep. Trinity Coll.690

Dublin 106, 58 (2004).691

114. Sutton, R. S. Generalization in reinforcement learning: Successful examples using sparse coarse coding. In692

Advances in Neural Information Processing Systems (NeurIPS), vol. 8 (1995).693

115. Geramifard, A., Dann, C., Klein, R. H., Dabney, W. & How, J. P. RLPy: A value-function-based reinforcement694

learning framework for education and research. J. Mach. Learn. Res. 16, 1573–1578 (2015).695

116. Moore, A. Efficient memory-based learning for robot control. Tech. Rep., Carnegie Mellon University,696

Pittsburgh, PA (1990).697

117. Barto, A. G., Sutton, R. S. & Anderson, C. W. Neuronlike adaptive elements that can solve difficult learning698

control problems. IEEE Transactions on Syst. Man, Cybern. 834–846 (1983).699

118. Brockman, G. et al. Openai gym. arXiv:1606.01540 (2016).700

119. Welford, B. Note on a method for calculating corrected sums of squares and products. Technometrics 4,701

419–420 (1962).702

120. Knuth, D. E. Art of computer programming, volume 2: Seminumerical algorithms (Addison-Wesley Profes-703

sional, 2014).704

121. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012).705

122. Lee, D.-H., Zhang, S., Fischer, A. & Bengio, Y. Difference target propagation. In Joint European Conference706

on Machine Learning and Knowledge Discovery in Databases, 498–515 (Springer, 2015).707

123. Saxe, A. M., McClelland, J. L. & Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep708

linear neural networks. arXiv preprint arXiv:1312.6120 (2013).709

124. Meulemans, A. et al. Credit assignment in neural networks through deep feedback control. Adv. Neural Inf.710

Process. Syst. 34, 4674–4687 (2021).711

125. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: A canonical cortical computation. Neuron 100,712

424–435 (2018).713

126. Attinger, A., Wang, B. & Keller, G. B. Visuomotor coupling shapes the functional development of mouse714

visual cortex. Cell 169, 1291–1302 (2017).715

127. Boerlin, M., Machens, C. K. & Denève, S. Predictive coding of dynamical variables in balanced spiking716

networks. PLoS Comput. Biol. 9, e1003258 (2013).717

128. Brendel, W., Bourdoukan, R., Vertechi, P., Machens, C. K. & Denéve, S. Learning to represent signals spike718

by spike. PLoS Comput. Biol. 16, e1007692 (2020).719

22/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

129. Heekeren, H. R., Marrett, S., Bandettini, P. A. & Ungerleider, L. G. A general mechanism for perceptual720

decision-making in the human brain. Nature 431, 859–862 (2004).721

130. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern recognition. In Advances in Neural722

Information Processing Systems (NeurIPS), vol. 29, 1172–1180 (2016).723

131. Soto, V., Suárez, A. & Martı́nez-Muñoz, G. An urn model for majority voting in classification ensembles.724

In Advances in Neural Information Processing Systems (NeurIPS) (Neural Information Processing Systems725

Foundation, 2016).726

132. Bengio, Y., Mesnard, T., Fischer, A., Zhang, S. & Wu, Y. Stdp as presynaptic activity times rate of change of727

postsynaptic activity. arXiv preprint arXiv:1509.05936 (2015).728

133. Penrose, R. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge philosophical729

society, vol. 51, 406–413 (Cambridge University Press, 1955).730

23/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Methods731

This section provides necessary details for replication of results in the main text.732

Models733

Throughout this work, we compare the established theory of backpropagation to the proposed new734

principle of prospective configuration. As explained in the main text, backpropagation is used to train735

artificial neural networks (ANNs), where the activity of a neuron is fixed to a value based on its input,736

while prospective configuration occurs in energy-based networks (EBNs), where the activity of a neuron is737

not fixed.738

Since in ANNs the activity of neurons xxx is determined by their input, the output of the network can739

be obtained by propagating the inputs “forward” through the computational graph. The output can then740

be compared against a target pattern to get a measure of difference known as a loss. Since the value of a741

node (activity of a neuron) in the computational graph is explicitly computed as a function of its input, the742

computational graph is usually differentiable. Thus, training ANNs with backpropagation modifies the743

weights www to take a step towards the negative gradient of loss L,744

∆www=−α
∂L
∂www

, (1)

during which the activity of neurons xxx is fixed, and α is learning rate. The weights www requiring modification745

might be many steps away from the output on the computational graph, where the loss L is computed; thus,746

∂L
∂www is often obtained by applying the chain rule of computing a derivative through intermediate variables747

(activity of output and hidden neurons). For example, consider a network with 4 layers and let xxxl denote748

the activity of neurons in layer l, while wwwl denote the weights of connections between layers l and l +1.749

Then the change in the weights originating from the first layer is computed: ∂L
∂www1 =

∂L
∂xxx4 · ∂xxx4

∂xxx3 . . .
∂xxx2

∂www1 . This750

enables the loss to be backpropagated through the graph to provide a direction of update for all weights.751

In contrast to ANNs, in EBNs, the activity of neurons xxx is not fixed to the input from a previous layer.752

Instead, an energy function E is defined as a function of the neural activity xxx and weights www. For networks753

organized in layers (considered in this paper), the energy can be decomposed into a sum of local energy754

terms E l:755

E = ∑
l

E l
(

xxxl,wwwl−1,xxxl−1
)
. (2)

Here, E l is called local energy, because it is a function of xxxl , xxxl−1, and wwwl−1 that are neighbours and756

connected to each other. This ensures that the optimization of energy E can be implemented by local757

circuits, because the derivative of E with respect to any neural activity (or weights) results in an equation758

containing only the local activity (or weights) and the activity of adjacent neurons. Predictions with EBNs759

are computed by clamping the input neurons to an input pattern, and then modifying the activity of all760

other neurons to decrease the energy:761

∆xxx=−γ
∂E
∂xxx

, (3)

where γ is the integration step of the neural dynamics. Since the terms in E can be divided into local energy762

terms, this results in an equation that can be implemented with local circuits. This process of modifying763

the neural activity to decrease the energy is called relaxation, and we refer to the equation describing764

relaxation as neural dynamics — because it describes the dynamics of the neural activity in EBNs. After765

24/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

convergence of relaxation, the activities of the output neurons are taken as the prediction made by the766

EBN. Different EBNs are trained in slightly different ways. In case of predictive coding network25, 40, 52
767

(PCN), training involves clamping the input and output neurons to input and target patterns, respectively.768

Then, relaxation is run until convergence (xxx =
∗xxx), after which the weights are updated using the activity at769

convergence to further decrease the energy:770

∆www=−α
∂E
∂www

∣∣∣∣
xxx=
∗
xxx
. (4)

This will also result in an equation that can be implemented with local plasticity since it is just a gradient771

descent on the local energy. We refer to such an equation as weight dynamics, because it describes the772

dynamics of the synaptic weights in EBNs.773

Backpropagation and prospective configuration are not restricted to specific models. Depending on774

the structure of the network, and the choice of the energy function, one can define different models that775

implement the principle of backpropagation or prospective configuration. In the main text and most of the776

Extended Data, we investigate the most standard layered network. In this case, both ANNs and EBNs777

include L layers of weights www1,www2, . . . ,wwwL, and L+1 layers of neurons xxx1,xxx2, . . . ,xxxL+1, where xxx1 and xxxL+1
778

are the input and output neurons, respectively. We consider the relationship between activities in adjacent779

layers for ANNs given by780

xxxl = wwwl−1 f
(

xxxl−1
)
, (5)

and the energy function for EBNs described by781

E l =
1
2

(
xxxl−wwwl−1 f

(
xxxl−1

))2
. (6)

This defines the ANNs to be the standard multilayer perceptrons (MLPs) and the EBNs to be the PCN.782

In Eq. (6) and below, (vvv)2 denotes the inner product of vector vvv with itself. The comparison between783

backpropagation and prospective configuration in the main text is thus between the above MLPs and784

PCNs. This choice is justified by that (1) they are the most standard models104 and also (2) it is established785

that they two are closely related25, 33 (i.e., they make the same prediction with the same weights and786

input pattern), thus enabling a fair comparison. Nevertheless, we show that the theory (Extended Data787

Figs. 5) and empirical comparison (Extended Data Figs. 6 and 7) between backpropagation and prospective788

configuration generalize to other choices of network structures and energy functions, i.e., other EBNs and789

ANNs, such as GeneRec105 and Almeida-Pineda106–108.790

Putting Eqs. (5) and (6) into the general framework, we can obtain the equations that describe MLPs791

and PCNs, respectively. Assume the input and target patterns are sssin and ssstarget, respectively. Prediction792

with MLPs is:793

xxx1 = sssin and xxxl = wwwl−1 f
(

xxxl−1
)

for l > 1, (7)

where xxxL+1 is the prediction. Training MLPs with backpropagation is described by:794

∆wwwl=−α
∂L
∂wwwl =−α

∂L
∂xxxL+1 ·

∂xxxL+1

∂xxxL . . .
∂xxxl+1

∂wwwl where L =
1
2
(
xxxL+1− ssstarget)2

, (8)

which backpropagates the error ∂L
∂xxxl layer by layer from output neurons.795

25/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

The neural dynamics of PCNs can be obtained using Eq. (2):796

∆xxxl=−γ
∂E
∂xxxl =−γ

∂ (E l +E l+1)

∂xxxl . (9)

Similarly, the weight dynamics of PCNs can be found:797

∆wwwl=−α
∂E
∂wwwl =−α

∂E l+1

∂wwwl . (10)

To reveal the neural implementation of PCN, we define the prediction errors to be798

εεε
l = xxxl−wwwl−1 f

(
xxxl−1

)
. (11)

The neural and weight dynamics of PCN can be expressed (by evaluating derivatives in Eqs. (9) and (10)):799

∆xxxl=−γεεε
l + f ′

(
xxxl
)
◦
(

wwwl
)T

εεε
l+1 (12)

800

∆wwwl= αεεε
l+1

(
f
(

xxxl
))T

, (13)

where the symbol ◦ denotes element-wise multiplication. Assuming that εεε l and xxxl are encoded in the801

activity of error and value neurons, respectively, Eqs. (11) and (12) can be realized with the neural802

implementation in Fig. 2c bottom. Particularly, error εεε and value xxx neurons are represented by red and blue803

nodes, respectively; excitatory + and inhibitory − connections are represented by connections with solid804

and hollow nodes, respectively. Thus, Eqs. (11) and (12) are implemented with red and blue connections,805

respectively. It should also be noticed that the weight dynamics is also realized locally: weight change806

described by Eq. (13) corresponds to simple Hebbian plasticity109 in the neural implementation of Fig. 2c807

bottom, i.e., the change in a weight is proportional to the product of activity of pre-synaptic and post-808

synaptic neurons. Thus, a PCN, as an EBN, can be implemented with local circuits only, due to the local809

nature of energy terms (as argued earlier in this section).810

Full algorithm of PCN is summarized in Algorithm 1. In all simulations in this paper (unless stated811

otherwise), the integration step of the neural dynamics (i.e., relaxation) is set to γ = 0.1, and the relaxation812

is performed for 128 steps (T in Algorithm 1). During the relaxation, if the overall energy is not813

decreased from the last step, the integration step is reduced by 50%; if the integration step is reduced two814

times (i.e., reaching 0.025), the relaxation is terminated early. By monitoring the number of relaxation815

steps performed, we notice that in most of the tasks we performed, the relaxation is terminated early at816

around 60 iterations.817

26/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Algorithm 1: Learn with predictive coding network25, 40, 52 (PCN)
Input: input pattern sssin; target pattern ssstarget; synaptic weights

{
www1,www2, · · · ,wwwL

}
Output: updated synaptic weights

{
www1,www2, · · · ,wwwL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 xxxL+1 = ssstarget ; // Clamp output neurons to target pattern
3 for l = 2; l < L+1; l = l +1 do // Initialize xxx
4 xxxl = 000;
5 end
6 for t = 0; t < T ; t = t +1 do // Relaxation
7 for l = 1; l < L+1; l = l +1 do
8 εεε l+1 = xxxl+1−wwwl f

(
xxxl
)

; // according to Eq. (11)
9 end

10 for l = 2; l < L+1; l = l +1 do
11 ∆xxxl = γ

(
−εεε l + f ′

(
xxxl
)
◦
((

wwwl
)T

εεε l+1
))

; // according to Eq. (12)

12 xxxl = xxxl +∆xxxl;
13 end
14 end
15 for l = 1; l < L+1; l = l +1 do // Update weights
16 ∆wwwl = αεεε l+1

(
f
(
xxxl
))T ;

17 wwwl = wwwl +∆wwwl;
18 end

818

In the Extended Data, we also investigate other choices of network structures and energy functions,819

resulting in other ANNs and EBNs. Overall, the EBNs investigated include PCNs25, 40, 52, target-PCNs,820

and GeneRec105, and the ANNs investigated include backpropagation and Almeida-Pineda106–108. Details821

of all the models can be found in corresponding previous work, and are also given in the Supplementary822

Materials (Supplementary Information) 2.1.823

Interference and measuring interference (i.e., target alignment) (Fig. 3)824

In Fig. 3a, since it simulates the example in Fig. 1, structure of the network is 1-1-2; weights are all825

initialized to 1; input pattern is [1] and target pattern is [0,1]. Learning rates of both learning rules are826

0.2, and the weights are updated for 24 iterations. Fig. 3d repeats the same experiment as Fig. 3a but with827

learning rate searched from (0.005,0.01,0.05,0.1), which is wide enough to cover essentially all learning828

rates used to train deep neural networks in practice.829

In Fig. 3e, there are 64 neurons in each layer (including input and output layers) for each network;830

weights are initialized via standard Xavier uniform initialization110. No activation function is used, i.e.,831

linear networks are investigated. Depths of networks (L) are searched from {1,2,4,6,8,10,12,14,15},832

as reported on the x-axis. Input and target patterns are a pair of randomly generated patterns of mean 0833

and standard deviation 1. Learning rates of both learning rules are 0.001. Weights are updated for one834

iteration and target alignment is measured for this iteration for each of the 64 datapoints, then averaged835

over the 64 datapoints to produce the reported target alignment value. The whole experiment is repeated 3836

times and the error bars report the standard error.837

Simulations in Fig. 3f–h follow the setup of experiments in Fig. 4a–h, thus, are described at the end of838

the next section.839

27/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Biologically relevant tasks (Fig. 4)840

In supervised learning simulations, fully connected networks in Fig. 4a–h are trained and tested on841

FashionMNIST56, and convolutional neural networks64 (i–j) are trained and tested on CIFAR-1065. With842

FashionMNIST, models are trained to perform classification of gray-scaled fashion item images into 10843

categories such as trousers, pullovers and dresses. FashionMNIST is chosen because it is of moderate844

and appropriate difficulty for multi-layer non-linear deep neural networks, so that the comparisons with845

EBNs are informative. Classification of data in CIFAR-10 is more difficult, as it contains colored natural846

images belonging to categories such as cars, birds and cats, thus only evaluated with convolutional neural847

networks. Both datasets consist of 60000 training examples (i.e., training set) and 10000 test examples848

(i.e., test set).849

The experiments in Fig. 4a–h follow the configurations below, except for the parameters investigated850

in specific panels (such as batch size, size of the dataset, and size of the architecture), which are adjusted851

as stated in the description of specific experiments. The neural network is composed of 4 layers and 32852

hidden neurons in each hidden layer. Note that the state-of-the-art MLP models of FashionMNIST are853

all quite large111. However, they are highly overparameterized, and thus, are not suitable to base our854

comparison on, because the accuracy reaches more than 95% regardless of the learning rule, due to the855

overparameterization. Thus, there is no space for demonstrating any meaningful comparison in these856

state-of-the-art overparameterized models. Overall, the size of the model on FashionMNIST demonstrated857

in this paper is a reasonable choice, with baseline models reaching reasonable performance (∼ 0.12 test858

error for standard machine learning setup) while keeping enough room for demonstrating performance859

difference in different learning rules. The size of the input layer is 28×28 for FashionMNIST56 gray-860

scaled. The size of the output layer is 10, as the number of classes for both datasets. The weights are861

initialized from a normal distribution with mean 0 and standard deviation
√

2
nl+nl+1 , where nl and nl+1 are862

the number of neurons of the layer before and after the weight, respectively. This initialization is known863

as Xavier normal initialization110. The activation function f () is Sigmoid. We define one iteration as864

updating the weights for one step based on a mini-batch. The number of examples in a mini-batch, called865

the batch-size, is by default 32. One epoch comprises presenting the entire training set, split over multiple866

mini-batches. At the end of each epoch, the model is tested on the test set and the classification error is867

recorded as the “test error” of this epoch. The neural network is trained for 64 epochs; thus, ending up868

with 64 test errors. The mean of the test error over epochs, i.e., during training progress, is an indicator of869

how fast the model learns. The minimum of the test errors over epochs is an indicator of how well the870

model can learn, ignoring the possibility of over-fitting due to training for too long. Learning rates are871

searched independently for each configuration and each model. Each experiment is repeated 10 times872

(unless stated otherwise), and the error bars represent standard error.873

We now describe settings specific to individual experiments. In Fig. 4b different batch sizes are tested874

(as shown on x-axis). In Fig. 4c the batch size is set to 1. In continual learning of Fig. 4d, training875

alternates between two tasks. Task 1 is classifying five randomly selected classes in a dataset, and task 2876

is classifying the remaining five classes. The whole network is shared by the two tasks, thus, differently877

from the network used in other panels, the network only has 5 output neurons. This better corresponds to878

continual learning with multiple tasks in nature, because, for example, if humans learn to perform two879

different tasks, they typically use the one brain and one pair of hands (i.e., the whole network is shared),880

since they do not have two different pairs of hands (i.e., humans share the output layers across tasks).881

Task 1 is trained for 4 iterations and then task 2 is trained for 4 iterations, and the training continues until882

total of 84 iterations is reached. After each iteration, error on the test set of each task is measured, as883

“test error”. In Fig. 4e, the mean of test error of both tasks during training of Fig. 4d at different learning884

28/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

rates is reported. In Figs. 4f–g investigating concept drifting63, 112, 113, changes to class labels are made885

every 512 epochs, and the models are trained for 4096 epochs in total. Thus, every 512 epochs, 5 out of886

10 output neurons are selected, and the mapping from these 5 output neurons to the semantic meaning is887

pseudo-randomly shuffled. In Fig. 4h different numbers of data points per class (data points per class) are888

included into the training set (subsets are randomly selected according to different seeds).889

In Fig. 4i, we train a convolutional network with prospective configuration and backpropagation,890

with the structure detailed in Fig. 4j. For each learning rule, we independently searched 7 learning rates891

ranging from {0.0005,0.00025,0.0001,0.000075,0.00005,0.000025,0.00001}. Both learning rules are892

trained for 80 epochs, with batch size 200. Weight decay of 0.01 is applied for both learning rules. Each893

configuration (each learning rule and each learning rate) are repeated for three times with different seeds.894

To extend PCN to a convolutional neural network (or to any network with layered structure34, 100),895

we can define the forward function of a layer (i.e., how input of layer l + 1 is computed from the896

neural activity of layer l) with weights wwwl to be Fwwwl
(
xxxl). For example, for the MLPs described above,897

Fwwwl
(
xxxl)= wwwl f

(
xxxl). For convolutional network Fwwwl

(
xxxl) is a more complex function of wwwl and xxxl , and898

also wwwl and xxxl are not simple matrix and vector anymore (to be defined later). Defining an ANN with899

F () would be (i.e., Eq. (5) becomes): xxxl = Fwwwl−1
(
xxxl−1). Defining energy function of PCN with F ()900

would be (i.e., Eq. (6) becomes): E l = 1
2

(
xxxl−Fwwwl−1

(
xxxl−1))2. Thus, neural and weight dynamic would901

be (i.e., Eqs. (12) and (13) become): ∆xxxl =−γεεε l +
∂Fwwwl(xxxl)

∂xxxl εεε l+1 and ∆wwwl = αεεε l+1 ∂Fwwwl(xxxl)
∂wwwl , respectively.902

As Fwwwl
(
xxxl) is defined,

∂Fwwwl(xxxl)
∂xxxl and

∂Fwwwl(xxxl)
∂wwwl are obtained via auto differentiation in PyTorch (https:903

//pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html). Thus,904

training a convolutional PCN is as simple as replacing Lines 11 and 16 in Algorithm 1 with the above905

corresponding equations.906

In the following, we define Fwwwl
(
xxxl) for convolutional networks. First, xxxl ∈ Rcl×hl×wl , where cl , hl907

and wl are number of features, height and width of the feature map. These numbers for each layer are908

presented in Fig. 4j in the format of: cl@hl×wl . For example, for the first layer (input layer), the shape is909

3@32×32 as it is 32×32 colored images, i.e., with three feature maps representing red, green and blue.910

We denote kernel size, stride and padding of this layer as kl , sl and pl , respectively. These numbers for911

each layer are presented in Fig. 4j. Thus, wwwl ∈ Rcl+1×cl×kl×kl . Finally, xxxl+1 is obtained via:912

xxxl+1 [c,x,y] = f
(

xxxl [:, xsl− pl : xsl− pl + kl, ysl− pl : ysl− pl + kl]
)
·wwwl [c, :, :, :] , (14)

where [a,b, . . .] means indexing the tensor along each dimension, : means all indexes at that dimension,913

a : b means slice of that dimension from index a to b−1, and · is dot product. In the above equation, if the914

slicing of xxxl on the second and third dimensions, i.e., xxxl [:,xsl− pl : xsl− pl + kl,ysl− pl : ysl− pl + kl] is915

outside its defined range Rcl×hl×wl , the entries outside range are considered to be zeros, known as padding916

mode of zeros.917

In Fig. 3f, networks of 15 layers are trained and tested on FashionMNIST56 dataset. Learning rates in918

this Fig. 3f are optimized independently by a grid search over (5.0, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001,919

0.0005, 0.0001, 0.00005, 0.00001, 0.000005) for each learning rule, as shown Fig. 3g, i.e., each learning920

rule in Fig. 3f uses the learning rate that gives minimal point in the corresponding curve in Fig. 3g. Fig. 3h921

investigates other network depths ({1,2,4,6,8,10,12,14,15}) in the same setup. Similarly as Fig. 3f, the922

learning rate for each learning rule and each “number of layers” is the optimal value (in terms of mean of923

test error as the y axis of the figure) independently searched from (5.0, 1.0, 0.5, 0.1, 0.05, 0.01, 0.005,924

0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005). Hidden layers are always of size 64 in the above925

experiments. In the above experiment, only part of the training set was used (60 datapoints per class) so926

29/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
https://pytorch.org/tutorials/beginner/basics/autogradqs_tutorial.html
https://doi.org/10.1101/2022.05.17.492325

that the test error is evaluated more frequently to reflect the difference on efficiency of the investigated927

learning rules. The activation function f () used is LeakyReLU, instead of the standard Sigmoid, because928

Sigmoid results in difficulty in training deep neural networks. Other unmentioned details follows the929

defaults as described above.930

In the reinforcement learning experiments (Fig. 4k), we evaluate performance on three classic rein-931

forcement learning problems: Acrobot114, 115, MountainCar116, and CartPole117. We interact with these932

environments via a unified interface by OpenAI Gym118. The observations st of these environments are933

vectors describing the status of the system, such as velocities and positions of different moving parts (for934

details refer to the original articles or documentation from OpenAI Gym). Each entry of the observation st935

is normalized to mean 0 and standard deviation 1 via Welford’s online algorithm119, 120. The action space936

of these environments is discrete. Thus, we can have a network taking in observation st and predicting the937

value (Q) of each action at with different output neurons. Such a network is known as an action-value938

network, in short, a Q network. In our experiment, the Q network contains two hidden layers, each of939

which contains 64 neurons, initialized the same way as the network used for supervised learning, described940

before. One can acquire the value of an action at at a given observation st by feeding in st to the Q network941

and reading out the prediction on the output neuron corresponds to the action at , such value is denoted942

by Q(st ,at). The training of Q is a simple regression problem to target R̂t , obtained via Q-learning with943

experience replay (summarized in Algorithm 2). Considering st to be sssin and R̂t to be ssstarget, the Q network944

can be trained with prospective configuration or backpropagation. Note that R̂t is the target of the selected945

action at (i.e., the target of one of the output neurons corresponds to the selected action at), thus, R̂t is in946

practice considered to be ssstarget [at]. For prospective configuration, it means the rest of the output neurons947

except the one corresponding to at are freed; for backpropagation, it means the error on these neurons are948

masked out.949

PCN of slightly different settings from the defaults is used for prospective configuration: the integration950

step is fixed to be half of the default (=0.05), and relaxation is performed for a fixed and smaller number951

of steps (=32). This change is introduced because Q-learning is more unstable (so smaller integration952

step) and more expensive (so smaller number of relaxation steps) than supervised learning tasks. To953

produce a smoother curve of “Sum of rewards per episode” in Fig. 4k from the SumRewardPerE pisode954

in Algorithm 2, the SumRewardPerE pisode curve along TrainingE pisode are averaged with a sliding955

window of length 200. Each experiment is repeated with 3 random seeds and the shadows represents956

standard error across them. Learning rates are searched independently for each environment and each957

model from the range {0.05,0.01,0.005,0.001,0.0005,0.0001}; and the results reported in Fig. 4k are958

for the learning rates yielding the highest mean of “Sum of rewards per episode” over training episodes.959

30/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Algorithm 2: Q-learning with experience replay.
Input: Action-value network Q.
Result: Trained action-value network Q.

1 Initialize experience replay R of capacity 50000;
2 for TrainingE pisode = 0; TrainingE pisode < 10000; TrainingE pisode = TrainingE pisode+1

do
3 ρ = max(0.01,0.08−0.01∗ (TrainingE pisode/200)) ; // Anneal probability of exploring
4 Get initial observation st and set episode termination signal dt = False;
5 Initialize SumRewardPerE pisode = 0;
6 while ! dt do // Collect experience
7 With probability ρ sample a random action at , otherwise select at = argmaxa Q(st ,a);
8 Execute at , observe reward rt , new observation rt+1 and dt ;
9 Accumulate SumRewardPerE pisode+= rt ;

10 Store transition (st ,at ,rt ,st+1,dt) in R;
11 Set st = st+1;
12 end
13 if length(R)> 2000 then // Replay and train
14 for epoch = 0; epoch < 10; epoch = epoch+1 do
15 Sample random minibatch (size=60) of (st ,at ,rt ,st+1,dt) from R;

16 R̂t =

{
rt , if dt == True
rt +0.98maxa Q(st+1,a) , otherwise

;

17 Set sssin = st ;
18 Set ssstarget [at] = R̂t ;
19 Train Q with sssin and ssstarget [at] with prospective configuration or backpropagation;
20 end
21 end
22 Report SumRewardPerE pisode;
23 end

960

Simulation of motor learning (Fig. 5)961

As shown in Fig. 5, we train a network that includes 2 input, 2 hidden, and 2 output neurons. The two962

input neurons are one-to-one connected to the two hidden neurons, and the two hidden neurons are fully963

connected to the two output neurons. The two input neurons are considered to encode presenting the964

blue and red background, respectively. The two output neurons are considered to encode the prediction965

of the perturbations towards positive and negative directions, respectively. Presenting or not presenting966

a background color are encoded as 1 and 0 respectively; presenting or not presenting perturbations of967

a particular direction are encoded as 1 and 0, respectively. The weights are initialized from a normal968

distribution with mean 0 and standard deviation fitted to behavioural data (see below), simulating that the969

participants have not built any associations before the experiments. Learning rates are independent for970

the two layers, as we expect the connections from perception to belief and the connections from belief to971

predictions to have different degree of plasticity. The two learning rates are also fitted to the data (see972

below).973

The number of participants, training and testing trials follow exactly the human experiment74. In974

particular, for each of 24 simulated participants, the weights are initialized with a different seed of the975

random number generator. They each experience two stages: training and testing. Note that the pre-training976

31/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

stage performed in the human experiment is not simulated here as its goal was to make human participants977

familiar with the setup and devices.978

In the training stage, the model experiences 24 blocks of trials. In each block, the model is presented979

with the following sequence of trials, matching the original experiment74.980

• The model is trained with two trials without perturbation: B0 and R0, with order counterbalanced981

across consecutive blocks. Note that in the human experiment there were two trial types without982

perturbations (channel and washout trials), but they are simulated in the same way here as B0 or R0983

trials, because they both did not include any perturbations.984

• The model is trained with 32 trials with perturbations, where there are equal number of B+ and R-985

within each 8 trials in a pseudorandom order.986

• The model experiences two trials: B0 and R0, with order counterbalanced across consecutive blocks.987

• The model experiences n← {14,16,18} washout trials (equal number of B0 and R0 trials in a988

pseudorandom order), where n← {a,b,c} denotes sampling without replacement from a set of989

values a, b and c, and replenishing the set whenever becomes empty.990

• The model experiences one triplet, where the exposure trial is either B+ or R-, counterbalanced991

across consecutive blocks. Here, a triplet consists three sequential trials: B0, the specified exposure992

trial and again B0.993

• The model experiences again n←{6,8,10} washout trials (equal number of B0 and R0 trials in a994

pseudorandom order).995

• The model experiences again one triplet, where the exposure trial is either B+ or R-, whichever was996

not used on the previous triplet.997

Then, in the testing stage, the model experiences 8 repetitions of four blocks of trials. In each block,998

one of combinations B+, R+, B- and R- is tested. The order of the four blocks is shuffled in each of999

the 8 repetitions. In each block, the model first experiences n← {2,4,6} washout trials (equal number1000

of B0 and R0 trials in a pseudorandom order). Then the model experiences a triplet of trials, where1001

the exposure trial is the combination (B+, R+, B- or R-) tested in a given block, to assess single trial1002

learning of this combination. The change in adaption in the model is computed as the absolute value1003

of the difference in the predictions of perturbations on the two B0 trials in the above triplet, where the1004

prediction of perturbation is computed as the difference between the activities of the two output neurons.1005

The predictions are averaged over participants and the above repetitions.1006

The parameters of each learning rule are chosen such that the model best reproduces the change in1007

adaptation shown in Fig 5f. In particular, we minimize the sum over set C of the 4 exposure trial types of1008

the squared difference between average change in adaptation in experiment (dc) and in the model (xc):1009

∑
c∈C

(axc−dc)
2 (15)

The model predictions are additionally scaled by a coefficient a fitted to the data, because the behavioural1010

data and model outputs have different scales. Exhaustive search was performed over model parameters:1011

standard deviation of initial weights could take values from {0.01,0.05,0.1}, and two learning rates for1012

two layers could take values from {0.00005,0.0001,0.0005,0.01,0.05}. Then, for each learning rule and1013

each combination of the above model parameters, the coefficient a is resolved analytically (restricted to be1014

positive) to minimize the sum of the squared errors of Eq. (15).1015

Simulation of fear conditioning (Fig. 6)1016

As shown in Fig. 6c, the simulated network includes 2 input, 2 hidden, and 1 output neurons. The weights1017

are initialized from a normal distribution of mean 0 and standard deviation 0.01, reflecting that the animals1018

32/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

have not built an association between stimulus and electric shock before the experiments. Presenting or not1019

presenting the stimulus (noise, light, or shock) is encoded as 1 and 0, respectively. The two input neurons1020

are considered to be the visual and auditory neurons; thus, their activity corresponds to perceiving light1021

and noise, respectively. The output neuron is considered to encode the prediction of the electric shock.1022

The training and extinction sessions are both simulated for 32 iterations with the learning rate of 0.01. In1023

the test session, the model makes a prediction with the presented stimulus (noise only). As in the previous1024

section, we denote by xc the prediction for each group c from a set C = {N+,LN+,LN +L−}. To map1025

the prediction to the percentage of freezing, it is scaled by a coefficient a (as the neural activity and the1026

measure of freezing have different units) and shifted by a bias b (as the rats may have some tendency to1027

freeze after salient stimuli even if they had not been associated with a shock). The numbers reported in1028

Fig. 6b are these scaled predictions. The coefficient a (constrained to be positive) and bias b are optimized1029

for prospective configuration and backpropagation independently, analogously as described in the previous1030

section, i.e. their values that minimize summed squared error given below are found analytically.1031

∑
c∈C

(axc +b−dc)
2 (16)

Simulation of human reinforcement learning (Fig. 7)1032

As shown in Fig. 7b, we train a network that includes 1 input, 1 hidden, and 2 output neurons. The input1033

neuron is considered to encode being in the task, so it is set to 1 throughout the simulation. The two output1034

neurons encode the prediction of the value of the two choices. Reward and punishment are encoded as 11035

and −1, respectively, because the participants were either winning or losing money. The model selects1036

actions stochastically based on the predicted value of the two choices (encoded in the activity of two1037

output neurons) according to the softmax rule (with temperature of 1). The weights are initialized from a1038

normal distribution of mean 0 and standard deviation fitted to experimental data (see below), simulating1039

that the human participants have not built any associations before the experiments. Number of simulated1040

participants (number of repetitions with different seeds) was set to 16 as in the human experiment74. The1041

number of trials is not mentioned in the original paper, so we simulate for 128 trials for both learning1042

rules.1043

To compare the ability of the two learning rules to account for the pattern of signal from mPFC, for1044

each of the rules, we optimized the parameters describing how the model is set up and learns (the standard1045

deviation of initial weights and the learning rate). Namely, we searched for the values of these parameters1046

for which the model produces the most similar pattern of its output activity to that in the experiment.1047

In particular, we minimized the sum over set C of four trial types in Fig. 7c of the squared difference1048

between model predictions xc and data dc on mean mPFC signal (Eq. (16)). The model predictions are1049

additionally scaled by a coefficient a and offset by a bias b, because the fMRI signal had different units1050

and baseline than the model. To compute the model prediction for a given trial type, the activity of the1051

output neuron corresponding to the chosen option is averaged across all trials of this type in the entire1052

simulation. The scaled average activity from the model is plotted in Fig. 7c, where the error bars show the1053

standard error of the scaled activity. To fit the model to experimental data, the values of model parameters1054

and the coefficient were found analogously as described in the previous section. In particular, we employ1055

exhaustive grid search on the parameters. The models are simulated for all possible combinations of1056

standard deviation of initial weights, and the learning rate, from the following set: {0.01,0.05,0.1}. Then,1057

for each learning rule and each combination of the above model parameters, the coefficient a (restricted to1058

be positive) and the bias b are resolved analytically to minimize sum of the squared error of Eq. (16).1059

33/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Data availability1060

Learning tasks analysed in Fig. 4a-j were built using the publicly available FashionMNIST56 and CIFAR-1061

1065 datasets. They are incorporated in most machine learning libraries, and their original releases1062

are available at https://github.com/zalandoresearch/fashion-mnist and https://1063

www.cs.toronto.edu/˜kriz/cifar.html, respectively. Reinforcement learning tasks analysed1064

in Fig. 4k were built using the publicly available simulators by OpenAI Gym118.1065

Code availability1066

Complete code and full documentation reproducing all simulation results will be made publicly available at1067

https://github.com/YuhangSong/A-New-Perspective upon publication of this work. It1068

will be released under GNU General Public License v3.0 without any additional restrictions (for license’s1069

details see https://opensource.org/licenses/GPL-3.0 by the open source initiative).1070

Acknowledgements1071

We thank Timothy Behrens for comments on the manuscript, and Andrew Saxe for discussions. Yuhang1072

Song was supported by the China Scholarship Council under the State Scholarship Fund and J.P. Morgan1073

AI Research Awards. Beren Millidge and Rafal Bogacz were supported by the the Biotechnology1074

and Biological Sciences Research Council grant BB/S006338/1 and Medical Research Council grant1075

MC UU 00003/1. Thomas Lukasiewicz and Tommaso Salvatori were supported by the Alan Turing1076

Institute under the EPSRC grant EP/N510129/1 and by the AXA Research Fund. Zhenghua Xu was1077

supported by National Natural Science Foundation of China under the grant 61906063, by the Natural1078

Science Foundation of Hebei Province, China, under the grant F2021202064, by the Natural Science1079

Foundation of Tianjin City, China, under the grant 19JCQNJC00400, by the “100 Talents Plan” of Hebei1080

Province, China, under the grant E2019050017, and by the Yuanguang Scholar Fund of Hebei University1081

of Technology, China.1082

JPMORGAN CHASE & CO. This research was funded in part by JPMorgan Chase & Co. Any views1083

or opinions expressed herein are solely those of the authors listed, and may differ from the views and1084

opinions expressed by JPMorgan Chase & Co. or its affiliates. This material is not a product of the1085

Research Department of J.P. Morgan Securities LLC. This material should not be construed as an individual1086

recommendation for any particular client and is not intended as a recommendation of particular securities,1087

financial instruments or strategies for a particular client. This material does not constitute a solicitation or1088

offer in any jurisdiction.1089

Author contributions1090

Y.S. and R.B. conceived the project. Y.S., R.B., B.M. and T.S. contributed ideas for experiments and1091

analysis. Y.S. and B.M. performed simulations. Y.S., B.M. and R.B. performed mathematical analyses.1092

Y.S., T.L, and R.B. managed the project. T.L, and Z.X. advised on the project. Y.S., R.B. and B.M. wrote1093

the paper. T.S., T.L, and Z.X. provided revisions to the paper.1094

Competing interests1095

The authors declare no competing interests.1096

34/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/YuhangSong/A-New-Perspective
https://opensource.org/licenses/GPL-3.0
https://doi.org/10.1101/2022.05.17.492325

Additional information1097

Extended Data Figures/Tables is available for this paper in the same file (Section 1).1098

Supplementary Information is available for this paper in the same file (Section 2).1099

Correspondence and requests for materials should be addressed to Y.S. and R.B.1100

35/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

1 Extended Data1101

Extended Data Fig. 1

Predictive coding networks, neural implementation and corresponding energy machine. The1102

figure shows a list the equations describing the equilibrium-seeking dynamics and plasticity of predictive1103

coding networks (panels a-b), how these equations map to a neural implementation, and how they map to1104

the machine analog introduced in Fig. 2.1105

▶ a | List of equations describing predictive coding networks. Eq. (1) in this figure describes the1106

input to a given layer x̂l
i from the neuron in the previous layer xl−1

j . In artificial neural networks trained1107

with backpropagation, neural activities of a given layer xl
i are set as the input to this layer x̂l

i (Eq. (2)). In1108

contrast, in predictive coding networks, neural activities of this layer xl
i are not set as the input to this1109

layer x̂l
i , instead an error ε l

i is defined between them (Eq. (3)). Additionally, predictive coding networks1110

define the energy E of the network to be the sum of all the squared errors 1
2

(
ε l

i
)2 (Eq. (4)). The dynamic1111

of neural activity ∆xl
i in predictive coding networks is set to change the neural activity in proportion to the1112

negative gradient of the energy with respect to the neural activity, so as to reduce the energy (Eq. (5)),1113

which can be further derived as Eq. (6). The dynamic of synaptic weights ∆wl−1
i, j of predictive coding1114

networks is set to be in proportion to the negative gradient of the energy with respect to the weight, so as1115

to reduce the energy (Eq. (7)), which can be further derived as Eq. (8).1116

▶b | A list of symbols shared by all panels in the figure for easy reference.1117

▶ c | Mapping of equations describing predictive coding networks in panel a to a neural implementation.1118

The neural implementation includes value neurons (blue) performing computations in Eq. (6), and separate1119

error neurons encoding prediction errors (red) performing computations in Eq. (3), where positive sign1120

is encoded by excitatory connections while negative sign is encoded by the inhibitory connections. It1121

should be noticed that the weight dynamics ∆wl−1
i, j is also realized locally: weight change described by1122

Eq. (8). corresponds to simple Hebbian plasticity109 in the architecture shown in panel a, i.e., the change1123

36/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

in a weight is proportional to the product of activity of pre-synaptic and post-synaptic neurons. Different1124

suggestions have been made on how this architecture could be realized in cortical circuits. An influential1125

study121 has suggested that error and value neurons correspond to separate neurons, so in such architecture1126

the plasticity rule is precisely Hebbian, as explained above. Some other models22 implementing predictive1127

coding networks32 include an error compartment (in apical dendrite) and a value compartment (in soma)1128

within a single neuron. In such architecture the plasticity is still local as it depends on the product of1129

activity in one neurons and potential of the apical dendrite in the other neuron.1130

▶ d-e | Mapping of equations describing predictive coding networks in panel a to the machine analog1131

introduced in Fig. 2. The exact same set of equations describing predictive coding networks also describe1132

a physical machine connected with rods, nodes and springs. ▶d | The dynamic of neural activity ∆xl
i of1133

predictive coding networks (Eq. (5)) describes relaxing the physical machine by moving the nodes. ▶ e1134

| The dynamic of synaptic weight ∆wl−1
i, j of predictive coding networks (Eq. (7)) describes relaxing the1135

physical machine by tuning the rods.1136

37/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 2

Differences in learning between prospective configuration and backpropagation. This figure1137

shows an example of a simple network revealing striking differences in how errors are propagated and1138

weights modified by the two algorithms. For this network it is possible to explicitly visualize how learning1139

changes weights and outputs, and explicitly show that although backpropagation follows the gradient of1140

loss in the space of weights, it does not in the space of outputs.1141

▶ a | Setup of the example. In this example, we consider a network consisting of 1 input neuron, 21142

hidden neurons and 2 output neurons, with the structure shown with the energy machine. The input is1143

always 1 and the target of both output neurons are both 1. The weights in the first layer are initialized to 0,1144

while in the second layer to 1 (top) and 2 (bottom). We visualize with the energy machine how prospective1145

configuration and backpropagation learn differently in this example. Prospective configuration assigns1146

larger error to the top hidden neurons than the bottom, and hence would increase w1 more than w2. By1147

contrast, backpropagation does the opposite: since the backpropagated errors are scaled by the weights1148

to output layer, the error for the bottom hidden neuron is higher than for the top. Importantly, in this1149

learning problem, weight w2 does not need to be modified as much as w1, because any changes in w2 will1150

be amplified by the high weight to the output neuron. Prospective configuration indeed modifies w2 less1151

than w1, while backpropagation does the opposite. This suggests that backpropagation does not modify1152

the weights optimally to move output toward the target, and we will illustrate it in the following panels.1153

▶b | Landscape of the weights (w1 and w2). We consider a setup in which the network only learns1154

the two weights on the first layer: w1 and w2, while the weights in the second layer are fixed all the1155

time during the training. This is so that the weight space is small (only two dimensional, so that we can1156

visualize the landscape of weights); and we choose to learn the two weights in the first layer instead the1157

second (last) layer so that the problem is not trivial. All the combinations of weights on the same contour1158

line gives the same loss to the target (in short, loss), where we can see the combination of w1 = 1 and1159

w2 = 0.5 gives loss of 0. Assuming the weights (w1,w2) start from (0,0), backpropagation (orange) takes1160

steps following the direction orthogonal to the contour lines, i.e. the direction of local gradient descent. It1161

is well-known that backpropagation cannot have more global vision of the minimal point of the landscape:1162

thus, often forms the trajectory of learning as the orange curve, “bouncing” towards the global minimum1163

point. Prospective configuration (blue), on the contrary, although does not follow gradient in the weight1164

38/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

space (blue line is not orthogonal to the contour lines), it moves more directly to the global minimum1165

of the landscape. This is exactly due to the mechanism of prospective configuration giving the learning1166

rule a more global view of the system: as mentioned above, prospective configuration infers that since1167

the bottom weight of second layer is larger (= 2) than the top one (= 1), it only needs small error being1168

assigned to the bottom neuron of the hidden layer so as to correct the error on the bottom output.1169

▶ c | Landscape of the outputs (x1 and x2). The panel shows changes in output neurons’ activity, x11170

and x2, resulting from the weight updates in panel b. As in panel b, the contour lines indicate the loss.1171

Comparing panels b and c reveals that changes of backpropagation (orange) are orthogonal to the loss1172

contour lines in weight space, but not in output neuron space; while changes of prospective configuration1173

(blue) are not orthogonal to loss contour lines in weight space, but are closer to being orthogonal in1174

output neuron space. Overall, the comparison reveals fundamental difference between backpropagation1175

and prospective configuration: backpropagation does local gradient decent in weight space (local means1176

it only sees the infinitely small area around it current state); while prospective configuration infers the1177

configuration of neuron activities that reduces the loss in the output space, thus, the trajectory in the weight1178

space is fundamentally different from that for backpropagation. This fundamental difference leads to1179

advantage of prospective configuration over backpropagation: it moves more directly towards the minimal1180

point in the weight space and output space, instead of “bouncing” towards it (as backpropagation does).1181

Learning rate in this panel is the same as the learning rate used in the corresponding learning rule in panel1182

b.1183

Implementation details. Learning rate for backpropagation in this figure is set to α = 0.4, while1184

that for prospective configuration is solved so that it produces the same magnitude of weight change1185

(
√

∆w2
1 +∆w2

2) during the first iteration as backpropagation. Weights are updated for 15 iterations. Details1186

of the learning rules are described in the Methods section and also in Supplementary Information 2.1.1187

39/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 3

Relationship of prospective configuration to target propagation. Prospective configuration is related1188

to another influential algorithm of credit assignment — target propagation122. Since target propagation1189

has target alignment equal to 158, this relationship provides an explanation for the high target alignment1190

of prospective configuration. Target propagation is an algorithm, which explicitly computes the neural1191

activity in hidden layers required to produce the desired target pattern. We call these values local targets.1192

We demonstrate that one of energy-based networks, predictive coding networks25, 40, 52 (PCNs) tends1193

to move the activity during relaxation towards these local targets. The relationship of PCNs to target1194

propagation can be visualized with the proposed energy machine in Fig. 2, hence panels a–c illustrate how1195

the neural activity in a PCN depends on whether inputs and outputs are constrained, and these properties1196

are formally proved in Supplementary Information 2.2.1197

▶ a | With only input neurons constrained (and outputs unconstrained) PCNs can generate prediction1198

about the output, and hence we refer to this pattern of neural activity as the predicting activity.1199

▶b | With only output neurons constrained (and inputs unconstrained), the neural activity of PCNs1200

relaxes to the local target from target propagation. This happens because with only outputs constrained,1201

other nodes have a freedom to move to values that generate the outputs, and when the energy reduces to 01202

(as shown in the bottom display) all neurons must have the activity generating the target output.1203

▶ c | With both input and output neurons constrained, the neural activity of PCNs relaxes to the1204

weighted sum of the local target from target propagation and the predicting activity. Note that the position1205

of the hidden node is in between the positions from panels a and b.1206

▶ d | The distance between the neural activity to the local target at different layers along the relaxation1207

progress in output-constrained PCNs. Here, the neural activity of the output-constrained PCNs converges1208

to the local target, and the layers closer to the output layer (larger l) converge to the local target earlier1209

than the others, which is as expected from the physical intuition of the energy machine.1210

Implementation details. We train the models to predict a target pattern from an input pattern (both1211

randomly generated from N (0,1), and the input and target patterns are of 5 and 1 entries, respectively).1212

The structure of the networks is 5→ 5→ 5→ 5→ 1. There is no activation function, i.e., it is a linear1213

network. For the computation of the local target in target propagation, refer to the original paper122. The1214

mean square difference is used to measure the distance to the local target.1215

40/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 4

Target alignment in deep neural networks with different learning algorithms, non-linearities1216

and initializations. This figure extends the analyses from Fig. 3e in the main paper of target alignment in1217

randomly generated networks with different depth.1218

▶ a | Target alignment for target propagation in deep linear network initialized with standard Xavier1219

normal initialization110. For comparison, the results presented in Fig. 3e of the main paper for predictive1220

coding networks and backpropagation are also shown. The results for target propagation are only shown1221

for networks with up to 5 layers, because the algorithm became numerically unstable for deeper networks.1222

The target alignment of target propagation is equal to 1 as implied by previous analytic work58 (for details1223

see section 2.4.2 of Supplementary Information).1224

▶b | Target alignment for networks with a non-linear (Tanh) activation function, initialized with1225

standard Xavier normal initialization110. The higher value of target alignment for predictive coding1226

networks than backpropagation shown in panel a generalizes to networks with non-linearity.1227

▶ c | Target alignment of linear networks with orthogonal initialization (where weight in each1228

layer satisfy
(
wwwl)T wwwl = III)123. Saxe et al.123 discovered that with such initialization weights evolve1229

independently of each other during learning, thus, learning times can be independent of depth, even for1230

arbitrarily deep linear networks. As shown in the figure, interestingly, orthogonal initialization gives1231

target alignment of 1 for both learning rules. We also demonstrated this analytically in section 2.4.31232

of Supplementary Information. This perfect target alignment can be intuitively expected, because the1233

independence of weights mentioned above is related to a lack of interference, and it further illustrates that1234

reduction in target alignment is caused by interference between weights.1235

41/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 5

Formal definition of prospective configuration. Formal definition of prospective configuration with1236

prospective index (panels a–c), a metric that one can measure for any learning model. With this metric,1237

we show that prospective configuration is present in different energy-based networks (EBNs), but not in1238

artificial neural networks (ANNs) (panels d–e).1239

▶ a | To introduce the prospective index, we consider the hidden neural activity xxxl in layer l, at three1240

moments of time. First, a learning iteration starts from xxxl under the current weights WWW without target1241

pattern provided ⊖: xxx⊖,lWWW . Second, a target pattern is provided ⊕, and neural activity settles to xxx⊕,lWWW . Third,1242

WWW is updated to WWW ′, the target pattern is removed ⊖, and the neural activity settles to xxx⊖,lWWW ′ . We define two1243

vectors vvv⊕,l and vvv′,l , representing the direction of the neural activity’s changes as a result of the target1244

pattern being given ⊖→⊕ and the weights being updated WWW →WWW ′, respectively.1245

▶ b | The prospective index φ l is the cosine similarity of vvv⊕,l and vvv′,l . A small constant κ = 0.000011246

is added in the denominator to ensure that the prospective index is still defined if the length of one of the1247

vectors is 0 (in which case the prospective index in equal to 0). For EBNs, the neural activity settles to a1248

new configuration when the target pattern is provided, i.e., xxx⊕,lWWW ̸= xxx⊖,lWWW , so φ l is non-zero; for ANNs, the1249

neural activity stays unchanged when the target pattern is provided, i.e., xxx⊕,lWWW = xxx⊖,lWWW , so φ l is zero.1250

▶ c | A positive φ l implies that vvv⊕,l and vvv′,l are pointing in the same direction, i.e., the neural activity1251

after the target pattern provided xxx⊕,lWWW is similar to the neural activity after the weight update xxx⊖,lWWW ′ , i.e., is1252

prospective. We define the models following the principle of prospective configuration as those with1253

positive φ l (averaged over all layers). Additionally, prospective index close to 1 implies that a weight1254

update rule in a model is able to consolidate the pattern of activity following relaxation, so a similar pattern1255

is reinstated during prediction on the next trial.1256

▶ d | The prospective index φ l of different layers l in PCNs and a variant of PCNs called target-PCNs.1257

Several observations can be made, and they are explained and proved in Supplementary Information 2.3.1258

▶ e | The prospective index φ l of different EBNs and ANNs. Here, we can see that all EBNs produce1259

positive φ l , i.e., the prospective configuration is commonly observed in EBNs, but not in ANNs. Among1260

the EBNs, Deep Feedback Control124 (DFC) was proposed to work with “infinitely weak nudging”, as in1261

equilibrium propagation24. More recent work demonstrates that it also works with “strong control”92, 93
1262

42/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

(thus, called strong-DFC), i.e., with the natural form of EBNs. The prospective index was measured1263

for this strong-DFC model and shows it belongs to one of EBNs that process prospective configuration.1264

Details of the simulated strong-DFC model can be found in Section 2.1 of Supplementary Information.1265

Implementation details. We train various models to predict a target pattern from an input pattern (both1266

randomly generated from N (0,1)). The structure of the networks is 64→ 64→ 64→ 64→ 64→ 64→1267

64. The weights are initialized using Xavier normal initialization110 (described in the Methods). No1268

activation function was used. Batch size is set to 1. The models were trained for one iteration (i.e., one1269

update of the weights), the prospective index was then measured for this update. Prospective indices of1270

input and output layers are not reported. This is because the input and output layers are held fixed during1271

learning; thus, the prospective index is not defined for them. Experiments were repeated 5 times. The1272

EBNs investigated include PCNs25, 40, 52, target-PCNs, and GeneRec105, while the ANNs investigated1273

include backpropagation and Almeida-Pineda106–108. Details of all simulated models are given in Section1274

2.1 of Supplementary Information.1275

43/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 6

Prospective configuration yields a more accurate weight modification. A numerical experiment (panels1276

a–b) verifies that energy-based networks (EBNs) yield a accurate weight modification than artificial1277

neural networks (ANNs) (panels c–d). The following intuition can be provided for why the prospective1278

configuration enables an accurate weight modification. In EBNs, if more error is assigned to a neuron, this1279

neuron will settle to a prospective activity that reduces the error. The prospective activity of this neuron is1280

then propagated through the network, resulting in less error being assigned to other neurons, thus the error1281

being assigned more accurately.1282

▶ a | Experimental procedure: we take a pre-trained model (illustration here does not reflect the real1283

size of the model), randomly select a hidden neuron and perturb the synaptic weights connecting to this1284

neuron (red), then retrain this model on the same pattern for a fixed number of iterations. During retraining,1285

an optimal learning agent is expected to identify that the error in the output neurons is due to the perturbed1286

weights, thus, (1) correct the error faster, and (2) correct the perturbed weights more. We refer to the above1287

two properties as speed and specificity. Speed can be measured with the mean of error over retraining1288

iterations (the lower, the better).1289

▶ b | Specificity can be measured by correction rate (the higher, the better): the ratio of how much the1290

perturbed weights are corrected compared to how much all the weights (in all layers) are corrected after1291

all retraining iterations.1292

▶ c | A comparison between an EBN, predictive coding network25, 40, 52 (PCN), and an ANN, trained1293

with backpropagation. In the right plot, there is an additional baseline, which is the number of perturbed1294

weights divided by the number of all the weights, indicating the expected correction rate if a learning rule1295

randomly assigns errors.1296

▶d | The same comparison as in panel c, but for another EBN, namely, GeneRec105. GeneRec1297

describes learning in recurrent networks, and ANN with this architecture is not trained by standard1298

backpropagation, but by a variant of backpropagation, called Almeida-Pineda106–108.1299

Implementation details. We first pre-train the models to predict a target pattern from an input pattern (both1300

randomly generated from N (0,1) and of 32 entries). The structure of the networks is 32→ 32→ 32→ 32.1301

The pre-training session is sufficiently long (1000 iterations) to reach convergence. Then, one neuron1302

is randomly selected from the (32+32) hidden neurons, and all weights connecting to this neuron are1303

“flipped” (i.e., multiplied by −1). Current weights of the network are recorded as WWW b. The part of current1304

weights that were just flipped are recorded as WWW f
b. The network is then re-trained on the same pattern1305

for 64 iterations. After each re-training iteration, the model makes a prediction. The square difference1306

44/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

between the prediction and the target pattern is recorded as the “error during re-training” of this iteration.1307

After the entire re-training session, the “errors during re-training” are averaged over the 64 re-training1308

iterations, producing the left plots of panels c–d. Current weights of the network are recorded as WWW a. The1309

part of current weights that were flipped before the re-training session are recorded as WWW f
a. The correction1310

rate is computed as ∥WWW f
a−WWW f

b ∥ / ∥WWW a−WWW b ∥, which produces the right plots of panels c–d. Each1311

configuration was repeated 20 times, and the error bars represent standard error.1312

45/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 7

Prospective configuration produces less erratic weight modification. An experiment verifies that1313

energy-based networks (EBNs) (i.e., prospective configuration), produce a less erratic weight modification1314

than artificial neural networks (ANNs) (i.e., backpropagation).1315

▶ a | Experimental procedure. The weights are updated for a fixed number of steps on a fixed number1316

of data points, which produces the step trajectory in the weight space (each red arrow corresponds to one1317

weights update). Connecting the start and end points of the step trajectory (i.e., the initial and final weights1318

of the model) produces the final trajectory (blue). A learning rule with less erratic weight modification1319

would produce a shorter step trajectory relative to the final trajectory. This property of less erratic weight1320

modification is also desirable for biological systems, because each weight modification costs metabolic1321

energy.1322

▶ b | Comparison of the length of step and final trajectories between EBN, predictive coding network1323

(PCN), and an ANN, trained with backpropagation. Note that the length of both trajectories depends on1324

the learning rate. Thus, in panels b–c, we present the length of the step and final trajectory on y and x axis,1325

respectively; each point is from a specific learning rate (represented by the size of the marker; the legend1326

does not enumerate all sizes). In such plots, when the two learning rules produce roughly the same length1327

of final trajectory (which could be from different learning rates), one can compare the length of their step1328

trajectory.1329

▶ c | The same comparison as in panel c, but for another EBN, namely, GeneRec105. GeneRec1330

describes learning in recurrent networks, and ANN with this architecture is not trained by standard1331

backpropagation, but by a variant of backpropagation, called Almeida-Pineda106–108.1332

Implementation details. We train the models to predict a target pattern from an input pattern (both1333

randomly generated from N (0,1) and of 32 entries), and there are 32 pairs of them (32 datapoints). The1334

structure of the networks is 32→ 32→ 32→ 32. The batch size is one, as biological systems update1335

the weights after each experience. The training is conducted for 64 epochs (one epoch iterates over all1336

32 datapoints). At the end of each epoch, current weights of the network are recorded as one set. Thus,1337

it results in a sequence of 64 sets of weights. Each set of weights is used as one point to construct the1338

step trajectory. The first and last sets of weights are used to construct the final trajectory. The length of1339

the step and final trajectories can then be computed and reported in Extended Data Figs. 7b–c. For each1340

combination of learning rule and learning rate, simulation is repeated 20 times with different seeds, and1341

the error bars represent standard error.1342

46/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 8

Motor learning experiment with fully-connected structure and more hidden neurons. In the1343

experiments explaining biological observations, for simplicity, we simulated minimal networks necessary1344

to perform these tasks, but it is important to establish if task structure can be discovered and learned by1345

the networks without specifying network structure. Thus, here we repeat the motor learning experiment in1346

Fig. 5 with general fully-connected structure (panel a) and 32 hidden neurons (panel b). Insets illustrate1347

the structure of the networks. In both cases, prospective configuration is able to discover the task structure1348

itself and reproduce the experimental observations; while backpropagation cannot.1349

47/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 9

Prospective configuration explains extinction of overshadowing in fear conditioning (complete1350

description of the experiment in Fig. 6). The extinction of overshadowing effect77 can be accurately1351

reproduced and explained by prospective configuration, but not backpropagation (comparing “Data”1352

against “Prospective configuration” and “Backpropagation” in panel b).1353

▶ a | Experimental procedure. Rats were divided into three groups, corresponding to three columns.1354

Each group underwent three sessions sequentially, corresponding to the top three rows, namely, train,1355

extinction, and test. The goal of the training session was to associate fear (+) with different presented1356

stimuli N or LN depending on the group: rats experienced an electric shock paired with different stimuli,1357

where N and L stands for noise and light, respectively. Next, during the extinction session no shock was1358

given, and for the third group the light was presented but without the shock, aiming to eliminate the fear1359

(-) of light (L). Finally, all groups underwent a test session measuring how much fear was associated with1360

the noise: the noise was presented and the percentage of freezing of rats was measured.1361

▶b | Experimental and simulation results. The bar chart plots the percentage of freezing during1362

test for each group, both measured in the animal experiments77 (i.e., Data) and simulated by the two1363

learning rules. Two effects are present in experimental data. First, comparing the groups N+ and LN+1364

demonstrates the overshadowing effect: there is less fear of noise if the noise had been compounded with1365

light when paired with shock LN+ than if the noise alone had been paired with shock N+ (that is, light1366

48/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

overshadows noise in a conditioned fear experiment). This effect can be accounted for by the canonical1367

model of error-driven learning — the Rescorla-Wagner model82, and consequently it can be also produced1368

by both error-driven models we consider — backpropagation and prospective configuration (explained1369

in panel d). Second, comparing the groups LN+ and LN+L- shows the striking effect of extinction of1370

overshadowing: presenting the light without the shock increases the fear response to the non-presented1371

stimulus — noise. This effect is not produced by backpropagation, but can be reproduced by prospective1372

configuration (explained in panel e).1373

▶ c | The neural architecture considered: both stimuli are processed by hidden neurons (i.e., inter-1374

mediate neurons corresponding to visual and auditory cortices) and are then combined to produce the1375

prediction of electric shock (i.e., fear).1376

▶d | Explanation of overshadowing effect, i.e., the reduced percentage freezing comparing group1377

LN+ against N+. With the energy machine introduced in Fig. 2, the diagram illustrates the state of the1378

network after the Train sessions in groups LN+ and LN+L-. The network learns to predict a shock (i.e.1379

produces output of 1), on the basis of two stimuli, hence each of the inputs to the output neuron must be1380

0.5. Therefore, if only one stimulus is presented, the output of the network is reduced to 0.5. The network1381

shown in this panel is acting as the starting point of learning in panel e.1382

▶ e | Explanation of extinction of overshadowing effect, i.e., the increased percentage freezing after1383

noise in group LN+L- in comparison to LN+. This effect suggests that during extinction trials, where1384

light is presented without a shock, the animals increased fear prediction to noise. As shown in this1385

panel, backpropagation (top) cannot explain this, since the error cannot be backpropagated to and drive a1386

weight modification on a non-activated branch where no stimuli are presented; prospective configuration1387

(bottom), however, can account for this. Specifically, on the non-activated branch, the hidden neural1388

activity decreases from zero to a small negative value (it may correspond to a neural activity decreasing1389

below the baseline125). Since a weight modification depends on the product of the presynaptic activity1390

and the postsynaptic activity representing the error, which are both negative here, the weight on the1391

non-activated branch is strengthened.1392

▶ f | Robustness to different standard deviations of initial weights. We also simulated networks with1393

different standard deviations of initial weights (ranging from 0.01 to 0.5, represented by the depth of1394

the colour). It is shown that prospective configuration fits better to the data measured in the animal1395

experiments than backpropagation, regardless of the standard deviation of initial weights.1396

49/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 10

Experimental predictions of prospective configuration and backpropagation. To provide examples of1397

experimental predictions of prospective configuration, panels a-b (and Extended Data Fig. 11) add the1398

different behaviour of the learning rules in simple network motifs, which are minimal networks displaying1399

given behaviour. Two motifs in this figure have been already analysed earlier in the paper, but there we1400

focused on differences corresponding to experimentally observed effects, while in this figure we also1401

add other qualitative differences that reveal a range of untested predictions of prospective configuration.1402

Here, we consider a predictive coding network25, 40, 52 (PCN) with the energy machine in Fig. 2, however,1403

a similar analysis can be applied to other energy-based networks, which also follow the principle of1404

prospective configuration. In each panel, the top and bottom rows demonstrate the prediction of PCNs and1405

backpropagation, respectively. The left column adds the differences in the prediction errors during learning1406

and the resulting weight update. The right column demonstrates the neuron activity before (transparent)1407

and after (opaque) weight update. The differences between the rules are added in yellow. Experimental1408

predictions following from them can be derived as summarized in panel c.1409

▶ a | The error may spread to the branch where the prediction is correctly made. This motif has been1410

compared with experimental data in Fig. 7, but here we focus on the effect illustrated in Fig. 1 and Fig. 2d,1411

which despite being intuitive, has not been tested experimentally to our knowledge. The panel adds that1412

an error on one output in PCN results in prediction error on the other, correctly predicted output. This1413

produces an increase of the weight of the correct output neuron, which compensates for the decrease of1414

the weight from the input, and enables the network to make correct prediction on the next trial.1415

▶b | The error may cause a weight change in the sensory regions associated with absent stimuli.1416

The panel shows a similar motif as the one investigated in Extended Data Fig. 9. The difference is that1417

Extended Data Fig. 9 introduces negative error while this panel introduces positive error on the same1418

architecture. Interestingly, introducing negative (Extended Data Fig. 9) or positive (this panel) error to the1419

50/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

same architecture produce a similar effect in the PCN, i.e. an increased predicted output for the stimulus1420

not presented during learning.1421

▶ c | Observing model behaviour in experiments. The diagram summarizes how the differences1422

added in previous panels could be measured in experiments. The key difference in models’ behaviour1423

during learning is the difference in error signals. However, currently it is not clear how the prediction1424

errors are represented in the cortical circuits. Three hypotheses have been proposed in the literature1425

that errors are encoded in: activity of separate error neurons40, 121, 126, membrane potential of value1426

neurons127, 128, membrane potential in apical dendrites of value neurons22, 32. Nevertheless, if the future1427

research establishes how errors are encoded, it will be possible to test the predictions related to errors1428

during learning. For example, one can design a task corresponding to panel a, where predictions in two1429

modalities have to be made on the basis of a stimulus. One can then test if omission in one modality results1430

in error signals in the brain region corresponding to the correctly predicted modality. The models also1431

differ in the neural activity of the value nodes during the next trial following the learning. Such predictions1432

are easier to test, because if the model makes a prediction without observing any supervised signal, then1433

all errors are equal to 0 in PCNs, so the neural activity should reflect just the activity of value nodes.1434

Additionally, the differences in the activity of the output value neurons should be testable in behavioural1435

experiments. For example, panel b makes a behavioural prediction (presenting light with stronger shock1436

should also increase freezing for tone) that can be tested in a similar way as described in Extended Data1437

Fig. 9. Testing this prediction would also validate our explanation of the experimental result in Extended1438

Data Fig. 9.1439

51/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Extended Data Fig. 11

Experimental predictions concerning errors assigned to hidden nodes. The figure demonstrates a1440

striking difference in how prospective configuration and backpropagation assign error to hidden nodes.1441

Namely, in prospective configuration, the error assigned to a hidden node is reduced if the node is also1442

connected to correctly predicted outputs. This difference is illustrated in a motif (panel a), for which we1443

illustrate behaviour of learning rules with the energy machine (panel b), and describe a sample experiment1444

testing model predictions (panels c–d) . Finally, we report the simulation results of the two learning rules1445

(panel e), confirming that they indeed make distinct predictions for this motif.1446

▶ a | In this motif, two stimuli are presented and two predictions are made. One stimulus contributes1447

to only one prediction, while the other stimulus contributes to both predictions.1448

▶ b | Comparison of learning rules’ behaviour with the energy machine (notation as in Extended Data1449

Fig. 10). The diagrams illustrate a network containing the motif (panel a), in a situations where one of the1450

predicted outputs (top output) is omitted. A negative error is introduced to the prediction determined by1451

both stimuli. Thus, we would expect the error to be assigned to hidden neurons on both branches. Both1452

learning rules do so, however, they assign errors differently. PCNs allocate less error on the bottom hidden1453

neuron than the top hidden neuron, because the bottom hidden neuron also contributes to another output1454

that was correctly predicted, while backpropagation assigns the same error to both hidden neurons. This is1455

also a nice example where prospective configuration (PCNs) demonstrates more intelligent behavior.1456

▶ c | Experimental stimuli. To test this motif, it is important to choose stimuli for which neural activity1457

of “hidden” neurons can be easily measured. In case of a human experiment, inputs could contain faces1458

and houses, because the hidden neurons would correspond to the brain regions known to be specifically1459

excited by these particular types of stimuli, and the activity of these regions could be easily distinguished1460

in an experiment129. The outputs could correspond to reward modalities (e.g. water and food). In case of a1461

human experiment, these could be “virtual rewards” the participants are instructed to gather, while for1462

animals, these could be the actual rewards.1463

▶ d | Experimental procedure. The motif shown in panel c could arise in brain networks from training1464

52/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

with examples shown in the green box. To test differences in behaviour of learning rules, partial omission1465

trials could be presented, in which one of the expected outputs is omitted, as shown in the orange box.1466

▶ e | Results of simulations. We pre-train the models with the examples in the green box in panel d for1467

a sufficient number of iterations until convergence, and then we train the model with the omission using1468

the example in the orange box in panel d for one trial. We measure the change of hidden neural activity on1469

both branches from before to after the above omission session. The graph shows simulation results of such1470

change in hidden activity: PCNs predict different changes on different branches, while backpropagation1471

predicts the same change on different branches (consistent with illustration in panel b, right).1472

Implementation details. Presenting and not presenting a stimulus (face, house, water, or food) are1473

encoded as 1 and 0, respectively. Presenting two drops of water is encoded as 2. The network is initialized1474

to the pre-trained connection pattern demonstrated in Extended Data Figs. 11c, i.e., the weights visible1475

on the panel are set to one and other weights are set to zero. Such pattern of weights would arise from1476

pre-training with the four examples in Extended Data Figs. 11d (in the green “Pre-training” box), but for1477

simplicity, we do not simulate such pre-training but just set the weights as explained before. Next, to1478

measure the activity of hidden units of such network during prediction, we set both inputs to 1 and record1479

the hidden neural activity of the two branches. Subsequently, the model is presented with the omission1480

trial shown in the orange box and the weights are updated once. Finally, to measure weight changes1481

resulting from training on the subsequent prediction trial, we set both inputs to 1 and record the hidden1482

neural activity of the two branches for the second time. The change of the hidden neuron activity from1483

before to after the omission session can thus be computed for both branches.1484

53/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

2 Supplementary Information1485

In this supplement, we present additional description and analysis of the simulated models. In Section 2.1,1486

we provide details of all models simulated in the paper. In Section 2.2, we discuss relationship between1487

prospective configuration and target propagation. In Section 2.3, we analyse prospective index of PCNs.1488

In Section 2.4, we analyse target alignment of various learning models.1489

2.1 Details of simulated models1490

This section gives more details of all simulated models. The general idea of energy-based networks (EBNs)1491

and artificial neural networks (ANNs), and one of EBNs, predictive coding network25, 40, 52 (PCN), have1492

been described in the Main text and Methods. PCN is again included here along with other simulated1493

models to provide descriptions in a unified form, facilitating the reproduction of our reported results.1494

Complete code and full documentation reproducing all simulation results will be made publicly available1495

at https://github.com/YuhangSong/A-New-Perspective upon publication of this work.1496

Algorithms 3 to 7 describe how the four models simulated in this paper predict and learn. These four1497

models are: PCN, backpropagation, GeneRec105, and Almeida-Pineda106–108. Among the four models,1498

PCN and GeneRec are the two EBNs we investigate; backpropagation and Almeida-Pineda are the two1499

ANNs we investigate. Specifically, PCN is compared against backpropagation, because it has been1500

established that PCN are closely related to backpropagation25, 33 and they make the same prediction with1501

the same weights and input pattern25. Therefore we simulated prediction in these two algorithms in the1502

same way (Algorithm 3). However, they learn differently (c.f. Algorithms 4 and 1). The other EBN,1503

GeneRec, describes learning in recurrent networks, and ANN in this architecture is not trained by standard1504

backpropagation, but a modified version proposed by Almeida and Pineda106–108 (thus called the Almeida-1505

Pineda algorithm). Thus, GeneRec should be compared against Almeida-Pineda because they make same1506

prediction with the same weights and input pattern105. Therefore we simulated prediction in these two1507

algorithms in the same way (Algorithm 5). But they learn differently (c.f. Algorithms 6 and 7). In a1508

word, PCN and backpropagation are EBN and ANN working in feed-forward architecture, respectively;1509

GeneRec and Almeida-Pineda are EBN and ANN working in recurrent architecture, respectively.1510

Algorithm 3: Predict with backpropagation or predictive coding network25, 40, 52 (PCN)
Input: input pattern sssin; synaptic weights

{
www1,www2, · · · ,wwwL

}
Result: activity of output neurons xxxL+1

1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 1; l < L+1; l = l +1 do // Forward pass of the network
3 xxxl+1 = wwwl f

(
xxxl
)
;

4 end

1511

Particularly, PCN & Backpropagation work in a network where prediction is made from the input1512

through a series of forward weights
{

www1,www2, · · · ,wwwL}; GeneRec & Almeida-Pineda works in a net-1513

work where prediction is made from input through a mixture of forward weights
{

www1,www2, · · · ,wwwL} and1514

backward weights
{

mmm1,mmm2, · · · ,mmmL}. The forward weights
{

www1,www2, · · · ,wwwL} and backward weights1515 {
mmm1,mmm2, · · · ,mmmL} are not necessarily related. This architecture is also similar to the continuous Hopfield1516

model130, 131. Unlike in some previous studies24, here, we focus on layered networks, where the sets of1517

neurons at adjacent layers xxxl and xxxl+1 are connected by synaptic weights. Thus, we define two sets of1518

weights for GeneRec & Almeida-Pineda that works in the recurrent network: wwwl is the forward weights1519

54/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://github.com/YuhangSong/A-New-Perspective
https://doi.org/10.1101/2022.05.17.492325

connecting from xxxl to xxxl+1; mmml is the backward weights connecting from xxxl+1 to xxxl .1520

Algorithm 4: Learn with backpropagation
Input: input pattern sssin; target pattern ssstarget; synaptic weights

{
www1,www2, · · · ,wwwL

}
Output: updated synaptic weights

{
www1,www2, · · · ,wwwL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 1; l < L+1; l = l +1 do // Forward pass of the network
3 xxxl+1 = wwwl f

(
xxxl
)
;

4 end
5 εεεL+1 = ssstarget− xxxL+1 ; // Compute error of the output neurons
6 for l = L+1; l > 2; l = l−1 do // Backpropagation of error

7 εεε l−1 = f ′
(
xxxl−1

)
◦
((

wwwl−1
)T

εεε l
)

;

8 end
9 for l = 1; l < L+1; l = l +1 do // Update weights

10 ∆wwwl = αεεε l+1
(

f
(
xxxl
))T ;

11 wwwl = wwwl +∆wwwl;
12 end

1521

Also note that GeneRec has been explored and re-discovered in recent works48, 132 showing how a1522

closely related algorithm resembles backpropagation when the backward weights are the transposes of the1523

forward weights mmml =
(
wwwl)T (or for a fully-connected network in their context wi, j = w j,i), and how the1524

extreme version of the algorithm approximate backpropagation24.1525

Extended Data Fig. 5 additionally investigates Strong Deep Feedback Control92, 93 (strong-DFC). Deep1526

Feedback Control124 (DFC) was proposed to work with “infinitely weak nudging”, as in equilibrium1527

propagation24. More recent work demonstrates that it also works with “strong control”92, 93 (thus, called1528

strong-DFC), i.e., with the natural form of EBNs. Thus, in this paper we investigate strong-DFC. In1529

strong-DFC (or DFC in general), backward weights mmml do not connect from layer l +1 to layer l as in1530

other models investigated in the paper. Instead, mmml connects from the output layer L+1 to layer l. We use1531

the provided code in https://github.com/mariacer/strong_dfc to simulate strong-DFC.1532

All hyper parameters are kept as is in the provided code. We remove the activation function of the last1533

layer in the original implementation124, to keep consistent with the rest of the models investigated in1534

this paper, thus, provides a fair comparison. Derivation and motivation of the model can be found in the1535

original paper92, 93.1536

Some common notations in the algorithms are: α is the learning rate for weights update; γ and T are1537

the integration step and length of relaxation, respectively (specified to the two EBNs, PCN and GeneRec);1538

sssin and ssstarget are the input and target patterns, respectively. For Almeida-Pineda, which requires additional1539

iterative process to propagate error, β and K are the integration step and length of this iterative process,1540

respectively. In our simulation, we use β = 0.01 and K = 1600.1541

All simulated models work in mini-batch mode, that is to say, one iteration is to update the weights for1542

one step on a mini-batch of data randomly sampled from the training set for classification tasks. The above1543

sampling is without replacement, i.e., the same examples will not be sampled again before the completion1544

of a epoch, which is when the entire training set has been sampled once. For example, considering a1545

dataset of 1000 examples with a batch-size (number of examples in a mini-batch) of 10, then each iteration1546

would update weights for one step on 10 examples, and it will take 100 such iterations to complete one1547

55/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://github.com/mariacer/strong_dfc
https://doi.org/10.1101/2022.05.17.492325

epoch. To implement the Algorithms 3 to 7 described below in mini-batch mode, one can simply add an1548

extra-dimension, the size of which is batch-size, to all the neuron-specific vectors in the algorithms such1549

as xxxl , εεε l and etc., and then reduce this dimension by summing over it when computing weight update ∆wwwl
1550

(and ∆mmml if the model is GeneRec or Almeida-Pineda).1551

Note that learning with Almeida-Pineda involves relaxation of the model, i.e., updating neural activity,1552

in lines 5-12 of Algorithm 6. However, its function is to make a prediction with current weights and input1553

pattern so that the error on the output neurons can be computed (in the following line 13), similar as the1554

function of “forward pass” in backpropagation in lines 2-4 of Algorithm 4. The neural activity in the1555

Almeida-Pineda model is fixed during spreading of error, like in backpropagation. Thus, Almeida-Pineda1556

is classified as an ANN rather than an EBN (which updates neural activity during spreading of error).1557

Algorithm 5: Predict with Almeida-Pineda106–108 or GeneRec105

Input: input pattern sssin; forward and backward synaptic weights
{

www1,www2, · · · ,wwwL
}

and{
mmm1,mmm2, · · · ,mmmL

}
Result: activity of output neurons xxxL+1

1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 2; l < L+2; l = l +1 do // Initialize xxx
3 xxxl = 000;
4 end
5 for t = 0; t < T ; t = t +1 do // Relaxation
6 for l = 2; l < L+1; l = l +1 do
7 ∆xxxl = γ

(
−xxxl +mmml f ′

(
xxxl+1

)
+wwwl−1 f ′

(
xxxl−1

))
;

8 xxxl = xxxl +∆xxxl;
9 end

10 ∆xxxL+1 = γ
(
−xxxL+1 +wwwL f ′

(
xxxL
))

;
11 xxxL+1 = xxxL+1 +∆xxxL+1;
12 end

1558

56/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Algorithm 6: Learn with Almeida-Pineda106–108

Input: input pattern sssin; target pattern ssstarget; forward and backward synaptic weights{
www1,www2, · · · ,wwwL

}
and

{
mmm1,mmm2, · · · ,mmmL

}
Output: updated forward and backward synaptic weights

{
www1,www2, · · · ,wwwL

}
and

{
mmm1,mmm2, · · · ,mmmL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 2; l < L+2; l = l +1 do // Initialize xxx
3 xxxl = 000;
4 end
5 for t = 0; t < T ; t = t +1 do // Relaxation
6 for l = 2; l < L+1; l = l +1 do
7 ∆xxxl = γ

(
−xxxl +mmml f ′

(
xxxl+1

)
+wwwl−1 f ′

(
xxxl−1

))
;

8 xxxl = xxxl +∆xxxl;
9 end

10 ∆xxxL+1 = γ
(
−xxxL+1 +wwwL f ′

(
xxxL
))

;
11 xxxL+1 = xxxL+1 +∆xxxL+1;
12 end
13 εεεL+1 = ssstarget− xxxL+1 ; // Compute error of the output neurons
14 for l = 1; l < L+1; l = l +1 do // Initialize εεε

15 εεε l = 000;
16 end
17 for t = 1; t < K +1; t = t +1 do // Backpropagation of error
18 for l = 2; l < L+1; l = l +1 do
19 ∆εεε l = β

(
−εεε l + f ′

(
xxxl
)
◦
(
mmmlεεε l+1

)
+ f ′

(
xxxl
)
◦
(
wwwl−1εεε l−1

))
;

20 εεε l = εεε l +∆εεε l;
21 end
22 ∆εεε1 = β

(
−εεε1 + f ′

(
xxx1
)
◦
(
mmm1εεε2

))
;

23 εεε1 = εεε1 +∆εεε1;
24 end
25 for l = 1; l < L+1; l = l +1 do // Update weights
26 ∆wwwl = αεεε l+1

(
f
(
xxxl
))T ;

27 wwwl = wwwl +∆wwwl;

28 ∆mmml = αεεε l
(

f
(
xxxl+1

))T ;
29 mmml = mmml +∆mmml;
30 end

1559

57/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Algorithm 7: Learn with GeneRec105

Input: input pattern sssin; target pattern ssstarget; forward and backward synaptic weights{
www1,www2, · · · ,wwwL

}
and

{
mmm1,mmm2, · · · ,mmmL

}
Output: updated forward and backward synaptic weights

{
www1,www2, · · · ,wwwL

}
and

{
mmm1,mmm2, · · · ,mmmL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 2; l < L+2; l = l +1 do // Initialize xxx
3 xxxl = 000;
4 end
5 for t = 0; t < T ; t = t +1 do // Relaxation
6 for l = 2; l < L+1; l = l +1 do
7 ∆xxxl = γ

(
−xxxl +mmml f ′

(
xxxl+1

)
+wwwl−1 f ′

(
xxxl−1

))
;

8 xxxl = xxxl +∆xxxl;
9 end

10 ∆xxxL+1 = γ
(
−xxxL+1 +wwwL f ′

(
xxxL
))

;
11 xxxL+1 = xxxL+1 +∆xxxL+1;
12 end
13 for l = 1; l < L+1; l = l +1 do // Update weights (negative phase)
14 ∆wwwl =−α f

(
xxxl+1

)(
f
(
xxxl
))T ;

15 wwwl = wwwl +∆wwwl;

16 ∆mmml =−α f
(
xxxl
)(

f
(
xxxl+1

))T ;
17 mmml = mmml +∆mmml;
18 end
19 xxxL+1 = ssstarget ; // Clamp output neurons to target pattern
20 for t = 0; t < T ; t = t +1 do // Relaxation
21 for l = 2; l < L+1; l = l +1 do
22 ∆xxxl = γ

(
−xxxl +mmml f ′

(
xxxl+1

)
+wwwl−1 f ′

(
xxxl−1

))
;

23 xxxl = xxxl +∆xxxl;
24 end
25 end
26 for l = 1; l < L+1; l = l +1 do // Update weights (positive phase)
27 ∆wwwl = α f

(
xxxl+1

)(
f
(
xxxl
))T ;

28 wwwl = wwwl +∆wwwl;

29 ∆mmml = α f
(
xxxl
)(

f
(
xxxl+1

))T ;
30 mmml = mmml +∆mmml;
31 end

1560

2.2 Relationships of predictive coding networks to target propagation (Extended Data Figs. 3)1561

In Extended Data Figs. 3, we illustrate that prospective configuration, particularly, predictive coding1562

network25, 40, 52 (PCN), has close a relationship to target propagation57. In this section, we formally prove1563

these observations.1564

Note that these relationships of predictive coding networks to target propagation on one hand build1565

interesting connections to existing work, on the other hand serve as a step in providing a mathematical1566

explanation of the target alignment of predictive coding networks, as discussed in the later Section 2.4.4.1567

58/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

2.2.1 Target propagation1568

Algorithm 8: Learn with target-propagation
Input: input pattern sssin; target pattern ssstarget; synaptic weights

{
www1,www2, · · · ,wwwL

}
Output: updated synaptic weights

{
www1,www2, · · · ,wwwL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 for l = 1; l < L+1; l = l +1 do // Forward pass of the network
3 xxxl+1 = wwwl f

(
xxxl
)
;

4 end
5 x̃xxL+1 = ssstarget;
6 εεεL+1 = x̃xxL+1− xxxL+1;
7 for l = L+1; l > 2; l = l−1 do // Target-propagation

8 x̃xxl−1 = f−1
((

wwwl−1
)−1 x̃xxl

)
;

9 εεε l−1 = x̃xxl−1− xxxl−1;
10 end
11 for l = 1; l < L+1; l = l +1 do // Update weights
12 ∆wwwl = αεεε l+1

(
f
(
xxxl
))T ;

13 wwwl = wwwl +∆wwwl;
14 end

1569

We first briefly review target propagation. The key insight behind target propagation is that rather1570

than updating weights based on a gradient of a loss function, one can instead attempt to explicitly1571

compute what are the optimal activity for the neurons so that they can produce the desired target pattern,1572

and then update the weights so as to nudge the current neural activity towards the optimal activity1573

directly. We call these optimal activity local target since if the neurons takes this activity, the network1574

would produce the desired target pattern. Importantly, we can directly compute the local target in terms1575

of the inverses of the weights and activation functions. Namely, suppose that we have a three-layer1576

network with activation functions f (), weight matrices www1,www2,www3 and an input pattern sssin. The output1577

of this network is xxx4 = www3 f
(
www2 f

(
www1 f

(
sssin))). Suppose instead that we do not want the network to1578

output xxx4 for a given sssin but rather a given target pattern ssstarget. Then, the activity at the first layer1579

x̃xx1 that would produce this desired activity can be exactly computed by inverting1 the network x̃xx1 =1580

f−1
((

www1)−1 f−1
((

www2)−1 f−1
((

www3)−1 ssstarget
)))

. From this, we can define a recursion of one local1581

target in terms of another at the layer above,1582

x̃xxl = f−1
((

wwwl
)−1

x̃xxl+1
)

x̃xxL+1 = ssstarget (17)

Based on these targets we can define the errors in target propagation as εεε l = x̃xxl−xxxl . These errors drive the1583

update of weights according to:1584

www′,l = wwwl +αεεε
l+1

(
xxxl
)T

(18)

1Note that in realistic networks the weight matrices are not all square so an exact inverse
(
wwwl

)−1 does not exist. Instead,

we can compute approximations of the inverse using the Moore-Penrose pseudoinverse133
(
wwwl

)†, which is the least squares
solution to the optimization problem argminwww

∥∥III−wwwlwww
∥∥.

59/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

This algorithm is summarized in Algorithm 8.1585

2.2.2 Analyses of the relationships1586

Now we formally prove the below observations in Extended Data Figs. 3 about how prospective configura-1587

tion, particularly, predictive coding network25, 40, 52 (PCN), has close a relationship to target propagation122.1588

In other words, we formally prove that1589

• In an output-constrained PCN, neural activity after relaxation converges to the local target;1590

• In an input-output-constrained PCN, neural activity after relaxation approaches to the weighted sum1591

of the predicting activity and the local target.1592

In the above, predicting activity refer to the neural activity when the model is making prediction, and they1593

are the same for both backpropagation and PCN as they compute the same neural activity when making a1594

prediction.1595

Output-constrained PCN As mentioned, we first investigate the “output-constrained PCN”: in this PCN1596

input neurons are not clamped to the input pattern but output neurons are clamped to the target pattern.1597

We show that in this PCN, the activity after relaxation is precisely equal to the local target. Since xxx1 is not1598

constrained to the input pattern, we can look at its dynamic by setting l = 1 in Eq. (12). Since there is no1599

error term or error nodes at the input layer, there is only the later term left when setting l = 1 in Eq. (12)1600

(note that here we write in matrix & vector form):1601

∆xxx1 = γ f ′
(
xxx1)◦((www1)T

εεε
2
)

(19)

= γ f ′
(
xxx1)◦((www1)T (

xxx2−www1 f
(
xxx1))) (20)

Considering the above dynamic has converged, we can set ∆xxx1 = 000 in the above equation and solving for1602

xxx1, then we can obtain the converged value of xxx1:1603

xxx1 = f−1
((

www1)−1
xxx2
)

(21)

Now we look at the dynamic of xxx2 by setting l = 2 in Eq. (12):1604

∆xxx2 = γ

(
−εεε

2 + f ′
(
xxx2)◦((www2)T

εεε
3
))

(22)

= γ

(
−
(
xxx2−www1 f

(
xxx1))+ f ′

(
xxx2)◦((www2)T (

xxx3−www2 f
(
xxx2)))) (23)

Putting the solved xxx1, i.e., Eq. (21), into the above Eq., we have:1605

∆xxx2 = γ f ′
(
xxx2)◦((www2)T (

xxx3−www2 f
(
xxx2))) (24)

Considering the above dynamic has converged, we can set ∆xxx2 = 000 in the above equation and solving for1606

xxx2, then we can obtain the converged value of xxx2:1607

xxx2 = f−1
((

www2)−1
xxx3
)

(25)

60/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

One can now see the proof goes recursively until l = L and xxxL+1 is fixed to the target pattern ssstarget:1608

xxxl = f−1
((

wwwl
)−1

xxxl+1
)

xxxL+1 = ssstarget (26)

which is exactly the recursive formula of the local target in target propagation, i.e., Eq. (17). Thus, neural1609

activity of output-constrained PCN after relaxation equals to the local target.1610

Input-output-constrained PCN Secondly, we investigate the “input-output-constrained PCN”: in this PCN1611

both input and output neurons are clamped to the input and target patterns, respectively. We show that1612

in this PCN, the activity after relaxation are the weighted sum of the predicting activity and the local1613

target. Particularly, since in a input-output-constrained PCN, we can only solve for the equilibrium after1614

relaxation analytically in the linear case, we prove this for a linear PCN. Nevertheless, the analysis still1615

provides useful insights. Looking at the network dynamics at a given layer l, i.e., Eq. (12), we can write1616

the dynamics in the linear case as,1617

∆xxxl = γ

(
−
(

xxxl−wwwl−1xxxl−1
)
+
(

wwwl
)T (

xxxl+1−wwwlxxxl
))

(27)

If we then set ∆xxxl = 000 and solve for xxxl , we obtain,1618

∆xxxl = 000 =⇒ −
(

xxxl−wwwl−1xxxl−1
)
+
(

wwwl
)T (

xxxl+1−wwwlxxxl
)
= 000 (28)

=⇒ −xxxl +wwwl−1xxxl−1 +
(

wwwl
)T

xxxl+1−
(

wwwl
)T

wwwlxxxl = 000 (29)

=⇒ xxxl +
(

wwwl
)T

wwwlxxxl = wwwl−1xxxl−1 +
(

wwwl
)T

xxxl+1 (30)

=⇒
(

III +
(

wwwl
)T

wwwl
)

xxxl = wwwl−1xxxl−1 +
(

wwwl
)T

xxxl+1 (31)

=⇒ xxxl =

(
III +

(
wwwl
)T

wwwl
)−1(

wwwl−1xxxl−1 +
(

wwwl
)T

xxxl+1
)

(32)

If we assume that the norm of the weights is large compared to the identity matrix III, i.e., we consider1619 (
III +

(
wwwl)T wwwl

)−1
≈
((

wwwl)T wwwl
)−1

, the above equilibrium solution can further be approximated by:1620

=⇒ xxxl ≈
((

wwwl
)T

wwwl
)−1(

wwwl−1xxxl−1 +
(

wwwl
)T

xxxl+1
)

(33)

=⇒ xxxl ≈
((

wwwl
)T

wwwl
)−1

︸ ︷︷ ︸
constant

wwwl−1xxxl−1︸ ︷︷ ︸
predicting activity

for backpropagation and PCN

+
(

wwwl
)−1

xxxl+1︸ ︷︷ ︸
local target

from target propagation

(34)

where the equilibrium solution is simply the weighted sum of the predicting activity and the local target.1621

In summary, during relaxation the activity in predictive coding networks tends to move from the pre-1622

dicting activity towards the local target that would be computed by target propagation. These relationships1623

on one hand build interesting connections to existing work, on the other hand serve as a step in providing1624

a mathematical explanation of the target alignment of predictive coding networks, as discussed in the later1625

Section 2.4.4.1626

61/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

2.3 Prospective index of predictive coding networks (Extended Data Figs. 5)1627

This section formally proves two properties of the prospective index φ l of a predictive coding net-1628

work25, 40, 52 (PCN), that can be observed in Extended Data Figs. 5d. To briefly recap, prospective index1629

φ l quantifies to what extent the hidden neural activity of the network following clamping output neurons1630

to a target pattern is shifting toward the hidden neural activity following subsequent weight modification.1631

Below we show two properties visible in Extended Data Figs. 5d:1632

• Firstly, prospective index of the first hidden layer (φ 2) in a PCN is always one.1633

• Secondly, the prospective index in other layer is close to one because, the weights WWW in PCN are1634

updated towards a configuration WWW ∗ whose prospective index is one.1635

Note that these observations of high prospective index of predictive coding networks on one hand1636

formally defines what we proposed as “prospective configuration” and distinguishes itself from backpropa-1637

gation, on the other hand serve as a step in providing a mathematical explanation of the target alignment1638

of predictive coding networks, as discussed in the later Section 2.4.4.1639

2.3.1 Prospective index of the first hidden layer of PCN is always one1640

We assume that the model does not make a perfect prediction with the current weights, so that the error1641

in the prediction drives the learning. As defined in Extended Data Figs. 5a, vectors vvv⊕,l and vvv′,l describe1642

the changes in hidden neuron activity, due to target pattern being provided and learning respectively.1643

Specifically for layer l = 2, these vectors are:1644

vvv⊕,2 = xxx⊕,2WWW − xxx⊖,2WWW (35)
1645

vvv′,2 = xxx⊖,2WWW ′ − xxx⊖,2WWW (36)

We will now show that for PCN the above vectors vvv⊕,2 and vvv′,2 point in the same direction. The change in1646

activity due to learning vvv′,2 is equal to1647

vvv′,2 = www′,1 f
(

xxx⊖,1WWW ′

)
−www1 f

(
xxx⊖,1WWW

)
(37)

Since the value nodes of the first (input) layer xxx1 are always fixed to the input signal sssin, the above Eq. (37)1648

can further be written as,1649

vvv′,2 = www′,1 f
(

sssin
)
−www1 f

(
sssin

)
=
(
www′,1−www1) f

(
sssin

)
= ∆www1 f

(
sssin

)
(38)

Using Eqs. (13) and (11), we write1650

vvv′,2 = α

(
xxx⊕,2WWW − x̂xx⊕,2WWW

)(
f
(

sssin
))T

f
(

sssin
)

(39)

In Eq. (39), x̂xxl denotes inputs to neurons in layer l, i.e., x̂xxl = wwwl−1 f
(
xxxl−1). Note that x̂xx⊕,2WWW = xxx⊖,2WWW , because1651

both of these quantities are equal to www1 f
(
sssin) (the input of the first hidden layer (l = 2) does not change1652

62/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

in response to output neuron being clamped). Using x̂xx⊕,2WWW = xxx⊖,2WWW , the above Eq. (39) can further be written1653

as,1654

vvv′,2 =
(

xxx⊕,2WWW − xxx⊖,2WWW

)
α

(
f
(

sssin
))T

f
(

sssin
)

(40)

Note that α
(

f
(
sssin))T f

(
sssin) is a positive scalar (if at least one entry in the input pattern is non-zero).1655

Comparing Eqs. (35) and (40), we can see that vectors vvv′,2 and vvv⊕,2 are just scaled versions of each other,1656

hence the cos of the angle between them is equal to 1, and thus prospective index is also equal to 1 (in the1657

limit of κ → 0).1658

2.3.2 Weights in PCN are updated towards a configuration with prospective index of one1659

As seen in Extended Data Fig. 5d, the prospective index for layers l > 2 is very close to one. To provide1660

an intuition for why this is the case, in this section we demonstrate how PCNs would need to be modified1661

to have prospective index equal to 1. We will refer to such modified model as target-PCN, and calculate its1662

prospective index.1663

As in the previous section, we assume that the model does not make a perfect prediction with the current1664

weights, so that the error in the prediction drives the learning. We start with recapping what happens in1665

sequence in one iteration of the standard PCN.1666

1. Start from relaxation with only input neurons clamped to input pattern (⊖) and with current weight1667

WWW , the hidden neuron activity settles to: xxx⊖,lWWW1668

2. Both input and output neurons are clamped to the input and target pattern respectively (⊕) and then1669

the hidden neuron activity is relaxed to: xxx⊕,lWWW1670

3. Weights WWW are updated for one step to WWW ′ to decrease the energy, while hidden neuron activity stays1671

still from the last step: xxx⊕,lWWW1672

4. Output neurons are freed but the input neuron is still clamped to the input pattern and then the1673

hidden neuron activity is relaxed to: xxx⊖,lWWW ′1674

In the above step 3, weights are updated for one step from WWW to WWW ′. However, one can investigate the1675

case of updating weights WWW for many steps until convergence WWW ∗ in the above step 3. This will result in1676

weights WWW ∗ that represents: “the target towards which the weights WWW are updated”. Thus, we call this1677

variant “target-PCN” and it is summarized in Algorithm 9. Specifically, the procedure of target-PCN is to1678

replace the above steps 3 and 4 of standard PCN with:1679

3. Weights are updated for many steps from WWW to WWW ∗ to decrease the energy till convergence, while1680

hidden neuron activity stays still from the last step: xxx⊕,lWWW ;1681

4. Output neurons are freed but the input neuron is still clamped to the input pattern and then the1682

hidden neuron activity is relaxed to: xxx⊖,lWWW ∗;1683

63/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Algorithm 9: Learn with target-PCN
Input: input pattern sssin; target pattern ssstarget; synaptic weights

{
www1,www2, · · · ,wwwL

}
Output: updated synaptic weights

{
www1,www2, · · · ,wwwL

}
1 xxx1 = sssin ; // Clamp input neurons to input pattern
2 xxxL+1 = ssstarget ; // Clamp output neurons to target pattern
3 for t = 0; t < T ; t = t +1 do // Relaxation
4 for l = 1; l < L+1; l = l +1 do
5 x̂xxl+1 = wwwl f

(
xxxl
)
;

6 εεε l+1 = xxxl+1− x̂xxl+1;
7 end
8 for l = 2; l < L+1; l = l +1 do
9 ∆xxxl = γ

(
−εεε l + f ′

(
xxxl
)
◦
((

wwwl
)T

εεε l+1
))

;

10 xxxl = xxxl +∆xxxl;
11 end
12 end
13 while

{
www1,www2, · · · ,wwwL

}
not converged do // Update weights till convergence

14 for l = 1; l < L+1; l = l +1 do
15 x̂xxl+1 = wwwl f

(
xxxl
)
;

16 εεε l+1 = xxxl+1− x̂xxl+1;
17 end
18 for l = 1; l < L+1; l = l +1 do // Update weights
19 ∆wwwl = αεεε l+1

(
f
(
xxxl
))T ;

20 wwwl = wwwl +∆wwwl;
21 end
22 end

1684

In the following, we demonstrate prospective index of target-PCN is one for all layers. First, we should1685

notice that the minimum of energy E of PCN is zero, since the energy function is a sum of quadratic terms,1686

i.e., Eq. (6). Then, we should notice that such energy E of PCN can be optimized to its minimum of zero1687

by optimizing only WWW . Particularly, the local energy term of layer l is:1688

1
2

(
εεε

l
)T

εεε
l =

1
2

(
xxxl− x̂xxl

)T (
xxxl− x̂xxl

)
=

1
2

(
xxxl−wwwl−1 f

(
xxxl−1

))T (
xxxl−wwwl−1 f

(
xxxl−1

))
(41)

In the above Eq., xxxl−wwwl−1 f
(
xxxl−1) can be optimized to produce a zero vector by optimizing only wwwl−1,1689

as long as f
(
xxxl−1) is not a zero vector. Specifically, let us denote all the non-zero entries in f

(
xxxl−1) by1690 {

f
(

xl−1
i

)}
i∈I

, where I is the set of indices i so that f
(

xl−1
i

)
is non-zero. Since f

(
xxxl−1) is not a zero1691

vector, I ̸= /0. To demonstrate that there exists a solution for
{

wl−1
j,i

}
i∈I

so that xl
j = ∑i∈I wl−1

j,i f
(

xl−1
i

)
,1692

we construct an example of such solution. Such sample solution is to pick one index g from I, then have1693

wl−1
j,g =

xl
j

f(xl−1
i)

and
{

wl−1
j,i = 0 : i ∈ I, i /∈ {g}

}
. Thus, as long as f

(
xxxl−1) is not a zero vector (I ̸= /0), there1694

exists a solution of wwwl−1 that makes xxxl−wwwl−1 f
(
xxxl−1) a zero vector.1695

64/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Thus, in step 3 of the target-PCN, the energy of the network is at its minimum of zero. This further1696

implies that in the step 4 of the target-PCN, the neural activity does not move, i.e.,1697

xxx⊖,lWWW ∗ = xxx⊕,lWWW (42)

According to the definition of prospective index in Extended Data Figs. 5a-b, the prospective index of this1698

target-PCN (φ∗,l) is:1699

φ
∗,l =

vvv⊕,l · vvv∗,l(
||vvv⊕,l||+κ

)(
||vvv∗,l||+κ

)
≈ cos

(
vvv⊕,l,vvv∗,l

)
= cos

(−−−−→
xxx⊖,lWWW xxx⊕,lWWW ,

−−−−→
xxx⊖,lWWW xxx⊖,lWWW ∗

)
= cos

(−−−−→
xxx⊖,lWWW xxx⊕,lWWW ,

−−−−→
xxx⊖,lWWW xxx⊕,lWWW

)
according to Eq. (42)

= 1 (43)

This theoretical result is further confirmed by empirical observation in Extended Data Figs. 5d. Since1700

the standard PCN modifies the weights in a similar direction as target-PCN, it is likely to have a similar1701

prospective index.1702

In summary, predictive coding networks has a high prospective index. This on one hand formally1703

defines what we proposed as “prospective configuration” and distinguishes itself from backpropagation, on1704

the other hand serve as a step in providing a mathematical explanation of the target alignment of predictive1705

coding networks, as discussed in the later Section 2.4.4.1706

2.4 Target alignment1707

In this section we provide a mathematical analysis of target alignment. First, we show that the target1708

alignment is equal to 1 for various networks that do not include hidden layers. Next we demonstrate that1709

target propagation produces target alignment of 1. The third subsections identifies a special condition1710

under which backpropagation produces target alignment of 1. The last subsection addresses the question of1711

why predictive coding networks have higher target alignment than backpropagation, using several findings1712

in earlier sections.1713

2.4.1 Target alignment for networks without hidden layers (Fig. 3e)1714

Fig. 3e shows that target alignment for models without hidden layers, trained either with PC or BP, is1715

exactly one, and here we prove this property analytically. Without hidden layers, PC and BP are identical1716

algorithms. In a linear network, the change of the weight www1 is:1717

∆www1 = αεεε
2 (xxx1)T

(44)

We denote output after learning by xxx′2. The change of the output xxx′2− xxx2 is:1718

xxx′2− xxx2 = www′,2xxx1−www2xxx1 (45)

= ∆www1xxx1 (46)

= αεεε
2 (xxx1)T

xxx1 (47)

65/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

Here
(
xxx1)T xxx1 is a positive scalar (if at least one entry in xxx1 is non-zero). Thus,1719

xxx′2− xxx2 ∼ εεε
2 (48)

According to the definition of target alignment, which is the cosine similarity of the direction of the target1720

(i.e., εεε2) and the direction of learning (i.e., xxx′2− xxx2), target alignment of this network is exactly one. This1721

conclusion also applies to network with nonlinear activation function.1722

2.4.2 Target alignment of target propagation (Extended Data Figs. 4a)1723

This subsection demonstrates that target alignment of target propagation is equal to 1. Such target1724

alignment equal to 1 for target propagation is implied by Theorem 5 in the study of Meulemans et al.58.1725

They show that if a network is linear and weights in each layer are invertible, then “parameter updates1726

push the output activation along the negative gradient direction in the output space”58. Simulations in1727

Extended Data Fig. 4a illustrate that the target alignment of target propagation is indeed equal to 1. For1728

completeness we include in this paper a simple direct proof of this result (which we will also use in the1729

next section).1730

For linear networks with invertible weights, the relationship between errors in adjacent layers in target1731

propagation is:1732

εεε
l =

(
wwwl
)−1

εεε
l+1 (49)

The activity of output neurons after the weight modification is:1733

xxx′L+1 =
(

wwwL +αεεε
L+1 (xxxL)T

)
www′,L−1 · · ·www′,1xxx1 (50)

= wwwLwww′,L−1 · · ·www′,1xxx1 + εεε
L+1

α
(
xxxL)T

www′,L−1 · · ·www′,1xxx1 (51)

Term α
(
xxxL)T www′,L−1 · · ·www′,1xxx1 is a scalar, so let us denote it by cL. Expanding www′,L−1 and using Eq. (49),1734

we obtain:1735

xxx′L+1 = wwwL
(

wwwL1 +αεεε
L (xxxL−1)T

)
· · ·www′,1xxx1 + cLεεε

L+1 (52)

= wwwLwwwL−1 · · ·www′,1xxx1 +wwwL (wwwL)−1
εεε

L+1
α
(
xxxL−1)T · · ·www′,1xxx1 + cLεεε

L+1 (53)

Note that wwwL (wwwL)−1 is equal to the identity, so can be removed from the above equation, and α
(
xxxL−1)T · · ·www′,1xxx1

1736

is a scalar, so denote it by cL−1. Expanding all terms www′,l analogously as above, we eventually obtain:1737

xxx′L+1 = wwwL · · ·www1xxx1 +(cL + · · ·+ c1)εεε
L+1 (54)

Since the output before weight update was wwwL · · ·www1xxx1, the change in the output is proportional to the1738

direction towards target εεεL+1, hence the target alignment is equal to 1. Given the similarity between target1739

propagation and predictive coding networks described in subsections 2.4.4 and 2.2, the predictive coding1740

networks should also have target alignment relatively close to 1.1741

Since target propagation has a desirable property of perfect target alignment, one may ask if the brain1742

can employ target propagation rather than prospective configuration as is main learning principle. However,1743

energy-based networks have several advantages over target propagation both in terms of computational1744

properties and relationship with experimental data. Since target propagation requires computation of1745

multiple matrix inverses, it is numerically unstable, so for example in Extended Data Fig. 4a we only1746

66/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

show the result for networks with up to 5 layers, because we were unable to perform target propagation1747

in deeper networks due to numerical instabilities. Predictive coding networks offer a nice alternative1748

which approximates target propagation, but is numerically stable. Furthermore, target propagation does1749

not modify the activity of the neurons during relaxation, so it does not follow prospective configuration.1750

Consequently, in the case of the network in Fig. 1 target propagation would not compensate the weight to1751

olfactory output, because such compensation relies on updating the activity of the hidden neuron. Theory1752

reviewed in this section implies that target propagation only produces target alignment equal to 1 if the1753

weights are invertable, but this is not the case in the network in Fig. 1, so target propagation would not1754

produce unity target alignment for this problem. Moreover, target propagation would not be able to1755

reproduce the patterns of behaviour and neural activity in Figs. 5, 6 and 7, because reproducing these data1756

relies on modifying activity of hidden neurons after feedback, and target propagation does not do it.1757

2.4.3 Target alignment for orthogonal initialization (Extended Data Figs. 4c)1758

This subsection identifies one special conditions under which backpropagation produces target alignment1759

of 1. Specifically, simulations in Extended Data Fig. 4c show that target alignment is equal to 1 for1760

backpropagation in linear networks, when the weights are initialized to orthogonal values
(
wwwl)T

= wwwl .1761

This observation can be explained using results from the previous section: when weights are orthogonal,1762

then
(
wwwl)T

=
(
wwwl)−1, hence the relationship between errors in adjacent layers is the same as for target1763

propagation (Eq. (49)). Consequently, the same argument can be applied to backpropagation on linear1764

networks with orthogonal initialization to show that it has target alignment equal to 1.1765

2.4.4 Target alignment of predictive coding networks1766

The subsection addresses the question of why predictive coding networks have higher target alignment than1767

backpropagation, using several findings in earlier sections. Specifically, to justify why predictive coding1768

networks have high target alignment, we can combine 3 facts that we demonstrate in earlier sections, and1769

summarize here:1770

1. Target alignment of target propagation is equal to 1. This is shown in Section 2.4.2.1771

2. When target pattern is provided to output neurons in predictive coding networks, during relaxation1772

the neural activity in hidden layers converges to values related to local targets in target propagation.1773

This is shown in Section 2.2.1774

3. Weight modification in predictive coding network reinforces the pattern of activity to which it1775

converged during relaxation. In other words, predicting activity changes as a result of weight1776

modification in the direction of the equilibrium reached during relaxation. This is shown in1777

Section 2.3.1778

According to fact 3, learning in predictive coding networks reinforces the equilibrium activity, which,1779

according to fact 2, is largely dependent on the local targets. Therefore, the changes in activity in hidden1780

layers due to learning in predictive coding networks are similar to those in target propagation, and hence1781

the changes in the output activity are also likely to be similar, and the two algorithms should also share a1782

similarity in target alignment. According to fact 1, target propagation has target alignment of 1, so the1783

predictive coding should also share a similar target alignment.1784

67/67

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprintthis version posted October 12, 2022. ; https://doi.org/10.1101/2022.05.17.492325doi: bioRxiv preprint

https://doi.org/10.1101/2022.05.17.492325

	References
	Extended Data
	Supplementary Information
	Details of simulated models
	Relationships of predictive coding networks to target propagation (Extended Data Figs. 3)
	Target propagation
	Analyses of the relationships

	Prospective index of predictive coding networks (Extended Data Figs. 5)
	Prospective index of the first hidden layer of PCN is always one
	Weights in PCN are updated towards a configuration with prospective index of one

	Target alignment
	Target alignment for networks without hidden layers (Fig. 3e)
	Target alignment of target propagation (Extended Data Figs. 4a)
	Target alignment for orthogonal initialization (Extended Data Figs. 4c)
	Target alignment of predictive coding networks

