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Summary 

Errors in protein synthesis can lead to non-genetic phenotypic mutations, which contribute to 

generating a wide range of protein diversity. There are currently no methods to measure 

proteome-wide amino acid misincorporations in a high-throughput fashion, limiting their 

detection to specific sites and few codon-anticodon pairs.  Therefore, it has been technically 

challenging to estimate the evolutionary impact of translation errors. Here, we developed a 

computational pipeline, integrated with a novel mechanistic model of translation errors, 

which can detect translation errors across organisms and conditions.  We revealed hundreds 

of thousands of amino acid misincorporations and a rugged error landscape in datasets of E. 

coli and S. cerevisiae. We provide proteome-wide evidence of how codon choice can locally 

reduce translation errors. Our analysis indicates that the translation machinery prevents 

strongly deleterious misincorporations while allowing for advantageous ones, and the 

presence of missing tRNAs would increase codon-anticodon cross-reactivity and mis-

incorporation error rates.  

 

Keywords: translation error landscape, phenotypic mutation, amino acid misincorporation, 

translation fidelity, codon usage, mass spectrometry 

 

Introduction 

Genetic information is processed with a high fidelity that is essential for cellular life, yet it is 

not exact. Despite the importance of proteins, their production is an error-prone process with 

error rates far exceeding genetic mutation rates. Mutations that are due to errors in 

transcription and translation are collectively termed phenotypic mutations (Bratulic et al., 
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2017; Bürger et al., 2006; Goldsmith and Tawfik, 2009; Yanagida et al., 2015). 

Transcriptome-wide transcription error estimates range from ~10!" in C. elegans (Gout et 

al., 2013), E. coli, B. subtilis, and A. tumefaciens (Li and Lynch, 2020) to  ~10!# in S. 

cerevisiae (Gout et al., 2017; Reid-Bayliss and Loeb, 2017), and M. florum (Li and Lynch, 

2020). Translation error rates are often measured for individual constructs (Drummond and 

Wilke, 2009; Gromadski and Rodnina, 2004; Kramer and Farabaugh, 2007; Loftfield, 1963; 

Loftfield and Vanderjagt, 1972; Mordret et al., 2019). Only one study measured translation 

error rates proteome-wide and found stark differences between codons in E. coli, ranging 

from ~10!$ to ~10!% amino acid misincorporation per codon (Mordret et al., 2019). These 

error rates imply that more than 15% of all proteins contain at least one, potentially harmful, 

wrong amino acid (Drummond and Wilke, 2009). Translation error could thus lead to a large 

variation in the population of any type of protein, with most proteins having the canonical 

sequence and some containing random amino acid misincorporations. Since most genetic 

mutations are destabilizing (Eyre-Walker and Keightley, 1999; Eyre-Walker et al., 2002; 

Makałowski and Boguski, 1998), phenotypic mutations might also have a deleterious effect 

on individual protein functionality. 

Previous studies have shown that organisms can employ different strategies to minimize the 

impact of errors during protein production: they may either regulate protein production or 

accumulate stabilizing mutations (Bratulic et al., 2015; Goldsmith and Tawfik, 2009) to 

buffer the potential deleterious effects of phenotypic mutations. While previous experiments 

illustrated the impact of lower than endogenous transcription and translation fidelity on a 

specific gene, it is still unknown if organisms face selection to improve overall translation 

fidelity as a global solution via costly increase of ribosome proofreading, or if translation 

errors are mitigated locally (Kurland, 1992). 
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Translation fidelity is ensured via structural and kinetic interactions between the ribosome, its 

co-factors, and the tRNA (Blanchard et al., 2004; Budkevich et al., 2011). These interactions 

serve as proofreading mechanisms giving the ribosome the ability to avoid amino acid 

misincorporations by rejecting non-synonymous tRNAs. However, if the correct tRNA does 

not arrive at the ribosome in a timely manner and no tRNA is incorporated, the ribosome will 

stall due to an empty A-site (Schuller and Green, 2018). Stalling can lead to frameshifts or be 

prevented by incorporating a non-synonymous tRNA, which results in an amino acid 

misincorporation (Schuller and Green, 2018). Amino acid misincorporations are rare events 

randomly distributed across the proteome introducing a large variety to a given protein's 

population. It is currently unclear how such variety will affect the selection on a protein and 

how this variation is mapped onto the fitness landscape.  

The evolutionary impact of amino acid misincorporations is dependent on their frequency. 

Experimental measurements provide data on select genes only or on a snapshot of proteome-

wide amino acid misincorporation. In contrast, theoretical models can provide error estimates 

for all sites. Previous studies calculated error rates from general kinetic ribosome parameters 

and tRNA abundances (Fluitt et al., 2007; Shah and Gilchrist, 2010). These models 

distinguish between tRNAs solely based on their abundance and their classification as (near-) 

cognate or non-cognate, therefore, they cannot provide any insights into specific 

ribosome/tRNA interactions. 

Here, we developed a mechanistic model of amino acid misincorporation (Figure 1a) based 

on tRNA competition fitted to proteome wide amino acid misincorporation data, to study the 

multinomial Translation Error Landscape (mTEL) and quantify the evolutionary impact of 

translation errors. We focus specifically on the interactions between tRNAs and codons in 

order to capture the essential codon/anticodon binding. mTEL incorporates tRNA abundances 

from RNAseq data and tRNA binding affinities that we derive from experimentally detected 
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amino acid misincorporations. We developed a high-throughput pipeline (Figure 1c) to reveal 

the empirical Translation Error Landscape (eTEL) by identifying amino acid 

misincorporations in mass-spectrometry datasets, inspired by Mordret et al., 2019. We 

identified a large number (up to ~3500 in a single S. cerevisiae dataset) of amino acid 

misincorporations in 48% of examined S. cerevisiae datasets and 55% of examined E. coli 

datasets in the PRIDE repository (Jones and Côté, 2008; Perez-Riverol et al., 2018, 2022).  

When calculating the expected fitness effects of amino acid misincorporations, we observed 

that their severity decreases with error probability, indicating selection against deleterious 

misincorporations. Combining the error frequencies and the fitness effects of amino acid 

misincorporations in individual proteins revealed that at the large majority of sites, amino 

acid misincorporations are neutral in both S. cerevisiae and E. coli. Therefore, it is likely that 

neither S. cerevisiae nor E. coli faces strong selection pressure to further increase translation 

fidelity.  

In summary, we present the first data-driven, proteome-wide assessment of translation errors. 

We combined eTEL and mTEL into a general workflow for the description of the Translation 

Error Landscape (deTEL) that is widely applicable to other organisms and conditions. 

Results 

Mechanistic modeling of tRNA incorporation allows exploration of the 

translation error landscape 

We present a probabilistic model of tRNA incorporation as a function of tRNA arrival rates 

and codon/anticodon binding affinity (Figure 1a, see Methods). In short, we consider tRNA 

incorporation as a multi-step process: First, a tRNA has to arrive at the ribosome. Here we 

consider the probability of two cases: that a given tRNA arrives first, or that other tRNAs 
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arrive beforehand and have to be rejected. We assume that tRNAs move through a cell by 

diffusion only, making expected arrival times of tRNAs at the ribosome proportional to their 

abundance (Fluitt et al., 2007; Weinberg et al., 2016). Assuming exponentially distributed 

arrival times, the probability that tRNA 𝑖 will arrive before tRNA 𝑗 is given by their expected 

arrival times 𝜆: 

𝑝&,() = *!
*!+*"

. 

This relationship can be extended to all potential subsets of tRNAs, e.g., synonymous and 

non-synonymous tRNAs by defining 𝜆& and 𝜆( as the sum of the arrival rates over the 

respective sets.  

The probability of binding between codon 𝑖 and anticodon 𝑗 is proportional to their affinity 

𝑝&,(, ∝ exp*−Δ𝐴&,(.. The binding affinity Δ𝐴&,( is calculated as the sum over the individual 

nucleotide interaction, weighted by position (see Methods for details). Describing 

codon/anticodon affinities as a linear combination of nucleotide affinities and position 

specific parameters has two main advantages. We can reduce the number of parameters and 

leverage information about nucleotide interaction across multiple sites and vice versa. 

Additionally, we can infer tRNA misincorporations without any observations of the 

corresponding amino acid misincorporation and provide a general model. 

 

Translation errors dominate transcription errors 

Mass-spectrometry alone is unable to distinguish if amino acid misincorporations are caused 

by transcription or translation errors. While transcription errors are estimated to be orders of 

magnitude lower than translation errors, transcription errors are further amplified by 

translation. It is unclear what proportion of the measured amino acid misincorporations 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

originate from transcription. Therefore, we explored the likelihood of the detected amino acid 

misincorporations to be caused by translation errors or transcription errors (Figure 1b). We 

modeled protein synthesis via error prone production and explored combinations of literature 

estimates of transcription and translation error rates leading to amino acid substitutions (see 

Methods). While the amplification of transcription errors will eventually lead to a 

transcription-error dominated system, this is limited to high transcription error rates (Figure 

1b). Only if we assume the lowest translation misincorporation rate combined with the 

highest transcription misincorporation rate, we observe a transcription dominated system. 

Therefore, we assume that most amino acid misincorporations observed via mass 

spectrometry result from translation rather than transcription errors. 

 

Proteome-wide amino acid misincorporations detected in hundreds of mass-

spectrometry datasets 

While amino acid misincorporation have been explored individually for decades via reporter 

constructs (Drummond and Wilke, 2009; Gromadski and Rodnina, 2004; Kramer and 

Farabaugh, 2007), proteome wide amino acid misincorporation identification is only 

achievable with mass spectrometry. However, mass spectrometry data sets have large 

variation in the identified peptides and their frequencies, due to differences in experimental 

and technical conditions. In order to capture this variation, it is important to consider a large 

number of mass-spectrometry datasets. We applied our new high-throughput pipeline to 

reveal the empirical Translation Error Landscape (eTEL) on a large number of mass-

spectrometry datasets for S. cerevisiae downloaded from the PRIDE repository (Jones and 

Côté, 2008; Perez-Riverol et al., 2018, 2022). Our high-throughput pipeline, eTEL is based 

on MSFragger’s (Kong et al., 2017) open search algorithm (Yu et al., 2020) and uses 
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stringent quality filters to avoid the misidentification of mass-artefacts and post-translational 

modifications (PTMs) as amino acid misincorporations (See Methods for details and Figure 

1c). We identified a large number of modified peptides but only considered those which were 

also identified as un-modified and were uniquely assigned to a protein. 

We identified at least one amino acid substitution in 180 datasets of the 283 S. cerevisiae 

datasets, we obtained from PRIDE (Jones and Côté, 2008; Perez-Riverol et al., 2018, 2022). 

The identification of amino acid misincorporation in ~63% of examined dataset highlights 

that amino acid misincorporation are widespread and can be found in many existing mass-

spectrometry datasets. We identified between 1 and 6583 amino acid misincorporations per 

dataset, totaling 47,917 amino acid misincorporations (Figure S1a). In order to highlight the 

generality of our approach, we also applied eTEL to 188 E. coli datasets from the PRIDE 

repository. We identified about twice as many amino acid misincorporation (91,565) in E. 

coli as in S. cerevisiae, ranging from 1 to 42,383 amino acid misincorporation per dataset 

(Figure S1b).  

The number of detected amino acid misincorporation in S. cerevisiae and E. coli datasets is 

well correlated (two-sided Wald-test, Pearson’s 𝑅- = 0.79, 𝑝 < 10!%., 𝑛 = 180; Figure 

S1c, Pearson’s 𝑅- = 0.72, 𝑝 = 1.6 ×!/", 𝑛 = 94; Figure S1d) with the number of identified 

peptides on the logarithmic scale. This indicates that the number of identifiable amino acid 

misincorporations highly depends on the depth of a given mass-spectrometry dataset. While 

we observe twice as many amino acid misincorporation in E. coli, the number of identified 

peptides overall grows proportionally and as such, the error detection rate for the two 

organisms is on par. Specifically, the codon specific error detection rate for S. cerevisiae 

ranges from 1.51 × 10!# to 4.8 × 10!%, while it ranges from 2.61 × 10!# to 6 × 10!% in E. 

coli. 
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Nucleotide interactions determine codon/anticodon specific affinities 

In order to understand differential amino acid misincorporation probabilities we need to 

model the mechanism underlying tRNA misincorporation. We modeled the codon/anticodon 

binding affinity as a unit-less parameter, describing not only binding strength but absorbing 

any additional linear effects of tRNA recognition by the ribosome, such as induced 

conformation changes and kinetic proof-reading. We assumed that the incorporation of an 

amino acid follows a multinomial distribution, where the incorporation probability is a 

function of tRNA abundance and codon/anticodon binding affinity. We fitted the nucleotide 

and position specific binding parameters to the observed amino acid misincorporation using a 

Markov Chain Monte Carlo (MCMC) algorithm with Gibbs sampling using a uniform prior 

distribution for all parameter. Each of the datasets was separately considered during the 

fitting process. Since the datasets used for model fitting are highly variable, we estimated 

parameter uncertainty due to dataset choice via bootstrapping. Datasets were bootstrapped 

10,000 times and all parameter posterior means fell within the bootstrapped distributions 

(Table S1, Figure S2d,e). 

As expected, fitted binding affinities show an increased affinity for the canonical Watson-

Crick nucleotide pairs (Figure 1d). However, our fitted affinity matrix is not symmetric. For 

example, the codon/anticodon interaction U:G is favored, while the reverse interaction, G:U, 

is not (Figure 1d). The pyrimidine codon/anticodon pairs U:C, C:C, and U:U show the 

weakest binding affinities. Our nucleotide and position specific binding affinities allow 

estimating codon/anticodon binding affinities and disentangling the contributions of 

individual nucleotides at different positions. 

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

The position-specific scaling term clearly disfavors nucleotide mismatches at the first and 

second position over the third (Figure S2a). Mismatches at the second codon position are the 

most unfavorable in S. cerevisiae, potentially caused by the steric issues such a mismatch 

would lead to, if the two flanking nucleotides are bound. In E. coli, however, mismatches at 

the first position are most unfavorable (Figure S2a). Watson-Crick pairings are always 

favorable, while most other nucleotide interactions are considered unfavorable (Figure S2b) 

for both S. cerevisiae and E. coli. Overall, the parameter sets correlate well (two-sided Wald-

test, Pearson’s 𝜌 = 0.91, 𝑝 = 1.2 × 10!0, 𝑛 = 18, Figure S2c) between the two species, 

likely due to the high degree of conservation of the translation machinery across the tree of 

life. However, both species differ significantly in all estimated parameters (Figure S2d), most 

likely because of differences in tRNA abundances. 

 

Translation error landscape is rugged 

A wide variety of tRNAs can be wrongly incorporated at any codon. To describe the 

translation error landscape at the codon level, detected amino acid misincorporation across all 

S. cerevisiae datasets were pooled and plotted as a codon to amino acid misincorporation 

matrix (Figure 2a). Each entry represents the number of times a codon was observed to be 

wrongly translated with a given amino acid. Leucine and Isoleucine are treated as the same 

error because they cannot be distinguished in mass-spectrometry data due to their identical 

masses. We can clearly identify hotspots of substitutions, such as GAA (Glutamine acid) to 

Histidine or GUA (Valine) to Alanine. While the former requires two mismatches at the first 

and third codon position, the later requires one nucleotide mismatch at the second codon 

position. This is in contrast to E. coli in which these errors are underrepresented compared to 

S. cerevisiae. However, in E. coli there are other hotspots such as CUG and CUU to Valine 
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substitution (Figure 2b, Figure S1e). Generally, we observe most mismatches at the first 

codon position, and a similar number of mismatches at the second and third codon position 

(41,924; 32,756; and 34,957 nucleotide mismatches), albeit seeing different types of 

nucleotide mismatches (Figure 2c). For example, G:G mismatches are most common at the 

first, C:U mismatches at the second codon position, and A:G mismatches are most common 

at the third codon position. However, if we consider only misincorporations that are best 

explained by single nucleotide mispairings, we find that mispairings at the first and second 

codon position cause the majority of tRNA mis-bindings (Figure 2d). Similar, the variability 

in the amino acids wrongly incorporated at a given codon also differs greatly between 

codons. For example, the Alanine codon GCG shows the least amount of variation in the 

misincorporated amino acids despite being the most error prone Alanine codon. In contrast, 

GCU appears to have the highest variance. This indicates that a codon’s error rate cannot be 

equated to the variation in amino acid misincorporations observed.  

Codon-specific error detection rates vary by orders of magnitude 

We calculated the error rate of a codon 𝑖 by dividing the number of times codon 𝑖 was 

observed to be mis-translated by the total number of times codon 𝑖 was observed in a peptide 

(Figure 2e). The dependency of our error rate on the number and composition of the 

identified peptides likely results in an underestimate, as we are bound to miss the rarest of 

error events. We also observe a clear bias towards highly abundant proteins showing an 

increased number of amino acid misincorporations (ρ = 0.59, 𝑝 < 10!/# Figure 2f). Amino 

acid misincorporations in low-abundance proteins are generally underrepresented in all the 

examined datasets. Due to these biases in detection, we will use the term error detection rate. 

Error detection rates vary by orders of magnitude between datasets and codons (Figure 2e). 

The Histidine codon CAU and the Tryptophan codon UGG show the highest variation among 

datasets ranging over three orders of magnitude, from 10!# to 10!-. The Arginine codon 
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CGA, one the other hand, was never detected to be substituted in S. cerevisiae. This might be 

explained by the rarity of CGA, which only represents 0.31 % of codons in the S. cerevisiae 

proteome (Tsuji et al., 2010). However, the lack of amino acid misincorporation observed at 

CGA codons could also be explained by the mis-translation of CGA as a STOP codon, 

producing peptides to which eTEL is currently blind. In E. coli, the Arginine codon CGA has 

a low error detection error rate of 6.03 × 10!$ (Figure S1f) and is likely detectable due to the 

increase in the overall number of detected amino acid misincorporations. In general, the six 

Arginine codons show less variation between datasets and a large variation in median error 

detection rate between codons, spanning two orders of magnitude, ranging from 1.95 × 10!# 

for CGU to 1.05 × 10!% for CGG (two-sided Wilcox rank sum-test ρ = 0.11; see Table S2 

and Table S3 for all p-values between error rate pairs and sample sizes of S. cerevisiae and E. 

coli, respectively). The ability to quantify the variation in amino acid misincorporation rates 

is a clear advantage of proteomics approaches over rate quantification via individual 

constructs. 

 

Error free translation probability determined by codon composition 

We explored how amino acid misincorporation are distributed across the proteome in order to 

better understand the effects of translation errors on individual proteins. We calculated the 

incorporation probability (𝑝&) of each tRNA to each codon based on available tRNA 

abundance data from Weinberg et al., 2016 and based on our estimates of codon/anticodon 

binding affinities. The probability of incorporating a synonymous tRNA can then be 

calculated as  

𝑃[𝑡𝑅𝑁𝐴1] = 1 − E 𝑝&
∀3456#
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where 𝑡𝑅𝑁𝐴1 is the set of synonymous tRNAs and 𝑡𝑅𝑁𝐴7 is the set of non-synonymous 

tRNAs. We then mapped the probability of error free translation of a codon (𝑃[𝑡𝑅𝑁𝐴1]) onto 

the proteome to investigate which proteins are most likely to be translated error free, or 

contain error hotspots. 

When considering the whole proteome, amino acid misincorporations appear to be mostly 

uniformly distributed along the sequence of the proteins in S. cerevisiae (Figure S3a) and E. 

coli (Figure S3b). However, this does not hold true when considering individual proteins. The 

explicit site independence assumption of our model allows us to calculate the probability of 

error free translation until codon 𝑖 as the cumulative product of error free translation 

probabilities until codon 𝑖. The cumulative error free translation probability for every 

individual protein reveals that the uniform distribution of amino acid misincorporations 

observed in the mass-spectrometry data is likely caused by differences in error probability 

along the codon sequence between proteins (Figure 3a). We find three general classes of error 

structures: i) slow initial decline in error-free probability with a high error probability 

towards the end of the protein (YLR249W, blue), ii) a constant decline in error-free 

probability (YBL104C, cyan), and iii) a stark initial decline in error-free probability and high 

fidelity towards the end of the protein (YOR127W, red). It is unclear if the error structure of 

a given protein is driven by selection or simply by chance. 

 

Translation efficiency and fidelity are not mutually exclusive 

High variation in detection error rate between synonymous codons and their non-uniform 

occurrence across individual proteins led us to question the relationship between error rate 

and codon optimality. For example, the median error detection rate between arginine codons 

differs by almost two orders of magnitude, from 1.95 × 	10!% for AGG to 1.05 × 10!% for 
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CGG. We generally observe that a drastic increase in the probability of error free translation 

for most genes would be possible (Figure 3a inset) by using codons that have maximum 

fidelity. When we compare the codon adaptation index (Sharp and Li, 1987) (CAI) of wild-

type S. cerevisiae codon sequences with the CAI of each sequence optimized for maximal 

error free translation we see drastic differences in their adaptiveness. In general, we see that 

CAI is a poor predictor for error free translation (Figure S3c). The increase in translation 

fidelity reduced the CAI for all codon adapted genes while increasing it for low expression 

genes which tend to be driven by mutation bias (Figure S3d). This indicates that the codon 

adaptation described by CAI does not reflect translation fidelity. Indeed, the relative 

synonymous codon usage is negatively correlated with the relative error detection rate (two-

sided Wald-test, 𝑅- = 0.19, ρ = 0.0068, 𝑛 = 58; Figure S3e), indicating that frequently used 

codons show higher translation fidelity. This relationship was previously observed(Mordret et 

al., 2019) and later confirmed by a more detailed analysis (Sun and Zhang, 2022), in E. coli. 

To further explore this trade-off, we compared our detection rates to estimates of ROC-

SEMPPR’s (Gilchrist et al., 2015)	Δ𝜂, which describes a codons translation inefficiency. Δ𝜂 

decrease with decreasing inefficiency, meaning that the most efficient codons have the lowest 

value. Our observed error detection rates correlate well (two-sided Wald-test, 𝑅- = 0.51, 

𝑝 = 3.5 × 10!#, 𝑛 = 58, Figure S3f) with Δ𝜂 for S. cerevisiae taken from (Landerer et al., 

2020), further indicating that there is no trade-off between translation efficiency and 

translation fidelity in S. cerevisiae. Thus, the reduction in CAI when optimizing a codon 

sequence for translation fidelity is not expected to be related to a decrease in translation 

efficiency. Providing further evidence that selection on codon usage is - at least in part - the 

result of selection for increased translation accuracy (Akashi, 1994). 
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Absence of cognate tRNAs reduces amino acid misincorporations 

No organism carries matching tRNA species for all codons. The absence of some tRNAs 

potentially serves to reduce ambiguity between tRNAs encoding different amino acids or to 

regulate translation speed (Ehrlich et al., 2021). Of the 61 × 61	 = 	3721 theoretical 

codon/anticodon interactions, only 2501 (67%) are possible in S. cerevisiae. The remaining 

1220 interaction are impossible due to the lack of the corresponding tRNA. We tested if our 

affinity parameters differ between tRNA species present and absent. We investigated the 

difference in binding affinity of a given anticodon with its cognate and near-cognate codons 

(Figure 3b). For example, the Phe-tRNAGAA has a reduced binding affinity towards the near-

cognate Leucine codons UUA and UUG compared to its cognate UUC (Shah and Gilchrist, 

2010). The affinity of the Phe-tRNAGAA to UUA and UUG is only 77%, and 78% of the 

affinity to UUC, respectively. However, if we assume the Phe-tRNA would carry the AAA 

anticodon instead, the affinity of the Phe-tRNA towards UUA and UUG comes close to that 

of UUC (95% and 84%, respectively). Similar effects can be observed for other amino acids 

encoded by exactly two codons in S. cerevisiae and E. coli (Figure 3c; Figure S3g). It is, 

therefore, possible that the presence of tRNA species in both organisms has been under 

selection to minimize amino acid misincorporation by maximizing the affinity difference 

between synonymous and non-synonymous codons. 

 

Translation machinery is nearly optimal 

Most proteins can be expected to carry at least one amino acid misincorporation. It is, 

therefore, important to understand the impact amino acid misincorporation have on protein 

function and fitness. We performed a proteome-wide estimation of fitness effects for all 

possible mutations at a given site using EVmutations (Hopf et al., 2017). For S. cerevisiae 
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and E. coli, respectively, we calculated in total 26,504,184 and 13,117,068 fitness effects 

across 4584 and 3081 proteins with sufficient alignment depth. We combined our fitness 

estimates with amino acid misincorporation probabilities from mTEL and protein abundance 

from PAXdb (Wang et al., 2015) to understand fitness effects of amino acid 

misincorporations relative to an error free protein population (Figure 4a). We found that the 

severity of the calculated fitness effects declines with increasing probability of error 

occurrence in both S. cerevisiae (Figure 4b) and E. coli (Figure 4c), indicating potential 

selection on codon usage to avoid harmful amino acid misincorporations. 

 

These fitness effects assume that a mutation is present in 100% of the proteins. A translation 

error, however, will only affect the one protein that contains it. Combining the error 

probabilities with the calculated fitness effects, we can assess the expected effects amino acid 

misincorporations have on a protein. We calculated the fitness difference between the wild-

type protein assuming perfect – error free – translation, and the effect an amino acid 

misincorporation has on the protein (Figure 4d,e). Assessing the relative fixation probability 

of amino acid misincorporations shows that the vast majority of amino acid 

misincorporations are neutral in both S. cerevisiae and E. coli (91.39% and 73.26%). In 

contrast, only a small number of amino acid misincorporations are deleterious (8.6% and 

26.64%), or even advantageous (0.01% and 0.1%). This indicates that S. cerevisiae faces 

little to no selection to further invest into increasing translation fidelity and improve 

energetically expensive kinetic proofreading capabilities. E. coli appears to face much larger 

selection than S. cerevisiae on individual sites as, at almost one third of sites, amino acid 

misincorporations are deleterious.  
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Maximizing translation fidelity is deleterious 

We calculated the fitness effects of translation errors of individual proteins in S. cerevisiae 

and E. coli by summing the site-specific fitness effects. Protein fitness effects were then 

weighted by their protein abundance from PAXdb (Wang et al., 2015) and contribution to the 

total amount of protein produced. Only a small fraction of proteins impose a significant 

fitness burden on S. cerevisiae (~0.11	%, Figure 4f) and on E. coli  (~2.14 %, Figure 4g) due 

to error prone translation. However, the summed fitness burden of all proteins is significant 

in both organisms (S. cerevisiae: Δ𝑥8 = −0.789; E. coli: Δ𝑥8 = −0.414). While the fitness 

burden in E. coli is less than in S. cerevisiae, the efficacy of selection is greater, with a 

relative fixation probability of ΘLΔ𝑥8M = 0.019 in S. cerevisiae and ΘLΔ𝑥8M = 3 × 10!/$ in 

E. coli. This results in the fixation probability in both species to be drastically reduced 

relative to a hypothetical error free translation system. However, this reduction in fitness is 

conferred by only a small number of proteins in both species (Figure 4f,g) and therefore local 

solutions to increase fidelity may be preferred (Rajon and Masel, 2011). If we assume that 

there is no selection to further improve fidelity of the translation machinery we can estimate 

the fitness cost of global increases in translation fidelity e.g., by improved kinetic 

proofreading. The fitness cost imposed by an error free translation machinery would be 

0.7753 and 0.41267 for S. cerevisiae and E. coli, respectively. This burden is on par with the 

cost of translation errors, making it unlikely that such an increase would reach fixation. 

 

Discussion 

Detection and modeling of amino acid misincorporations at proteome-scale enabled us to 

estimate their fitness effects and to gain insights into the evolution of translation fidelity. Our 
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mechanistic model of amino acid misincorporations (mTEL) was trained on 

misincorporations detected in existing mass-spectrometry data sets (eTEL). Using mass 

spectrometry, peptides can be detected and identified by matching measured peptide spectra 

to theoretical spectra generated from a sequence database (Cox and Mann, 2011). Many 

spectra, however, are not matched to any theoretical peptides, due to e.g., post-translational 

modifications (PTM) which alter the peptides' mass. Various approaches have been 

developed to account for such mass-shifts due to PTMs (Chick et al., 2015; Tang et al., 2005; 

Yu et al., 2020). Mordret et al. were first to note that amino acid misincorporations in a 

peptide yield a similar mass shift and that strategies developed for the detection of PTMs can 

be used to identify amino acid misincorporation proteome-wide via mass-spectrometry 

(Mordret et al., 2019). Based on this approach, we developed eTEL, a high-throughput 

pipeline that can process hundreds of datasets and after quality filters, report amino acid 

substitutions in an automated way. We applied it to all existing S. cerevisiae and E. coli 

datasets in the PRIDE repository. We identified 47,917 amino acid misincorporations in S. 

cerevisiae and 91,565 in E. coli, highlighting the vast amount of, yet, unexplored information 

in publicly available mass-spectrometry datasets. eTEL allows exploring amino acid 

misincorporations across different organisms and conditions that alter translation fidelity, 

such as aging or cancer (Pataskar et al., 2022). 

While mass spectrometry is the only method to detect amino acid misincorporations 

proteome-wide, it has limitations. The proteome coverage varied between 0.05 – 82.3 % of 

all proteins in S. cerevisiae (0.07 – 58.5 % in E. coli). Since most proteins are only identified 

via a single peptide, the data cover only ~4.5 % (~10 % in E. coli) of all codon positions in 

total, leaving a large number of positions unexplored. This highlights the necessity to 

extrapolate error rates via mechanistic models. In addition, there is large variation in the 

number of times individual peptides are observed, ranging from 1 to 688 in S. cerevisiae (1 to 
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689 in E. coli). In shotgun proteomics, whether or not a peptide is detectable will depend on 

the protein, the peptide’s environment within the protein, and on the peptide sequence itself. 

Proteins are less likely to be present in the sample in sufficient amounts if they are only 

expressed under certain conditions, challenging for sample preparation (e.g., membrane 

proteins), or have a low copy number (e.g., transcription factors). On the level of individual 

peptides, the amino acid composition strongly influences the observability. Factors like 

hydrophobicity, the ability to hold positive charges and the isoelectric point are predictors of 

whether a peptide will be detected or not (Cech and Enke, 2000; Fusaro et al., 2009).  

Overall, the coverage of protein sequences by mass spectrometry is biased, and influenced by 

the properties of the corresponding peptides that are measured. 

We focused on tRNA misincorporation as the main mechanism of amino acid 

misincorporation. However, amino acid misincorporations can be the result of tRNA 

mischarging, when the tRNA is charged by the wrong amino acid. The enzymes responsible 

for charging the tRNAs, amino-acyl tRNA-synthetases (Ling et al., 2009), have cross-

reactivity to similar amino acids, e.g. Ile-aa-tRNA synthase bind Leu, Val and Norvaline 

albeit with lower affinity (Bilus et al., 2019). We cannot distinguish if a detected amino acid 

misincorporation is the result of mischarging or binding of incorrect tRNA.  

The correct tRNA incorporation depends on a multitude of factors such as codon/anticodon 

binding affinity (Gromadski and Rodnina, 2004; Pape et al., 2000), tRNA abundance (Sipley 

and Goldman, 1993), or the kinetic proofreading performed by the ribosome (Gromadski and 

Rodnina, 2004) (see (Rodnina et al., 2005) for review). We focus on tRNA abundance, which 

is readily available for a multitude of organisms, and codon/anticodon binding which can be 

parameterized with few, but meaningful parameters. Most of these factors controlling 

successful tRNA incorporation alone are too complex to be modeled in a meaningful manner, 

let alone interactions between them. mTEL allows us to describe the observed amino acid 
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misincorporation and can be used for in silico experiments not feasible in the laboratory. For 

example, we tested the impact of missing tRNAs (Figure 3).  

While our mechanistic model of ribosome/tRNA interactions (mTEL) was fitted to observed 

amino acid misincorporations, it can also predict probabilities of amino acid 

misincorporations not observed by mass spectrometry. For example, by leveraging 

information across codon sites and nucleotide interactions allowing us to estimate amino acid 

misincorporation at the Tryptophan codon without having it observed in S. cerevisiae. 

Population genetics would predict that costly translation errors, which render a protein non-

functional, should appear, if at all, early during protein synthesis in order to minimize wasted 

production costs. While this is plausible for non-sense errors such as premature termination 

or frameshifts, missense errors during early and late stages of protein synthesis incur the 

same production costs. In agreement with this, we do not observe any proteome-wide bias in 

the distribution of amino acid misincorporations along the protein sequence in S. cerevisiae 

(Figure S3a) and E. coli (Figure S3b). 

We combined our predicted amino acid misincorporation probabilities with fitness estimates 

from EVmutation (Hopf et al., 2017) to describe the burden mis-translation events have on a 

cell. We accounted for the contribution of a protein to the overall protein pool by considering 

its abundance. However, we cannot consider the cost of a translational machinery with 

increased fidelity. It is therefore possible that the increased energy required to improve 

translation fidelity (‘global’ solution) exceeds the energy lost due to translation errors. Only 

about 8.6 % of codon sites appear to impose a significant fitness burden. Thus, ‘local’ 

adaptation (Rajon and Masel, 2011) of individual protein sequences, e.g., via codon choice, 

may be the preferred mechanism to cope with the remaining fitness burden imposed by 

mistranslations. Based on transcription error estimates, it was previously proposed that ‘local’ 
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solutions on a gene-by-gene basis can reduce the effects of errors (Rajon and Masel, 2011). 

Here, based on data of proteome-wide translation errors, we detect ‘local’ solutions to amino 

acid misincorporations such as codon choice, and describe how ‘global’ solutions such as 

presence/absence of tRNA species can increase translation fidelity. 

Amino acid misincorporations are only one type of synthesis errors introduced by the 

translation step. Other errors include frameshifts by ribosomal slippage, premature 

termination by falling of the ribosome, and stop codon readthrough by amino acid 

misincorporation or skipping. The evolutionary impact of phenotypic mutations in general is 

still unclear. They contribute to protein diversity and can have adaptive function, e.g., 

frameshifts in viruses, bacteria and yeast (Romero Romero et al., 2022). Yet, most 

phenotypic mutations are likely stochastic events, errors without known functions (Li and 

Zhang, 2019). 

There is a large variability in translation fidelity across organisms based on individual 

reporter assays (Romero Romero et al., 2022). Using deTEL, it is now possible to explore 

translation accuracy in many species as well as under changing conditions, such as stress 

(Mohler and Ibba, 2017) or diseases (Kirchner and Ignatova, 2015) like cancer (Goodarzi et 

al., 2016; Pataskar et al., 2022). Although phenotypic mutations are individually rare, 

collectively, they can exert a significant fitness effect, and play a critical role in evolution. 
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Main figures 

 

Figure 1: Modeling translation errors based on observed amino acid misincorporations 

in mass spectrometry data. a) The multinomial Translation Error Landscape (mTEL) model 

is a mechanistic model of tRNA misincorporations. The probability of tRNA acceptance is 

controlled by competition for arrival at the ribosome determined by tRNA abundance and the 

binding affinity between codon and anticodon. Differential arrival of tRNAs is modeled as an 

exponential competition to arrive before another tRNA. Differences in the probability to 

arrive before a competitor can be substantial (top inset): the focal Ser-tRNACGA is unlikely to 

arrive before the competing Asp-tRNAGUC. Binding affinities between codon and anticodons 

determine the acceptance/rejection probability and are estimated from observed amino acid 

misincorporations.  The bottom inset shows a bar graph how frequently each tRNA is 

expected to arrive before the focal Ser-tRNACGA. b) Error probability space resulting from 

error prone protein production indicating when transcription or translation errors are more 

likely. Known literature estimates (Gout et al., 2017; Mordret et al., 2019; Shaw et al., 2002) 
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suggest that observed amino acid misincorporations are most likely caused by translation 

errors. c) High-throughput pipeline for the detection of the empirical Translation Error 

Landscape (eTEL) based on existing mass-spectrometry datasets (see also Figure S1). d) 

Posterior mean of binding affinities of individual nucleotides in the codon and anticodon. 

Watson-Crick codon/anticodon pairs show high binding affinity (blue) (see also Figure S2). 
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Figure 2: Codon choice determines translation errors. a) Heatmap of codon specific 

amino acid misincorporations for each target amino acid identified in the 180 datasets of S. 

cerevisiae.  Synonymous codons often show the same errors (e.g., GCN to N, P, and Q), 

however many errors are detected only at individual codons (e.g., CGG to W). b) The 

translation error landscape of E. coli and S. cerevisiae differs substantially. Differences were 

calculated as the difference of the logarithm (augmented by one pseudo count) of the counts. 

c) Observed mistranslation events at individual codon sites. d) Multiple mispairings account 

for the majority of observed mistranslation events. However, when we consider only 

mispairing that are most likely caused by a single nucleotide mismatch, we find that position 
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one and two show 2 and 3 times increase in mispairings over the third codon position, 

respectively.  e) Codon-specific error detection rates for all codons vary greatly between 

synonymous codons, indicating large differences in fidelity between codons. Similarly, a 

large variation in the detection rate between datasets highlights the intrinsic noise in mass-

spectrometry data. f) Detection of misincorporated amino acids correlates well with the 

integrated protein abundance for S. cerevisiae(Wang et al., 2015) (see also Figure S1). 
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Figure 3: Codon choice and tRNA pool affect translation fidelity. a) Cumulative 

probability of error free translation for each protein in the S. cerevisiae proteome. Proteins 

exhibit different error probabilities along the sequence. Highlighted are three proteins with 

different error structures: i) increased error rates late (e.g., YLR249W, blue), ii) uniform error 

rates (e.g., YBL104C, cyan), and iii) increased error rates early (e.g., YOR127W, red) during 

translation. The inlay shows a comparison between the wild-type sequence error free 

translation probability and the hypothetical optimal sequences, that would minimize 

translation error probability. b) To minimize mis-translations, non-synonymous codons 

should have a significantly lower binding affinity than synonymous codons. Relative binding 

affinity is quantified based on the lowest synonymous binding affinity. c) Impact of the tRNA 

pool on translation errors. Difference in codon/anticodon affinity for interactions with up to 

one codon/anticodon mismatch, for all two-codon amino acids with only one tRNA present in 

S. cerevisiae. The ribosome’s ability to discriminate between correct and incorrect binding 
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events is diminished if we assume that the missing tRNA (black) would be present instead of 

the existing tRNA (green) (see also Figure S3).  

 

 

Figure 4: Deleterious amino acid misincorporations are compensated by reduced error 

rate. a) Site-specific fitness effects of amino acid mutations (EVmutations(Hopf et al., 

2017)) were combined with amino acid misincorporations probabilities (mTEL) to calculate a 

site-specific expected cost of an amino acid misincorporation. Accounting for individual 

protein abundance and a protein’s contribution to the overall proteome, we can estimate the 

fitness cost of a protein due to mistranslation. b, c) The translation machinery prevents 

strongly deleterious misincorporations while allowing for advantageous ones. Severity of 
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deleterious effects of substitutions declines with increased error probability (from light to 

dark blue).  d, e) The majority of amino acid misincorporations are neutral (purple region), a 

smaller percentage (~8.6 % in S. cerevisiae and ~26.64 % in E. coli) are deleterious (orange 

region), and only a very small fraction is considered advantageous (green region). The black 

curve shows the relative fixation probability, and the dashed lines indicate the shift from 

decreased to increased relative fixation probability. f, g) Protein burden was calculated as the 

sum of individual site contributions and weighted by the relative contribution of a protein to 

the proteome based on protein abundance(Wang et al., 2015). Only 0.11 % of proteins 

impose a significant burden due to amino acid misincorporations in S. cerevisiae (f) while 

2.14 % of proteins in E. coli (g).  

 

Methods 

A Full description of the Materials and methods can be found in the supplementary materials. 

 

Name Version Source 
R 4.2 https://cran.r-project.org 

Python 3.9 https://www.python.org 

EVcouplings  0.0.5 https://github.com/debbiemarkslab/EVcouplings 

Frapipe  15 https://fragpipe.nesvilab.org/ 

MSFragger 3.2 https://msfragger.nesvilab.org/ 

CrystalC 1.3.2 https://github.com/Nesvilab/Crystal-C 
PTMShepard 1.0 https://github.com/Nesvilab/PTM-Shepherd 
seqinr 4.2-8 https://cran.r-project.org/web/packages/seqinr/index.html 

CAI 1.0.3 https://pypi.org/project/CAI/ 

deTEL 1.0 https://git.mpi-cbg.de/tothpetroczylab/deTEL 
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Detecting amino acid misincorporations via open search 

Datasets downloaded from PRIDE(Jones and Côté, 2008; Perez-Riverol et al., 2018, 2022) 

(last accessed: 04.11.2021) were analyzed in bulk by first using the dry-run functionality of 

the Fragpipe (version 17) software suite to extract the commands executed by Fragpipe. The 

individual tools included in Fragpipe were then called from a bash script on a computing 

cluster, searching each PRIDE project in parallel. Options are based on the settings used in 

the predefined ‘Open Search’ of Fragpipe. All raw files (Thermo .raw format) in the dataset 

were then searched together by MSFragger(Kong et al., 2017) (version 3.4) open search(Yu 

et al., 2020) against the S. cerevisiae proteome (translated reference CDS from 

yeastgenome.org, last accessed 12.03.2020) with mitochondrial genes removed and the E. 

coli proteome (extracted from genome and translated, genome obtained from NCBI, last 

accessed 15.09.2020).  

 

Detecting substitutions in open search results 

Amino acids substitutions were detected with a custom Python script (version 3.9).  For each 

dataset, FDR-filtered psm.tsv files were collected. Peptides were further filtered to remove all 

that were matched to several proteins. All peptides were annotated with their start and end 

position. Peptides with a mass shift between -5 and +5 mDa were considered as unmodified, 

and all others as modified. Modified peptides were only retained if the modified position in 

the protein sequence was covered by an unmodified peptide present in the same MSFragger 

file (identified in the same MS measurement) and if the position of the modification could be 

unambiguously localized. All remaining peptides with a mass shift matching the mass 

difference between two amino acids were marked as substitutions, and the original and 

substituted amino acid were annotated, with Leucine and Isoleucine treated as equivalent. All 
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peptide with a mass shift and localization also matching a known PTM (see supplementary 

data for a full list) were removed. For each codon, a detection rate was calculated as the total 

number of times (number of PSMs) a peptide covering a position with this codon and 

carrying a substitution at that position was detected divided by the number of times the same 

codon was detected on a peptide unmodified.  

 

Exploring the relationship between codon usage and translation fidelity 

Codon adaptation index (CAI) was calculated using the R (version 4.2.0) package seqinr 

(version 4.2-8) using the function CAI. Codons weights were taken from seqinr’s caitab. 

Relative synonymous codon usage was calculated from the top 5% expressed S. cerevisiae 

genes using gene expression (RPKM) data from(Weinberg et al., 2016) using the CAI 

(version 1.0.3) Python (version 3.9) package. 

 

Modeling error prone protein production 

We designed a system of equations, modeling the production of proteins from DNA. As we 

are only interested in the production of proteins and not in their lifetime, we ignore 

degradation. 

𝑅9̇ = 𝑟9 

𝑅:̇ = 𝑟: 

𝑃9̇ = L𝑝9 + 𝑝:M𝑅9 + 𝑝9𝑅: 

𝑃:̇ = 𝑝:𝑅: 
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Integrating the system and solving it at time 𝑡 = 1 allows us to determine the dependency of 

error prone protein (𝑃9) produced by transcription and translation. 

𝑃9 =
1
2 L𝑝9𝑟9 + 𝑝:𝑟9 + 𝑝9𝑟:M 

which we can separate into the contribution of transcription 

𝑃9 =
1
2 𝑟9L𝑝9 + 𝑝:M 

and translation 

𝑃9 =
1
2𝑝9𝑟: 

We assume further, that the total amount of mRNA and protein produced is 𝑟3 = 𝑟9 + 𝑟: and 

𝑝3 = 𝑝9 + 𝑝:, respectively. This assumption allows us to compare literature estimates of 

misincorporation rates to our model. 

 

tRNA arrival probabilities 

While we assume the binding probabilities of the tRNAs at stationarity, we have to consider 

the arrival rates of each tRNA at the ribosome. We assume that the waiting time for a tRNA 

to arrive at the ribosome is exponentially distributed with the rate being proportional to the 

tRNA abundance. tRNA abundance was obtained from Weinberg et al(Weinberg et al., 2016) 

and Larson et al(Larson et al., 2014) for S. cerevisiae and E. coli, respectively. The rate 

parameter for the exponential distribution is calculated following(Fluitt et al., 2007). 
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tRNA binding probabilities 

The binding probability of anticodon 𝑗 to codon 𝑖 depends on the binding affinity Δ𝐴&,(. 

Binding is parameterized based on the individual nucleotide binding affinities 𝑎;$! ,);$"
 where 

𝑎;$! ,);$"
 is the binding affinity between the nucleotide 𝑐 of codon 𝑖 at position 𝑘 and the 

anticodon 𝑗 nucleotide 𝑎𝑐 at position 𝑘. Binding affinities are further scaled by site specific 

importance terms 𝑠<.  

 

tRNA incorporation probability 

To calculate the incorporation probability of a tRNA we have to distinguish two cases. First, 

the tRNA 𝑎 in question arrived before any competitor. Second, a competitor arrived before. 

In the first case, it is simply that the probability to bins first is equal to the probability to bind, 

𝑝=|:&?13) = 𝑝,), as nothing else is to consider. In the second case, however, we have to consider 

each tRNA that may have arrived at the ribosome ahead of the focal tRNA. Considering that 

every tRNA arriving before has to be rejected λ</λ) times to allow for the focal tRNA to 

bind, we find that  

𝑝=|@ABCD
) = 𝑝,) ×WL1 − 𝑝,<M

*$
*%

<

 

 

Model fitting 

We fitted the multinomial Translation Error Landscape (mTEL) model using Markov Chain 

Monte Carlo with Gibbs sampling and uniform priors on all parameters. The Markov chain 
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was estimated for 10,000 steps after an initial burn-in period of 10,000 steps. Only every 10th 

step was retained and the last 500 thinned samples were used as posterior distribution. 

 

Calculating Fitness effects 

EVcouplings (version 0.0.5) was used to create fitness estimates of amino acid substitutions. 

We collected all Uniprot IDs assigned to the S. cerevisiae and E. coli reference proteomes. 

The EVcouplings(Hopf et al., 2018) alignment step was performed for each protein with bit 

scores 0.1 – 0.5. The alignment with the best performing bit score was selected for the Fitness 

estimation. Fitness effects of all amino acid substitutions were estimated as Δ𝐸(σ) using 

EVmutation(Hopf et al., 2017) based on co-evolution and conservation of residues. Site-

specific fitness effects Δ𝑥1,8 of translation errors were then defined as the weighted average 

amino acid fitness at a given position. The evolutionary effect of each amino acid 

misincorporation was assessed following the fixation probability definition of Sella and 

Hirsh(Sella and Hirsh, 2005). The effective population size was assumed to be 𝑁9 =

8,600,000 in S. cerevisiae(Tsai et al., 2008) and 𝑁9 = 10E in E. coli(Lynch, 2010). A scaling 

Parameter 𝑞 = 4.19 × 10!0 represents the value of an ATP(Gilchrist, 2007). Protein specific 

fitness effects Δ𝑥8were calculated as the sum of the site-specific fitness effects Δ𝑥1,8 

weighted by the relative contribution of a protein to the proteome based on its 

abundance.Relative protein abundance ϕ8 of a protein was derived from the integrated data 

from PAXdb(Wang et al., 2015) for S. cerevisiae and E. coli, respectively. Protein specific 

evolutionary effects were assessed in the same way as site-specific effects. 

Statistical analysis and data visualization was performed by R. For all box plot 

representations thick black line indicates median, box indicates 25th and 75th percentiles, 

whiskers indicate 1.5 times the inter-quartile range. 
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Supplementary information titles and captions 

Figure S1: Amino acid misincorporations are abundant in many existing mass-

spectrometry datasets. a) Number of identified substitutions in the 180 S. cerevisiae 

datasets with identified amino acid misincorporations. b) Detected substitutions increase with 

identified peptides. Datasets where selected (blue dots) if they contained at least 10 

substitutions were detected and where not considered outliers by our regression. c) Number 

of identified substitutions in the 94 E. coli datasets with identified amino acid 

misincorporations. d) Detected substitutions increase with identified peptides. Datasets where 

selected (blue dots) if they contained at least 10 substitutions were detected and where not 

considered outliers by our regression. e) Heatmap of all codon specific amino acid 

substitution identified across 94 datasets. Leucine and Isoleucine cannot be distinguished due 

to their identical mass. Each cell shows the number of misincorporations of amino acid 𝒊 

observed for a codon 𝒋. In contrast to S. cerevisiae, we find the Tryptophan codon TGG mis-

incorporated as a variety of amino acids. f) Codon specific error detection rate in E. coli. We 

observe similar variability of error rates between synonymous codons and datasets to S. 

cerevisiae. For most amino acids, E. coli and S. cerevisiae share the codon with the highest 

fidelity. Notable exceptions are Leucine and Valine (thick black line indicates median, box 

indicates 25th and 75th percentiles, whiskers indicate 1.5 times the inter-quartile range).  

 

Figure S2: Parameter bootstrap and model parameter posterior distributions between 

S. cerevisiae and E. coli.  a) Distribution of position posterior means. b) Distribution of 

wobble parameter posterior means. a, b) Dashed line indicates model fit. c) Distribution of 

the position posteriors.  d) Distribution of wobble parameter posteriors. c, d) All distributions 

show a significant difference in their mean values between S. cerevisiae and E. coli (Kruskal-

Wallis test, 𝜌 < 	0.0001, 𝑛 = 500). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.11.511697doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511697
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

 

Figure S3: Exploring effects of codon/anticodon usage on translation efficiency fidelity. 
a) S. cerevisiae shows a mostly uniform distribution of amino acid misincorporations across 
all proteins in the proteome. b) E. coli also shows a mostly uniform distribution. In contrast 
to S. cerevisiae, however, a noticeable drop-off in detected misincorporations can be 
observed in the last bin; potentially explained by the lack of tryptic peptides at the end of a 
protein. a, b) Each bin represents one percent protein length. c) Codon adaptation index 
(CAI) is only weakly correlated with error free translation probability. While genes with high 
CAI are more likely to be translated error free, the opposite does not hold as many proteins 
with low CAI show high fidelity. d) Comparing the codon adaptation index (CAI) wild-type 
and fidelity optimized codon sequences reveals a drop in sequence adaptation for sequences 
with a high CAI.  Wild-type sequences with a low CAI and a codon usage likely dominated 
by mutation tend to improve their codon adaptation. e) Relative synonymous codon usage 
describing the preferred codon usage of the most highly expressed genes (top 5 %) is 
negatively correlated with the relative codon detection rate indicating that frequent codons 
are translated more accurately. f) ROC-SEMPPR’s 𝛥𝜂 values, describing a codons translation 
inefficiency (increasing 𝛥𝜂 indicates inefficient codons) are positively correlated with a 
codons error detection rate. Indicating that inefficiently translated codons tend to have a 
higher error rate. g) Impact of the tRNA pool on translational errors. Difference in 
codon/anticodon affinity for interactions with up to one codon/anticodon mismatch, for all 
two-codon amino acids with only one tRNA present in E. coli. The ability of the ribosome to 
discriminate between correct and incorrect binding events is diminished if we assume that the 
missing tRNA (black) would be present rather than the tRNA naturally present (green). 
 

Table S1: Model parameter posterior means with empirical p-value based on 10.000 
bootstrap samples for S. cerevisiae. Empirical p-value was calculates as (r + 1)/(n + 1) 
were r is the number of sample greater than the posterior mean, and n is the total number of 
samples(Davison and Hinkley, 1997). 

 

Table S2: Comparison of error detection rate distributions for S. cerevisiae. Error rate 
distributions were compared using a two-sided Wilcox test. The upper triangle of the table 
indicates the significance level as p-values, while the lower table indicates the sample size for 
each distribution in the format <row>/<column>. See supplementary_table_2_3.xlsx 

Table S3: Comparison of error detection rate distributions E. coli. Error rate distributions 
were compared using a two-sided Wilcox test. The upper triangle of the table indicates the 
significance level as p-values, while the lower table indicates the sample size for each 
distribution in the format <row>/<column>. See supplementary_table_2_3.xlsx 

 

Data S1. (yeast_fitting.zip) 
• fitted_energies.csv: Codon/Anticodon binding affinities for all possible interactions 

for S. cerevisiae. 
• fitted_substitution_probabilities.csv: Fitted amino acid incorporation probabilities 

for each codon for S. cerevisiae. 
• likelihood_trace.csv: Likelihood trace. 
• position_trace.csv: Position parameter trace. 
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• wobble_trace.csv: Codon/Anticodon affinity trace. 
• position.csv: Position parameter posterior distribution 
• wobble.csv: Codon/Anticodon affinity parameter posterior distribution. 

Data S2. (yeast_data_summary.zip) 
• yeast_substitutions.zip: Detected amino acid misincorporations, number of codons 

observed in error free and error prone peptides, and number of detected peptides per 
protein in S. cerevisiae datasets from PRIDE. 

• yeast_tRNA_count.csv: tRNA abundance used for mTEL model fitting. 
• yeast_ppm_paxdb_integrated: Protein abundance data used in Figure 4f. 

Data S3. (ecoli_fitting.zip) 
• fitted_energies.csv: Codon/Anticodon binding affinities for all possible interactions 

for E. coli. 
• fitted_substitution_probabilities.csv: Fitted amino acid incorporation probabilities 

for each codon for E. coli. 
• likelihood_trace.csv: Likelihood trace. 
• position_trace.csv: Position parameter trace. 
• wobble_trace.csv: Codon/Anticodon affinity trace. 
• position.csv: Position parameter posterior distribution 
• wobble.csv: Codon/Anticodon affinity parameter posterior distribution. 

Data S4. (ecoli_data_summary.zip) 
• ecoli_pride.zip: Detected amino acid misincorporations, number of codons observed 

in error free and error prone peptides, and number of detected peptides per protein in 
E. coli datasets from PRIDE. 

• ecoli_tRNA_count.csv: tRNA abundance used for mTEL model fitting. 
• ecoli_ppm_paxdb_integrated: Protein abundance data used in Figure 4g. 
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