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 30 

SUMMARY 31 

The term “terroir” has been widely employed to link differential geographic phenotypes with 32 

sensorial signatures of agricultural food products, influenced by agricultural practices, soil 33 

type and climate. Nowadays, the Geographical Indications labeling encapsulated by the 34 

concept of terroir has been developed to safeguard the quality of plant-derived food and is 35 

generally considered as an indication of superior organoleptic properties and phytochemical 36 

profile. As the dynamics of agroecosystems are highly intricate, consisting of tangled 37 

networks of interactions between plants, microorganisms, and the surrounding environment, 38 

the recognition of the key molecular components of terroir fingerprinting remains a great 39 

challenge to protect both the origin and the safety of food commodities. Furthermore, the 40 

contribution of microbiome as a potential driver of the terroir signature has been 41 

underestimated until recently. Herein, we present a first comprehensive view of the multi-42 

omic landscape related to transcriptome, proteome, epigenome, and metagenome of the 43 

popular Protected Geographical Indication potatoes of Naxos. 44 

INTRODUCTION 45 

Nowadays, given the globalization as well as the numerous technological developments and 46 

innovations that govern the food market, consumer’s expectations have been tremendously 47 

increased in terms of information reliability. Therefore, the food industry and governments 48 

should be provided with valid analytical methods and regulatory frameworks to ensure food 49 

certification via the reliability of food labels taking into account consumer’s requirements. In 50 

the past decades, a plethora of deception incidents have been occurred, bewildering the food 51 

market (Braconi et al., 2021). Consequently, international operations have developed a 52 

profound interest in preventing food fraud and securing food authentication. One of the most 53 

common frauds involves selling low-quality food products at high prices. Accordingly, food 54 

labels could include fabricated geographical origin or genetic identity, as well as inaccuracies 55 

in the production process (Braconi et al., 2021). Although food fraud appears to be price-56 

related, in some cases ingredients dangerous to human health and allergens may be included 57 

in these food products, endangering consumer safety (Braconi et al., 2021).  58 

To prevent fraud of food products, scientists have developed several rapid, reliable, and 59 

efficient -omics technologies for certification and identification, including genomics, 60 
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epigenomics, transcriptomics, proteomics and metabolomics. The term ‘Foodomics’, 61 

concerning the study of Food and Nutrition in combination with -omics technologies, was 62 

initially launched in 2009 (Capozzi and Bordoni, 2012). Despite the short time that the 63 

‘Foodomics’ domain exists in the scientific community, a wealth of technologies has been 64 

developed aiming to study the quality, the origin, and the safety of human nutrition (Ahmed et 65 

al., 2022). The most popular and intriguing challenge in food research is the validity of food 66 

labels, especially on products designated as Protected Designation of Origin (PDO) or 67 

Protected Geographical Indication (PGI), according to the EU geographical indications 68 

system for food quality.  69 

Potato (Solanum tuberosum L.) was a fundamental species in human nutrition especially in 70 

the context of an ever-increasing population. Nowadays, potato remains one of the most 71 

popular and crucial nongrain food crops, occupying a prominent place in the agenda of global 72 

food security (Pearsall, 2008; Spooner et al., 2005). According to Plant Production and 73 

Protection Division, 2009, it is estimated that two billion people worldwide are closely 74 

associated with potato cultivation for nutritional or income reasons, rendering it as “Food for 75 

the Future” (Ortiz and Mares, 2017).  76 

Using potato as a plant model, in this proof-of-concept study we present the first multi-omics 77 

analysis across genome-wide DNA methylation, RNA sequencing and quantitative 78 

proteomics to obtain the molecular portrait of the famous PGI potatoes of the Naxos Island at 79 

harvest and after storage. We also employed a metagenomic approach to discriminate potato 80 

tubers produced in diverse regions based on the distinct microbiological patterns, which in 81 

turn were coupled with the -omics datasets. Through this approach, key environmental-82 

derived molecular factors through the dynamics of causal models were revealed.  83 

Results 84 

Bacterial community dynamics in periderm of tubers 85 

The tubers are harvested and traded with soil residues in the periderm, which makes them 86 

ideal for using the microbial community profiling as potential signatures in PGI certification. 87 

Thus, to detect distinct differences in the tuber bacterial profiles cultivated in the two different 88 

agroecosystems, bacterial 16S rRNA gene amplicon sequencing was performed in the tubers 89 

obtained at harvest and post-harvest (storage) (Figure 1, Table S1). The alpha-diversity 90 

highlighted greater species richness in the tubers from Naxos. Regarding species diversity, the 91 
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microbial differences were only evident at post-harvest period, with tubers from Naxos 92 

exerting higher microbiome diversity (Figure 1B). These results may be indicative of the 93 

more rich and diverse microbial community of the PGI potato, especially after storage. By 94 

contrast, tubers from Lakoma (herein served as control), seemed to be dominated by fewer 95 

microbial species. Overall, microbiome communities at harvest of the Naxos tubers were 96 

dominated by Lysobacter, Neobacillus and Priestia, whilst the most abundant microbiota in 97 

the Lakoma tubers were Rhizobium, Devosia, Sphighomonas and Rhodoligotrophos (Figure 98 

1C). Similar taxa were recorded as abundant for tubers at post-harvest, with several of them 99 

being widely recognized as plant growth-promoting rhizobacteria. Our data also demonstrated 100 

that, regardless the collection site, tubers at post-harvest maintained their microbial 101 

community profiles at the genus level to a great extent, providing a tool for PGI signature. 102 

The NMDS analysis with the Bray–Curtis dissimilarity (β-diversity) indicated that tubers 103 

from the two different agroecosystems were grouped separately from each other (Figure 1D), 104 

validating our hypothesis that the collection sites have distinct microbial community 105 

composition. In addition, tanglegrams between bacterial dendrograms showed that the 106 

bacterial structures between the two agroecosystems were dissimilar both at harvest and post-107 

harvest (Figure 1E). The LEfSe analysis detected 18 and 41 bacterial clades in the tubers at 108 

harvest and post-harvest, respectively, discriminating the terroir-specific microbial 109 

communities in the two geographic regions. The dominant bacteria genus at harvest were 110 

Neobacillus and Massilia in Naxos and Lakoma, respectively. At post-harvest, candidate 111 

biomarkers belong to the genus of Neobacillus and Priestia for tubers of Naxos, or of 112 

Rhizobium and Rhodoligotrophos for tubers of Lakoma. These potential biomarkers were 113 

associated with each terroir, revealing their geographic-origin dissimilarities. Interestingly, 114 

one genus identified as bacterial biomarker of Naxos, Neobacillus, was detected both at 115 

harvest and at post-harvest. Therefore, this genus not only seemed to be abundant in the PGI 116 

potatoes, but it also remained abundant after storage, dominating the microbial community of 117 

potato tubers, and thus representing an excellent putative ‘terroir’ biomarker for traceability. 118 

Individually constant methylated genes, expressed transcripts, and level of proteins in 119 

PGI potato tubers 120 

To gain a comparative insight into how different environments built PGI signature, large scale 121 

-omics technologies, i.e., epigenomics, transcriptomics, and proteomics, were applied. 122 
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Epigenetic marks of the potatoes from the two geographic regions 123 

Plant epigenetic profile can be highly dynamic and plastic in diverse environmental 124 

conditions (Dalakouras and Vlachostergios, 2021), therefore we compared the DNA 125 

methylome of the tested potatoes (PGI and control) at harvest and at post-harvest using whole 126 

genome bisulfite sequencing (WGBS). Chromosome level analysis of differentially 127 

methylated regions (DMRs) at harvest and post-harvest revealed hypomethylation and 128 

hypermethylation events in both gene regions and transposable elements (TEs) (Figure 2A). 129 

DMR methylation level cluster heatmap and violin plot highlighted even further these 130 

differences (Figures 2B and 2C). Focusing on DMR-associated genes (DMGs) exhibiting 131 

hypermethylation or hypomethylation, we could detect at least 13 and 29 DMGs at harvest 132 

and post-harvest, respectively (Figure 2D). When analyzing the distribution of DNA 133 

methylation among various gene features, most DNA methylation (especially at CG context) 134 

was recorded in the promoter and intron sequences rather than in exon and UTR sequences 135 

(Figure 2E). The distribution of DNA methylation in upstream 2K and downstream 2K 136 

regions, we observed that while gene bodies exhibited high mCG/CG but low mCHH/CHH 137 

ratio, the opposite took place in upstream 2K and downstream 2K sequences (Figure 2F). 138 

Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, 139 

DMGs were mainly assigned to metabolic pathways and biosynthesis of secondary 140 

metabolites (Figure 2G). A heatmap of DMGs displaying simultaneously all three sequence 141 

contexts (CG, CHG, CHH) allowed a broader overview of the epigenetic plasticity events at 142 

both examined periods between the two regions (Figure 2H). For instance, the 143 

hypermethylation of a putative DETOXIFICATION 18 (Soltu.Atl.10_4G001390) has been 144 

detected at harvest, whereas hypomethylation of three chloroplastic plastoglobulins-1 145 

(Soltu.Atl.08_1G001340, Soltu.Atl.08_3G001840, Soltu.Atl.08_3G001850) has been 146 

determined at post-harvest. 147 

Transcriptomic profiles of the potatoes from two distinct geographic regions 148 

RNA-seq experiment was also conducted for the same samples as used for methylation 149 

analysis (Table S3). TPM-normalized values for each transcript were hierarchical-clustered 150 

and used to generate a heatmap that clearly shows a distinct expression pattern acceding to 151 

region and especially to stage (Figure 3A). Venn diagram showed genes that were commonly 152 

and exclusively modulated by the different environments and stages in potato (Figure 3B). 153 

For example, 940 and 947 genes were differentially expressed in ‘Naxos’ potatoes compared 154 
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to the ‘Lakoma’ ones at harvest and at post-harvest, respectively (Figure 3B). Interestingly, 155 

we found 31 commonly expressed DEGs between Naxos and Lakoma, at harvest and at post-156 

harvest, including cysteine protease inhibitor (Soltu.Atl.03_3G022650) and Kunitz trypsin 157 

inhibitors (Soltu.Atl.03_4G014820).  158 

Protein signature of the PGI potato tubers 159 

To interpret the proteomic data in a PGI context, we focused only on proteins that constantly 160 

accumulated in the tubers of Naxos (PGI) at both stages. Proteomic data were clustered via 161 

Hierarchical Cluster Analysis demonstrating a distinct separation mainly between regions and 162 

secondly between stages (Figure 3C). Volcano plots revealed 156 and 78 differentially 163 

expressed proteins (DEPs) that were increased in Naxos vs Lakoma, at harvest and post-164 

harvest, respectively (Figures 3D, 3E). Similarly, 182 and 157 DEPs decreased in Naxos vs 165 

Lakoma, at harvest and post-harvest, respectively (Figures 3D, 3E). Four proteins were 166 

increased in Naxos compared to Lakoma in both stages, being annotated as ribosomal protein 167 

L1p/L10e family (Soltu.Atl.11_1G013990.1), DNAJ heat shock N-terminal d-c 168 

(Soltu.Atl.03_1G024300.1), acyl carrier protein (Soltu.Atl.06_2G011230.1) and sucrose 169 

synthase (Soltu.Atl.09_1G015370.3). Moreover, 35 proteins (i.e., serine protease inhibitors, 170 

peroxidases, basic chitinases and Kunitz trypsin inhibitors) were decreased in both stages of 171 

Naxos compared to Lakoma (Figure 3E). 172 

Transcriptome-based pairwise co-expression analysis across multi-omics datasets 173 

reveals molecular hallmarks in PGI potatoes  174 

There is a large interest in networked food science experiments for characterizing PGI 175 

signatures at molecular scale. Consequently, our work presents a pipeline system for pairwise 176 

integration and transcriptome-based co-expression analysis of epigenomic, transcriptomic, 177 

and proteomic data (Figure 4, Tables S6-S9). Our findings indicated that Pearson correlation 178 

coefficients showed negative values between the transcriptome and methylome datasets for 179 

both promoter (53.3%) and gene (50.58%), with 1% and 1.16% significant values (Figures 180 

4A, 4B) while between the transcriptome and proteome datasets, positive correlation values 181 

were mostly observed (52.67%), with a 4.94% out of them being significant (Figure 4C). 182 

Methylation datasets of Naxos and Lakoma were positively correlated only at harvest stage 183 

(Figures 4D, 4E), while their proteomes exhibited positive trends (Figure 4F). Regarding 184 

methylation and transcriptomic values, no IDs were detected in Naxos for both promoter and 185 
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genebody, whereas only one ID (promoter) and two IDs (genebody) were found at both 186 

examined stages in Lakoma (Figures 4G, 4H). One gene ID for Naxos 187 

(Soltu.Atl.06_3G007420; Fe superoxide dismutase) and seven for Lakoma (etc. 188 

Soltu.Atl.01_2G024990; GDSL-like lipase/acylhydrolase superfamily protein, 189 

Soltu.Atl.03_3G018760; peroxidase superfamily protein) showed transcriptomic and 190 

proteomic abundance in both stages (Figure 4I).  191 

We also highlighted the five most significant abundance shifts in our cross-omics datasets 192 

(Figures 4J, 4K, 4L). Most methylated IDs of both promoter and gene, were unique for Naxos 193 

and Lakoma, respectively (Figure 4J, 4K). Carboxypeptidase A inhibitor domain containing 194 

protein (Soltu.Atl.07_1G009140) and PATATIN-like protein (Soltu.Atl.08_0G002410) 195 

decreased their transcriptional activity in Naxos during harvest and post-harvest. Accordingly, 196 

a zinc finger (C2H2 type) family protein (Soltu.Atl.04_0G006320) gene increased its 197 

expression in both stages (Figure 4J). Naxos cultivar showed decreased genebody methylation 198 

of serine carboxypeptidase-like (Soltu.Atl.05_2G016570) in harvest, as 4-phosphopantetheine 199 

adenylyltransferase (Soltu.Atl.02_3G005740) was decreased in both promoter and genebody 200 

at post-harvest (Figures 4J, 4K). It is noticeable that the protein abundance and gene 201 

expression of the potato type II proteinase inhibitor family containing domain 202 

(Soltu.Atl.03_4G015120) was negatively affected in Naxos at both stages (Figure 4K). Kunitz 203 

family trypsin and protease inhibitor protein (Soltu.Atl.03_4G015020), as well as trypsin and 204 

protease inhibitor containing domain protein (Soltu.Atl.03_4G014750), were among the top 205 

differentiated IDs on a transcript level and decreased their expression in Naxos at both stages 206 

(Figure 4K). As for the top differentiated proteins, serine protease inhibitor 207 

(Soltu.Atl.09_4G017710) decreased in Naxos for both stages, whereas acyl transferase/acyl 208 

hydrolase/lysophospholipase superfamily protein (Soltu.Atl.08_0G002400) and trypsin and 209 

protease inhibitor containing domain protein (Soltu.Atl.03_4G014790) increased in Naxos at 210 

harvest (Figure 4K). 211 

Triple multi -omics approaches magnify the possibility of tuber biomarkers detection 212 

Aiming to provide a pipeline integrating data from multiple omics layers, we apply analytical 213 

tools, such as correlation downstream analysis and causal models, to identify and characterize 214 

the PGI-driver biomarkers. Initially, Pearson correlation was used to examine the linear 215 

relationship of the consensus gene IDs within methylome (CHH, promoter or genebody), 216 

transcriptome, and proteome (Figure 5A, Tables S10-S11). We then illustrated the changes in 217 
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tubers of Naxos via heatmap and cluster analysis (Figure 5B), presenting distinct differences 218 

among -omics datasets. Analyzing the outcome in detail, we have focused on clusters with a 219 

steadily increasing pattern across -omics data in both methylome CHH, promoter or gene 220 

body at harvest and post-harvest. For instance, UDP-Glycosyltransferase 221 

(Soltu.Atl.05_3G001570), Glycosyl hydrolase (Soltu.Atl.03_2G010490), and zinc finger 222 

(C2H2 type) (Soltu.Atl.04_0G006320) increased mainly their levels of proteome and 223 

transcriptome in Naxos tubers, with no effect on promoter’s methylome, while this pattern 224 

was not observed on gene body methylome CHH-DMR, but in CHG-DMR with 4-alpha-225 

glucanotransferase (Soltu.Atl.02_4G000640). In contrast, lipoxygenase 226 

(Soltu.Atl.08_3G003490) has been found to decrease the levels of methylome promoter, 227 

proteome, and transcriptome in Naxos tubers. Notably, glutathione S-transferase 228 

(Soltu.Atl.09_0G002590) has been increased CHH-DMR methylation in both promoter and 229 

gene body at harvest followed by a decrease in transcriptome and proteome at both stages 230 

(Figure 5B). Following gene ontology (GO) classification the datasets from CHH-DMR 231 

methylation in promoter or gene body, transcriptome, and proteome have been enriched to 232 

unravel the major groups of genes/proteins that are involved. This approach evidenced that 233 

protein- and ATP- binding were the most enriched molecular functions in the triple datasets 234 

(Figure 5C).  235 

In this study, we employed the dynamics of causal models between variables of consensus 236 

genes from the triple datasets to determine possible causal relationships among genes or 237 

proteins IDs. Four causal relationships were determined (three of them V-type). Among them, 238 

the isoflavone reductase-like protein (Soltu.Atl.04_4G019440) along with the DNA-damage-239 

repair/ toleration protein DRT100 (Soltu.Atl.11_2G007320), as well as the chaperone protein 240 

ClpB4 (Soltu.Atl.06_2G004400) with the L-ascorbate peroxidase (Soltu.Atl.09_2G005830), 241 

were the cause of the uncharacterized protein LOC102594761 (Soltu.Atl.05_4G020850) and 242 

the plasma membrane-associated cation-binding protein 1 (Soltu.Atl.10_2G000120), 243 

respectively (Figure 5D). 244 

Microbials coupled with -omics data as a novel approach to enhance biomarker      245 

discovery  246 

As a final step of the present work, the PGI-related molecular changes jointly detected by 247 

triple multi -omics analysis (Figures 5, 6) were integrated with metagenomics, enormously 248 

expanding the possibility to identify potential biomarkers in PGI foods. To achieve this, a 249 
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combination of multi-omics datasets (methylome, transcriptome, and proteome) with the 250 

metagenome dataset, weighted network analysis (WGCNA) was employed. Using this 251 

approach, 30 modules were generated from datasets (Table S12). Initially, we performed a 252 

Pearson correlation analysis (Figure 6A) included all pairwise comparisons of the 30 modules 253 

corresponding to the five datasets (methylome promoter/gene, transcriptome, proteome, and 254 

the microbials; Table S13). This analysis resulted in 232 (53.3% of all comparisons) pairwise 255 

comparisons being higher than 0.5 in absolute value (115 positive and 117 negative 256 

correlations). Thereafter, a correlation network illustration was constructed (Figure 6B). The 257 

edges between nodes (correlations higher than |0.5|), the thickness (absolute value), and the 258 

size of the node (degree of centrality) were incorporated in this network. In the next step, the 259 

positive correlation of two separate groups that included the microbial modules M1 and M2 260 

was determined and marked the solid lines by red and purple color, respectively (Figure 6B). 261 

Then, module eigengenes were used to determine patterns across modules, especially 262 

associated with Naxos. Within each group (M1, M9, M15, M22, M24, M28), (M2, M11, 263 

M12, M17, M25, M27), an increase of eigengenes in Naxos based on z-score at harvest and 264 

post-harvest, respectively, was evident (Figure 6C, Table S14).  265 

To detect pairwise targeted correlations microbial of interest, we focused on the most 266 

abundant microbials (genus levels) of the PGI potatoes (from Naxos) compared to the control 267 

ones (from Lakoma). These included Neobacillus from M1 and Planococcus from M2. For 268 

both microbial taxa, it should be highlighted that they were found to be dominant and highly 269 

abundant solely in Naxos, regardless the individual field, whilst they were present at very low 270 

abundance in Lakoma. A Pearson correlation analysis was employed based on these two 271 

genera inside each positively correlated group of modules, respectively. Hence, Neobacillus 272 

has been positively correlated with 14 transcripts (M9) and seven DNA methylation CHH-273 

DMR-base genes correspond to four gene bodies (M24) and three promoters (M28), while 274 

Planococcus with 45 transcripts (M11 and M12) and one protein (M17). 275 

The large number of transcripts associated with these microbial taxa is a controversial issue, 276 

whereas those related to proteins and DNA methylation are considered more trustworthy due 277 

to the higher environmental constancy. In this context, Neobacillus is related to 278 

hypermethylation of gibberellin 2-beta-dioxygenase 2-like (Soltu.Atl.05_2G019380) and 279 

xyloglucan endotransglycosylase protein 23 (Soltu.Atl.03_4G007570) in gene body and 280 
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promoter, respectively. Similarly, Planococcus is related to the protein of serine/threonine 281 

protein phosphatase 2A regulatory subunit beta-like (Soltu.Atl.04_3G005110).  282 
 283 

DISCUSSION 284 

Undoubtedly, there is an increasing demand by consumers for reliable labeling of food 285 

products, as well as for strict controls by retailers, manufacturers, and governments 286 

concerning food safety. The development of fast, accurate, and convenient technologies is of 287 

utmost importance to assess and trace the authenticated agricultural products from a certain 288 

terroir (Wei et al., 2022). The emerging -omics technologies including genomics, 289 

epigenomics, transcriptomics and proteomics, and more recent approaches such as 290 

metagenomics have been developed with promising applications towards geographical 291 

origination (Balkir et al., 2021). Specifically, metagenomics represents a useful diagnostic 292 

tool to identify microbial signatures related to natural ecosystems where plants and animals 293 

originate from (Iquebal et al., 2022). Pairing the usual -omic tools of Foodomics with 294 

microbe-based methods such as amplicon metagenomics, represents a novel and promising 295 

technique to improve our understanding on the role of plant-microbe in deciphering plant 296 

performance under distinct terroirs (Nerva et al., 2022). Despite the breakthrough of multi-297 

omics studies that brought food research into a new era, the association of Food products with 298 

PGI traits has not been conducted yet. Furthermore, to the best of our knowledge, no broad-299 

scale quantitative and integrative analysis of transcriptomes, epigenomes, and proteomes has 300 

been performed yet, that would enable the application of the ‘Foodomics’ approach in plant-301 

derived foods. The lack of such studies mostly relies on the difficulties that are raised with the 302 

integration of the multiple -omics approaches due to the need of demanding bioinformatics 303 

tools and mathematical models required for the accurate quantification and characterization of 304 

such large amount of data. In the present study, we achieved the integration of multiple -305 

omics technologies through the application of analytical tools, such as correlation downstream 306 

analysis and causal models, aiming to the identification and characterization of putative PGI-307 

driver biomarkers. 308 

The transcript expression and protein abundance of the potato grown at different 309 

environments exhibited distinct changes, confirming previous observation that transcriptome 310 

and proteome represents a useful diagnostic tool to identify plant performance under distinct 311 

terroirs (Braconi et al., 2021; Capozzi and Bordoni, 2012; Wei et al., 2022). For instance, the 312 

sucrose synthase protein which catalyzes the conversion of sucrose into glucose and fructose 313 
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has been found in higher abundance at both stages of Naxos potatoes. This quality trait may 314 

be responsible for the characterization of 'premium quality' in Naxos potatoes, since an 315 

enhanced sucrose synthase activity has been correlated with an increase in starch level and 316 

yield in potatoes (Baroja-Fernández et al., 2009). Another interesting finding is that a Kunitz 317 

trypsin inhibitor, which probably acts as a regulator of endogenous proteases and assists in 318 

defense against pests and pathogens (Bendre et al., 2018), has been revealed to decrease at 319 

both transcript and protein levels through the single and pairwise analysis in Naxos potatoes 320 

(Fig. 3 and 4). By pairing the transcriptomic and epigenomic or proteomic tools with microbe-321 

based methods, such as amplicon metagenomics, we uncovered that potato tubers cultivated 322 

in the semi-arid region of the island of Naxos, which represents a unique Mediterranean 323 

agroecosystem, recruit more beneficial microorganisms, possibly to cope with the unfavorable 324 

environmental conditions (Leontidou et al., 2020). For example, hypermethylation of 325 

xyloglucan endotransglycosylase protein 23 (modify cell wall (Eklöf and Brumer, 2010)) and 326 

gibberellin 2-beta-dioxygenase 2-like (catalyzes gibberellin (Santner and Estelle, 2009) that 327 

promoting sprouting in potato tubers (Sonnewald and Sonnewald, 2014)) could be driven by 328 

Neobacillus, which was found to be a dominant and highly abundant species being present 329 

only in Naxos tubers (Fig. 6c). These results are in accordance with the notion that soil 330 

microbial biogeography is predominantly governed by regional soil properties, unique for 331 

each terroir (Fierer and Jackson, 2006; Genitsaris et al., 2020). It is interesting to note that a 332 

key microbe like as Neobacillus was preserved during post-harvest storage, thus representing 333 

an excellent tool towards authenticating these PGI products (Fig. 1 and 6). The rhizosphere of 334 

potatoes has been previously found to be a rich source of Bacillus strains possessing plant-335 

growth-promoting properties (Calvo et al., 2010), however the exact role of such strains in 336 

improving plant performance, quality or shelf-life remains elusive. 337 

Most authentication techniques for food products have focused on species or varietal 338 

identification, as well as on the chemical composition of processed foods (Sentandreu and 339 

Sentandreu, 2011). Yet, quality traits of plant products can also be determined by cultivation 340 

conditions (climate, location, management systems, soil conditions etc.) (Posner et al., 2008). 341 

Importantly, cultivation conditions have been shown to induce DNA methylome changes in a 342 

wide variety of plants (Lira-Medeiros et al., 2010; Verhoeven et al., 2010). DNA methylome 343 

reflects the potato tubers' perspective of the growing environment, therefore can serve as an 344 

appealing diagnostic biomarker (epimarker) tool for geographical origin of otherwise identical 345 

crops (López and Wilkinson, 2015). Our findings demonstrated that hypermethylation of 346 
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glutathione S-transferase (enzymes that is induced by stress (Roxas et al., 1997)) at the gene 347 

body and promoter leads to a decline of both protein and transcript levels in Naxos tubers 348 

(Fig. 5b). Moreover, the causal analysis revealed a V-type connection, where the cause is the 349 

(UP) LOC102594761 (Figure 5D) driving us to conclude that this ID is crucial and needs 350 

further analysis to understand the proposed connection about hypermethylation of isoflavone 351 

reductase (involved in secondary metabolites biosynthesis (Shoji et al., 2002)), DNA-damage-352 

repair/ toleration protein DRT100 (protect DNA under stress (Fujimori et al., 2014)) and 353 

uncharacterized protein (UP) LOC102594761 combined with a decrease in transcripts and 354 

proteins at harvest and an increase at post-harvest in Naxos (Figure 5D). 355 

The results from this study are of interest also beyond geographical origin studies. For 356 

example, putative epimarkers such as the hypermethylation of DETOXIFICATION 18 357 

(Soltu.Atl.10_4G001390) in Naxos, could be used not only to tag cultivation system and 358 

geographical region of origin, but also in more nuanced applications to satisfy the ever-359 

increasing demand of the consumers for high quality food products. These could be either in 360 

identifying the tissue of origin in plant products (since different plant tissues have diverse 361 

methylation profiles) or other factors affecting post-harvest food quality such as storage, 362 

transport, and processing conditions (López and Wilkinson, 2015). Collectively, this 363 

innovative broad-scale quantitative and integrative work validated the expression of key gene 364 

markers by their protein abundance and identified putative epimarkers as well as key 365 

microbes to authenticate a popular PGI product such as Naxos potato. At last, but not at least 366 

a novel pipeline was developed towards the establishment of breakthrough approaches 367 

towards food characterization and authentication. 368 

Limitations of the study 369 

Our study represents the first multi-omic approach integrating the transcriptome, the 370 

proteome, and the epigenome, with the metagenome of a potato of Protected Geographical 371 

Indication, to identify terroir-specific “footprints”. However, as the biomarkers identified 372 

following causal-model analysis entirely depend on computational modeling, further 373 

experimentation is necessary to validate their biological significance and causality, as well as 374 

their stability and persistence over years or different geographic regions. On a bioinformatic 375 

note, the lack of polyploid specific genome-guided assemblers able to use more than one 376 

reference genome, such as in the case of tetraploid potato, may lead to missing alternative 377 

homologous sequences, limiting the potential for in-depth downstream transcriptomics 378 
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analysis. Conclusively therefore, there are still-existing challenges, both experimental and 379 

methodological, in capturing dominant terroir-originated marks to diversify and authenticate 380 

Protected Geographical Indication agricultural products that are stable across growing seasons 381 

and post-harvest storage. 382 

 383 

Materials and methods 384 

Potato cultivation and experimental sites 385 

Potatoes, cultivar Spunta (Oldenburger, Assem, Holland), were cultivated in two regions of 386 

Greece, i.e., Naxos Island, Aegean Sea, Greece, and Lakoma, Chalkidiki, North Greece 387 

(Figure 1A, Table S15), following the same experimental and cultivation protocol 388 

(composition analysis of potatoes provided in Table S16). The soils in Naxos were 389 

characterized as loamy sand or sandy loam (clay content, 13%; sand content 66%), with 390 

relatively high organic matter content (2.1%), and pH 7.6 whereas the soils in Lakoma were 391 

characterized as clay loam (clay content, 27%; sand content, 45%), with lower organic matter 392 

content (1.4%) and pH 7.9. Soil cultivation, fungicide treatments and water application during 393 

dry periods, were carried out in accordance with the common potato production schemes in 394 

Greece. During crop growth, plants were regularly monitored for the occurrence of stress, 395 

pests, and diseases. The harvest of the tubers was performed early in June 2021 for both 396 

collection sites, after foliage desiccation. All tubers were placed in sterile bags at 10 °C and 397 

carried to the lab, within 12 hours. Samples for subsequent analyses were snap-frozen in 398 

liquid nitrogen and stored at −80�°C. At harvest, there were eight and six samples (pooled 399 

tubers from an individual plant, with three biological replicates for each sample), 400 

corresponding to different collection sites of Naxos and Lakoma, respectively. The exact 401 

sampling locations are provided in Table S15. For the post-harvest experiment, tubers were 402 

stored at 10 °C for one-month prior subsequent analyses. 403 

Transcriptome and whole-genome bisulfite sequencing 404 

Library construction 405 

Total RNA of pooled tubers from the eight collection sites of Naxos, and the six collection 406 

sites of Lakoma (Table S15), with three biological replicates each, was isolated using 407 

TRIzol™ reagent (Invitrogen, CA, USA), followed by rRNA depletion and DNaseI treatment 408 

(Qiagen, Hilden, Germany). For each RNA sample at harvest and at post-harvest, a paired-409 
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end strand-specific Tru-seq compatible library was constructed following manufacturer’s 410 

instructions.  411 

High quality genomic DNA was isolated from the same samples as previously described for 412 

the RNASeq experiment, using the CTAB method (Doyle J. J. and Doyle J. L., 1990) to 413 

perform whole-genome bisulfite sequencing (WGBS) at Beijing Novogene Technology Co., 414 

Ltd. with target sequencing depth at 30×. The isolated DNA was fragmented by sonication to 415 

200−300 bp using a Covaris S220 (Covaris, Woburn, MA, USA), followed by end repair and 416 

A-ligation. After ligation to cytosine-methylated barcodes, the DNA fragments were treated 417 

twice with bisulfite using an EZ DNA Methylation-Gold™ Kit (Zymo Research, Orange, CA, 418 

USA). The libraries were then prepared according to the Illumina standard DNA methylation 419 

analysis protocol.   420 

RNA-seq and WGBS libraries were sequenced (Paired-End, 150bp) on the Illumina Novaseq 421 

6000 platform (Illumina, CA, USA) (Novogene, Beijing, China).  422 

RNA-seq data analysis 423 

All data generated were aligned to the tetraploid Solanum tuberosum reference genome 424 

(Atlantic v2.0) via Hisat2 applying the default parameters. Quantification of raw read 425 

counts/gene was conducted with HTSeq v0.11.1 (http://www-426 

huber.embl.de/users/anders/HTSeq/), selecting the ‘-s reverse –type=gene’ option. Transcripts 427 

Per Million (TPM) was used for the normalization of raw reads. Data were then transformed 428 

to log2 and scaled (z-score: mean center divided by standard deviation). Principal Component 429 

Analysis was performed for each sample and treatment) using the normalized data with the 430 

function ‘prcomp’ in R (version 4.1.0).  431 

Whole-genome bisulfte sequencing (WGBS) data analysis 432 

FastQC (fastqc_v0.11.5) was used to perform basic statistics on the quality of raw reads. 433 

These sequences, produced by the Illumina pipeline in FASTQ format, were pre-processed 434 

through Trimmomatic (Trimmomatic-0.36) software using the parameter 435 

(SLIDINGWINDOW: 4:15; LEADING:3; TRAILING:3; ILLUMINACLIP: adapter.fa: 2: 30: 436 

10; MINLEN:36). The low quality (< Q30) data was filtered out, and the filtered high quality 437 

sequencing data was mapped to the tetraploid Solanum tuberosum reference genome (Atlantic 438 

v2.0) by Bismark v0.19.0 (Krueger and Andrews, 2011).  439 
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The Bioconductor package DSS (Dispersion Shrinkage for Sequencing) was used to identify 440 

differentially methylated regions (DMRs) following default parameter settings with a reduced 441 

smoothing size (smoothing span�=�200). According to the distribution of DMRs throughout 442 

the genome, genes related to DMRs were defined as DMR-associated genes whose gene body 443 

region (from TSS to TES) or promoter region (upstream 2�kb from the TSS) overlapped with 444 

DMRs. 445 

Quantitative real time (qRT) PCR assay 446 

Total RNA isolated from aliquots of the sequenced samples was reverse transcribed to cDNA 447 

using SuperScript™ First-Strand Synthesis System (Invitrogen™ Thermo Fisher Scientific, 448 

Inc.). Gene expression profiles of ten genes (Table S17), randomly picked from the dataset, 449 

were analyzed by Quantitative real time PCR (qRT PCR) using Luna® Universal qPCR 450 

Master Mix (New England BioLabs) in a QuantStudio® 5 Real-Time PCR System (Thermo 451 

Fisher Scientific) according to (Xanthopoulou et al., 2021). For gene expression 452 

normalization, EF-1a was used as reference gene (Tang et al., 2017). 453 

 Proteomics  454 

Bottom-up proteomic sample preparation 455 

The protein extracts, obtained from three representative collection sites in Naxos and three in 456 

Lakoma, with three biological replicates each one at harvest and at post-harvest, were 457 

processed according to the sensitive Sp3 protocol. The cysteine residues were reduced in 100 458 

mM DTT and alkylated in 200 mM iodoacetamide (Acros Organics). 20 ug of beads (1:1 459 

mixture of hydrophilic and hydrophobic SeraMag carboxylate-modified beads, GE Life 460 

Sciences) were added to each sample in 50% ethanol. Protein clean-up was performed on a 461 

magnetic rack. The beads were washed twice with 80% ethanol and once with 100% 462 

acetonitrile (Fisher Chemical). The captured-on beads proteins were digested overnight at 463 

37oC under vigorous shaking (1200 rpm, Eppendorf Thermomixer) with 1 ug Trypsin/LysC 464 

(MS grade, Promega) prepared in 25 mM Ammonium bicarbonate. The next day, the 465 

supernatants were collected, and the peptides were purified using a modified Sp3 clean up 466 

protocol and finally solubilized in the mobile phase A (0.1% Formic acid in water), sonicated 467 

and the peptide concentration was determined through absorbance at 280nm measurement 468 

using a nanodrop instrument. 469 

LC-MS/MS Analysis 470 
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Samples were analyzed on a liquid chromatography tandem mass spectrometry (LC-MS/MS) 471 

setup consisting of a Dionex Ultimate 3000 nanoRSLC coupled inline with a Thermo Q 472 

Exactive HF-X Orbitrap mass spectrometer. Peptidic samples were directly injected and 473 

separated on a 25 cm-long analytical C18 column (PepSep, 1.9μm3 beads, 75 µm ID) using 474 

an one-hour long run, starting with a gradient of 7% Buffer B (0.1% Formic acid in 80% 475 

Acetonitrile) to 35% for 40 min and followed by an increase to 45% in 5 min and a second 476 

increase to 99% in 0.5min and then kept constant for equilibration for 14.5min. A full MS 477 

was acquired in profile mode using a Q Exactive HF-X Hybrid Quadrupole-Orbitrap mass 478 

spectrometer, operating in the scan range of 375-1400 m/z using 120K resolving power with 479 

an AGC of 3x 106 and maximum IT of 60ms followed by data independent acquisition 480 

method using 8 Th windows (a total of 39 loop counts) each with 15K resolving power with 481 

an AGC of 3x 105 and max IT of 22ms and normalized collision energy (NCE) of 26. 482 

Proteomic Data Analysis 483 

Orbitrap raw data from the 35 protein samples (one has failed) were analyzed in DIA-NN 1.8 484 

(Data-Independent Acquisition by Neural Networks) through searching against the Atlantic 485 

v2.0 (http://spuddb.uga.edu/phased_tetraploid_potato_download.shtml) using the library free 486 

mode of the software, allowing up to two tryptic missed cleavages and a maximum of three 487 

variable modifications/peptide. A spectral library was created from the DIA runs and used to 488 

reanalyze them (double search mode). DIA-NN search was used with oxidation of methionine 489 

residues and acetylation of the protein N-termini set as variable modifications and 490 

carbamidomethylation of cysteine residues as fixed modification. N-terminal methionine 491 

excision was also enabled. The match between runs feature was used for all analyses and the 492 

output (precursor) was filtered at 0.01 FDR and finally the protein inference was performed 493 

on the level of genes using only proteotypic peptides. The generated results were processed 494 

statistically and visualized in the Perseus software (1.6.15.0). 495 

 Metagenomics 496 

DNA Extraction, Amplification, and Sequencing 497 

Nearly 200 grams of 72 samples obtained from potato tuber-sphere at harvest or after one-498 

month post-harvest storage, from all the individual collection sites (Table S15), was used for 499 

the microbial mapping of the two different regions. High quality DNA was isolated with the 500 

DNeasy PowerSoil Pro Kit (QIAGEN, Carlsbad, USA), following the manufacturer’s 501 

instructions and stored at -80°C. Amplification of the 16S rRNA gene was performed using 502 
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an Applied Biosystems® QuantStudio® 5 Real-Time PCR System (Thermo Fischer 503 

Scientific, Waltham, MA, USA), using a LongAmp Hot Start Taq 2x Master Mix (M0533S, 504 

New England Biolabs), and 16S barcoded primers.  505 

The 16S Barcoding Kit 1-24 (SQK-16S024, Oxford Nanopore Technologies, UK) was used 506 

for sequencing the 16S ribosomal gene and creating the libraries. PCR products were purified 507 

with Agecount AMPure XP beads (Beckman Coulter, USA), whilst the quantification was 508 

performed using Qubit 4 Fluorometer and the dsDNA HS Assay Kit (Thermo Fisher 509 

Scientific, USA). The 72 libraries were created in accordance with the manufacturer's 510 

instructions and loaded on a MinION R9.4.1 flow cell (FLO-MIN106) on the MinION Mk1C 511 

(Oxford Nanopore Technologies, UK). For data acquisition, MINKNOW software ver. 1.11.5 512 

(Oxford Nanopore Technologies) was employed.  513 

Sequencing Data Processing and Analysis 514 

MinION™ sequence reads (i.e., FAST5 data) were converted into FASTQ files by using 515 

Guppy software (version 5.0.17) (Oxford Nanopore Technologies). To remove reads derived 516 

from humans, EPI2ME 16S pipeline software was used. The unmatched reads to the human 517 

genome were considered as reads obtained from bacteria. 518 

Bacterial communities were identified through the same software (EPI2ME), which is based 519 

on Nextflow (di Tommaso et al., 2017), that enables scalable and flexible scientific analysis 520 

(Delegou et al., 2022). In order to classify the DNA sequences from microbial samples, the 521 

Centrifuge software was used (Kim et al., 2016), which is based on the Burrows-Wheeler 522 

Transformation (BWT) and the Ferragina-Manzini (FM) index, that enables timely and 523 

precise metataxonomic analysis. Operational taxonomic units (OTU tables) by matching the 524 

NCBI taxa IDs to lineages and counting the number of reads per NCBI taxa ID. 525 

Alpha – diversity was calculated, using the “vegan” package, while beta – diversity was 526 

assessed, applying the “vegan” and “betapart” packages (Baselga and Orme, 2012), all in R 527 

studio software. Principal component analysis (PCA) and Non-metric Multi-dimensional 528 

Scaling (NMDS) were conducted via “vegan” (https://github.com/vegandevs/vegan) and 529 

“graphics” (https://rdrr.io/r/graphics/graphics-package.html) packages. In addition, analysis of 530 

similarities (ANOSIM) was also performed, using the vegan package. In order to run the 531 

hierarchical clustering algorithm, multiple dendrograms by chaining were performed, using 532 

the “tidyverse” (https://www.tidyverse.org/) and “dendextend” packages (Galili, 2015). A 533 
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heatmap based on the relative abundance of OTUs was generated using the “gplots” package 534 

(https://cran.r-project.org/web/packages/gplots/index.html), while stacked bar charts were 535 

performed, integrating the top 10 most abundant genera and species between tuber samples at 536 

harvest and at post-harvest. Finally, the linear discriminant analysis (LDA) effect size (LEfSe) 537 

analysis was conducted (Segata et al., 2011) via Galaxy software 538 

(https://huttenhower.sph.harvard.edu/galaxy/), in an effort to characterize the microbial 539 

variance between the unique categories and determine possible biomarkers for each one.  540 

Multi-omics analysis 541 

Dual approach 542 

The analysis was separately performed for the pairs corresponding to the same gene IDs in 543 

transcriptome and methylome promoter or genebody, and transcriptome/proteome. Only pairs 544 

which exhibited valid values for all tissues at both levels were considered. Of these, for the 545 

transcript/protein, only pairs with values greater than 1 in at least one out of the four groups at 546 

both transcriptomic and protein levels were further assessed (the methylome values were 547 

between 0 and 1), resulting in 1247 transcript/methylome promoter pairs, 1206 548 

transcript/methylome gene pairs, and 1033 transcript/protein pairs. The Pearson coefficient 549 

was used to assess the correlation in all three dual comparisons, across and between groups, 550 

respectively. The ranking of the absolute mean intensity differences in pairwise comparisons 551 

(Naxos vs Lakoma (Harvest), Naxos vs Lakoma (Post-Harvest)) was used as well. 552 

Triple approach 553 

The Pearson coefficient was further employed to assess the correlation between tissues for the 554 

triplets corresponding to consensus gene IDs in methylome promoter/transcriptome/proteome 555 

(n=49), and methylome genebody/transcriptome/proteome (n=38). Only triplets with valid 556 

values for the stages and areas were considered, which exhibited values greater than 1 in at 557 

least one out of the stages or areas at both transcriptomic and protein levels. Next, the focus 558 

was in identifying causal relations between methylome/transcriptome/proteome triplets. To 559 

this end, the constrained-based PC algorithm, was employed (“pcalg” R package, 560 

https://cran.r-project.org/web/packages/pcalg/index.html), which is used to estimate the 561 

causal structure induced by a causal Bayesian network. For each pair of variables (X, Y) in a 562 

dataset, the PC algorithm evaluates their independence, conditioning on all subsets of all the 563 

remaining variables. If their association is persistent, it is considered to be causal. The output 564 

is a network represented by a Markov equivalence class of the Directed Acyclic Graph 565 
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(DAG), with a structure consistent with the results of the tests of independence. It is assumed 566 

that causal sufficiency holds2, which implies that for every pair of measured variables, all 567 

their consensus direct causes are also measured. A directed edge between X and Y exists, if 568 

and only if, the variables are conditionally dependent given S, for all possible subsets S of the 569 

remaining nodes. In particular, the “pc” R function was used to estimate the equivalence class 570 

of the DAG, under the Markov assumption that the distribution of the observed variables is 571 

faithful to a DAG3. All genes exhibited continuous values, thus, the function “gaussCItest” 572 

was employed to perform the conditional independence tests. 573 

Dataset approach 574 

For each omics dataset (and microbials), weighted gene co-expression network analysis 575 

(WGCNA) was employed (“WGCNA” package in R, 576 

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/), to 577 

identify data clusters (modules) across areas and stages. The “blockwiseConsensusModules” 578 

function was used with minimum module size=30, module detection sensitivity=2, and cut 579 

height for module merging=0.25). Next, the eigengenes of the modules were used to assess 580 

the correlation among all modules. Module eigengenes are the module representatives and 581 

defined as the first principal component of the expression matrix for each module. A module 582 

eigengene correlation network was developed as well, with nodes representing the modules, 583 

and edges representing all the correlations between the nodes with absolute value higher than 584 

0.5. All the analyses were performed with R Version 4.1.0. 585 

Data availability 586 

Raw data of RNASeq, Bisulfite-Seq and Metagenome were deposited in the National Centre 587 

for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject 588 

accession numbers: PRJNA855343, PRJNA855343 and PRJNA854325, respectively. The 589 

mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 590 

via the PRIDE partner repository (Perez-Riverol et al., 2022) with the dataset identifier 591 

PXD035074. 592 
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 620 

Figure 1. (A) Sampling locations of tubers in Naxos (PGI potatoes) and Lakoma (control 621 
potatoes). (B) Box plots of alpha-diversity (Chao and Shannon indices) of microbiome 622 
residing in the tubers from the two regions, at harvest and post-harvest. (C) Distribution of the 623 
top 10 most abundant taxa of tubers microbiota at the level of genus. (D) Microbiome profiles 624 
in the tubers obtained from the two regions analyzed by NMDS using the Bray–Curtis 625 
distance matrix. (E) Tanglegrams showing concordance between bacterial dendrograms based 626 
on community similarities (Bray–Curtis distance) derived from 16S rRNA gene sequences 627 
from tubers of the two regions.  (F) Histogram of LDA value distribution of taxa at the genus 628 
level with significant differences in abundance between groups N: Naxos; L: Lakoma; H: 629 
Harvest; P: Post-harvest. Data obtained from Table S1. 630 
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 631 

Figure 2. Differential methylation region (DMR) of the tubers harvested from Naxos (PGI 632 
potatoes) and Lakoma (control potatoes), at harvest and at post-harvest. (A) Circos plot for 633 
DMR condition in three contexts (CG, CHG, CHH). The circos plot represents (from outside 634 
to inside): (i) Hyper DMR statistical value: log5 (areaStat); the higher and bigger the point, 635 
the larger differences between two groups. (ii) TE, the heatmap of percentage of repeat 636 
element. (iii) Heatmap of gene density. (iv) Hypo DMR statistical value: log5 (areaStat); the 637 
higher and bigger the point, the larger differences between two groups. (B) Cluster heatmap 638 
for DMR methylation level in three contexts (CG, CHG, CHH). The x-axis is the comparison 639 
group name, the y-axis is the methylation level and cluster results. (C) Violin plot for DMR 640 
methylation level in three contexts (CG, CHG, CHH). The x-axis is the comparison group 641 
name, the y-axis is the methylation level. (D) Venn plot of DMGs in three contexts (CG, 642 
CHG, CHH). (E) Methylation level distribution at functional genetic elements in three 643 
contexts (CG, CHG, CHH). The x-axis is the functional genetic elements the y-axis is the 644 
methylation level. Left label is methylation level in non-CG context; the right label is 645 
methylation level in CG context. (F) Methylation level distribution at up/downstream 2kb and 646 
gene body in all three contexts (CG, CHG, CHH). The x-axis is the functional genetic 647 
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elements, the y-axis is the methylation level. Left label is methylation level in non-CG 648 
context, the right label is methylation level in CG context. (G) KEGG enrichment scatter plot 649 
for DMR genes in all three contexts (CG, CHG, CHH). The x-axis represents Rich factor, and 650 
the y-axis represents pathway name. The size of points stand for DMR-related genes counts 651 
and the colors stand for different q-values range. (H) Heatmap of DMGs genes in all three 652 
contexts (CG, CHG, CHH). Red indicates hypermethylation and green hypomethylation in 653 
Naxos. Data obtained from Table S2. 654 

 655 

 656 

Figure 3. Transcriptome and proteome profiles of tubers in the regions of Naxos (PGI 657 
potatoes) and Lakoma (control potatoes). (A) Hierarchical cluster analysis of transcriptomic 658 
data in tubers of two regions at harvest and at post-harvest. (B) Venn diagrams of 659 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 16, 2022. ; https://doi.org/10.1101/2022.10.12.511727doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.12.511727


 

24 
 

differentially expressed genes (DEGs) between Naxos and Lakoma at harvest (H) and post-660 
harvest (PH). For the common DEGs between Naxos and Lakoma at the two stages, heatmaps 661 
representing the fold change (FC) in FPKM values of the up- and down-regulated genes at H 662 
and at PH are also provided. (C) Hierarchical cluster analysis of proteomic data in tubers of 663 
the two regions at H and at PH. (D) Volcano plots of Lakoma vs Naxos at H and PH. (E) 664 
Venn diagrams of differentially expressed proteins (DEPs) between Naxos and Lakoma at H 665 
and at PH. Heatmaps of the commonly increasing or decreasing DEPs in Naxos vs Lakoma 666 
are also provided. Data obtained from Table S4-S5. 667 

 668 

 669 

 670 

Figure 4. Pairwise transcriptome-based co-expression analysis across methylation, 671 
transcriptome and proteome datasets. (A, B, C) Pearson correlation values’ distribution for 672 
each omic dataset integration. Methylome-to-transcriptome Pearson correlation heatmaps for 673 
(D) promoter (E) gene and (F) transcriptome-to-proteome Pearson correlation heatmap. Venn 674 
diagrams of each integrated analysis for transcriptome-to-promoter methylation (G), gene 675 
body methylation (H) and proteome (I). Intensity plots displaying significant cumulative 676 
difference between Naxos and Lakoma in both stages based on transcriptome-promoter 677 
methylome (J), transcriptome-gene methylome (K) and transcriptome-proteome (L) 678 
consensus dataset. H: Harvest; PH: Post-harvest. Data obtained from Supplementary Tables 679 
6-9. 680 

 681 

 682 
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 683 

Figure 5. Methylome- (promoter / gene body), transcriptome-, and proteome-based 684 
interactions of tubers in the regions of Naxos and Lakoma at harvest (H) and post-harvest 685 
(PH). (A) Pearson coefficient was calculated to assess the correlation of the consensus gene 686 
IDs in methylome, transcriptome, and proteome only in triplets with values greater than 1 687 
within transcriptomic and proteomic data. (B) Heatmap and clustering of gene IDs from 688 
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merged datasets of methylome promoter or genebody, transcriptome, and proteome, in the 689 
basis of CHH-DMR, CHG-DMR, and CG-DMR. (C) Gene ontology (GO) enrichment 690 
analysis of methylome promoter (n=49, CHH) or gene body (n=38, CHH), transcriptome, and 691 
proteome. (D) A causal Bayesian network was constructed to detect causality among 692 
variables of -omics datasets with consensus gene IDs. Data obtained from Tables S10-S11. 693 
 694 

 695 
Figure 6. Weighted correlation network analysis (WGCNA) of microbials, mRNAs, proteins, 696 
and DNA methylation in Naxos vs Lakoma at harvest (H) and post-harvest (PH). (A) Pearson 697 
correlation of 30 modules. The magnitude of the correlation is depicted in both the color and 698 
size of the spheres. Correlations which were lower than 0.5 in absolute value are marked with 699 
an ‘x’. (B) Network illustration of microbials (Modules M1-M6), mRNAs (Modules M7-700 
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M13), proteins (Modules M14-M22), and DNA methylation (genebody modules M23-M26, 701 
promoter modules M27-M30) and positive correlation of M1 and M2 with the rest of 702 
modules. The modules are represented by the network nodes. The edges connecting the nodes 703 
are displayed only when the nodes are correlated with a Pearson coefficient higher than 0.5 in 704 
absolute value. Solid lines correspond to positive correlations and dotted lines correspond to 705 
negative correlations. The thickness of the lines reflects the magnitude of the correlation 706 
(absolute values). The size of the node indicates the degree of centrality (number of edges 707 
drawn from the node). (C) The trend of modules-interest M1, M9, M15, M22, M24, M28, and 708 
M2, M11, M12, M17, M25, M27, based on their z-scores. (D) Heatmap of positive correlated 709 
(P ≤ 0.01) mRNAs (higher tpm than 2 in stages and areas), proteins, and DNA methylation 710 
with specific microbials: Neobacillus (M1) and Planococcus (M2). Data obtained from 711 
Tables S12-S14. 712 
 713 
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