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Supplementary Note 

 

Ethics approval 

The University of Queensland Human Research Ethics Committee B (2011001173) approved 

the study.  

 

Summary-data-based low-rank model 

We derived a summary-data-based low-rank model from a general form of individual-level 

linear regression. Consider model 

𝐲 = 𝐗𝜷 + 𝐞                                                               (1) 

where y is the vector of trait phenotypes adjusted for covariates, such as sex, age and 

principal components (PCs), X is the genotype matrix of m SNPs standardised to have 

column mean zero and variance one, 𝜷 is the vector of true SNP effects, and 𝐞 are the 

residuals with 𝑉𝑎𝑟(𝐞) = 𝐈𝜎!". Let N be the sample size. Multiplying both sides of the 

equation by #
$
𝐗′ gives 

1
𝑁 𝐗

%𝐲 =
1
𝑁𝐗′𝐗𝜷 +

1
𝑁𝐗′𝐞 

The left-hand side is the GWAS marginal effect estimates b. Let 𝐑 = #
$
𝐗′𝐗 be the LD 

correlation matrix. Then, we have 

𝐛 = 𝐑𝜷 +
1
𝑁𝐗

%𝐞 

This is the summary-data-based model underlying many methods. Of note, in this model, the 

residuals have a variance-covariance structure proportional to the LD matrix, i.e., 

𝑉𝑎𝑟 3#
$
𝐗′𝐞4 = #

$
𝐑𝜎!". It is often neither feasible nor necessary to compute the whole-

genome LD matrix in humans. Alternatively, we compute R for each of the LD blocks that 

are found to be approximately independent in the human population. In this case, the 

genome-wide LD matrix is a block-diagonal matrix with blocks defined by LD blocks. The 

eigen-decomposition of Ri for block i, which can be performed independently and in parallel 

between block, is (the subscript is ignored for simplicity in notation) 

𝐑 = 𝐔𝚲𝐔′ 

where U is the matrix of eigenvectors and 𝚲 is the diagonal matrix of eigenvalues. 

Substitution of R in the equation above gives 

𝐛 = 𝐔𝚲𝐔′𝜷 +
1
𝑁𝐗′𝐞 
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Multiplying both sides by 𝚲&
𝟏
𝟐𝐔% gives 

𝚲&
𝟏
𝟐𝐔%𝐛 = 𝚲

𝟏
𝟐𝐔%𝜷 +

1
𝑁𝚲

&𝟏𝟐𝐔%𝐗′𝐞 

or simply, 

𝐰 = 𝐐𝜷 + 𝝐                                                              (2) 

where 𝐰 = 𝚲&
𝟏
𝟐𝐔%𝐛 is a linear combination of marginal SNP effect estimates, 𝐐 = 𝚲

𝟏
𝟐𝐔% is 

the new coefficient matrix, and the new residuals 𝝐 = #
$
𝚲&

𝟏
𝟐𝐔%𝐗′𝐞 are independently and 

identically distributed, i.e., 

𝑉𝑎𝑟(𝝐) =
1
𝑁𝚲

&𝟏𝟐𝐔%𝐗%𝐗𝐔𝚲&
𝟏
𝟐
1
𝑁	

=
1
𝑁 𝐈𝜎'

" 

Due to LD between SNPs and limited sample size, the LD matrix estimated from a reference 

sample is often rank deficient. In this case, a number of eigenvalues are zero. Additionally, 

small eigenvalues are subject to sampling variation in LD between GWAS and LD reference 

samples. To this end, we partition 𝚲 into  

𝚲 = ;
𝚲( 𝟎
𝟎 𝚲)

= 

where 𝚲( contains q eigenvalues in descending order that cumulatively explain at least a 

given proportion (𝜌) of variance in LD, i.e., 𝜌 =
∑ +#
$
#%&

∑ +#'
#%&

 where Λ, is the ith nonzero 

eigenvalue, and 𝚲) contains remaining eigenvalues including zeros. Then the model can be 

written as 

@
𝐰(
𝐰)
A = ;

𝐐(
𝐐)
= 𝜷 + @

𝝐(
𝝐)A 

To remove the noise in LD, we discard the equations for 𝐰), resulting in a low-rank model: 

𝐰( = 𝐐(𝜷 + 𝝐( 

where 𝐐( has a dimension of 𝑞 × 𝑚 with 𝑞 ≪ 𝑚. In essence, the true SNP effects are fitted 

to a smaller number of effective data points rather than the observed data points that are 

highly correlated to each other. This model is general and can be applied with different 

assumptions on the distribution of SNP effects 𝜷. 

 

Alternative parameterization for 𝝅- 
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To remove the dependence between elements of 𝝅- for each SNP, we employed an 

alternative parameterization for modelling membership probabilities and annotation effects. 

Let 𝛿- be the indicator for the mixture component membership for SNP j: 

𝛿- = 𝑘		with	probability	𝜋-.; 𝑘 = 1	to	5 

We define a conditional probability that the SNP effect belongs to the kth distribution given 

that it has passed the bar for the (k-1)th distribution as 

𝑝-. = PrY𝛿- ≥ 𝑘	|	𝛿- ≥ 𝑘 − 1] 	for	𝑘 ≥ 2 

such that 

𝜋-# = 1 − 𝑝-" 

𝜋-" = Y1 − 𝑝-/]𝑝-" 

𝜋-/ = Y1 − 𝑝-0]𝑝-/𝑝-" 

𝜋-0 = Y1 − 𝑝-1]𝑝-0𝑝-/𝑝-" 

𝜋-1 = 𝑝-1𝑝-0𝑝-/𝑝-" 

We then apply the generalised linear model to link 𝑝-. with 𝜶., i.e., 

𝑔Y𝑝-.] = 𝜇. +c𝐴-2𝛼.2

3

24#

 

In this parameterisation, all 𝑝-. are independent, which means that 𝜶. can be sampled in 

parallel in each MCMC iteration, and 𝛼.2 can be sampled from its full conditional 

distribution using Gibbs sampling algorithm, following the algorithm of Albert and Chib1. 

 

Let 𝑧-. be the indicator variable for whether the SNP effect can “climb” up to a higher 

distribution, i.e., 

𝑧-. 	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝-.) 

To allow Gibbs sampling, a probit link function is chosen, namely 𝑔&#Y𝑝-.] = ΦY𝑝-.] 

where Φ(∙) is the cumulative density function (CDF) of the standard normal distribution. It 

has been shown that with an auxiliary variable 𝑙-. defined as 

𝑧-. = q
0, 𝑙-. > 0
1, 𝑙-. ≤ 0 

a linear model can be constructed  

𝑙-. = 𝜇. +c𝐴-2𝛼.2

3

24#

+ 𝜀-. 
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with 𝜀-. 	~	𝑁(0,1). In this model, given a normal prior distribution, 𝛼.2 	~	𝑁(0, 𝜎5(
" ), the full 

conditional distribution for 𝛼.2 is a univariate normal distribution, since 𝛼.2 is conditionally 

independent of 𝒛. given 𝒍.. Given 𝑧-. and 𝜶., the full conditional distribution for the latent 

variable 𝑙-. is a truncated normal distribution. The Gibbs sampling procedure is described in 

the following section. 

 

Scaling the SNP marginal effect estimates 

The derivation for the summary-data-based model is based on the marginal effects in units of 

per standardized genotype (b). When the marginal effects were estimated from GWAS using 

genotypes at 0/1/2 scale (b*), b can be estimated, in a scalar form, by 

𝑏- = 𝑠-𝑏-∗		where	𝑠- = |
𝜎7"

𝑁-𝜎-" + Y𝑏-∗]
" 

where 𝜎7" is the phenotypic variance, 𝑁- is the per-SNP sample size, and 𝜎- is the standard 

error for SNP j. If the trait phenotypes are not standardized, the phenotypic variance can be 

estimated by taking the median value of 2𝑓-Y1 − 𝑓-] @𝑁-𝜎-" + Y𝑏-∗]
"A across SNPs, where 𝑓- is 

the allele frequency in the GWAS sample (ref2,3). The per-SNP sample size 𝑁- can be 

replaced by the overall sample size N. Here, we assume 𝜎7" = 1, then  

𝑠- = |
1

𝑁-𝜎-" + Y𝑏-∗]
" 

and will scale the joint effect estimate 𝛽- back to the phenotypic scale using the same 𝑠- so 

that this parsimonious assumption would not have an impact on the result (ref.4,5). 

 

Violation of model assumptions 

There are at least two important assumptions implied in the general form of summary-data-

based models5. One assumption is that the LD correlation matrix calculated from the 

reference sample is consistent with that from the GWAS sample, which is violated when the 

LD reference has a too small sample size (i.e., large sampling variation in LD) or is 

genetically different from the GWAS sample. Another assumption is that the summary 

statistics are derived from the same set of individuals for all SNPs, which may not hold when 

the summary statistics are obtained from a meta-analyses where different SNP genotyping 

panels, imputation references or quality control (QC) procedures are used in different 

cohorts. Failure to satisfy these assumptions can result in severe model misspecifications. In 



 5 

SBayesRC (or SBayesRC without annotations), we aim to account for the heterogeneity in 

both LD and per-SNP sample size by removing those principal components with the smallest 

eigenvalues in the LD matrix and estimating the residual variance from the data (Methods). 

We performed genome-wide simulations based on the imputed SNP data in the UKB to 

assess the robustness of  our method to model misspecifications, in comparison of state-of-

the-art methods including LDpred24 and SBayesR.  

 

Estimation of residual variance helps to improve model robustness 

In the summary-data-based model, Eq (1), 𝑉𝑎𝑟(𝜺) = #
$
𝐑𝜎'". It is often assumed that 𝜎'" ≈ 𝜎7" 

given a negligible proportion of variance explained by a single SNP, and further 𝜎'" ≈ 1 

assuming a unit phenotypic variance for the trait. It is possible, however, that 𝜎'" > 1 if there 

exist large LD differences between GWAS and LD reference samples. This is because using 

summary statistics from GWAS and inaccurate LD data from a reference is analogous to 

using estimated genotype data with noise in the fitted model for GWAS: 

𝐲 = 𝟏𝜇 + 𝐗�𝑏� + 𝐞	

= 𝟏𝜇 + (𝐗 + 𝚫)𝑏� + 𝐞	

= 𝟏𝜇 + 𝐗𝑏� + Y𝚫𝑏� + 𝐞]	

= 𝟏𝜇 + 𝐗𝑏� + 𝐞∗ 

where 𝐗� is the combination of genotypes used in GWAS (X) and the differences to those 

observed from the reference (𝚫), and 𝑏� is the ordinary least squares estimate for the SNP 

effect. It can be seen that the new residual in the above model can have variance larger than 

the phenotypic variance when the noise in the genotype data is large, i.e., 𝑉𝑎𝑟YΔ𝑏� + e] >

Var(𝑦). Thus, it would be beneficial to estimate the residual variance from the data given the 

GWAS summary statistics and reference LD data. 

 

In contrast to Eq (1), it is very straightforward to estimate the residual variance in the low-

rank model, Eq (2), because the residuals are independently distributed, 𝑉𝑎𝑟(𝝐) = #
$
𝐈𝜎'". The 

MCMC sampling process for the residual variance is shown as below. The large residual 

variance estimate will introduce a shrinkage mechanism to manage the potential convergence 

issue due to violation of model assumptions. It has been found that SNP effect sizes would 

blow up during MCMC when the model fails to converge. In this case, the sampled values of 
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residual variances would be large if the SNP effect sizes tend to blow up, which will in turn 

shrink them back toward zero, preventing the failure in convergence. 

 

Estimation of SNP-based heritability and per-SNP heritability enrichment for each 

annotation 

The total genetic variance is  

𝜎8" = 𝜷%𝐑𝜷	

= 𝜷%𝐔𝚲𝐔%𝜷	

= 𝜷%𝐔𝚲
𝟏
𝟐𝚲

𝟏
𝟐𝐔%𝜷	

= 𝜷%𝐐𝐐𝜷	

= 𝐰�′𝐰�  

We calculate this quantity in each of MCMC iterations given the sampled values of SNP 

effects 𝜷. Assuming unit phenotypic variance, the SNP-based heritability ℎ9:;" = 𝜎8", 

estimated by the posterior mean of MCMC samples discarding the samples from the burn-in 

period. 

 

For a binary annotation c, the total variance explained by the SNPs within the annotation is 

calculated as 

𝜎2" =c 𝛽-2"
<)

-4#
 

where 𝑚2 is the number of SNPs within the annotation. The per-SNP heritability enrichment 

(𝜃2) is then calculated as  

𝜃2 =
𝜎2"

𝑚2

𝜎8"

𝑚�  

For a quantitative annotation, the per-SNP heritability enrichment is calculated as the slope of 

the regression of 𝛽-2"  on the annotation value 𝐴-2 

E[𝜷𝒄𝟐] = 𝟏𝜇2 + 𝐀𝐜𝜔2 

and 𝜃2 = 1 + 𝜔2. Similarly, we compute 𝜃2 in every iteration of MCMC and estimate by the 

posterior mean after burn-in. 

 

MCMC sampling scheme 

We use MCMC sampling to draw posterior inference on the model parameters. The joint 

distribution of data and all parameters in the low-rank model is 
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𝑓(𝐰, 𝜷, 𝝅, 𝐳, 𝜶, 𝝈𝜶𝟐 , 𝜎'") ∝ (𝜎'")
&(" exp�−

(𝐰 − 𝐐𝜷)′(𝐰 − 𝐐𝜷)

2𝜎'
"

𝑛

�	

×� �c 𝜋-.
1

.4#
�exp �−

𝛽-"

2𝛾.𝜎8"
���

<

-4#
	

×� � ΦY𝜇. + 𝐀-%𝜶.]
A*(�1 − ΦY𝜇. + 𝐀-%𝜶.]�

B#&A*(C
<

-4#

1

.4"
	

×� � Y𝜎5)
" ]&

#
"exp �−

𝛼.2"

2𝜎5)"
�

3

24#

1

.4"
	

×� Y𝜎5)
" ]&

"DE+
" exp �−

𝜐5𝜏5"

2𝜎5)"
�

1

.4"
	

× (𝜎'")
&"DE," exp �−

𝜐'𝜏'"

2𝜎'"
� 

Suppose 𝛿- is the indicator variable to the distribution membership of 𝛽-. The full conditional 

distribution for 𝛽- is  

𝑓Y𝛽-¡𝐰, 𝜷&- , 𝛿- , 𝜎8", 𝜎'"]

∝ (𝜎'")
&(" exp�−

Y𝐰 − ∑ 𝐐--𝛽----F- ]′Y𝐰 − ∑ 𝐐--𝛽----F- ]

2 𝜎'
"

𝑛

�exp �−
𝛽-"

2𝛾.𝜎8"
�

= 𝑁 £
𝑟-
𝐶-
,
𝜎'"

𝐶-
¥ 

where 

𝑟- = 𝐐-% £𝐰 −c 𝐐--𝛽--
--F-

¥	

= 𝐐-%𝐞 + 𝛽- 	

𝐶- = 1 +
𝜎'"

𝛾.𝜎8"
 

 

The full conditional distribution for 𝛿- is 

PrY𝛿- = 𝑘|𝐰, 𝜷, 𝜎8", 𝜎'"] =
𝑓Y𝐰¡𝛿- = 𝑘, 𝜷, 𝜎8", 𝜎'"]𝑓Y𝛿- = 𝑘]

∑ 𝑓Y𝐰¡𝛿- = 𝑘′, 𝜷, 𝜎8", 𝜎'"]𝑓Y𝛿- = 𝑘′]1
.-4#

 

where 𝑓Y𝐰¡𝛿- = 𝑘, 𝜷, 𝜎8", 𝜎'"] is shown as above and 𝑓Y𝛿- = 𝑘] = 𝜋.. 
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As described above, 𝝅- is a function of 𝒑-, and 𝒑- is a linear model of 𝜶. through the probit 

link, i.e., 

𝑝-. = Φ&#Y𝜇. + 𝐀-%𝜶.] 

Here, we introduce another indicator variable 𝑧-., where 

𝑧-. = 1	if	𝛿- = 𝑘	for	𝑘 ≥ 2 

and a latent variable 𝑙-., for which the full conditional distribution is	

𝑙-.¡𝑧-. , 𝜇. , 𝜶. = �
𝑇𝑁Y𝜇. + 𝐀-%𝜶. , 1, 0,∞], if	𝑧-. = 1
𝑇𝑁Y𝜇. + 𝐀-%𝜶. , 1, −∞, 0], if	𝑧-. = 0

 

Similar to the sampling of SNP effects, we use single-site Gibbs sampler to sample the 

annotation effects. The full conditional distribution for 𝛼.2 is  

𝑓Y𝛼.2¡𝒍. , 𝜶&.2 , 𝜎5(
" ]

∝ exp q−
1
2 ©𝒍. −c 𝐀2-𝛼.2-

2-F2
ª ′ ©𝒍. −c 𝐀2-𝛼.2-

2-F2
ª« exp �−

𝛼.2"

2𝜎5("
�

= 𝑁 ©
𝑟.2
𝐶.2

,
1
𝐶.2

ª 

where 

𝑟.2 = 𝐀2% £𝒍. −c 𝐀2-𝛼.2-
--F-

¥	

𝐶.2 = 𝐀2% 𝐀2 +
1
𝜎5("

 

 

The full conditional distribution for 𝜎5(
"  is  

𝑓Y𝜎5(
" |𝜶.] ∝ 𝑓Y𝜶.¡𝜎5(

" ]𝑓Y𝜎5(
" ]	

∝ Y𝜎5(
" ]&

3DE+D"
" exp �−

𝜶.% 𝜶. + 𝜐5𝜏5"

2𝜎5("
�	

= 𝜒&"(𝜐5 , �̃�5") 

where 𝜐5 = 𝐶 + 𝜐5 and �̃�5" = (𝜶.% 𝜶. + 𝜐5𝜏5")/𝜐5. 

 

The full conditional distribution for 𝜎'" is 

𝑓(𝜎'"|𝐰, 𝜷) ∝ 𝑓(𝐰|𝜷, 𝜎'")𝑓(𝜎'")	

∝ (𝜎'")
&(" exp�−

Y𝐰 − ∑ 𝐐-𝛽-- ]′Y𝐰 − ∑ 𝐐-𝛽-- ]

2 𝜎'
"

𝑛

� (𝜎'")
&E,D"" exp �−

𝜐'𝜏'"

2𝜎'"
�	
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∝ (𝜎'")
&(DE,D"" exp �−

𝝐′𝝐 + 𝜐'𝜏'"

2𝜎'"
�	

= 𝜒&"(𝜐' , �̃�'") 

where 𝜐' = 𝑞 + 𝜐' and �̃�'" = (𝝐′𝝐 + 𝜐'𝜏'")/𝜐'. 

 

 
Algorithm pseudo code 

SBayesRC algorithm 

1 Input: GWAS summary statistics, reference LD correlation matrix, functional annotation data 

2 Scale the GWAS marginal effect estimate 𝑏! = 𝑠!𝑏!∗ 

3 Construct the low-rank model by performing eigen-decomposition on LD blocks 

4 Initialize model parameters 

5 for i :=1 to number of iterations do 

6  for j := 1 to number of SNPs do 

7   Calculate 𝑟! = 𝐐!#𝐰$%&& + 𝛽! 

8   Calculate 𝐶! = 1 + '!"

(#'$"
 for each 𝛾) 

9   Calculate the posterior probabilities of SNP effect distribution memberships and sample 𝛿! 

10   Sample SNP effect 𝛽! from its full conditional distribution 𝑁.&%
*%
, '𝜖

"

*%
0 

11   Given the sampled value of 𝛽!+,- , adjust 𝐰$%&&
+,- = 𝐰$%&&

%./ +𝐐!1𝛽!%./ − 𝛽!+,-3 

12   Calculate indicator variables 𝐳! given 𝛿! 

13  end 

14  for k := 2 to number of mixture distribution components do 

15   for j := 1 to number of SNPs that passed the bar for current component do 

16    Sample latent variable 𝑙!) from a truncated normal distribution given 𝑧!) 

17   end 

18   for c := 1 to number of annotations do 

19    Sample annotation effect 𝛼)$ from its full conditional distribution given 𝒍) 

20   end 

21   Sample annotation effect variance 𝜎0#
1  from its full conditional distribution given 𝜶) 

22  end 

23  Calculate 𝐰; = 𝐐𝜷 and total genetic variance 𝜎21 = 𝐰;′𝐰;  

24  Estimate the per-SNP heritability enrichment for each annotation 

25  Sample residual variance 𝜎𝜖1 from its full conditional distribution for each block 

26 end 

27 Scale back the posterior mean SNP joint effects to per-allele scale by 𝛽>!∗ = 𝑠!𝛽>! 
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Summary data imputation 

We implement the imputation method for summary data from impG to avoid the heavy re-

calculation of the eigen decomposition for the LD matrix if some SNPs are missing from the 

LD panel. The imputation is based on the Z score, correlation information among missing 

SNPs and the typed SNPs. The Z score for the missing SNPs can be obtained from 

𝐳, = 𝐑,H𝐑HH&#𝐙𝐭 

Where zi is the imputed Z score for missing SNPs in the GWAS summary data, 𝐑,H is the LD 

correlation matrix among the missing SNPs and typed SNPs,  𝐑HH is the LD correlation 

matrix among the typed SNPs.  

We converted the 𝐳, 	for missing SNPs to marginal effects at 0/1/2 scale (b*) and standard 

error (𝜎,) by  

𝜎, =
𝜎7

±2𝑓,(1 − 𝑓,)(𝑁, + 𝑧,")
 

𝑏∗ = 𝑧,𝜎, 

Where 𝑁, is the per-SNP sample size (replaced by median per-SNP sample size of known 

SNPs instead), 𝑓, is the allele frequency from reference genotype, 𝜎7	is the phenotypic 

standard derivation (square root of phenotypic variance). The phenotypic variance can be 

estimated by taking the median value of 2𝑓,(1 − 𝑓,)[𝑁,𝜎," + (𝑏,∗)"] across SNPs, here 𝑓, is 

the allele frequency in the GWAS sample (ref2,3). 
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Supplementary Figures 

 

 
Supplementary Figure 1 Schematic overview of SBayesRC. a) A resource-efficient low-

rank model that can simultaneously fit sequence-level SNPs with high computation efficiency 

and has independent residuals. b) A hierarchical multi-component mixture prior for SNP 

effects that incorporates functional annotation data and allows for any distribution of SNP 

effects in each annotation. 
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Supplementary Figure 2 The low-rank model leads to a substantial reduction in dimension. 

a) The distribution of the number of SNPs per block (mk). b) The distribution of the number 

of principal components (qk) that collectively explain at least 𝜌 proportion of LD variance in 

each block (𝜌 = 99.5%). c) The distribution of qk/mk at 𝜌 = 99.5%.  
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Supplementary Figure 3 Prediction accuracy of SBayesRC using different minimum values 

of LD block width and different minimum proportions (𝜌) of variance in the LD matrix in the 

simulated data with heritability = 0.1 or 0.5. Minimum LD block width = 0 means using the 

original quasi-independent LD blocks found in the European population (ref6) without 

merging of small LD blocks. 
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Supplementary Figure 4 Robustness of SBayesRC to the choice of LD reference in 

simulation with HapMap3 SNP panel. LD reference data sets included ukb20k: 20,000 

random sample from the UKB of European ancestry (EUR); ukb10k: 10,000 random sample 

from UKB EUR; ukb4k: 4,000 random sample from UKB EUR; uk10k: 3,642 unrelated 

samples from the UK10K data set; ukb0.5k: 500 random sample from UKB EUR; 1kg0.5k: 

494 unrelated samples from 1000GP EUR; afr4k: 4,000 random samples from the UKB of 

African ancestry (AFR). 
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Supplementary Figure 5 Estimation of SNP-based heritability, polygenicity (the proportion 

of causal variants) and residual variance in SBayesRC without annotation using1M HapMap3 

SNPs and different choices of LD reference for a simulated trait with heritability = 0.1 or 0.5. 

The dashed line in panel a and b indicates the true value in the simulation.  
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Supplementary Figure 6 Parameter estimation from SBayesRC and LDpred2 using 

summary statistics from a meta-analysis of two simulated cohorts where the proportion of 

overlapped SNPs between the two cohorts varied from 100 to 0. The proportion of 

overlapping is less than 100, there existed unequal per-SNP sample sizes in the GWAS 

summary data. SBayesRC gave approximately unbiased estimates for SNP-based heritability 

(true value = 0.5) and polygenicity (true value = 0.01), whereas these estimates in LDpred2 

were largely biased (panel a and b). The model misspecification affected the residual 

variance in SBayesRC, which is a nuisance parameter in the model (panel c). 
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Supplementary Figure 7 Prediction accuracy of phenotypes using PGS derived from 

different methods for simulated traits (heritability = 0.1 or 0.5). 
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Supplementary Figure 8 Slope of regression (bias) of phenotypes using PGS derived from 

different methods and SNP panels using the simulated data. 
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Supplementary Figure 9 SNP-based heritability estimation from different methods and SNP 

panels for simulated traits with heritability = 0.1 or 0.5.  
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Supplementary Figure 10 Genetic architecture parameter estimation using SBayesRC 

without annotation or SBayesRC (incorporating annotation data) with different SNP panels 

for a simulated trait (heritability = 0.1 or 0.5). The dashed line indicates the true value in the 

simulation. 
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Supplementary Figure 11 SBayesRC improved prediction accuracy due to incorporation of 

annotation data, evidenced by the same analysis using a random annotation as negative 

control for a simulated trait (heritability = 0.5 or 0.1). SBayesRC_rand is SBayesRC when 

random numbers sampled from a uniform distribution between 0 and 1 are used as annotation 

data (a negative control for SBayesRC). 
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Supplementary Figure 12 Mean regression slope from different methods in 28 independent 

traits across 10-fold cross validations in the UKB unrelated European sample. Note that 8 

traits in LDPred-funct had a very large regression slope (> 5), hence were removed from the 

LDpred-funct column for better visibility of other methods. The values are shown in 

Supplementary Table 3.  
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Supplementary Figure 13 Relative SNP-based heritability estimate from different methods 

(baseline: estimate from SBayesR) for 28 independent traits in UKB unrelated European 

sample.   
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Supplementary Figure 14 Genetic architecture estimates from SBayesRC using 7M 

common SNPs and annotation data for 28 independent traits in the UKB unrelated European 

sample. a) The proportion of genetic variance explained in the four non-zero mixture 

components. b) The proportion of causal variants allocated in the four non-zero mixture 

components. 
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Supplementary Figure 15 Prediction accuracy of SBayesRC without annotation or 

SBayesRC (incorporating annotation data) with 1M, 7M or 10M common SNPs for 7 UKB 

traits. Each box shows the results of 10-fold cross-validation in the unrelated European 

sample. Trait acronym BMI: body mass index; BW: birth weight; EA: educational 

attainment; hBMD: heel bone mineral density; HT: height; NeuC: neutrophile cell count; 

VitD: vitamin D level. 
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Supplementary Figure 16 Comparison of per-SNP heritability enrichment in functional 

categories estimated by SBayesRC and S-LDSC using 1M (panel a) or 7M (panel b) SNPs, 

averaged over 28 independent traits from UKB.  
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Supplementary Figure 17 Comparison of prediction accuracy using LDpred-funct from this 

analysis to that reported in the LDpred-funct paper for the same trait. a) Comparison of 

prediction accuracy from our running (mean N=282,019) and that from the LDpred-funct 

paper (mean N=390,208). Although the prediction accuracies were highly correlated 

(r=0.975), we found a somewhat lower prediction accuracy in most traits, likely because of 

the smaller sample size used in this study. b) We found that a larger tuning sample size of 

20K consistently gave better result than that of 6K in LDpred-funct. c) The default setting in 

LDpred-funct is to use the validation sample as tuning (x-axis), which gave slightly better 

prediction accuracy than using an independent validation sample but is subject to overfitting.    
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Supplementary Figure 18 Comparison of prediction accuracy (R2) using PRS-CSx from this 

analysis to that reported in the PRS-CSx paper for the same traits in EAS population training 

by summary data from UKB (EUR) and BBJ (EAS).  
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Supplementary Figure 19 Comparison of prediction accuracy (R2) using PolyPred-S from 

this analysis to that reported in the PolyPred paper for the same traits across ancestries. The 
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prediction accuracies were highly correlated (r = 0.976).  The differences may come from 1) 

Different ways to generate the summary statistics (linear regression/ logistic regression vs. 

linear mixed model); 2) Differences in training SNP panel (7 million vs. 18 million). We 

have also discussed with the authors to correct potential issues 

(https://github.com/omerwe/polyfun/issues/80).  
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