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Abstract  23 
 24 

Recent in vitro and in vivo studies suggest that epigenetic training in innate immune cells can alter 25 
cellular function over extended time periods. It is unclear to what extent such training persists in 26 
human myeloid cells during microbial infections and alters clinical outcomes. We therefore examined 27 
longitudinal transcriptional and epigenetic changes in patients with Cystic Fibrosis (CF), a disease 28 
characterised by temporal fluctuations in lung infection and inflammation. We find that sudden clinical 29 
deteriorations in lung health, termed Acute Pulmonary Exacerbations (APEs), are linked to a robust 30 
innate immune response (triggered in part by pattern recognition receptor (PRR) activation) and 31 
associated changes in phagocytic function. Treatment of patients with intravenous antibiotics results 32 
in rapid modification of myeloid cell gene expression and epigenetic state, towards that of healthy 33 
volunteers, and suggests that CF inflammatory lung damage is driven by repeated acute 34 
inflammatory episodes rather than a distinct chronic inflammatory programme.  35 
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Main Text 36 

Myeloid cell exposure to microbial cellular components has been found to lead to functional training 37 
via the deposition of epigenetic marks at gene promoters and transcriptional enhancers1,2. In 38 
particular, marks such as histone 3 lysine 27 acetylation (H3K27ac) and histone 3 lysine 4 39 
trimethylation (H3K4me3) are believed to facilitate a more rapid recruitment of regulatory effectors 40 
at previously activated genes upon subsequent stimulation. Novel therapeutic strategies exploiting 41 
the induction of epigenetic memory to alter immune cell phenotypes have therefore been proposed3. 42 

It remains unclear to what extent infection-induced epigenetic alterations persist in vivo in mature 43 
myeloid cells such as neutrophils and monocytes, which are relatively short-lived in circulation4,5. 44 
Recent work has suggested that the peripheral innate immune system may play a role in epigenetic 45 
training, as acute stimulation of mouse haematopoietic stem cells (HSCs) with lipopolysaccharide 46 
(LPS), a component of the gram-negative bacterial cell wall, causes epigenetic imprinting protecting 47 
against future infection with Pseudomonas aeruginosa (PsA)6. Similarly, Bacillus Calmette-Guerin 48 
(BCG) vaccination of humans has been shown to induce long-term epigenetic and transcriptional 49 
changes in neutrophils, associated with altered functional capacity, presumably through functional 50 
changes in the bone marrow precursors of these cells7. 51 

Here, we sought to define the epigenetic and transcriptional landscapes in the myeloid cells of 52 
patients with CF, a disease associated with well-defined cycles of infection and inflammation8. CF 53 
patients frequently suffer from chronic bacterial infections of the lungs, and have episodes of rapid 54 
clinical deterioration (APEs) associated with decreased lung function and increased lung and 55 
systemic inflammation, that often require prolonged (usually 14 days) treatment with intravenous 56 
antibiotics. APEs are thought to lead to the cumulative inflammatory lung damage that remains the 57 
major cause of morbidity and mortality in this patient group. CF therefore provides a unique 58 
opportunity to understand the temporal dynamics of epigenetic training in humans in the context of 59 
chronic bacterial infection. 60 

We collected whole blood samples from adult CF patients (n = 13) chronically infected with PsA at 3 61 
timepoints: at an APE onset, at the end of intravenous antibiotic treatment, and when returned to 62 
stable clinical baseline (at least 30 days after the APE onset; Fig. 1a; Supplementary Table 1). 63 
Treatment with intravenous antibiotics was, as expected, associated with resolution of systemic 64 
inflammation and an improvement in lung function (as measured by circulating C-reactive protein 65 
levels and FEV1 respectively; Fig. 1b). We confirmed that the study group was broadly 66 
representative of the clinical characteristics of the entire cohort attending the adult CF centre from 67 
which they were recruited (Fig. 1c; Supplementary Fig. 1). 68 

Gene expression (bulk RNA-seq) of peripheral neutrophils and monocytes isolated from CF patients 69 
on each sampling day was directly compared with samples from age- and sex-matched healthy 70 
volunteers (HV; n = 8; Fig. 1d; Supplementary Fig. 2). We observed a marked decrease in 71 
differential gene expression between CF and HV across the time series, with more differentially 72 
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expressed (DE) genes at the onset of exacerbation (day 0), than on subsequent sampling days (days 73 
14 and 30+) (Supplementary Table 2). Only 8 genes (including MAPK14, MAP3K20 and TLR5) 74 
were upregulated, and only 2 genes (NUP210L and TSPAN13) were downregulated, in CF 75 
neutrophils on all sampling days; while no genes were upregulated and only 2 genes (ARL17A and 76 
LRRC37A2) were downregulated on all sampling days in CF monocytes (Fig. 1d & e; 77 
Supplementary Table 3). 78 

We used unsupervised hierarchical clustering (based on median expression levels per time point) to 79 
identify 7 DE gene clusters with different temporal dynamics in neutrophils (Fig. 1f). Notably, the 80 
median expression levels of all upregulated genes in CF were highest at day 0 (clusters 1-5, Fig. 1f) 81 
and the median expression levels of all downregulated genes in CF were lowest at day 0 (in clusters 82 
6 and 7; Fig. 1f). A similar trend was observed in monocytes (Supplementary Fig. 3). GO term 83 
analysis showed that clusters of upregulated genes in CF were enriched for processes involved in 84 
innate immune response (Fig. 1g), while downregulated clusters showed no immune-specific 85 
enrichment (Supplementary Fig. 4). 86 

We next assessed changes at the epigenetic level, in both cell types, through genome-wide profiling 87 
of H3K27ac by chromatin immunoprecipitation (ChIP-seq). Peaks were assigned to genes based on 88 
genomic proximity, using Hi-C data, and by correlation with expression levels across samples 89 
(Methods). Differentially acetylated regions (DAR) were identified for each time point by direct 90 
comparison with HV samples (Supplementary Tables 4 & 5). Again, fewest DAR were identified in 91 
both neutrophils and monocytes at Day 14 (Supplementary Fig. 5), indicating that IV treatment 92 
causes a reduction of the effects observed at day 0. In keeping with these changes, we also found 93 
differences in the functional properties of monocyte-derived macrophages between day 0, day 14, 94 
and day 30+, with decreased intracellular killing and greater inflammatory cytokine production 95 
observed in Day 14 cells (Supplementary Fig. 6). 96 

Two genes (TLR5 and MAP3K20) had coordinate changes in transcription and H3K27ac at all time 97 
points in neutrophils (Fig. 2a; Supplementary Table 6), but not in monocytes (Supplementary 98 
Table 7). In total, four peaks of increased acetylation were assigned to TLR5 (see Methods; Fig. 99 
2a), spanning the promoter region of the gene and a distal site located 57 kb upstream on 100 
chromosome 1 (Fig. 2b). This latter site has not previously been associated with TLR5, but H3K27Ac 101 
levels here were strongly correlated with TLR5 transcription (Fig. 2b; Supplementary Fig. 7). 102 

To assess sources of variation in gene expression and epigenetics among CF patients at the 103 
individual level, we integrated all data layers for neutrophils and monocytes using multi-omics factor 104 
analysis (MOFA)9 and identified eight latent factors accounting for 30-60% of the variance across 105 
data types (Fig. 2c, Supplementary Fig. 8). Correlation with phenotypic data from the longitudinal 106 
clinical dataset showed that neutrophil count, monocyte count, immunoglobulin G (IgG), serum iron 107 
(Fe), and alanine transaminase (ALT) levels were all significantly correlated with latent MOFA factors 108 
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(Fig. 2c), indicating that phenotypic variation among CF patients is reflected at gene expression 109 
level and in the epigenetics of innate immune cells. 110 

As all patients in this study were infected with PsA, we sought to assess the extent to which direct 111 
detection of PsA by myeloid cells was responsible for the observed chnages. Neutrophils from three 112 
healthy volunteers were exposed to PsA or purified PsA flagellin (a known ligand for TLR510) and 113 
their transcriptional response was determined using RNA-seq (Supplementary Fig. 9). 114 

In total, we identified 1,810 DE genes in PsA-exposed neutrophils vs unexposed controls (894 up, 115 
916 down) and 328 DE genes in flagellin-exposed neutrophils vs unexposed (246 up; 82 down). As 116 
expected, the majority (86%) of the genes responsive to flagellin were also differentially expressed 117 
in PsA-exposed cells (P = 8.5 × 10-207) (Fig. 2d). 118 

PsA-upregulated genes overlapped with genes overexpressed significantly in CF neutrophils at day 119 
0 (86 genes, P = 5.0 × 10-13) and at day 30+ (7 genes, P = 0.01), but not at day 14 (2 genes, P = 120 
0.31; Fig. 2; Supplementary Table 8). In total, approximately 13% of all CF-upregulated genes 121 
could be directly attributed to PsA exposure. No statistically significant overlaps among 122 
downregulated genes were observed (P > 0.05 in each case) (Supplementary Fig. 10). 123 

Genes upregulated in PsA-exposed neutrophils and CF patient neutrophils formed a highly 124 
connected functional network (STRING11 protein-protein interaction enrichment P value < 1 × 10-125 
16). The largest connected component of this network included a subset of genes directly responsive 126 
to flagellin exposure, including CD59, IL1RN, IRAK2, IRAK3, MAP4K4 and TNFAIP6 (Fig. 2e), 127 
implicating this bacterial product as an important inflammatory driver. 128 

In summary, we have shown that epigenetic and transcriptional changes in the myeloid cells of CF 129 
patients fluctuate temporally during the infection cycle and influence phagocyte function. Reducing 130 
bacterial burden through antibiotic treatment causes rapid ablation of the epigenetic marks that 131 
distinguish CF from HV during APE. Moreover, we defined a functionally connected network of 132 
genes, which is directly responsive to PsA exposure. Targeting this network could therefore offer a 133 
rational strategy for reducing inflammation-associated pathology in CF. 134 

  135 
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 160 

Figure 1. (a) Longitudinal fluctuation in c-reactive protein (CRP) and total white blood cell (WBC) 161 
count during periods of acute disease exacerbation over a three-year period in a patient recruited 162 
for this study. Red arrow indicates Day 0; green arrow indicates day 14; blue arrow indicates Day 163 
30+.  (b) Levels of CRP and percent predicted forced expiratory volume in one second (FEV1 % 164 
predicted) for study patients at each sampling day. (c) Principal component analysis (PCA) of curated 165 
longitudinal clinical data set for 354 CF patients (Papworth hospital cohort). Patients selected for 166 
inclusion in this study are indicated in purple. (d) Volcano plots show neutrophils differential gene 167 
expression in CF relative to HV at the indicated time points. Genes with increased expression in CF 168 
are shown in red, while genes with decreased expression are shown in blue. (e) Gene expression 169 
dynamics in neutrophils and monocytes. Parallel set diagrams show the changes in numbers of 170 
differentially expressed genes over sampling days. The width of the connector reflects the number 171 
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of genes in each set. (f) Unsupervised hierarchical clustering of neutrophils DE genes. The heatmap 172 
depicts relative expression levels of all DE genes between CF and HV in at least one time point. 173 
Median z-scores per sample group are plotted for each gene.  Gene clusters are numbered and 174 
indicated with coloured bars above heatmap. (g) GO terms functional enrichment of neutrophil DE 175 
genes by cluster. Bar plot shows the −log10(P value) per enriched term. Dashed line represents P 176 
value = 0.05. 177 
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 178 

Figure 2. (a) Comparison of RNA-Seq and ChIP-Seq log2 fold change values by sampling day. All 179 
differentially acetylated H3K27Ac peaks assigned to genes are shown as dots. Red dots 180 
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correspond to peaks and transcripts for genes significantly increased in CF relative to HV, blue 181 
dots correspond to peaks and transcripts significantly decreased in CF relative to HV, and grey 182 
dots represent peaks and transcripts for genes which are not significantly different from HV in one 183 
or both data sets. (b) RNA-Seq and H3K27Ac ChIP-Seq coverage of the TLR5 gene (left panel) 184 
and distal region of acetylation (right panel). The total coverage is shown as the median fragments 185 
per kilobase per million (FPKM) for RNA-Seq, and median reads per kilobase per million (RPKM) 186 
for ChIP-Seq, in 40 bp bins. Red bars, CF day 0 samples; green bars, CF day 14 samples; blue 187 
bars, CF day 30+ samples; black bars, HV samples. (c) Correlation of clinical data with MOFA 188 
factors. Colour scale represents the strength of correlation (Pearson r) and point size represents 189 
the associated P value, with multiple testing correction performed using the Benjamini-Hochberg 190 
method. Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase; Asp, Aspergillus; 191 
AUC, area under curve; BMI, body mass index; CRP, C-reactive protein; FEV1 % pred., forced 192 
expiratory volume in one second (FEV1) percent of predicted; IgE, immunoglobulin E; IgG, 193 
immunoglobulin G; RAST, radioallergosorbent; WBC, total white blood cell count. (d) UpSet plot 194 
shows number of neutrophils upregulated genes in P. aeruginosa-infected HV neutrophils, flagellin-195 
exposed HV neutrophils, and in CF at Day 0, Day 14, and Day 30+. (e) Functional network of 196 
genes commonly upregulated in P. aeruginosa-infected HV neutrophils (PsA) and CF neutrophils, 197 
constructed using interactions from the STRING database. A subset of genes in this network are 198 
also upregulated upon flagellin (flg) exposure. The edge width reflects the combined score of the 199 
interaction from STRING, and the node colour indicates the contrasts in which a gene is 200 
upregulated. NS, not significantly differentially expressed. 201 

 

  202 
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Methods 203 
 204 

Study design and participants 205 

Patients with Cystic Fibrosis (CF) were enrolled from Royal Papworth Hospital, UK, after written 206 
informed consent (ethical approval REC 19/EE/0241). Peripheral blood samples were obtained at 207 
pre-defined time-points during an infective acute pulmonary exacerbation (APE) of CF. An APE was 208 
defined as a change in the patient’s symptoms from baseline. These symptoms include increased 209 
cough, increased sputum production, change in sputum colour, change in sputum thickness and 210 
fevers or temperatures. A fall in forced expiratory vital capacity in 1 second (FEV1) was used as an 211 
additional indicator. Patients who reported 2 or more of the above symptoms and where a clinical 212 
decision was made to start intravenous (IV) antibiotics, were eligible for the study. Blood samples 213 
were taken at the start of an APE (Day 0), at the end of an APE (Day 14) and at a later time point 214 
during a period of clinical stability (Day 30+). Patient selection was based on their colonising 215 
organism (Pseudomonas aeruginosa), stability on current medications for 3 months with no planned 216 
changes during the study period, and their FEV1. Age and sex matched healthy volunteers were 217 
enrolled. 218 

 219 

Sample collection and processing 220 

Peripheral blood samples were collected and processed using established protocols from the 221 
BLUEPRINT consortium1. In brief, peripheral blood was collected in citrate tubes. Plasma was 222 
separated out by centrifugation. Peripheral blood mononuclear cells (PBMC) were extracted using a 223 
density gradient (Ficoll, GE healthcare) and purified for CD14 positive monocytes using magnetic 224 
microbeads (Militenyi Biotec). The remaining granulocytes underwent ammonia red cell lysis with 225 
additional washing stages. Cells were checked for their purity by using cytospins for morphology in 226 
combination with flow cytometry analysis for cell surface markers. Serum was collected in separate 227 
serum blood tubes and extracted via centrifugation. 228 

 229 

RNA processing and sequencing 230 

Purified CD 14+ monocytes and neutrophils were stored in TRIzol. RNA was extracted from TRIzol, 231 
using BLUEPRINT protocols1. One hundred nanograms of RNA was converted to rRNA-depleted c-232 
DNA libraries using the KAPA Stranded RNA-Seq Kit with RiboErase (Roche). Samples were 233 
indexed with Tru-seq adapters (Illumina), and 150-bp paired end sequencing was performed on 234 
Illumina’s NovaSeq platform. 235 

 236 

 237 
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CHiP processing and sequencing 238 

Purified CD 14+ monocytes and neutrophils were cross-linked with formaldehyde and processed 239 
using BLUEPRINT protocols1. Cells were lysed, nuclei prepared and sonicated using the Bioruptor 240 
Pico (Diagenode). Sonicated chromatin was pre-cleared using Dynabeads, Protein A magnetic 241 
beads (Invitrogen) before proceeding to automated chromatin immunoprecipitation (SX-8G IP Star 242 
Compact, Diagenode). Antibodies used were H3K27ac (Diagenode). Samples underwent reverse 243 
cross linking and DNA capture, using the ChIP DNA clean and concentrator kit (Zymo Research). 244 
DNA libraries were prepared using the Diagenode microplex library kit. Samples were dual indexed 245 
with MicroPlex adaptors (Diagenode), and 50-bp single read sequencing was performed on 246 
Illumina’s HiSeq 4000 platform. 247 

 248 

Pseudomonas Experiment: Cell preparation 249 

Neutrophils were isolated from whole blood using the EasySep™ Direct Human Neutrophil Isolation 250 
Kit (Stem Cell technologies) as per the manufacturer’s protocol. Freshly isolated neutrophils were 251 
re-suspended in Iscove’s Modified Dulbecco’s Medium (IMDM) without phenol red (Gibco) and 10% 252 
autologous serum, at a concentration of 5x106 neutrophils/ml. Autologous serum was prepared by 253 
collecting 5-10 mls of whole blood in a 10 ml syringe, gently transferring to a sterile 15ml Falcon tube 254 
and allowing the blood to clot prior to centrifugation to obtain the serum layer. 255 

 256 

Pseudomonas Experiment: Reagent preparation 257 

100 μL of nuclease free water (Qiagen) was added to 50 μg purified flagellin from Pseudomonas 258 
aeruginosa (FLA-PA; InvivoGen), giving a stock concentration of 500 μg/ml. 100 μL of nuclease free 259 
water was added to 50 μg of a soluble ectodomain of human TLR5 (hTLR5-Fc; InvivoGen), giving a 260 
stock concentration of 500 μg/ml. 261 

 262 

Pseudomonas Experiment: Bacterial preparation 263 

Pseudomonas aeruginosa (PsA) PAO1 (ATCC) was cultured on a Columbia blood agar plate 264 
overnight at 37 oC at 5 % CO2. A single colony-forming unit (CFU) from the plate was removed and 265 
cultured in 10 mLs of Luria broth (LB), in a 50ml falcon tube, overnight to an OD600 of 0.5-0.8. A 266 
multiplicity of infection (MOI) of 1:1 was used. 267 

 268 

 269 

 270 

 271 
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Pseudomonas Experiment: Cell culture 272 

180 μl of the neutrophil suspension was gently placed in a 2 mL round-bottom DNA LoBind 273 
Eppendorf tube (Eppendorf). Neutrophils were cultured with either phosphate buffered saline (PBS; 274 
Sigma), FLA-PA, hTLR5-Fc, PsA, hTLR5-Fc followed by PsA or hTLR5-Fc followed by FLA-PA. Cells 275 
were placed in a shaking incubator at 180 rpm at 37oC. In the case of hTLR5-Fc with PsA or FLA-276 
PA, the hTLR5-Fc was added 10 minutes prior to the addition of PsA or FLA-PA. 277 

 278 

Cells were returned to the shaking incubator. After 1 hour 200 μg/ml Gentamicin and Strepatmycin 279 
(Sigma) was added to the neutrophil suspension. The neutrophils were returned to the shaking 280 
incubator. After 4 hours, cells were pelleted by centrifugation, placed on ice, the supernatant 281 
removed and cells suspended in Trizol (Invitrogen). RNA processing and sequencing were carried 282 
out as outlined above. 283 

 284 

Monocyte derived macrophages: Cytokine production 285 

Experiments were conducted using previously established protocols2. Frozen monocytes collected 286 
at Day 0, 14 and 30+ and stored in recovery media (Gibco) were thawed as per the manufacturer’s 287 
protocol and differentiated into macrophages in autologlous serum for the corresponding time points. 288 
Monocytes for CF005, CF007, CF008 and Day 0 for their matched HV samples (HV005, HV007 and 289 
HV004) were selected. Cells were differentiated in 24-well tissue culture plates at a cell density of 290 
0.2 x106 cells per well using granulocyte-macrophage colony-stimulating factor (GM-CSF; 291 
PeproTech EC Ltd) 200 ng/ml, 10% autologous serum from each time point, 100 U/ml penicillin, and 292 
100 μg/ml streptomycin (Sigma) in DMEM media.  293 

 294 

Cells were maintained at 37°C with 5% CO2. On day 5 interferon-γ (IFN γ; PeproTech EC Ltd) 295 
50ng/ml was added. On day 7, antibiotics were removed by washing in PBS, the macrophages were 296 
infected with PsA (PAO1; ATCC) at an MOI of 1:1 in DMEM media. The supernatant was removed 297 
at 4 hours post-infection. Cytokine concentration for IL-6, IL-8 and TNF α, of the supernatant, was 298 
measured using the human cytokine magnetic kit (Milliplex) as per the manufacturer’s protocol. 299 
Samples were analysed on the Luminex200. The average of three independent replicates was 300 
analysed. 301 

 302 

Processing of clinical data 303 

C-reactive protein (CRP) measures of 4 ml/L or less were considered to be 0 mg/L. For principal 304 
component analysis (PCA), median values of each variable were calculated across the time series 305 
of measurements per patient, except for the ratio of FEV1/FVC, for which the area under the curve 306 
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(AUC) was estimated using the trapezoid rule. Missing values were imputed using the multivariate 307 
imputation via chained equations (MICE) package in R (https://doi.org/10.18637/jss.v045.i03). 308 

 309 

RNA-Seq data analysis 310 

Adaptors were trimmed from reads using Trim Galore v0.3.7 311 
(https://github.com/FelixKrueger/TrimGalore), with the following parameters: -q 15 --stringency 3 --312 
length 20 -e 0.05 --trim1 -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCA; -q 15 --stringency 313 
3 -a AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT. Adaptor-trimmed reads were aligned to 314 
transcripts from the human reference genome GRCh38 using bowtie v1.0.13, with the following 315 
parameters: -a --best --strata -S -m 100 -X 500 --chunkmbs 256 --nofw –fr. 316 

 317 

Transcript and gene abundance estimates were generated from bowtie alignments using mmseq 318 
v1.0.104. For differential expression analysis, only patients with complete data at each time point 319 
(patients CF004, CF005, CF007, CF008, CF010, CF011, CF012, CF013) and only genes with an 320 
FPKM of at least 1 in at least 1 sample were included. Differentially expressed (DE) genes were 321 
identified using the Wald test function in the DESeq2 package5. Sex and age were used as covariates 322 
in the model. Genes with adjusted P-value < 0.05 and absolute log2 fold change > 0.5 were 323 
considered differentially expressed. 324 

 325 

Hierarchical clustering of DE genes was carried out using median z-scores calculated from 326 
log2(FPKM) values per time point. The number of gene clusters was chosen using the approach of 327 
Marriott6. Hierarchical clustering was performed using Manhattan distances and the Ward method. 328 
Enrichment of gene ontology (GO) biological processes (BP) in clusters was assessed using the 329 
topGO package in R, using the weight01 algorithm, and in each taking case the remaining set of 330 
expressed non-cluster genes as the background set. GO terms containing a minimum of 10 genes 331 
were included. 332 

 333 

ChIP-Seq data analysis 334 

Adaptors were trimmed from reads using Trim Galore v0.3.7 335 
(https://github.com/FelixKrueger/TrimGalore), with the following parameters: -q 15 --stringency 3 --336 
length 25 -e 0.05 --trim1 -a CTGTCTCTTATACACATC;-q 15 --stringency 3 -a 337 
AAGCAGTGGTATCAACGCAGAGT. Adaptor-trimmed reads were aligned to the human reference 338 
genome GRCh38 using bwa v0.7.127. Duplicate aligned reads were marked using Picard v2.0.1 339 
(https://github.com/broadinstitute/picard), and alignments were de-duplicated and quality-filtered 340 
using samtools v1.3.18, by using the following parameters: view -u -F 1024 -q 15. Peaks were called 341 
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on de-duplicated, quality-filtered alignments using MACS2 v2.1.19 with parameters -q 1e-2 -g 342 
3049315783. Peaks were annotated based on distance to the nearest TSS using the R package 343 
ChIPseeker10 with Ensembl gene annotations for GRCh38. 344 

 345 

Peaks of H3K27Ac were categorised as either promoter (≤ 2 kb from the nearest annotated 346 
transcription start site [TSS]) or distal (> 2 kb from the nearest TSS). From the union set of peaks 347 
detected across all samples, high-confidence peaks were selected for downstream analysis as those 348 
with an RPKM of at least 5 in at least 1 sample (for neutrophils) and an RPKM of at least 7 in at least 349 
1 sample (for monocytes). These thresholds were chosen because peaks passing them were 350 
detected relatively evenly across samples, while peaks at lower RPKM thresholds were only 351 
detected in a subset of the samples. In total, 32,688 high-confidence peaks (16,745 promoter, 15,943 352 
distal) were identified in neutrophils and 37,048 high-confidence peaks (17,808 promoter, 19,240 353 
distal) were identified in monocytes. 354 

 355 

Differential acetylation was assessed using the Wald test function in the DESeq2 package5. For 356 
differential acetylation analysis, only patients with complete data at each time point (patients CF004, 357 
CF005, CF007, CF008, CF010, CF011, CF012, CF013) and only high-confidence peaks were 358 
included. Sex and age were used as covariates in the model. Peaks with adjusted P-value < 0.05 359 
and absolute log2 fold change > 0.5 were considered differentially acetylated. 360 

 361 

To assign peaks to genes, we combined multiple data sets as follows. All distal peaks located within 362 
10 kb of the nearest TSS were assigned to the gene transcribed from that TSS. To assign peaks 363 
located more than 10 kb from the nearest TSS, we assessed the degree of correlation between the 364 
normalised ChIP-Seq coverage in each peak and the normalised RNA-Seq coverage for all genes 365 
within 100 kb upstream or downstream of the peak, across all available samples, and if a significant 366 
correlation (adjusted P-value < 0.05) was found, we assigned peaks to the correlated genes. Finally, 367 
peaks that were located in a region known to be distally connected to a promoter from publically 368 
available HiC data11 were assigned to the connected genes. 369 

 370 

Data integration (MOFA) 371 

For integration of the combined transcriptomic and epigenetic data sets using MOFA12, the top 372 
10,000 most variable features were selected based on median absolute deviation (MAD) for protein-373 
coding genes and ChIP-Seq peaks. For non-coding RNA, the top 1,000 genes based on MAD were 374 
used. 375 

 376 
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Analysis of Pseudomonas data 377 

RNA-Seq data were processed exactly as for CF patient data. For principal component analysis, the 378 
effect of donor sex was removed from raw gene expression values using the sva package in R. The 379 
significance of overlaps of DE gene lists was determined using Fisher’s exact test. For overlapping 380 
DE genes with CF patient data, only genes expressed in both data sets (FPKM ≥ 1 in ≥ 1 sample 381 
from each data set) were included. Gene Ontology (GO) term biological process (BP) enrichment 382 
was assessed using the topGO package in R, with the weight01 algorithm, in each case taking as 383 
the background gene list the remaining set of genes expressed in both data sets. GO BP terms 384 
containing a minimum of 10 genes were included. 385 

 386 

To construct a functional network of shared DE genes, interactions for the 87 genes commonly 387 
upregulated in CF (at any time point) and in PsA-stimulated cells were retrieved from the STRING 388 
database13, with at least medium confidence (minimum combined score = 0.4) and allowing a 389 
maximum of 20 additional directly interacting genes. The largest connected component of the 390 
network was visualised using Cytoscape14. 391 

 392 
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