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Abstract

Conventionally, analysis of functional MRI (fMRI) data relies on available information about the exper-
imental paradigm to establish hypothesized models of brain activity. However, this information can be
inaccurate, incomplete or unavailable in multiple scenarios such as resting-state, naturalistic paradigms
or clinical conditions. In these cases, blind estimates of neuronal-related activity can be obtained with
paradigm-free analysis methods such as hemodynamic deconvolution. Yet, current formulations of the
hemodynamic deconvolution problem have three important limitations: 1) their efficacy strongly de-
pends on the appropriate selection of regularization parameters, 2) being univariate, they do not take
advantage of the information present across the brain, and 3) they do not provide any measure of statis-
tical certainty associated with each detected event. Here we propose a novel approach that addresses all
these limitations. Specifically, we introduce MvME-SPFM (multivariate multi-echo sparse paradigm free
mapping), a novel hemodynamic deconvolution algorithm that operates at the whole brain level and adds
spatial information via a mixed-norm regularization term over all voxels. Additionally, MvME-SPFM
employs a stability selection procedure that removes the need to select regularization parameters and also
lets us obtain an estimate of the true probability of having a neuronal-related BOLD event at each voxel
and time-point based on the area under the curve (AUC) of the stability paths. Besides, the formulation
is tailored for multi-echo fMRI acquisitions, which allows us to better isolate fluctuations of BOLD origin
on the basis of their linear dependence with Echo Time (TE) and to assign physiologically interpretable
units (i.e., changes in the apparent transverse relaxation ∆R∗

2) to the resulting deconvolved events. We
demonstrate that this algorithm outperforms existing state-of-the-art deconvolution approaches, and
shows higher spatial and temporal agreement with the activation maps and BOLD signals obtained with
a standard model-based linear regression approach, even at the level of individual neuronal events. Con-
sequently, the proposed algorithm provides more reliable estimates of neuronal-related activity, here in
terms of ∆R∗

2, for the study of the dynamics of brain activity when no information about the timings
of the BOLD events is available. This algorithm will be made publicly available as part of the splora
Python package.
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1. Introduction1

Functional magnetic resonance imaging (fMRI) data analysis relies on the blood oxygenation level-2

dependent (BOLD) contrast as a proxy to localize neuronal activity and to study the functional organi-3

zation of the human brain in vivo when performing a task or at rest. Due to the nature of the paradigms,4

task and resting state fMRI data are analyzed with different techniques. Often, the analysis of task fMRI5

data is performed using general linear models (GLM) that calculate statistical parametric maps of brain6

activity by building hypothetical timecourses of the BOLD responses to the experimental paradigm, thus7

exploiting the knowledge of the timings of the stimuli. However, the analysis of other types of fMRI8

paradigms, such as resting-state, naturalistic paradigms, or clinically-relevant assessments, cannot be9
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performed with a GLM given that the timings of the stimuli are unknown, inaccurate or insufficient, and10

hence requires a paradigm free approach. Such data are typically analyzed with correlation-based meth-11

ods; for example, static and dynamic functional connectivity (Preti et al., 2017), edge-centric measures12

(Faskowitz et al., 2020a), and inter-subject correlations (Hasson et al., 2004) Another method often used13

to analyze resting-state fMRI data are co-activation patterns (CAPs) (Liu et al., 2013, 2018).14

However, as all these techniques operate on the BOLD signal, they are affected by the blurring that the15

hemodynamic response introduces to the signal, which makes the interpretation of the analyses uncertain.16

In order to undo this blurring effect and obtain more reliable estimates of the neuronal activity, various17

deconvolution techniques can be used (Glover, 1999; Gitelman et al., 2003; Gaudes et al., 2010, 2012, 2013;18

Caballero-Gaudes et al., 2019; Hernandez-Garcia & Ulfarsson, 2011; Karahanoğlu et al., 2013; Cherkaoui19

et al., 2019; Costantini et al., 2022; Hütel et al., 2021). These techniques are able to blindly (i.e., with20

no information about the timings of neuronal events) estimate the neuronal activity that induces the21

BOLD response by assuming a hemodynamic response function (HRF) and solving an inverse problem22

with additional constraints to overcome the ill-posed nature of hemodynamic deconvolution (Uruñuela23

et al., 2021a).24

The ability of deconvolution algorithms to estimate neuronal activity in a paradigm-free manner has25

been exploited in a number of applications. For instance, deconvolution techniques have been used on26

resting-state fMRI data to explore time-varying activity (Petridou et al., 2013; Karahanoğlu & Ville,27

2015; Preti et al., 2017; Keilholz et al., 2017; Lurie et al., 2020; Bolton et al., 2020), to decode the28

flow of spontaneous thoughts and actions across different cognitive and sensory domains (Tan et al.,29

2017; Gonzalez-Castillo et al., 2019), and to investigate modulatory interactions within and between30

resting-state functional networks (Di & Biswal, 2013). These methods have also been applied in clinical31

conditions to detect the foci of interictal events in epilepsy patients without the use of EEG recordings32

(Lopes et al., 2012; Karahanoglu et al., 2013; Tobias et al., 2022), to investigate functional dissociations33

found during non-rapid eye movement sleep associated with reduced consolidation of information and34

impaired consciousness (Tarun et al., 2021), and to detect functional signatures of prodromal psychotic35

symptoms and anxiety at rest in patients with schizophrenia (Zöller et al., 2019).36

Despite the range of deconvolution methods that have been developed, few capitalize on the various37

properties of fMRI data, such as the advantages of multi-echo fMRI for denoising fMRI data (Bright &38

Murphy, 2013; Kundu et al., 2017), or the use of tissue-based or parcellation-based information to improve39

the accuracy of the estimates of neuronal activity. Recent exceptions include deconvolution algorithms40

that incorporate a multivariate formulation to perform spatio-temporal deconvolution (Bolton et al.,41

2019a; Uruñuela et al., 2021b; Costantini et al., 2022). In addition, one deconvolution algorithm has42

been presented that exploits the mono-exponential decay model of the multi-echo fMRI signal: multi-echo43

sparse paradigm free mapping (ME-SPFM) (Caballero-Gaudes et al., 2019). Furthermore, approaches44

have been developed to estimate the likelihood of having a neuronal event at each time-point and for45

each voxel by means of logistic regression (Bush & Cisler, 2013; Bush et al., 2015) or Gaussian mixture46

models (Pidnebesna et al., 2019). Wouldn’t it be nice to obtain a measure of the probability of each47

voxel containing a neuronal event at each time-point for regularized estimators while exploiting the48

mono-expontial decay and spatio-temporal properties of the multi-echo fMRI signal?49

In this work, we propose a novel approach for the hemodynamic deconvolution of multi-echo fMRI50

data that operates at the whole-brain level (i.e., multivariate formulation) to incorporate spatial informa-51

tion through a mixed-norm regularization term. Furthermore, we propose a stability selection procedure52

(Meinshausen & Bühlmann, 2010) that makes the estimation of the neuronal activity more robust to the53

selection of the regularization parameters, while providing the likelihood of having a neuronal-related54

event at each time-point and for each voxel. Using multi-echo fMRI data acquired from 10 healthy55

subjects (16 datasets) we demonstrate that the proposed multivariate multi-echo paradigm free mapping56

(MvME-SPFM) algorithm not only provides more robust estimates of the neuronal activity, but also57

yields a measure of the probability of each voxel containing a neuronal event at each time-point. More-58

over, MvME-SPFM returns quantitative estimates of ∆R∗
2 in interpretable units (s−1), which is relevant59

for functional analysis across different acquisition methods and field strengths.60

2. Theory61

2.1. Voxel-wise signal model for multi-echo paradigm free mapping62

The analysis of BOLD fMRI data usually assumes that the signal y(t) acquired for a voxel v is63

described by the convolution between the activity-inducing signal s(t) driving the BOLD response and64

the hemodynamic response h(t) itself (Boynton et al., 1996; Glover, 1999), plus an additional term65
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e(t) representing noise. Considering that the signal measured by the scanner is sampled at every TR66

seconds, the acquired signal can be written in discrete form as: y(n) =
∑L−1

i=0 h(i)s(n − i) + e(n), for67

n = 1, . . . , N , where N is the number of observations in the time-series, and L is the discrete-time length68

of the hemodynamic response function (HRF).69

Hence, the signal model can be written in matrix notation as:70

y = H∆s+ e (1)

where y, ∆s, e ∈ RN are the voxel’s time-series, the activity-inducing signal changes and the noise term,71

respectively, and H ∈ RN×N is the Toeplitz convolution matrix defined by the HRF (Gitelman et al.,72

2003; Gaudes et al., 2013).73

For gradient-echo fMRI acquisitions, the voxel’s time-series in terms of the signal percentage change74

has a linear relationship with the echo time (TE) as y(TEk, n) ≈ ∆ρ(n) − TEk∆R∗
2(n), where ∆R∗

2(n)75

denotes the BOLD-like signal changes and ∆ρ(n) corresponds to changes in the net magnetization, for76

instance due to head motion (Kundu et al., 2017). The signal changes associated to fluctuations in the77

net magnetization can be effectively reduced in preprocessing, for example using multi-echo independent78

component analysis (Kundu et al., 2012; Caballero-Gaudes et al., 2019), anbd are neglected hereinafter.79

Hence, considering that neuronal-related signal changes ∆s produce a change in ∆R∗
2, the signal model80

in Eq.(1) can be adapted to contain the signal acquired at all K echo-times (TE) via concatenation:81  y1

...
yK

 = −

 TE1H
...

TEKH

∆s, (2)

which can be simplified into ȳ = −H∆s. An estimate of the activity that induces the BOLD response ŝ82

can be obtained by solving an ordinary least-squares problem such as:83

∆ŝ = argmin
s

1

2
∥ȳ − H̄∆s∥22. (3)

However, solving the equation above is an ill-posed problem given the high collinearity of the convolution84

matrix H due to the overlap between shifted HRFs, which introduces large variability in the estimates85

of s.86

In practice, this excess of variability can be reduced by introducing additional assumptions about87

the activity-inducing signal in the form of regularization terms. For instance, we could assume that88

the activity-inducing signal is well represented by a reduced subset of non-zero coefficients at the fMRI89

timescale that trigger the BOLD responses. This assumption can be mathematically represented with90

a sparsity-promoting regularization term such as the ℓ1-norm that is added to the data fitting term in91

Eq.(3) (Tibshirani, 1996; Gaudes et al., 2013).92

Hence, the activity-inducing signal in a single voxel can be blindly detected from the multi-echo93

signals by solving the following inverse problem (Caballero-Gaudes et al., 2019):94

∆ŝ = argmin
s

1

2
∥ȳ − H̄∆s∥22 + λ∥∆s∥1, (4)

where λ is the regularization parameter that regulates the level of sparsity of the estimates given the ℓ1-95

norm, which is defined as ∥∆s∥1 = ΣN
n=1|∆sn|. The tuning of the regularization parameter is challenging96

and requires the careful selection of an adequate value in order to avoid overfitting (i.e., false detection97

of the activity-inducing signal) or underfitting (i.e., no detection of the activity-inducing signal).98

2.2. Whole-brain signal model for multi-echo paradigm free mapping99

Assuming that the shape of the hemodynamic response can be similarly modeled across all brain100

voxels, the previous voxel-wise (i.e., univariate) model in Eq.(2) can be extended straightforwardly to a101

multivariate formulation that considers all the voxels V of the brain:102 y1,1 · · · y1,V

...
. . .

...
yK,1 · · · yK,V

 = −

TE1H
...

TEKH

 [
∆s1 · · · ∆sV

]
, (5)

which can be simplified into Ȳ = −H̄∆S, where Ȳ ∈ RKN×V , H̄ ∈ RKN×N and ∆S ∈ RN×V .103
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The inverse problem in Eq.(4) can be directly adapted to be solved at the whole-brain using the104

multivariate formulation in Eq.(5). More interestingly though, solving the inverse problem at the whole-105

brain level opens up many possibilities in the form of additional regularization terms to take advantage106

of the spatial information for an informed estimation of the activity-inducing signal ∆Ŝ. For instance,107

mixed-norms in the form of ℓp,q can be employed to separate coefficients into groups that are blind to each108

other, while the coefficients within a group are treated together (Kowalski, 2009). Hence, regularization109

terms based on mixed-norms can promote spatio-temporal structures that are observed in fMRI signals.110

Here, we add an ℓ2,1 + ℓ1 mixed-norm regularization term (Gramfort et al., 2011) to the multi-111

variate convex problem to promote the co-activation of the activity-inducing signal ∆Ŝ considering the112

coefficients of the voxels of the brain (V ) at time n as one group:113

∆Ŝ = argmin
S

1

2
∥Ȳ − H̄∆S∥22 + λρ∥∆S∥1 + λ(1− ρ)∥∆S∥2,1, (6)

where ℓ2,1-norm is defined as ∥∆S∥2,1 = ΣN
n=1

√
ΣV

v=1∆S2
n,v, and 0 < ρ < 1 is a parameter that controls114

the tradeoff between the sparsity introduced by the ℓ1-norm and the grouping of voxels promoted by the115

ℓ2,1-norm so that the estimation of one voxel coefficient at time n is influenced by the estimates of the116

rest of the brain voxels at the same time. Note that when ρ = 1 Eq. (6) is the whole-brain equivalent of117

Eq. (4) On the other hand, the regularization parameter λ can be adapted voxel-wise in order to account118

for differences in the signal-to-noise ratio across voxels. Consequently, the multivariate deconvolution119

problem can be written as:120

∆Ŝ = argmin
S

1

2
∥Ȳ − H̄∆S∥22 + ρ∥D∆S∥1 + (1− ρ)∥D∆S∥2,1, (7)

where D = diag (λ1, . . . , λV ) ∈ RV×V is a diagonal matrix with the voxel-specific values of λ. In practice,121

a criterion must be used to select the voxel-specific λs. Instead, we propose the use of stability selection122

to avoid this critical choice (see Section 3.2).123

Therefore, given the convex nature of the inverse problem in Eq. (7), estimates of ∆Ŝ can be calculated124

using the fast iterative shrinkage-thresholding algorithm (FISTA) (Beck & Teboulle, 2009) with the125

following proximity operator for ℓ1 + ℓ2,1:126

Sn,v =
Zn,v

|Zn,v|
(|Zn,v − λvρ)

+

1− λv(1− ρ)√∑
v (|Zn,v| − λvρ)

+2

+

, (8)

where ∆S = proxλ(ρ∥·∥1+(1−ρ)∥·∥2,1) (Z) ∈ RN×V , (x)
+
= max (x, 0) for x ∈ R, and 0

0 = 0 by convention.127

3. Methods128

3.1. fMRI data acquisition and preprocessing129

The evaluation of the proposed MvME-SPFM was performed on ME-fMRI data acquired in 10 sub-130

jects using a multi-task rapid event-related paradigm. Six subjects performed two functional runs, the131

other 4 subjects only performed 1 run due to scanning time constraints (i.e., a total of 16 datasets). All132

participants gave informed consent in compliance with the NIH Combined Neuroscience International133

Review Board-approved protocol 93-M-1070 in Bethesda, MD. A thorough description of the MRI ac-134

quisition protocols and experimental tasks in the experimental design can be found in (Gonzalez-Castillo135

et al., 2016), only those details that are relevant to this analysis are given here.136

MRI data was acquired on a General Electric 3T 750 MRI scanner with a 32-channel receive-only137

head coil (General Electric, Waukesha, WI). Functional scans were acquired with a ME gradient-recalled138

echoplanar imaging (GRE-EPI) sequence (flip angle = 70◦ for 9 subjects, flip angle = 60◦ for 1 subject,139

TEs = 16.3/32.2/48.1 ms, TR = 2 s, 30 axial slices, slice thickness = 4 mm, in-plane resolution = 3× 3140

mm2, FOV 192 mm, acceleration factor 2, number of acquisitions = 220). Functional data was acquired141

with ascending sequential slice acquisitions, except in one subject where the acquisitions were interleaved.142

In addition, high resolution T1-weighted MPRAGE and proton density images were acquired per subject143

for anatomical alignment and visualization purposes (176 axial slices, voxel size = 1× 1× 1 mm3, image144

matrix = 256× 256).145

Each run of data acquisition consisted of 6 trials with 5 different tasks each: biological motion146

observation (BMOT), finger tapping (FTAP), passive viewing of houses (HOUS), listening to music147
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(MUSI), and sentence reading (READ). We refer the reader to that paper for details on the preprocessing148

steps, and comparison with alternative single-echo models for deconvolution. This data had previously149

been employed, preprocessed and ME-ICA denoised for the evaluation of the ME-SPFM algorithm in150

(Caballero-Gaudes et al., 2019).151

3.2. Stability selection and the regularization parameter λ152

The choice of the regularization parameter λ is crucial to obtain accurate estimates of ∆Ŝ. Although153

the value of λ of each voxel could be fixed ad-hoc, previous work has opted for the use of model selection154

criteria, such as the Bayesian Information Criterion (BIC), on the regularization path (Caballero-Gaudes155

et al., 2019), computed by means of the least angle regression (LARS) algorithm (Efron et al., 2004).156

Even though the use of BIC performed well for ME-SPFM (Caballero-Gaudes et al., 2019) and its single-157

echo counterpart (SPFM) (Gaudes et al., 2013), due to its high specificity, it can be problematic for158

certain voxels where the BIC curve might present multiple local minima or even fail to present a clear159

minima for the evaluated range of λ.160

In this work, we propose a more robust procedure to address this shortcoming with the usage of the161

stability selection method (Meinshausen & Bühlmann, 2010). Moreover, the stability selection procedure162

presented here yields the probability to have a non-zero coefficient in the activity-inducing signal at163

each time-point. Specifically, our implementation of the stability selection procedure generates T = 30164

surrogates by randomly subsampling 60% of the time-points (we also tested a more computationally165

expensive version with T = 100 surrogates that yielded very similar results). The convolution matrix H166

is subsampled accordingly. The subsampled data is then employed to solve the inverse problem in Eq. (6)167

for a range of different values of λ using the fast iterative shrinkage thresholding algorithm (FISTA).168

For each voxel, we select a logarithmically spaced sequence of 30 values between 5% and 95% of the169

voxel-specific maximum λ possible to more accurately sample the lower range. Then, for each time-point170

and value of λ, stability selection calculates the ratio (probability) of surrogates where the estimated171

coefficient at each time-point is non-zero. As illustrated in Figure 1, these probabilities build the so-172

called stability paths, which resemble the well-known regularization paths of conventional regularized173

estimators (e.g., LASSO, Ridge Regression) that plot the amplitude of the coefficients for each λ.174

Unlike the original stability selection procedure, which sets a given probability threshold to select175

the final set of non-zero coefficients (Meinshausen & Bühlmann, 2010), we calculate the area under the176

curve (AUC) of the stability path of each time-point as an index of confidence of having a non-zero177

coefficient across the evaluated range of λ. As a result, the AUC timecourse provides a measure of178

the probability of having neuronal-related activity at each time-point and voxel. Next, the AUC time-179

series are thresholded according to the histogram of AUC values in a region of non-interest (hereinafter,180

denoted as the null AUC histogram) to yield a sparse representation of the signal. Alternatively, a null181

distribution of AUC values could be generated from surrogate data (Liégeois et al., 2021). Accordingly,182

when employing stability selection, the individual voxels’ estimates might not be equivalent to the voxels’183

estimates in any single one of the whole-brain models that can be forumulated with a given value of λ184

in Eq.(6) or D in Eq. (7)), but are rather obtained by computing area-under-the-curve (AUC) values for185

neuronal-related events.186

Finally, we apply a fitting step to each voxel by defining a reduced convolution model with the selected187

non-zero coefficients and fitting it by means of a conventional orthogonal least squares estimator. This188

step reduces the bias towards zero imposed by the sparsity-promoting regularization terms, and thus189

obtains more realistic estimates of the neuronal-related signal (here, in terms of ∆R∗
2) (Caballero-Gaudes190

et al., 2019).191

3.3. Balancing the spatial regularization192

The ℓ2,1-norm regularization term in Eq. (6) promotes structured spatio-temporal sparsity in the193

sense that the estimates of all brain voxels at a given time-point are treated as a group and this term194

forms a constraint on the number of groups with at least one non-zero estimate to model the data.195

Assuming that ρ = 0, either the value of all the voxel estimates at one time point can be non-zero or all196

of them are nulled. Hence, this regularization term considers spatial information from all brain voxels197

for the deconvolution since the value of a given voxel coefficient also depends on the rest of the voxels.198

To illustrate the effect of the corresponding regularization parameter ρ, in this work we solve the199

multivariate regularization problem in Eq. (6) using stability selection for ρ = 1, ρ = 0.5 and ρ = 0.; i.e.,200

applying the sparsity-promoting ℓ1-norm only, equally weighting the sparsity and spatial regularizations,201

and employing the ℓ2,1-norm spatial regularization only, respectively.202

5

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.30.510299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Example of the regularization path and the stability path for a voxel timeseries with ρ = 1. On the left, the
regularization path shows the amplitude of each coefficient estimate ∆Ŝ (one per TR) . At first, all the coefficients are
zero and successively they become non-zero as λ decreases towards zero, which corresponds to the orthogonal least squares
solution (i.e., no regularization). On the right, the corresponding stability path plots the probablity that each coefficient
estimate is non-zero for each value of λ based on the stability selection procedure. Note that both paths can have a different
maximum value of λ given the subsampling step in the stability selection. The darker lines denote the coefficient estimates
corresponding to the TRs during the task-related events.

3.4. Comparison with conventional timing-based GLM analyses203

To evaluate how the multivariate formulation combined with stability selection improves the accuracy204

of the estimates of ∆Ŝ compared with its univariate counterpart ME-SPFM using the BIC for voxel-205

wise selection of λ (Caballero-Gaudes et al., 2019), we calculated the spatial sensitivity, specificity and206

overlap (using a Dice coefficient metric) of the MvME-SPFM activation maps using the trial-level GLM-207

based activation maps (p ≤ 0.05) as the ground truth. These GLM-based maps were obtained from the208

optimally combined and ME-ICA denoised data, and only negative ∆R∗
2 (i.e., ∆Ŝ < 0 that generate a209

positive BOLD response) were considered for the computation of the Dice coefficients.210

For the MvME-SPFM, we considered the following two strategies for thresholding the AUC timeseries211

in order to define the corresponding activation maps:212

• Static thresholding: The estimates of ∆Ŝ obtained with the novel MvME-SPFM technique213

that utilizes stability selection, where the AUC threshold was chosen as the 95th percentile of the214

histogram of AUC in deep white matter voxels (i.e., a fixed, static threshold), which were labeled215

after tissue segmentation of the T1-weighted anatomical MRI using 3dSeg in AFNI, and eroding 4216

voxels of the resulting white matter tissue mask at anatomical resolution.217

• Time-depending thresholding: The estimates of ∆Ŝ obtained with the novel MvME-SPFM218

technique with stability selection, where the AUC threshold varies temporally according to the 95th219

percentile of the null histogram of AUC at each time-point. This implementation was based on the220

hypothesis that a time-dependent (TD) threshold would be able to better control for widespread221

spurious deconvolved changes in ∆Ŝ, for instance due to head motion or deep breaths.222

4. Results223

The output of deconvolution algorithms such as ME-SPFM and the proposed MvME-SPFM is a 4D224

dataset that matches the dimensions (both spatial and temporal) of the input data, i.e., it is a movie of225

the estimated ∆R∗
2 maps. In addition, the use of stability selection generates the area under the curve226

(AUC) 4D output dataset, which indicates the probability of having a neuronal-related event at each227

time-point for every voxel in the brain.228

Figure 2 depicts the area under the curve (AUC) time-series and maps obtained with stability selection229

for ρ = 0.5 in representative voxels of each task in the paradigm (indicated with a cross in the maps),230

where the AUC maps correspond to single time-points signaled by the blue arrows. The AUC time-series231

of the ST and TD thresholding approaches are shown on top of the original AUC time-series. The AUC232

maps depict spatial patterns of ∆R∗
2 where regions that are typically involved in the tasks show higher233

probabilities of having neuronal-related activity compared with other brain regions.234

Figure 3 displays the comparison of the ∆R∗
2 maps obtained by solving the inverse problem in Eq. (6)235

with a fixed selection of λ (1st row) and with the use of stability selection (2nd, 3rd and 4th rows) for236

6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.09.30.510299doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.30.510299
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Left: Original (blue), ST thresholded (orange) and TD thresholded (green) AUC time-series for a representative
voxel for each task in the paradigm (ρ = 0.5). Note that the three time-series are overlaid; i.e., the static and time-
dependent time-courses are thresholded versions of the original AUC. Gray blocks depict the onset and duration of each
trial. Right: AUC maps at the time-points signaled by the blue arrows.

ρ = {0, 0.5, 1}. The ∆R∗
2 maps obtained with a fixed selection of λ equal to the noise estimate of the237

first echo volume (1st row) are very sensitive to the selection of ρ. Similar observations were obtained238

with other values of λ. With a selection of ρ = 1, only the ℓ1-norm regularization term is applied, which239

produces ∆R∗
2 maps with few non-zero coefficients. With ρ = 0, only the ℓ2,1-norm spatial regularization240

is applied, which yields a ∆R∗
2 map that covers the entire brain and does not exhibit a spatial pattern241

in concordance with the task. However, a selection of ρ = 0.5 yields a ∆R∗
2 map that is more similar to242

the activity maps often observed when participants are asked to look at the image of a house, depicting243

negative ∆R∗
2 in bilateral fusiform regions. In contrast, the use of stability selection yields AUC maps244

(row 2) and the corresponding ∆R∗
2 maps after each thresholding strategy (rows 3-4) reveal activation245

patterns concordant with those often seen for viewing houses regardless of the selection of ρ. In other246

words, the ∆R∗
2 maps obtained with stability selection are less sensitive to the selection of ρ while247

obviating the need to choose λ. In fact, the spatial correlations between the AUC maps for each pair of248

ρ’s were nearly equal to 1 for all time points (average correlations are 0.97 between ρ = {0, 0.5}, 0.98249

between ρ = {0, 1}, and 0.97 between ρ = {0.5, 1}). In addition, it can be seen that using a TD threshold250

yields BOLD signal changes that are more confined to the expected areas in bilateral fusiform cortices251

than the ST threshold. Due to the high similarity of the AUC maps for any value of ρ, only the results252

for ρ = 0.5 are discussed hereinafter.253

Figure 4 provides an in-depth view of how the time-dependent thresholding operates when motion-254

and respiration-related artifacts are present in the data. The grayplot (Power, 2017) in Figure 4A clearly255
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Figure 3: Comparison of the ∆R∗
2 maps obtained with a fixed selection of λ (row 1) and the use of stability selection (rows

2-4: AUC, stability selection with static thresholding (ST), and stability selection with time-dependent thresholding (TD))
for ρ = 0 (column 1), ρ = 0.5 (column 2), and ρ = 1 (column 3). These maps correspond to a single-trial event of the
house-viewing task (HOUS).

shows bands spanning throughout the entire brain that illustrate significant changes in the amplitude of256

the signal. The source of these signal changes can be attributed to head motion events (see Euclidean257

norm in Figure 4C) and deep breaths (see arrows for respiration volume signal (Chang et al., 2009) in258

Figure 4D). The respiration-related events cause a drop in the global signal (see Figure 4B) seconds after259

the peak in the respiration volume signal. Interestingly, our results show a decrease in the equivalent260

ST percentile that corresponds to the 95th TD threshold (Figure 4E) at the instances of these large261

respiratory-related events. This decrease can also be observed in the corresponding AUC value of the262

TD thresholding strategy as shown in Figure 4F. The distributions of AUC values at the time-points with263

respiratory- and motion-related artifacts have a shorter tail than the distribution of the AUC values at264

the time-points where subjects performed the task. Hence, in these events the TD thresholding strategy265

is able to adjust the threshold so that the final estimates of ∆R∗
2 specifically capture task-activated266

voxels while excluding voxels that are affected by artifacts. The higher specificity of the TD thresholding267

strategy can be clearly seen in the ROC curves shown in Figure 4H-L. The use of stability selection268

with the TD threshold yields more specific estimates of ∆R∗
2 than with ST thresholding or the original269

ME-SPFM method, while the sensitivity is slightly reduced. On the other hand, the use of stability270

selection with a ST threshold improves the sensitivity of the ∆R∗
2 estimates compared to the original271

ME-SPFM technique while preserving its specificity.272

Figure 5 illustrates the activation maps of representative single-trial events of each task for the273

same subject depicted in Figure 4. We compared the activation maps of the proposed MvME-SPFM274

formulation using the two thresholding approaches with the activation maps obtained with a single-trial275

GLM and the previous ME-SPFM approach. While all PFM methods exhibit activation maps that276

highly resemble those obtained with the single-trial GLM analysis, differences between the methods can277
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Figure 4: A look at the data of a representative subject with motion and respiration artifacts. A: Grayplot of the second
echo volume. The grayplot is divided into 4 sections: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF),
and deep white matter (DWM). B: Time-series of the global signal calculated in the whole brain (WB, blue) and the
deep white matter (DWM, green). C: Euclidean norm (e-norm) of the temporal derivative of the realignment parameters.
D: respiration volume signal. E: AUC percentile corresponding to the time-dependent threshold (lines at 95th and 99th
percentiles are shown for reference). F: AUC values corresponding to the time-dependent threshold are shown in blue.
The horizontal dashed lines indicate the 95th (orange) and 99th (green) percentiles corresponding to ST thresholding.
Gray bars in B-F indicate the onset and duration of each trial in the paradigm, with their respective initials on top.
Blue arrows point out two respiration-related events, green arrows point out two motion-related events, and the orange
arrow points out a finger-tapping event. G: Probability density functions (estimated by kernel density estimate) of the
AUC values corresponding to the instances of the two respiratory-related events (blue lines), a representative time-point
of one finger-tapping trial (orange line), the two largest peaks in the e-norm trace (green lines), and the overall AUC
distribution (black). The corresponding coloured vertical dashed lines indicate the AUC value for the 95th percentile of
the TD thresholding approach, along with the 95th and 99th AUC values of ST thresholding. H-L: Receiver operating
characteristic (ROC) curves for the original ME-SPFM (orange), and proposed MvME-SPFM technique with the use of
stability selection with the ST (light blue) and TD (dark blue) thresholding approaches for this dataset. The ROC plots
depict the sensitivity and specificity of the methods at correctly estimating the activity maps that correspond to the 6
trials of each task in the paradigm.
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Figure 5: Comparison of single-trial activation maps obtained with a GLM (row 1) thresholded at p ≤ 0.05, the original
ME-SPFM formulation with a fixed selection of λ (row 2), the novel MvME-SPFM technique with stability selection,
ρ = 0.5 and a static threshold (ST, row 3), and using a time-dependent threshold (TD, row 4). A representative trial is
shown for each task. All the maps correspond to the same subject and run shown in Figure 4.

be observed. For instance, although the use of stability selection with a ST thresholding approach yields278

maps with clusters of activation of comparable size and location to those found with ME-SPFM, in279

certain noisy trials (e.g., see HOUS-Trial 1), the ST-thresholding MvME-SPFM maps can yield reduced280

spatial specificity, probably related to spurious, scattered changes in R∗
2. Across all tasks, the maps281

obtained with TD thresholding exhibit a notably larger resemblance to the single-trial GLM, showing282

higher spatial specificity and lower sensitivity compared to the other two PFM methods.283

Figure 6 depicts the time-series of the estimated ∆R∗
2 and denoised BOLD, i.e., ∆R∗

2 convolved with284

the HRF, for a representative voxel of each task for the subject depicted in Figures 4 and 5 and compared285

to a reference voxel in the lateral ventricles. The location of the voxels is shown in the corresponding286

maps in Figure 5. The ST thresholding approach detects ∆R∗
2 events of the activity-inducing signal287

that correctly match the timings of the stimuli (i.e., high temporal sensitivity), but also shows events288

that occur in the resting state and do not coincide with any activity-evoking trial. Based on comparison289

with the events detected in the time series extracted from the lateral ventricles, it can be conjectured290

that some of these events might be due to artifactual and physiological fluctuations that remain in the291

signal after preprocessing. On the other hand, ∆R∗
2 values estimated with the TD thresholding approach292

match the timings of the stimuli almost perfectly with few missed trials (high temporal specificity). This293

is supported by the few ∆R∗
2 events obtained for the reference voxel in the ventricles. Likewise, the294

denoised BOLD time-series obtained with the TD thresholding approach clearly describes signal changes295

associated with the trials, whereas the denoised BOLD time-series estimated with the ST thresholding296

strategy fits the original data very closely, which could be interpreted as a signature of overfitting.297

As illustrated in Figure 7, the Dice coefficient between the estimated single-trial ∆R∗
2 activity maps298

and the reference GLM activity maps (p ≤ 0.05) demonstrates only a slight improvement over the299

original ME-SPFM formulation when employing an ST thresholding approach with the novel MvME-300

SPFM technique. In contrast, the dice coefficients obtained with TD thresholding show a very notable301

increase of nearly 50% in the median of the distribution of dice coefficients compared with the original ME-302

SPFM approach. Similarly, the sensitivity and specificity distributions of ST thresholding demonstrate303

a slight improvement with respect to the original ME-SPFM formulation. On the other hand, the use304

of TD thresholding offers nearly perfect specificity (≥ 95%) at the cost of reduced sensitivity across305

all experimental conditions. Hence, increasing the specificity of the ∆R∗
2 maps is more beneficial for306

increasing the concordance with the GLM maps than increasing the sensitivity. The receiver operating307

characteristic (ROC) curves in Figure 8 corroborate these observations regardless of the value of ρ used308

in the MvME-SPFM method. The estimates obtained with the ST threshold reveal an overall higher309
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Figure 6: Comparison of the estimated ∆R∗
2 (blue) and denoised BOLD (orange), i.e., ∆R∗

2 convolved with the HRF,
time-series when employing the ST (left) and TD (right) thresholding approches, for representative voxels of each task
(rows) as well as one voxel from the lateral ventricle for reference. The estimates shown here were obtained with ρ = 0.5.
The preprocessed time series is shown in black. The gray bars indicate the onset and duration of each trial for each task
of the experimental paradigm.

Figure 7: Dice coefficient (i.e., spatial overlap), sensitivity and specificity coefficients of the single-trial activation maps
for each of the experimental conditions obtained with ME-SPFM, MvME-SPFM with stability selection and a static
thresholding approach (ST), and MvME-SPFM with stability selection and a time-dependent thresholding approach (TD).
These metrics were obtained with a selection of ρ = 0.5. Reference activation maps were obtained with a single trial
GLM analysis and thresholded at uncorrected p ≤ 0.05. The density plot shows the shape of the distribution of the dice
coefficients, and the box plot depicts the median with a solid line, with each box spanning from quartile 1 to quartile 3.
The whiskers extend to 1.5 times the interquartile range.

sensitivity and a slightly higher specificity compared to the original ME-SPFM technique. In contrast,310

the ROC curves for the TD thresholding approach show a clear improvement in specificity but lower311

sensitivity. These findings are in line with the results shown in Figures 3, 5 and 6, as the dice and ROC312

curves certify that the use of stability selection yields robust activation maps regardless of the selection of313

the spatial regularization term ρ and obviating the need to choose the temporal regularization parameter314

λ. An interactive version of Figures 7 and 8 is available on the GitHub repository provided in Section 7.315
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Figure 8: Receiver operating characteristic (ROC) curves with the sensitivity and specificity of each single trial’s activation
map for all conditions and the reference map obtained with a single-trial GLM. Different colors are used for the different
analyses: the original ME-SPFM, and the novel MvME-SPFM approach using stability selection with three different
selections of the spatial regularization parameter ρ and the two different thresholding methods: static (ST) and time-
dependent (TD). In each analysis each dot represents a single trial, depicting all trials across all datasets.

5. Discussion316

The proposed whole-brain (i.e., multivariate) formulation for hemodynamic deconvolution of multi-317

echo fMRI data with the use of stability selection achieved a closer agreement with the activation maps318

obtained with a single-trial GLM analysis than the original ME-SPFM method (Caballero-Gaudes et al.,319

2019), while obviating the need to select the temporal regularization parameter λ (see Figure 5). In320

addition, our results illustrated that the stability selection procedure also offers robustness against the321

choice of the spatial regularization parameter ρ, as the AUC maps for different selections of ρ were322

practically identical, as shown in Figure 3. Hence, although stability selection could be employed with a323

double selection of the regularization parameters λ and ρ, this can be avoided for computational reasons324

with little influence in the results. In any case, extending the proposed stability selection technique to325

other formulations of the hemodynamic deconvolution problem, such as the voxel-wise (i.e., univariate)326

single-echo (Gaudes et al., 2013; Uruñuela et al., 2020), univariate multi-echo (Caballero-Gaudes et al.,327

2019), or low-rank and sparse formulations (Uruñuela et al., 2021b; Cherkaoui et al., 2021), is relatively328

straightforward. Moreover, considering that synthesis-based models, such as Paradigm Free Mapping329

(Gaudes et al., 2013), and analysis-based models, such as Total Activation (Karahanoğlu et al., 2013),330

for temporal hemodynamic deconvolution yield identical results (Uruñuela et al., 2021a), and the fact331

that a multi-echo formulation provides higher accuracy for deconvolution (Caballero-Gaudes et al., 2019),332

we argue that the proposed MvME-SPFM method with stability selection should result in more reliable333

estimates of the activity-inducing signal.334

One of the most interesting features of the proposed stability selection procedure is the estimation of335

the area under the curve (AUC) measure, which provides a new perspective for exploring fMRI data: a 4D336

movie with the probability of each voxel and time point containing a neuronal-related event. Therefore,337

the AUC time-series and maps provide complementary information to the estimates of ∆R∗
2, and serve as338

a reliability measure. Even though the AUC measures were employed here to produce the final estimates339

of the activity-inducing signal, they could also be exploited on their own. For instance, they could be340

exploited to constrain functional connectivity analysis (Tagliazucchi et al., 2016; Faskowitz et al., 2020b)341

to voxels and instants with a high probability of containing a neuronal-related event. Furthermore,342

the stability selection and the AUC metric can also be interpreted from a machine learning perspective,343

where the outputs from a collection of lasso learners are combined with an ensemble regression approach.344

Alternatively, the stability selection procedure could also be linked to Bayesian approaches where the345
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prior is given by the range of values of the regularization term λ and the total posterior probability of346

the neuronal event is calculated as the integration of the stability paths, i.e., the AUC (see discussion in347

Meinshausen & Bühlmann, 2010).348

Although the estimation of the AUC eliminates the need to select the spatial and temporal regular-349

ization parameters λ and ρ, it requires the use of a thresholding approach given the nature of the AUC350

measure, which cannot be equal to zero by definition. Here, we adopted two data-driven thresholding351

strategies, static (ST) and time-dependent (TD), based on the AUC values of a region where no BOLD352

signal changes related to neuronal activity are assumed to occur (e.g., deep white matter voxels). The353

use of a static AUC thresholding approach yielded higher sensitivity than the original ME-SPFM method354

(Caballero-Gaudes et al., 2019) while maintaining the specificity as demonstrated in Figure 8. Notably,355

this improvement was seen in all trials with the exception of one outlier run, regardless of the choice of356

the spatial regularization parameter ρ. Nevertheless, the use of a time-dependent thresholding approach357

may be even justified by the increased specificity and nearly perfect retrieval of the activity-inducing358

signal (row 3 in Figure 6) when motion- and respiration-related artifacts are visible in the data (see359

arrows in Figure 4). However, the application of the time-dependent threshold may reduce sensitivity at360

the single-trial level in some cases. Hence, the results shown in Figure 8 encourage the use of the static361

thresholding approach as an exploratory step before employing the time-dependent threshold. Other362

thresholding criteria could involve the comparison of AUC values obtained from surrogate (null) data363

(Liégeois et al., 2021) with the AUC values obtained with the original data.364

Furthermore, the extension of the original ME-SPFM algorithm from a voxel-wise to a whole-brain365

(i.e., multivariate) regularized problem paves the way for more refined formulations that exploit the366

spatial characteristics and information available in fMRI and complementary imaging data into the spatial367

regularization term in order to improve the estimation of ∆R∗
2. For instance, the spatial regularization368

could be constrained within brain regions delineated by commonly used parcellations (e.g., the Schaefer-369

Yeo atlas) (Karahanoğlu et al., 2013) or within neighbouring gray matter voxels (Farouj et al., 2017).370

Moreover, the multivariate formulation could exploit complimentary multimodal information such as371

structural connectvity from diffusion-based MRI data (Bolton et al., 2019b). In addition, the proposed372

formulation can be easily adapted to model the changes in neuronal activty in terms of its innovations,373

which can be more appropiate to capture sustained BOLD events (Uruñuela et al., 2021a).374

Similar to the results obtained with ME-SPFM (Caballero-Gaudes et al., 2019), we observed that375

MvME-SPFM also detects hemodynamic events with physiologically plausible ∆R∗
2 and relatively high376

AUC values in periods between trials when the subjects are not engaged in any activity-evoking task,377

whereas analysis approaches that model events with known timings (e.g., GLM) cannot find these spon-378

taneous events. Consequently, MvME-SPFM can provide robust estimates of the activity that drives379

BOLD responses ocurring in spontaneous brain fluctuations (Finn et al., 2015; Tanner et al., 2022), to380

study individual differences in naturalistic paradigms (Finn et al., 2020), to blindly decode the sub-381

ject’s engagement in a particular cognitive process from the activation maps (Poldrack, 2011; Poldrack382

& Yarkoni, 2016; Gonzalez-Castillo et al., 2019; Tan et al., 2017), or in clinical conditions such as the383

study of the urge-to-tic in patients with Tourette’s syndrome (Jackson et al., 2020).384

One limitation of the proposed MvME-SPFM technique is the assumption of a particular shape of the385

hemodynamic response to construct the HRF matrix for deconvolution in Eq. (5). The proposed model386

does not account for the variability in the temporal characteristics of the HRF across the brain, which387

originates from differences in stimulus intensity and patterns, short inter-event intervals, or differences in388

the HRF shape between resting-state and task-based paradigms (Yeşilyurt et al., 2008; Sadaghiani et al.,389

2009; Chen et al., 2021; Polimeni & Lewis, 2021). To resolve this issue, given that the performance of390

MvME-SPFM is not time-locked to the trials, the current formulation could be extended to account for391

variability in the onset of the activity-inducing signal, as well as to introduce flexibility in the model, by392

employing multiple basis functions (Gaudes et al., 2012). Finally, the computational demands involved393

in the stability selection procedure, which solves the regularization problem in Eq. (6) for a range of λ394

values on a number of subsampled surrogate datasets, are higher than solving the regularization path395

and finding an adequate solution via model selection criteria as in ME-SPFM (Caballero-Gaudes et al.,396

2019).397

6. Conclusion398

In summary, this work proposes a new approach (MvME-SPFM) for the deconvolution of multi-echo399

fMRI data that exploits spatial information of the fMRI data with a whole-brain (i.e., multivariate)400

formulation and an ℓ2,1-norm, and yields more robust estimates of changes in ∆R∗
2 through the use of401
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the stability selection procedure. Moreover, this work introduced a novel metric based on the area under402

the curve (AUC) of the stability paths that depicts the probability of having neuronal-related events403

at each voxel and time-point. We demonstrated that the proposed approach yields more robust and404

superior estimates of ∆R∗
2 compared with the original ME-SPFM approach, and shows high spatial and405

temporal agreement with activation maps obtained with a GLM, while having no information about the406

timings of the BOLD events.407

7. Code and data availability408

The code and materials used to generate the figures in this work can be found in the following GitHub409

repository: https://github.com/eurunuela/MvMEPFM_figures.410

The Python package is available as part of splora in the following GitHub repository: https://411

github.com/eurunuela/splora.412
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Liégeois, R., Yeo, B. T., & Ville, D. V. D. (2021). Interpreting null models of resting-state functional542

MRI dynamics: not throwing the model out with the hypothesis. NeuroImage, 243 , 118518. doi:10.543

1016/j.neuroimage.2021.118518.544

Liu, X., Chang, C., & Duyn, J. H. (2013). Decomposition of spontaneous brain activity into distinct545

fMRI co-activation patterns. Frontiers in Systems Neuroscience, 7 . doi:10.3389/fnsys.2013.00101.546

Liu, X., Zhang, N., Chang, C., & Duyn, J. H. (2018). Co-activation patterns in resting-state fMRI547

signals. NeuroImage, 180 , 485–494. doi:10.1016/j.neuroimage.2018.01.041.548

Lopes, R., Lina, J., Fahoum, F., & Gotman, J. (2012). Detection of epileptic activity in fMRI without549

recording the EEG. NeuroImage, 60 , 1867–1879. doi:10.1016/j.neuroimage.2011.12.083.550

Lurie, D. J., Kessler, D., Bassett, D. S., Betzel, R. F., Breakspear, M., Kheilholz, S., Kucyi, A., Liégeois,551
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