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Highlights ME/CFS is a debilitating disease with unknown causes. Here, we provide, for the 

first time, an extensive single cell resolution dataset detailing the gene expression programs of 

circulating immune cells of ME/CFS cases at baseline and after symptom provocation. We were 

able to detect robust dysregulation in certain immune cells from patients, with dysregulation of 

classical monocytes manifesting the strongest signal. Indeed, the fraction of aberrant monocytes 

in ME/CFS patients correlated with the degree of disease severity. Surprisingly, platelet 

transcriptomes were also altered in ME/CFS, and they were the only component of the immune 

system that showed large-scale changes following symptom provocation.   
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SUMMARY 

ME/CFS is a serious and poorly understood disease. To understand immune dysregulation in 

ME/CFS, we used single-cell RNA-seq (scRNA-seq) to examine immune cells in cohorts of 

patients and controls. Post-exertional malaise (PEM), an exacerbation of symptoms following 

strenuous exercise, is a characteristic symptom of ME/CFS. Thus, to detect changes coincident 

with PEM, we also performed scRNA-seq on the same cohorts following exercise. At baseline, 

ME/CFS patients displayed dysregulation of classical monocytes suggestive of inappropriate 

differentiation and migration to tissue. We were able to identify both diseased and more normal 

monocytes within patients, and the fraction of diseased cells correlated with metrics of disease 

severity. Comparing the transcriptome at baseline and post-exercise challenge, we discovered 

patterns indicative of improper platelet activation in patients, with minimal changes elsewhere in 

the immune system. Taken together, these data identify immunological defects present at 

baseline in patients and an additional layer of dysregulation following exercise. 

 

 

 

 

 

Keywords Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), scRNA-seq, 

monocytes, platelets, Long COVID 
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INTRODUCTION 

Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) is a serious human disease 

that lacks effective treatment options and impacts an estimated 65 million individuals worldwide 

(Hanson & Germain, 2020; Lim et al., 2020). Our understanding of the mechanistic basis for 

ME/CFS is minimal, hindering diagnosis, rational approaches to treatment options, and 

development of a cure. Multiple lines of evidence implicate a major role for the immune system 

in ME/CFS (Komaroff & Buchwald, 1998). For example, TGF-β, a cytokine that confers both 

pro- and anti-inflammatory signals depending on the microenvironment (Sanjabi et al., 2009), 

has often been reported to be upregulated in plasma of ME/CFS patients (Blundell et al., 2015; 

Montoya et al., 2017). Elevated levels of multiple pro-inflammatory cytokines have also been 

correlated with disease severity, results which suggest that ME/CFS involves dysregulation of 

multiple immune (and non-immune) cells. Another study observed activation of both pro- and 

anti-inflammatory cytokines, with different activation patterns able to differentiate early cases of 

ME/CFS from cases of longer duration (Hornig et al., 2015). 

 

Indeed, immune cells of both the innate and adaptive arms are thought to be dysregulated in 

ME/CFS. Monocytes and natural killer (NK) cells have been reported to exhibit alterations in 

proportions and functional surface markers in ME/CFS (Eaton-Fitch et al., 2019; Maher et al., 

2005). Neutrophils, the most abundant white blood cells in the circulation, exhibit elevated 

apoptosis in ME/CFS patients (Kennedy et al., 2004). T lymphocytes of the adaptive immune 

systems also display abnormal metabolism and cytokine production (Mandarano et al., 2020), 

and other studies have implicated B cell alterations in ME/CFS (Milivojevic et al., 2020; Sato et 

al., 2021). However, previous studies have examined different immune cell populations in 

isolation and often across small patient cohorts. Moreover, heterogenous populations of immune 

cells have typically been characterized as bulk samples, compromising the ability to distinguish 

changes that impact only specific cell types or subsets of cells. These limitations, together with 

the heterogenous nature of the disease (Committee on the Diagnostic Criteria for Myalgic 

Encephalomyelitis/Chronic Fatigue Syndrome et al., 2015), have likely contributed to the 

contradictory results between studies (Noor et al., 2021). Thus, at present, it is far from clear 

which components of the immune system are most relevant to ME/CFS. 
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A defining symptom of ME/CFS is post-exertional malaise (PEM) – an exacerbation of 

symptoms resulting from exertion. Thus, understanding changes that occur in one or more 

immune cell populations during PEM could provide useful insights to the disease, and the 

development of potential treatment and preventative approaches. An established method of 

inducing PEM in ME/CFS patients is with cardiopulmonary exercise tests (CPETs), which 

monitor respiratory and other parameters during a controlled exercise period with increasing 

intensity until exhaustion or limiting symptoms appear (Stevens et al., 2018). In addition, 

incorporating CPET into ME/CFS studies provides objective physiological parameters, 

increasing confidence in diagnosis and providing quantitative measurements of disease severity. 

 

ME/CFS has been proposed to result from infection by an unknown virus (or other pathogen), 

leading to the long-lasting symptoms of the disease in susceptible individuals. This theory 

derives, in large part, from the many occurrences of cases of the disease in clusters (Rasa et al., 

2018), together with the observation that many ME/CFS patients reported experiencing a flu-like 

or other infection before the onset of the disease. It is unknown whether only specific viruses can 

trigger ME/CFS or whether many different viruses can induce the disease, though accumulating 

evidence implicates the enterovirus family (O’Neal & Hanson, 2021). Notably, ME/CFS and 

Long COVID that arises in non-hospitalized patients share many, although not all, symptoms 

(Wong & Weitzer, 2021); thus, there may be important commonalities between the diseases, 

including a viral origin. However, the degree to which molecular signatures are shared by 

patients with ME/CFS and Long COVID is unknown. Therefore, knowledge gained in 

understanding ME/CFS may be of significance regarding Long COVID, and vice versa. 

 

Here, we have used scRNA-seq to examine immune cells within PBMCs (peripheral blood 

mononuclear cells) from a large cohort of ME/CFS patients and matched controls. Our goals 

were to identify immune cell types with dysregulated transcriptomes in ME/CFS, and also 

recognize the cell types that show no substantial differences between the patient and control 

cohorts in order to rule out their involvement in the disease state. Finally, because PEM is a 

defining symptom of ME/CFS, we performed scRNA-seq both before and 24 hours after a 

CPET, with the goal of characterizing changes in the immune system that occur during the early 

stages of PEM. Amongst other changes, we observed extensive alterations in the transcriptome 
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of a subset of monocyte cells in ME/CFS patients, with largely identical alterations present at 

baseline and 24 hours after the exercise challenge. Indeed, most gene dysregulation across the 

ME/CFS immune system was consistent between the baseline and post-exercise conditions. In 

contrast to this general property of the ME/CFS immune system, we observed marked 

differences between platelet transcriptomes from patients at baseline compared to post-CPET, 

suggesting that aberrant platelet activity is associated with or contributes to PEM. Taken 

together, this study identifies cell types with distinctive patterns of transcriptome dysregulation; 

these data suggest new hypotheses for understanding ME/CFS and the role of PEM in the 

disease. 

 

 

RESULTS 

Single-cell transcriptomics of the immune system in ME/CFS 

Despite evidence that immune dysregulation is a major feature of ME/CFS, which components 

of the immune system are most involved in the disease is unknown. To begin to address this 

fundamental question, we used the 10x Genomics Chromium platform to perform single-cell 

RNA-seq (scRNA-seq) to profile ~5,000 PMBCs per blood sample from a cohort of 30 patients 

and 28 controls, matched for sex, BMI and differing in other parameters characteristic of 

ME/CFS (Figures 1A and 1B). Importantly, all samples were obtained prior to the Covid-19 

pandemic, eliminating the possibility that any patients had Long COVID rather than ME/CFS. 

Because PEM is a defining symptom of ME/CFS, we profiled samples from all individuals at 

baseline (BL) and again 24 hours after a strenuous exercise challenge (Davenport et al., 2020; 

Keller et al., 2014) (post-CPET, PC; Figure 1A). This study design has the potential to define 

gene dysregulation in immune cells at baseline in patients as well as dysregulation associated 

with PEM. We used a two-step strategy to efficiently sequence each library to equivalent 

coverage: first, we sequenced each scRNA-seq library at low coverage (averaging 57 million 

reads) and used these data to determine the sequencing depth required to obtain an average depth 

of over 4,000 UMIs per cell, for a total average sequencing depth of 136 million reads per 

sample. Datasets were integrated with Seurat v4 (Hao et al., 2021) to generate a common 

landscape for cell type annotation and comparisons between samples. Standard scRNA-seq 

quality control metrics indicated robust profiling across all 30 patients and 28 control samples 
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(Figures 1C and S1A-C; Supplemental File S1). To associate scRNA-seq clusters with cell 

identities, we used Seurat to systematically identify marker genes in each cluster, and we also 

examined expression of established PBMC marker genes, which together allowed us to identify 

the majority of the 28 clusters (Figures 1D and 1E). 

 

Previous studies have suggested that immune cell composition is altered in ME/CFS patients 

(Brenu et al., 2014; Eaton-Fitch et al., 2019; Kitami et al., 2020). Importantly, no clusters were 

evident that were specific to the patient cohort, nor were any largely underrepresented in this 

cohort (Figures S1C and S1D). We compared proportions of each cell type (cluster) between 

patients and controls, analyzing the baseline and post-CPET samples separately. As expected 

(Patel & Yona, 2019),we observed inter-individual heterogeneity in proportions of different 

immune cells, with these individual profiles highly consistent when compared at the two 

different timepoints (Supplemental File S2). However, there were only limited differences in 

proportions when we compared the patient and control cohorts (Figures 1F and S1D). 

Proportions of regulatory NK cells (cluster 15) were somewhat elevated in patients (1.1- and 1.3-

fold at baseline and post-CPET, respectively; P=0.23 and 0.02, after multiple comparison 

correction), as were γδ T cells (1.3-fold at baseline and post-CPET; P=0.05 and 0.04, 

respectively). No other proportions of immune cells were significantly altered, except for a 

marginal decrease in effector/memory CD8+ T cells in patients (0.9-fold, at both timepoints; 

P=0.04 and 0.09). We conclude that cell types present in PBMCs, as profiled by scRNAseq, 

show very little difference in their relative frequencies in ME/CFS patients, and that any 

differences that do exist are minor compared to normal inter-individual variations. 

 

 

Dysregulation within the ME/CFS immune system 

To begin to examine transcriptome dysregulation in the ME/CFS immune system, we used 

Seurat v4 (Hao et al., 2021) to determine the number of significantly dysregulated genes per cell 

type (cluster), comparing cells from patients and controls, and performing the comparisons 

separately for baseline and post-CPET samples. Certain cell types exhibit strong signals of 

transcriptome dysregulation in patients, with CD4+ T cells (naïve and effector/memory subsets; 

clusters 0 and 1, respectively), monocytes (clusters 2, 9 and 10) and cytotoxic NK cells (cluster 
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3) being the most prominent (Figure 2A). Importantly, there are also multiple cell types, 

including those present in high proportions, that show very little, if any, evidence of 

dysregulation in ME/CFS. We note that this analytical approach has more power to detect 

changes in gene expression for cell types present in higher proportions, and may have high false-

discovery rates (Thurman et al., 2021). In addition, as a gauge with which to contrast 

dysregulation associated with ME/CFS, we also compared control samples between the two 

timepoints, anticipating that any signal detected for such a comparison would represent noise, at 

least for most cell types. This comparison revealed negligible signal, in terms of numbers of 

differentially expressed genes (Figure 2A), increasing confidence that the signal detected in 

patient versus control comparisons is meaningful. 

 

Multiple frameworks exist with which to detect differential gene expression in scRNA-seq. 

Recent approaches have indicated that ‘pseudobulk’ methods (aggregating expression signals 

across all cells per cluster) can outperform the Seurat framework (Thurman et al., 2021). 

However, we found that this approach had limited power to identify individual genes with 

significant differences between case and control samples in different cell types, likely because 

inter-individual variation in gene expression unrelated to disease state is a large confounding 

factor, and the observation that the largest variation in the dataset can be attributed to sex (Figure 

S2A). Indeed, previous studies have identified sex-specific changes in microRNA profiles from 

PBMCs in ME/CFS (Cheema et al., 2020). Instead, to search for coordinated shifts in gene 

expression reflecting alterations in pathway activation or cell state in the ME/CFS immune 

system, we performed GSEA (gene set enrichment analysis) on each cluster, focusing on C1: 

HALLMARK, C2:REACTOME, C2:KEGG, and C5:GOBP (biological process) catalogs from 

the Molecular Signatures collection (Liberzon et al., 2011; Subramanian et al., 2005). This 

analysis  (Figure 2B; Supplemental File S3) indicated two general features of the data: first, 

across multiple clusters, expression of ribosomal protein genes and core translational machinery 

is downregulated in ME/CFS relative to controls in many different cell types (Figure 2C), and 

second, that monocytes exhibited the strongest signals of dysregulation, especially in cluster 2 

(classical monocytes) but also in clusters 9 and 10, which represent non-classical and 

intermediate monocytes, respectively (Figure 2B, Figure S2B; Supplemental File S4). In 

particular, gene sets associated with chemokine signaling, migration and activation are expressed 
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at elevated levels in classical monocytes from patients (Figure 2D). In addition, we also observed 

suppression of genes associated with interferon gamma (IFN-γ) signaling in classical monocytes 

from ME/CFS patients. These results suggest that the transcriptomes of classical monocytes from 

ME/CFS patients are biased towards a profile that promotes migration of monocytes to tissue and 

increased progression towards a macrophage fate. However, we also observed activation of 

genes associated with IL-10 signaling, which is an anti-inflammatory cytokine. Thus, monocytes 

in ME/CFS patients, and perhaps also the macrophages derived from such monocytes, might 

undergo a combination of conflicting signaling inputs. 

 

To explore signals that might be differentially impacting monocytes in patients, we examined the 

identities and expression levels of the genes driving the enrichments we observed. Using the 

genes most responsible for enriched gene sets related to chemokine and cytokine signaling 

(leading edge genes; Supplemental File S5), we calculated a composite score for classical 

monocytes from each sample (Figure 2E; other monocyte clusters are shown in Figure S2C). At 

the level of individual samples, we found classical monocytes from ME/CFS cases to have 

higher scores for these genes compared to sedentary healthy controls, and that these scores are 

consistent between baseline and post-CPET timepoints for each individual (Figure S2D). We 

also looked at differential expression of multiple notable genes involved in monocyte response, 

recruitment and differentiation at baseline and post-CPET. Specifically, we observed 

upregulation of CCL4, CX3CR1, SELPLG and ITGAL in patients, while CXCR4 expression was 

suppressed at baseline (Figure 2F). CCL4 is a chemoattractant for monocyte recruitment to 

inflamed and adipose tissue (Sindhu et al., 2019). CX3CR1, the sole chemokine receptor for 

CX3CL1, is a marker for differentiation of classical monocytes to non-classical counterparts and 

tissue repair and regeneration (Feng et al., 2015; Getzin et al., 2018). SELPLG and ITGAL play 

critical roles in the tissue recruitment of leukocytes (Muller, 2013). CXCR4 is a receptor for 

CXCL12 and regulates monocyte-macrophage differentiation (Sánchez-Martín et al., 2011). 

CCL4 was also upregulated regardless of exercise challenge. We also detected upregulation of 

both inflammatory (TNFRSF1A, TLR4, TLR5) and anti-inflammatory (IL10RB) receptor genes 

post-CPET. Taken together, these results suggest that monocytes in ME/CFS are aberrantly pro-

migratory and inflammatory at baseline and that ME/CFS is characterized by a persistent state of 

monocyte activation. 
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Transcriptome profiling of purified classical monocytes from ME/CFS patients and 

controls  

To generate a more comprehensive profile of dysregulation of classical monocytes in ME/CFS 

and to validate our scRNA-seq results, we turned to bulk RNA-seq of purified monocytes. 

Starting with PBMCs from four female patients and four female controls isolated post-CPET, 

with all individuals distinct from those profiled by scRNA-seq, we isolated near-homogenous 

populations of classical monocytes (CD14+CD16-). Flow cytometry confirmed that the isolation 

strategy was effective (Figure 3A). Following RNA isolation, we generated RNA-seq libraries 

sequenced to a minimum depth of 20 million reads per sample. Principal component analysis 

demonstrated clear separation between patient and control samples, although the patient samples 

were more dispersed than controls (Figure 3B). We compared expression profiles of classical 

monocytes from patients and controls (Figure S3A) and identified enrichment of similar GSEA 

terms and leading-edge genes between the bulk RNA-seq (Figure 3C and Supplemental File S6) 

and the scRNA-seq (Figure 2D and Supplemental File S4), such as regulation of cell migration 

by cytokines and chemokines and IL-10 signaling. These observations confirmed a pattern of 

monocyte activation and migration in ME/CFS in comprehensive expression profiles of an 

independent cohort of samples. We also examined expression levels for a large set of genes 

associated with monocyte migration and differentiation in the bulk RNA-seq (Figure 3D and 

S3B). Perhaps due to heterogeneity in the ME/CFS cases (Figure 3B), we found consistent 

changes only in CCL4 upregulation and CXCR4 downregulation, when examining both the bulk 

RNA-seq for classical monocytes and the corresponding cluster from the scRNA-seq (Figures 2F 

and 3D). However, using the RNA-seq data alone, we identified additional changes in 

expression, including most prominently upregulation of CSF2 (granulocyte-monocyte colony 

stimulating factor; an important monocyte differentiation cytokine) and other chemokines 

important for monocyte recruitment (CCL20, CCL5, and CCL3) (Zhao et al., 2020) in ME/CFS 

cases. These analyses support the hypothesis that monocytes in ME/CFS patients are aberrantly 

primed to migrate to tissues.  
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Monocyte dysregulation is heterogenous within and between ME/CFS patients 

Our data identifies dysregulation of classical monocytes as a prominent feature of the immune 

system in ME/CFS. However, it is unknown whether this feature derives from consistent 

alterations across classical monocytes, or alternatively, is restricted to a subset of cells per 

individual. Similarly, bulk transcriptome profiling of classical monocytes from patients suggests 

more extensive variation between patients than between controls (Figure 3B), consistent with the 

possibility that patients possess a varied and heterogenous population of these cells, in contrast to 

a more consistent and homogenous population in controls. To explore these possibilities using 

the single-cell data for classical monocytes, we utilized a machine learning approach, positive 

unlabeled learning (Elkan & Noto, 2008), which accommodates mixed populations (Figure 4A). 

Starting with baseline case and control female samples, we optimized a classifier that labels each 

cell as diseased or normal (Figures 4B and S4A). The results indicated that ME/CFS patients 

possess a heterogenous population of classical monocytes, only some of which are diseased, with 

the remainder comparable to those in control individuals (Figures 4A and S4A). The percentage 

of cells classified as diseased within patients was variable (Figure 4C), but consistent for each 

individual when compared between the baseline and post-CPET samples (Figure 4D). We 

calculated the CH (Calinski-Harabasz) index applied within PCA space, as a metric of 

performance for our classifier in comparison with other sample metadata. The CH index analysis 

demonstrated that cells predicted as diseased are more highly related to one another than those 

partitioned by disease status, sex or the identity of an individual (Figure 4E), suggesting that the 

classifier is recovering latent signal within the data. 

 

We examined correlations between the proportion of aberrant monocytes per individual and 

parameters that reflect patient health. Notably, we observed a significant correlation between the 

fraction of classical monocytes identified as diseased and female patients’ MFI-20 score (Smets 

et al., 1995; Multidimensional Fatigue Inventory-20) (Figure 4F), a comprehensive evaluation of 

fatigue. Similar correlations were also observed with other symptom metrics for females, 

including general health, SF-36 physical component scores (Nacul et al., 2011) and PEM 

severity (Figures S4D-F). We observed similar trends for the classifier trained with male samples 

(Figures S4B, C, and G-H). These observations indicate a relationship between symptoms 

ME/CFS patients experience and the fraction of diseased monocytes in circulation. 
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To examine the dysregulation of predicted diseased (pD) cells, we performed differential 

expression between patient cells predicted as normal (pN) versus diseased and used GSEA to 

examine patterns of differential expression. This analysis revealed clear differences between the 

gene expression programs (Figure 4G). Strikingly, the transcriptome profiles from pD cells 

compared to pN cells from patients exhibited changes in expression of pathways involving 

cytosolic DNA sensing, cytokine-cytokine receptor interaction, and chemokine signaling, which 

were similarly observed when comparing profiles of all patient cells to healthy controls in 

females (Figure S4I). In addition, ribosomal gene sets were also downregulated in pD cells in 

both females and males (Figures 4G and S4J), consistent with observations we made across 

multiple cell types (Figure 2C). 

 

To minimize the impact of inter-individual variation in gene expression unrelated to disease 

state, and therefore more confidently identify genes dysregulated due to ME/CFS, we performed 

a paired analysis by individual of origin. Accordingly, we calculated the pseudobulk gene 

expression changes between pD and pN monocytes from the same ME/CFS individual, and then 

averaged these expression ratios across individuals. In this analysis, CCL4 (C-C motif 

Chemokine ligands 4) exhibited the strongest change, with elevated expression in pD cells 

compared to pN cells within the same individuals (Fig. 4H). We also observed differences in 

CCL4 expression levels when comparing profiles of pD and pN from patients to controls (Figure 

4I). Elevated expression of CCL4 in predicted-diseased cells was more prominent in females 

than in male patients (Figure 4I). Furthermore, TMEM176B (Transmembrane Protein 176B) was 

downregulated in pD cells compared to pN cells in ME/CFS individuals as well as control cells 

(Figures 4H and S4K). TMEM176B is involved in maintaining the immature state of dendritic 

cells (together with TMEM176A), which is anti-inflammatory (Condamine et al., 2010). Other 

genes upregulated in predicted diseased cells included GIMAP7 and TRIM7, which may 

contribute to cell survival by suppressing apoptosis (Limoges et al., 2021) and promoting 

inflammation (Lu et al., 2019). The identities of genes downregulated in pD cells, such as OLR1, 

G0S2, ATF3, RGCC, and TMEM176B contain both pro-inflammatory and anti-inflammatory 

factors (Arslan et al., 2017; Kwok et al., 2020; Labzin et al., 2015; Okabe et al., 2022; Picotto et 

al., 2020). This observation may be attributed to the fact that the environment eliciting 
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inflammatory responses is complex, with multiple ME/CFS specific changes in signaling 

occurring. For example, ATF3, upregulated in pD cells, is a regulator of interferon responses and 

able to suppress CCL4 in animal models (Khuu et al., 2007; Labzin et al., 2015). We also 

performed GSEA using the paired analysis data (Figure 4J). The IFN-γ pathway was upregulated 

in pN cells, suggesting reduced inflammatory responses of pD cells through this pathway (as in 

Figure 3C).  

 

Finally, we used PCA to visualize sex-specific pseudobulk transcriptomes generated from all 

control monocytes and from all patient cells partitioned by the classifier into predicted diseased 

and predicted normal. Transcriptomes derived from pD cells clustered away from control cells in 

PCA space and also from pN cells from the same patients (Figure 4K). In particular, PC1 

reflected the sex of the individuals (Figure S4L), with PC2 and PC3 coincident with predicted 

disease state for males and females, respectively (Figure 4K). These observations suggest that 

the classifier separated the case cells into two groups: pD cells distinct from control cells, and pN 

cells that are less different than, but still show some deviation from, control cells. Analysis of 

loadings of the principal components (Figure 4L) show that CCL4 (C-C motif Chemokine 

ligands 4) has a strong negative contribution to both PC2 and 3, indicating that dysregulation of 

this gene contributes strongly to discrimination between pD and pN cells in both males and 

females. Thus, within patients, a subset of classical monocytes exhibited high expression of 

cytokine receptor and chemokine signaling genes, in particular CCL4. Overall, these analyses 

demonstrated that classical monocytes populations are heterogenous within and variable across 

ME/CFS patients. Importantly, the classifier enabled us to identify predicted-diseased cells in 

ME/CFS patients and establish that these cells upregulate expression of specific cytokine 

receptor and chemokine signaling genes indicative of aberrant monocyte recruitment to tissue. 

Our observation that the percentage of diseased cells per individual correlate with metrics of 

disease severity is notable (Figures 4F and S4F). 

 

 

Signaling pathways impacting monocytes in ME/CFS  

As monocytes in ME/CFS patients show significant dysregulation in pro-inflammatory 

chemokine and cytokine signaling pathways, they may be intrinsically biased towards this pre-
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migratory transcriptome, or alternatively, they may be responding differentially to changes in 

intercellular signaling in ME/CFS individuals. To assess whether intercellular signaling is altered 

in ME/CFS, we used CellChat (Vu et al., 2022) to analyze scRNA-seq data to model 

communication between cell types as a function of ligand and receptor expression levels 

corresponding to established signaling pathways (Jin et al., 2021) (Figure 5A). To remove 

potentially confounding factors such as sex, exercise and cluster size, we focused our analysis on 

the larger female-only cohort at baseline and down-sampled large clusters to 500 cells before 

calculating communication probabilities, an approach recommended for similar analyses 

(Andrijevic et al., 2022). Comparing the interactomes of patient and control cells, we found 

widespread evidence suggesting alterations in inferred communication to and from several cell 

types. In particular, monocyte signaling to certain T and NK cells is predicted to be elevated in 

ME/CFS patients, while also increasing signaling interactions among themselves (Figures 5B 

and S5A). These results suggest that monocyte dysregulation in ME/CFS, in part, may derive 

from alterations to established intercellular communication pathways. 

 

We next investigated the identities of the pathways that may contribute to alterations in the 

interactome of classical monocytes in ME/CFS. Among patients, we found evidence of increased 

signaling in pathways that regulate monocyte survival and localization to inflamed tissue 

(Galectin, Resistin, CSF3, CCL) (Hollmén et al., 2016; Hornig et al., 2015; Yıldırım et al., 

2015), with the strongest dysregulation observed in genes associated with the C-C motif 

chemokine (CCL) pathway (Figures 5C-D and S5B), observations consistent with our earlier 

findings. To identify the specific ligand-receptor pairs contributing to overall changes in 

signaling in ME/CFS and with cell-type resolution, we compared the communication 

probabilities between the patient and healthy cohort, finding 782 upregulated and 1046 

downregulated ligand-receptor pairs in patients, aggregated across all pairwise combinations of 

cell types (Supplementary File S7). In particular, for ligand-receptor pairs associated with the 

CCL pathway, we identified increased signaling from classical monocytes to platelets in 

ME/CFS patients, and this signal derived from elevated CCL3/CCL5 expression in monocytes 

(Figure 5E). Monocyte-platelet interactions, especially in the form of monocyte-platelet 

aggregates, have previously been demonstrated to be a potent marker of inflammation 

(Passacquale et al., 2011; Stephen et al., 2013). Thus, classical monocytes in ME/CFS patients 
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may exist in an inflammatory state, in part, due to altered cross-talk between platelets and 

monocytes.  

 

 

An abnormal platelet state is coincident with PEM in ME/CFS 

Post-exertional malaise is a defining symptom of ME/CFS. To investigate whether PEM is 

associated with any changes in immune cells, we compared expression changes across different 

immune cells between baseline and 24 hours after CPET. Conventional analysis of differential 

gene expression comparing the average post-CPET expression to average baseline did not 

identify significant genes within cases or controls. Because our study design includes samples 

collected before and after exercise from the same individual, we could leverage a paired analysis 

to reduce inter-individual variation, which can compromise signal detection. For each cell-type 

(cluster), we calculated the expression ratio for each gene per individual in response to exercise, 

retaining only genes that met detection criteria. This approach generates a ΔRNA metric per 

individual, which we compared between the cohorts of patients and controls (Figure 6A). Tests 

for differential expression of individual genes again failed to reach significance. However, 

GSEA, which can detect more subtle but coordinated shifts in gene expression across a large 

number of genes, showed a marked number of enriched gene sets in platelets, with minimal 

signal or no signal in other cell types (Figure 6B). 

 

Gene sets related to platelet function were significantly enriched in the paired analysis of 

platelets, with positive enrichment in case ratios (post-CPET/baseline) compared to controls 

(Figures 6C and 6D). To examine the behavior of platelets at each timepoint, we repeated the 

GSEA analysis directly comparing ME/CFS patients and control cohorts at baseline and post-

CPET. This analysis revealed reduced expression of platelet-function gene sets at baseline in the 

ME/CFS cohort compared to controls (Figure 6C). Interestingly, these enrichments were not 

evident in the post-CPET samples. These analyses revealed that the platelet cluster manifests a 

strong signature of dysregulation only prior to exercise in ME/CFS patients, an observation 

which suggests that strenuous exercise alters platelets in ME/CFS individuals. 
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Other notable gene sets in the paired GSEA analysis for platelets shared a high number of 

ribosomal protein genes (Figure 6E, Supplemental File S8). Again, this enrichment derived from 

differences in platelets at baseline in ME/CFS cases compared to controls, with no significant 

enrichment in the post-CPET cohorts. Therefore, the negative enrichment scores for the paired 

analysis reflects an increase in the detection of ribosomal proteins and translation machinery at 

baseline in ME/CFS cases. Notably, no other cell types exhibited a significant change due to 

exercise in the paired GSEA analysis (Figure 6B). 

 

We note that aberrant platelet activation and fibrin amyloid microclots have recently been 

reported in patients with Long COVID (Pretorius et al., 2022) as well as in ME/CFS patients, 

though the microclot load was found to be less in the ME/CFS cohort (Nunes et al., 2022). These 

studies correspond most closely to the baseline state assessed here, and our results also suggest 

that dysregulation, as judged by transcriptome analysis, occurs at baseline. Nevertheless, it is 

clear that the CPET induces a marked change in the transcriptomes of platelets in ME/CFS 

individuals. 

 

 

DISCUSSION 

This study provides a new and important resource to investigate immune dysregulation in 

ME/CFS. Here, because classical monocytes manifested the strongest signal of dysregulation in 

ME/CFS, we focused on exploring changes in their gene expression program, as a novel and 

potentially important aspect of the disease. However, alterations to additional immune cells are 

clearly also an important aspect of ME/CFS, with the strongest signal observed in CD4+ T cell 

subsets within our data, including in antigen-inexperienced naïve CD4+ T cells. Patterns of 

dysregulation limited to a very small subset of cells, such as in adaptive immune cells specific to 

a particular antigen (or antigens), are difficult to detect in scRNA-seq data. Nevertheless, it is 

worth noting that we observe changes in gene expression programs in clonally diverse antigen-

experienced CD4+ T cells and in other such adaptive cell populations, an observation consistent 

with dysregulation of adaptive immune cells occurring via cytokine-mediated bystander 

regulation (Shim et al., 2022)  rather than via T-cell receptor specific interactions. Nevertheless, 
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it is clear that the largest alterations in ME/CFS PBMCs detectable by scRNA-seq are found in 

monocytes. 

 

Multiple lines of evidence implicate dysregulation of classical monocytes in ME/CFS. In 

particular, our analysis discovered upregulation of chemokine/cytokine pathway genes in patient-

derived monocytes as well as a clear correlation between the proportion of predicted-diseased 

monocytes and multiple metrics of disease severity. Future studies investigating macrophages 

from tissue biopsies isolated from ME/CFS patients will be important in this regard. CellChat 

analyses also identified striking alterations in intercellular communication within the immune 

system of ME/CFS. In contrast to healthy controls, where a diverse network of intercellular 

interactions is predicted, monocytes are predicted to contribute additional overall information 

exchange in ME/CFS. This observation may be a consequence of a prolonged exposure to an 

inflamed environment in ME/CFS patients, which can alter cellular metabolism and functions 

(Lacourt et al., 2018). We also detected conflicting pathways related to immune response as 

upregulated in classical monocytes, specifically, both pro-inflammatory and anti-inflammatory 

responses. For example, although we detected an upregulation of the pro-inflammatory IL-1β 

pathway, the anti-inflammatory IL-10 pathway was also elevated within ME/CFS cases. These 

observations call for more extensive characterization of classical monocytes in ME/CFS to 

identify the overall response of such cells in an abnormal environment. Future studies that 

integrate plasma cytokine analysis with monocyte state in a common cohort of patients (and 

controls) will be particularly valuable. 

 

How might aberrant monocyte activation contribute to symptoms experienced by ME/CFS 

patients? Monocytes express multiple types of chemokine receptors, which in response to 

different chemokines, direct monocytes to a variety of tissues. Here, we observed increased 

expression of CCL3 and CCL4, which have been shown to direct monocyte homing to joints and 

adipose tissues in osteoarthritis and adipose tissue in obesity (Sindhu et al., 2019; Zhao et al., 

2020). Thus, our observations suggest that ME/CFS patients experience continual improper 

recruitment of monocytes to one or more tissues. If this hypothesis is correct, it will be important 

to examine the balance of pro- and anti-inflammatory macrophages in tissues from patients, and 

whether the macrophages themselves are altered.  
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A previous study identified aberrant platelet activity in ME/CFS (Nunes et al., 2022), although 

another study, using different methods, did not observe alterations in platelets (Kennedy et al., 

2004). There is clear evidence of aberrant platelet activation in Long COVID (Pretorius et al., 

2021). Our analysis suggests an important refinement to the hypothesis linking platelet activation 

to ME/CFS (and perhaps Long COVID): although aberrant activation may be present at baseline, 

it appears that the platelet population in circulation undergoes a substantial change in response to 

strenuous exercise (CPET, within 24 hours), and therefore a clear association with PEM. Our 

data suggests a model in which the population of circulating platelets in patients shifts within 24 

hours following strenuous exercise. At baseline, the patient platelet transcriptome is biased 

towards a lower expression program of genes important in platelet activation. Following 

exercise, the platelet transcriptome in patients looks relatively normal, indicating either a loss of 

platelets harboring defective transcriptomes or a large infusion of new platelets. We envision two 

models to explain our observations relating to platelet dysregulation in ME/CFS and the 

alteration in their gene expression post-CPET. First, perhaps a subset of platelets in patients exist 

in a state that renders them susceptible to activation, and strenuous exercise induces microclot 

formation, removing them from circulation; thus, post-CPET, only normal platelets remain. The 

second model envisions that exercise induces an influx of normal platelets, perhaps in 

combination with clearance (or clot formation) of older platelets. 

 

Platelets, lacking a nucleus, have unconventional transcriptomes. Upon their release into 

circulation, platelets inherit the transcriptome and proteomes of their megakaryocytes of origin 

without introduction of any new transcripts. Therefore, the platelet transcriptome degrades 

without replenishment as platelets circulate in the body. The rate of RNA degradation in vitro 

shows a fast degradation with half of the RNA lost after six hours and almost all (98%) at 24 

hours (Angénieux et al., 2016). Selective degradation of the platelet transcriptome has also been 

reported, where transcripts encoding the translational machinery degrade slower than others 

(Mills et al., 2017). Our analysis shows that platelets at baseline in ME/CFS subjects possess a 

transcriptome indicative of older platelets, with a pronounced reduction in transcript levels for 

genes essential to platelet activation and function and an increase in ribosomal protein genes and 

other genes relevant to translation. However, the exercise challenge erases such signals, which is 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512091


 19

a striking phenomenon. In healthy individuals, acute exercise has been reported to activate 

platelets (Heber & Volf, 2015) and upregulate both pro-inflammatory and anti-inflammatory 

cytokines (Docherty et al., 2022), but prior studies have not explored the effect of exercise on 

platelet function in ME/CFS.  

 

Distinct from monocyte dysregulation, one of the most prominent features of transcriptome 

dysregulation in ME/CFS is repression of translational machinery and ribosomal protein genes, 

which we observed across multiple cell types. Regulation of such genes is complex, involving 

multiple pathways including p53 and TOR (Kang et al., 2021), although in general, the 

repression we observe suggests that multiple immune cells exist in a more quiescent or less 

proliferative state than normal. For example, normal activation of CD8+ T cells requires 

increased translation (Araki et al., 2017). It is worth noting that both CD4+ and CD8+ T cells in 

ME/CFS exhibit reduced glycolysis (Mandarano et al., 2020) and NK cells in patients are also 

known to have impaired cytotoxic activity (Eaton-Fitch et al., 2019). Future studies could be 

designed to systematically examine these questions, first testing for correlations between these 

molecular changes, and if such correlations exist, seeking a mechanistic understanding of them. 

 

Importantly, ME/CFS and Long COVID, together with other post-viral diseases, have been 

suggested to share common molecular alterations (Tate et al., 2022). Nevertheless, at present this 

suggestion is, largely, based on an overlapping (although not identical) set of symptoms, rather 

than molecular or cellular data. Our high-resolution data, describing the circulating immune 

system in ME/CFS, will be an ideal comparison set for future studies of Long COVID, with the 

potential to identify both congruent and divergent aspects of immune function in ME/CFS and 

Long COVID. In this regard, future studies will determine whether classical monocyte 

dysregulation is also the most prominent signal in the circulating immune system of Long 

COVID patients, and more importantly, whether the genes and gene sets impacted in ME/CFS 

are also observed in monocytes from Long COVID patients. 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512091


 20

Acknowledgements  

This study was supported by NIH grant U54NS105541 to M.R.H., A.G. and D.C.S., and by UL1 

TR 002384 from the National Center for Advancing Translational Sciences (NCATS) of the 

National Institutes of Health (NIH). We thank the Cornell Biotechnology Resource Center 

(BRC) Genomics Facility, Flow Cytometry Facility, and Transcriptional Regulation and Gene 

Expression Facility (TREx) for providing excellent services. Thanks to Dr. John Chia for 

invaluable support in recruiting and screening ME/CFS individuals and controls. We would like 

to send our heartfelt thanks to the ME/CFS subjects who participated in this study. 

 

Author Contributions: Conceptualization A.G.; Methodology and Software F.A., H.Z., J.K.G; 

Validation L.T.V. and E.A.F.; Formal Analysis F.A., H.Z., D.S.H.I., Y.K., W.C., P.R.M. and 

J.K.G.; Investigation F.A., L.T.V., H.Z., E.A.F., D.S.H.I., Y.K., W.C., P.R.M. and J.K.G.; 

Resources C.J.F., G.E.M., S.M.L., J.K.C, B.A.K., J.S., M.R.H., X.M. and D.C.S.; Data Curation 

A.F., J.K.G.; Writing – Original Draft A.G.; Review and Editing F.A., L.T.V., H.Z., D.S.H.I., 

E.A.F., M.R.H., J.K.G. and A.G.; Visualization F.A., L.T.V., H.Z., D.S.H.I. and J.K.G; 

Supervision and Project Administration A.G. and J.K.G.; Funding Acquisition A.G., M.R.H. and 

D.C.S. 

 

 

Declaration of interests The authors declare no competing interests. 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512091


 21

Figure legends 

Figure 1. Single cell transcriptomics of the ME/CFS immune system 

(A) Study design. PBMCs were collected at baseline (BL) and 24 hours post-CPET (PC) for both 

healthy sedentary controls and ME/CFS subjects and used for single-cell gene expression 

profiling (scRNA-seq). (B) Demographic and clinical parameters for patient and control cohorts. 

Oxygen consumption was measured during CPET. The change in maximal oxygen consumptions 

(VO2 at peak) between the VO2 peaks at BL and at PC is indicated. Using the SF-36v2® Health 

Survey, general health score was self-evaluated with 100 as perfect health and 0 as worst health. 

Graphs represent mean ± SEM. (C) Quality control metrics, showing genes and transcripts per 

cell (left and middle panels, respectively) and percent mitochondrial (Mt) reads per cell (right 

panel), compared between four indicated cohorts. (D) Integrated UMAP with all samples. 

Clusters are labeled in order of decreasing number of cells with cluster 0 being the most and 27 

being the least populous. (E) Relative expression of canonical and marker genes (x-axis) across 

clusters (y-axis), dots indicate average expression and percentage of cells with detected 

expression (color and size, respectively). (F) Cell types with significant differences in relative 

cell numbers between cohorts. *p < 0.05. 

 

Figure 2. Dysregulation of immune cells in ME/CFS 

(A) Counts of differentially expressed (DE) genes (y-axis) per immune cell cluster (see Figure 1 

for identities), comparing case and control cells at baseline (BL) and post-CPET (PC), and 

compared between control cells at BL and PC. (B) Counts of the strongest significantly enriched 

gene sets (excluding those related to translation and with an absolute normalized enrichment 

score (NES) less than 2) across the largest immune cell clusters. (C) Representative GSEA gene 

set (GOBP cytoplasmic translation) showing lower detection of ribosomal proteins in major 

clusters (NES < 0) at both BL and PC in ME/CFS (red and purple, respectively). Dots are sized 

to denote significance (q-values); x-axis indicates NES. (D) GSEA results for classical 

monocytes (cluster 2) comparing patient and control cohorts at baseline and post-CPET (red and 

purple, respectively), focusing on gene sets related to chemokine/cytokine signaling. Dots are 

sized to denote significance; x-axis indicates NES. (E) Single sample scores generated using 

GSEA of leading-edge genes from panel D. ** p < 0.01. (F) Differential expression of genes 
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associated with monocyte migration and differentiation at baseline and post-CPET in classical 

monocytes. * p < 0.05, ** p < 0.01. 

 

Figure 3. Complete transcriptomics of classical monocytes 

(A) Purification of classical monocytes from PBMCs. PBMC samples from female cases and 

controls collected post-CPET was utilized for classical monocyte isolation and bulk RNA-seq 

(top); all individuals were distinct from those profiled with scRNA-seq. Flow cytometry analysis 

confirmed enrichment of classical monocytes (CD14+CD16-, bottom). (B) PCA of four patient 

and four control bulk transcriptomes from classical monocytes. (C) Significantly enriched gene 

sets between patient and control cohorts by GSEA. Dots are sized to denote significance 

(adjusted p-values); x-axis indicates NES. (D) Differentially expressed genes between patient 

and control. Dots are sized to denote significance (p-values). 

 

Figure 4. Heterogeneity in classical monocyte cells from ME/CFS patients 

Data represent baseline female samples, unless described otherwise. (A) Schema describing 

positive unlabeled learning strategy to stratify single-cell transcriptomes from patients. (B) 

UMAP for classical monocyte cells, tiled and colored by predicted disease state. (C) Percentage 

of cells predicted as diseased (pD) per individual. (D) Correlation (Spearman) between 

percentage of pD cells per individual, compared between baseline and post-CPET. (E) Calinski-

Harabasz index comparing performance of clustering across different stratifications of the single-

cell dataset (y-axis). (F) Correlation (Spearman) between MFI-20 score and percentage of pD 

cells in cases. (G) Gene sets most differentially enriched between pD and predicted-normal (pN) 

cells from cases. Dots are color-coded to indicate enrichment in pD (blue) or pN (yellow) cells; 

sizes indicate corrected P values. (H) Genes (y-axis) most differentially expressed (x-axis) 

between pD and pN cells in an intra-sample paired analysis. (I) Expression of CCL4 (y-axis) 

from individual samples, aggregating expression over pD and pN cells from cases and over all 

cells from controls (x-axis and color-coded). (J) Top 6 gene sets that are differentially enriched 

between pD and pN cells, based on GSEA of differential expression of genes between each 

subset of cells paired by sample.  (K) Pseudobulk PCA from aggregated cells from control 

samples (yellow), pN cells from case samples (green), and pD cells from case samples (blue), 
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partitioned also by sex. (L) Genes contributing to negative values for principal components 2 

(top) and 3 (bottom) in panel K. 

 

Figure 5. Intercellular signaling in the circulating ME/CFS immune system 

(A) Schema depicting the CellChat strategy to detect cell-cell communication in scRNA-seq 

datasets. (B) Circle plot showing the differential number of interactions (case minus control), 

aggregating clusters of similar cell types. Blue indicates case cells exhibit more interactions than 

control cells; orange indicates control cells exhibit more interactions. (C) Scatter plot of 

differential incoming versus outgoing interaction strength in classical monocyte cells (cluster 2). 

Positive values indicate increased signaling strength in patients, and vice versa. (D) Heatmap of 

overall signaling for pathways dysregulated (y-axis) for classical monocytes receiving signaling 

from different cells (y-axis; cluster identifiers from Figure 1). Top bar plot indicates aggregate 

interaction strength of incoming signals; right bar plot indicates aggregate interaction strength of 

outgoing signals. (E) Bar plot of communication probabilities between specific ligand-receptor 

pairs in the CCL pathway, shown separately for case (blue) and control (orange) cells.   

 

Figure 6. Aberrant platelet transcriptomes coincident with PEM in ME/CFS 

(A) Schema depicting paired analysis (intra-individual expression) of gene expression altered by 

strenuous exercise in ME/CFS patients compared to controls. (B) Total number of significantly 

enriched gene sets across clusters (x-axis) in a paired analysis comparing case and control ∆RNA 

measurements with GSEA. (C) GSEA results for significantly enriched gene sets related to 

platelet function. GSEA analyses included the comparison of paired ∆RNA measurements 

between cases and controls (dark purple) as well as comparing group-averages at baseline (red) 

and post-CPET (none detected). (D) Enrichment plot depicting representative gene sets related to 

platelet function using the intra-individual paired approach. (E) Enrichment plot depicting a 

representative gene set related to translation using the intra-individual paired approach. 
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METHODS 

 

RESOURCE AVAILABILITY 

 

Lead contact 

• Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Andrew Grimson (agrimson@cornell.edu). 

 

Materials availability 

• This study did not generate new unique reagents. 

 

Data and code availability 

• De-identified human single-cell and bulk RNA-seq data have been deposited at GEO. 

• Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 

Human Subjects 

The human subjects research described in this publication was approved by the Weill Cornell 

Medical College and Ithaca College Institutional Review Boards and participants provided 

written informed consent prior to participation as previously described (Germain et al., 2022). 

Participants at 3 sites donated PBMCs and demographic information as part of the Cornell 

ME/CFS Collaborative Research Center. The specific cohort in this study was selected using 

age, BMI, sex, and peak VO2 from cardiopulmonary exercise tests (CPETs). Age and BMI 

ranges were matched to minimize confounding factors between cases and controls (Figure 1B).  

Sex was considered to ensure that the cohort matched disease prevalence where considerably 

more females than males report having ME/CFS (Bakken et al., 2014; Jason et al., 1999). Cases 

were selected that demonstrated a considerable decrease in peak VO2 over the course of 2 CPETs 

conducted as part of the larger study (Germain et al., 2022) (Figure 1B), as an objective basis for 

physiological dysfunction within the ME/CFS participants (Keller et al., 2014).  
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The Multidimensional Fatigue Inventory (MFI-20) (Smets et al., 1995) was used to assess the 

level of fatigue in cases. The SF-36v2® Health Survey (John E. Ware, 2007) was used to 

compare general health and quality of life between cases and controls. A modified version of the 

Chronic Fatigue Syndrome severity score (Baraniuk et al., 2013) was used to measure post-

exertional malaise (PEM). The severity score measured PEM on a 0-10 scale over the past 

month. The MFI-20, SF-36v2, and PEM severity score are all self-reported. The MFI-20, SF-

36v2, and past month-PEM severity were completed before visiting the test site to perform the 

CPETs. Current PEM severity was then serially measured at the test site prior to CPET and then 

every two days post CPET for at least ten days to measure recovery.  

 

In order to preserve anonymity in the public data repository, the subjects’ ages at the time of 

sample collection are coded by age bin (1: >= 18 to <= 35 years; 2: > 35 to <= 45 years; 3: > 45 

to <= 55 years; 4: > 55 to <= 70 years). 

 

METHOD DETAILS 

 

PBMC isolation 

ME/CFS cases and healthy sedentary controls participated in a larger study conducted by the 

Cornell ME/CFS Collaborative Research Center as previously described (Germain et al., 2022). 

This study utilized PBMCs processed from whole blood collected from each participant over the 

course of two days, separated by a cardiopulmonary exercise test (CPET, Figure 1A).  

 

Whole blood was collected in EDTA tubes and centrifuged on the day of collection for 5 minutes 

at 500 rcf prior to removing the plasma fraction. The remaining sample was diluted with equal 

parts PBS and transferred to a SeptMate™ Tube (Stemcell Technologies) containing 

Histopaque®-1077 (Sigma-Aldrich). SeptMate™ Tubes were then centrifuged for 10 minutes at 

1,200 rcf and the buffy coat layer was transferred to a new tube. After two washes with PBS 

(first wash was centrifuged for 10 minutes at 120 rcf for without brake; the second was 

centrifuged for 8 minutes at 300 rcf), the resulting pellet was resuspended in PBMC storage 

media (60% RPMI 1640, 30% heat inactivated FBS, and 10% DMSO), counted, and divided into 
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aliquots of ~1 - 10 million cells per mL. PBMC aliquots were promptly transferred to -80 °C for 

slow freeze down in a Mr. Frosty™ Freezing Container (Thermo Scientific). After 24 hours, the 

PBMCs were transferred to liquid nitrogen for long-term storage. 

  

Single-cell gene expression profiling  

Samples were co-processed for single-cell RNAseq (scRNAseq) in batches of 4-8 PBMC 

aliquots, such that each batch contained paired baseline and post-CPET samples from the same 

individual and a mix of cases and controls. PBMCs were prepared for scRNAseq using the 10x 

Genomics Demonstrated Protocol: Fresh Frozen Human Peripheral Blood Mononuclear Cells for 

Single Cell RNA Sequencing (CG00039) as a guide. Briefly, vials were rapidly thawed in a 37°C 

water bath and 500µL was transferred to a 50ml centrifuge tube using a wide-bore tip. Cells were 

serially diluted 1:1 with RPMI 1640 (Gibco # 11875093) plus 10% heat inactivated FBS (Gibco 

#10438026) in one-minute increments until the total volume reached 32 ml. Cells were 

centrifuged in a swinging bucket rotor at 300 rcf for 5 minutes at room temperature. After 

discarding the majority of the supernatant, cells were gently resuspended in the residual volume 

with a regular-bore tip to achieve single cell suspension, transferred to a 15ml centrifuge tube 

and the volume brought up to 10ml with RPMI 160 plus 10% heat inactivated FBS.  Cells were 

centrifuged again at 300 rcf for 5 minutes at room temperature, and the pellet was gently 

resuspended in 1 ml of 1x PBS (BioWhittaker #17-516F) plus 0.04% BSA (Invitrogen 

#AM2616) with a wide-bore tip. The cells were transferred to a 2 ml microfuge tube, centrifuged 

at 300 rcf for 5 minutes in a swinging bucket centrifuge at room temperature, and resuspended in 

1x PBS plus 0.04% BSA to a specified cell concentration to load ~8,000 cells onto the 10x 

Chromium chip for a target capture of 5,000 cells. Cells were counted on a TC-20 cell counter 

(Bio-Rad) multiple times to track total and live cell counts. In total, 120 PBMC samples were 

processed in 18 batches and only two paired samples from a control individual failed the 

minimum viability tests and were excluded from the study. 

 

Viable cells were submitted to the Cornell BRC Genomics Facility for processing with the 

Chromium Single Cell 3� v3 kit (CG000183 Rev A and Rev B, 10x Genomics). The Facility 

prepared a total of 120 single-cell RNAseq libraries; all underwent quality checks for size 

distribution on a Fragment Analyzer 5200(Agilent) and molarity on a QX100 Digital Droplet 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512091


 27

PCR Machine (Bio-Rad). Libraries were sequenced in an initial run to generate preliminary data 

quality metrics, and additional sequencing depth was generated as required to meet the target 

coverage for each sample. The libraries generated in batches 1-13 were primarily sequenced on a 

NextSeq500 (R1:28bp, R2:55bp) and the libraries from batches 14-18 were sequenced on a 

HiSeq2000 followed by a NovaSeq6000 (both PE 2x150bp). A final sequencing run on a 

NextSeq2000 brought all samples to the minimum target depth (see below). 

   

Monocyte isolation and profiling  

 

Magnetic enrichment 

Samples from individuals in the larger Cornell Center study that were not included in the 

scRNA-seq cohort were selected for monocyte profiling. Specifically, we used PBMCs from 

eight post-CPET females (4 cases with low SF36v2 PCS scores and 4 controls, matched by age 

and BMI). Vials containing cryopreserved PBMCs were rapidly thawed in a 37°C water bath and 

serially diluted 1:1 with RPMI 1640 plus 10% heat inactivated FBS in one-minute increments 

until the total volume reached 32 mL. Cells were centrifuged in a swinging bucket rotor at 300 

rcf for 5 minutes at room temperature and the pellet was gently resuspended in 10ml MACS 

buffer (Miltenyi Biotech Cat# 130-091-376). After two washes in MACS buffer, centrifuging at 

300 rcf for 5 minutes at room temperature, the pellet was resuspended in 1 ml of MACS buffer 

and cells were counted with a TC-20 cell counter (Bio-Rad). Monocytes were initially purified 

with the Classical Monocyte Isolation kit, human (Miltenyi Biotech Cat#130-117-337), then 

additionally enriched for CD14+ cells using the CD14 MicroBeads (Miltenyi Biotec Cat#130-

050-201). After counting, 20,000 – 140,000 cells were removed to 250µl of MACs buffer and 

750µl Trizol LS (ThermoFisher) added to lyse cells for bulk RNAseq profiling. Trizol lysates 

were frozen at -80 °C prior to RNA extraction and submitted to the Cornell Transcriptional 

Regulation and Expression (TREx) Facility for RNA extraction and RNAseq. Remaining cells 

were immediately analyzed with flow cytometry. 

 

Flow cytometry 

Human TruStain FcX™ Fc Receptor Blocking Solution (BioLegend Cat#422302) was added 

according to the number of cells, mixed well and incubated for 10 minutes at room temperature. 
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Cells were divided into separate microfuge tubes for staining with fluorescently-labeled 

antibodies (CD3-FITC, CD45-PerCP, CD16-PE, and CD14-APC-CyC7 from BioLegend) for 

flow cytometry and incubated on ice for 30 minutes. 1 ml of FACS buffer (heat inactivated FBS, 

0.5M EDTA pH8.0 1x PBS) was added to the cells, mixed well and centrifuged at 300 rcf for 5 

minutes at 4°C. The supernatant was removed and the cells were washed once more. The final 

cell pellet was resuspended in 100µl of FACS buffer and kept on ice in the dark. Sytox blue 

(0.2µl/ 100µl or less) was added directly before flow cytometry analysis and analyzed on a 

Thermo Fisher Attune NxT at the Cornell BRC Flow Cytometry Facility.  

 

Bulk RNAseq 

At the TREx Facility, RNA was extracted from Trizol following the manufacturer’s protocol 

with the following exceptions: the aqueous fraction was re-extracted with an equal volume of 

chloroform in Phase Lock Gel Heavy tubes (QuantaBio) and 2 µl GlycoBlue (Thermo) was 

added prior to precipitation to improve RNA recovery. Total RNA samples were quantified with 

the Qubit HS RNA assay (Thermo) and integrity assessed on a Fragment Analyzer (Agilent) to 

confirm RQN values ≥ 7. Bulk polyA+ RNAseq libraries were generated from 25ng total RNA 

with the NEBNext Ultra II Directional RNA kit (New England Biolabs). Libraries were 

quantified with a Qubit HS DNA assay (Thermo) and sequenced on a NovaSeq6000 (Illumina) at 

Novogene to generate a minimum of 20M PE 2x150bp reads per sample. 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 

Single-cell RNAseq 

 

Data processing 

Fastq files were generated with cellranger mkfastq (10x Genomics) by the sequencing facility 

(BRC Genomics Facility or Novogene). Raw count tables were generated with cellranger count 

v6 (10x Genomics) [cellranger count --id=ID --transcriptome=/path/to/refdata-gex-GRCh38-

2020-A/ --fastqs=/path/to/directories --sample=list --expect-cells=5000 --r1-length=28 --r2-

length=55 –nosecondary]. Because sequencing read lengths from different instruments varied, 
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and this was observed to contribute to bias in the count tables, reads were trimmed to match the 

minimum length across the dataset (R1 = 28nt, R2 = 55nt). 

 

Single-cell integration and clustering 

Count tables from all samples were imported into R to analyze with Seurat (v4.1.0) (Hao et al., 

2021). Initial filtering removed cells that did not meet minimum quality criteria (nFeature_RNA 

> 500 & nFeature_RNA < 5000 & percent.mt < 30 & log10GenesPerUMI > 0.80). A pair of 

samples from the same control individual were discarded due to an excess of counts for 

mitochondrial genes indicating a sample quality problem, leaving a total of 116 samples in the 

final dataset. Normalization of UMI counts for each library was performed using the 

SCTransform function [SCTransform(sobj, method = "glmGamPoi", vars.to.regress = 

"percent.mt", return.only.var.genes = FALSE)]. Samples were integrated with the R script 

RunHarmony (Korsunsky et al., 2019) [wrapper for RunUMAP(sobj, reduction = "harmony", 

dims = 1:50)). Clustering with Seurat [FindNeighbors(sobj, reduction = "harmony", dims = 1:50) 

%>% FindClusters(resolution = 0.6] generated a total of 29 clusters. Cell doublets within each 

sample were determined with DoubletFinder (v2.0.3) (McGinnis et al., 2019) and removed from 

the dataset. The FindMarkers() function in Seurat was used to determine marker genes between 

clusters and genes that distinguish case and control cells within each cluster.  

 

Pseudobulk analysis 

Raw pseudobulk counts were extracted from the Seurat object as the sum of counts per sample, 

per cluster. Normalization of pseudobulk matrices with DEseq2 (v1.30.0) (Love et al., 2014) 

generated normalized counts for downstream analyses, and was rerun as the cell assignments or 

cohorts were altered for different analyses. DEseq2 was used to detect differentially expressed 

genes between groups, using ‘minReplicatesForReplace = Inf’ to reduce the contribution from 

spurious outliers.  

 

The log2-fold change calculation from DEseq2 was used for gene set enrichment analysis (using 

R packages clusterProfiler (default parameters: v3.18.1) (Yu et al., 2012) or fgsea (Korotkevich 

et al., 2021) (minimal gene set size 5, maximum gene set size 2000, eps 0: v1.20.0) to run the 

GSEA (Mootha et al., 2003; Subramanian et al., 2005) algorithm, after filtering out genes with 
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low coverage. For example, the GSEA analysis for clusters with more than 10,000 cells was 

filtered to retain only the top quartile of genes based on the median normalized counts across all 

samples. The Hallmark, C2:CP and C5 catalogs from the MSigDB database (Subramanian et al., 

2005) were used for enrichment tests. 

 

For the paired analysis controlling for the individual of origin, a ratio was calculated for each 

gene and each individual when normalized counts were available for both measurements and 

only for individuals with at least 4 cells contributing to pseudobulk counts per timepoint. 

Normalized counts were floored to 1 to reduce the contribution from poorly detected genes. 

GSEA analysis used the log2-fold change metric calculated from the geometric mean of case and 

control ratios per individual for genes with at least 6 ratios per group, and the Wilcoxon rank-

sum test was used to compare groups.  

 

Scores were calculated per sample (or per ratio) with the R package singscore (Foroutan et al., 

2018), using a unique list of genes derived from the GSEA leading edge genes from gene sets 

related to chemokine/cytokine signaling (listed in Figure 2D), and the Wilcoxon rank-sum test 

was used to compare groups. 

 

Cell demographics analysis 

Cell counts per cluster per individual were normalized to the overall cell counts per individual 

library. We performed Wilcoxon rank-sum tests for the normalized cell counts in the healthy 

versus disease cohort at baseline and post-exercise respectively, as well as for normalized cell 

counts at baseline versus post-exercise separately for cases and controls. 

 

Machine Learning classifiers 

Positive unlabeled learning was performed based on publicly available methods and codes with 

the scRNA-seq dataset as input (Alon Agmon, 2020/2022; Elkan & Noto, 2008). Briefly, the 

algorithm took the normalized single cell gene expression matrix of cluster 2 (classical 

monocytes), using data from either females or males at baseline or post-CPET (data slot of the 

RNA assay in the Seurat object) as input. Cells from control individuals are labeled as positive, 

and cells from case individuals are unlabeled. Twenty percent of labeled cells (i.e., cells from 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.13.512091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.13.512091


 31

control individuals) were held out, and the remaining 80% labeled cells together with all 

unlabeled cells (i.e., cells from case individuals) were used to train an XGB classifier (using 

Python package XGBoost (Chen & Guestrin, 2016), with default parameters) separating labeled 

and unlabeled cells. Next, the reserved labeled cells were projected onto the labeled/unlabeled 

classifier to estimate the probability of cells being labeled if they are positive (control-like). In 

the following step, all labeled and unlabeled cells were projected onto the labeled/unlabeled 

classifier. Finally, based on the theorem of conditional probability, the probability of unlabeled 

cells being positive can be estimated by the probability of the cells being labeled divided by the 

probability of cells being positive when labeled. Predicted probabilities were averaged across 24 

iterations.  

 

To select the probability threshold that determines if a cell is predicted as healthy or diseased, the 

Calinski-Harabasz Index of predicted diseased and predicted control cells was calculated based 

on the top 50 principal components of the single cell expression matrix across thresholds 0.1-0.9 

(Figure S4A). The threshold with the highest Calinski-Harabasz Index was selected (0.4 for 

classical monocytes in females at baseline). Cells with probabilities higher than the threshold are 

considered as predicted control, and cells with probabilities lower than the threshold are 

considered as predicted diseased. 

 

To correlate the classifier performance with other metrics, the percentage of cells predicted as 

diseased were calculated for each individual. Spearman correlation was calculated by R package 

ggpubr v0.4.0 between percentage of cells predicted diseased at baseline compared to post-CPET 

in cases and controls, or between percentage predicted-diseased cells and demographic metrics 

(MFI-20 total score, general health score, SF-36 physical component score, and PEM maximum 

change) across individuals. PEM maximum change was calculated as the largest delta for the 

PEM symptom severity scores (from baseline to each of the survey timepoints post-CPET). 

 

To evaluate classifier performance, Calinski-Harabasz Indexes of cells partitioned by predictions 

and other sample metadata (sex, case/control, individual of origin) were calculated based on top 

50 principal components of the partitioned single cell expression matrix in PCA space, generated 

with RunPCA() from Seurat. 
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Differential expression between cells predicted diseased and control was performed by 

FindMarkers function in Seurat. All genes are included. GSEA on log2-fold changes of genes 

between predicted diseased and predicted control groups of cells was performed using R package 

fgsea v1.20.0 (Korotkevich et al., 2021), with minimal gene set size = 5, maximum gene set size 

= 2000 and eps = 0. The Hallmark gene sets and KEGG subset from the C2 catalog in MSigDB 

database (Subramanian et al., 2005) were used for enrichment tests. 

 

Paired analysis was performed by calculating the log2-fold changes between predicted-diseased 

and predicted-normal cells for each case individual. The ratios per genes were then averaged 

across case individuals and sorted based on differential expression levels. Pseudobulk gene 

expression was calculated by aggregating gene expression counts of cells partitioned by the 

predicted labels. Vst function in DESeq2 v1.34.0 (Love et al., 2014) was used to normalize the 

pseudobulk counts. PCA was performed on normalized pseudobulk counts using the R package 

prcomp and the loadings were then extracted from rotation of the PCA result. 

 

Inference of cell-cell communication 

CellChat (v1.1.3) (Vu et al., 2022) was used to infer cell-cell communication probabilities and 

identify signaling changes across healthy and diseased cell populations. We down-sampled each 

cluster to 500 cells from females, at baseline only, for a balanced comparison. We discarded 

clusters with fewer than 500 cells. Briefly, we first identified, for each cluster, differentially 

over-expressed ligands, receptors and cofactors in the human CellChatDB database (Jin et al., 

2021), then their average expression values were used to calculate communication probabilities 

between all cell groups. Interaction strength along specific intercellular signaling pathways was 

calculated by summarizing the communication probabilities of associated ligand-receptor pairs 

across all clusters. Comparison of healthy and diseased signaling networks was performed as 

described previously (Vu et al., 2022), with statistical significance of changes in communication 

probabilities determined by Wilcoxon rank-sum test and using only cells collected from females 

at baseline. 

 

Flow cytometry analysis 
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Raw compensated flow cytometry files (.fcs) were analyzed using Flowjo (v10.8.1). Cells were 

first gated by size and granularity. Single cells were selected by looking at forward scatter area 

and height and side scatter area and height. Live cells were selected by gating on Sytox blue 

negative events. Bulk monocytes were selected as CD45+CD3- cells. Monocyte subsets were 

analyzed by investigating surface expression of CD14 and CD16. Classical monocytes 

(CD14+CD16-) were gated based on fluorescent-minus-one (FMO) controls. 

 

Bulk RNAseq 

Fastq files were trimmed to remove 3′ low quality and adaptor sequences with TrimGalore (v0.6) 

(Babraham Bioinformatics - Trim Galore!, n.d.), a wrapper for cutadapt (Martin, 2011) and 

fastQC (Babraham Bioinformatics - FastQC A Quality Control Tool for High Throughput 

Sequence Data, n.d.), retaining reads ≥ 50bp. Trimmed reads were mapped to the reference 

genome (GRCh38 with Ensembl gene annotations) with STAR (v2.7) [--outSAMstrandField 

intronMotif , --outFilterIntronMotifs RemoveNoncanonical, --outSAMtype BAM 

SortedByCoordinate, --quantMode GeneCounts], which outputs a count table of reads per gene 

for each sample. DESeq2 (Love et al., 2014) was used to normalize raw counts, generate PCA 

(normalized by rlog) and MA plots, and analyze differential expression, using genes with more 

than 10 read counts in more than or equal to 3 libraries. The log2-fold change values from 

DEseq2 were used for GSEA analysis with R package fgsea v1.20.0 (Korotkevich et al., 2021) as 

described above, with minimal gene set size = 5, maximum gene set size = 2000, eps = 0 and 

gseaParam = 0. Hallmark, C2:KEGG and C2:Reactome gene sets from the MSigDB database 

(Subramanian et al., 2005) were used for enrichment tests. 
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Supplemental figure legends 

Supplemental Figure 1. Single cell transcriptomics of the ME/CFS immune system 

Related to Figure 1 

(A) Violin plot showing quality control metrics (nCount_RNA, nFeature_RNA, percent-MT, 

S.Score, G2M.Score) for each batch of samples (x-axis) processed on the 10x Genomics 

Chromium instrument. (B) Violin plot showing quality control metrics (nCount_RNA, 

nFeature_RNA, percent-MT, S.Score, G2M.Score) for each cluster (x-axis). (C) UMAP split by 

condition (Case-Baseline, Case-postCPET, Control-Baseline, Control-postCPET), showing 

representation of all clusters in each condition. (D) Relative cell numbers between cohorts across 

all clusters except clusters 4, 13, and 15 (see Figure 1F). 

 

Supplemental Figure 2. Dysregulation of immune cells in ME/CFS 

Related to Figure 2 

(A) PCA plots for pseudobulk analysis of gene expression for cluster 2 (classical monocytes, 

top) and cluster 19 (platelets, bottom). Left panels are colored by sex, center panels are colored 

by condition (Case-Baseline, Case-postCPET, Control-Baseline, Control-postCPET), and right 

panels are colored by batch (Chromium processing). In most clusters and as shown for cluster 2, 

sex explains the first principal component of variation in the gene expression profiles. Cluster 19 

is unique in not showing a strong sex bias. (B) GSEA results for comparisons of case versus 

control cohorts at baseline or post-CPET for clusters 9 (top) and 10 (bottom) for the same gene 

sets shown in Figure 2D, when the result is statistically significant (q-value < 0.05). Dots are 

sized to denote significance and colored to indicate the timepoint for the comparison of case 

versus control (Baseline or post-CPET); x-axis indicates normalized enrichment score (NES). 

(C) Single-sample scores for pseudobulk profiles for clusters 9 (top) and 10 (bottom) generated 

using the same list of genes as in Figure 2E (leading-edge genes from Figure 2D). * p-value < 

0.05. (D) Correlation (Spearman) for single-sample scores for each individual, comparing 

baseline (x-axis) to post-CPET (y-axis).  

 

Supplemental Figure 3. Complete transcriptomics of classical monocytes 

Related to Figure 3 
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(A)  MA plot showing average expression of genes (x-axis, DEseq2 baseMean) and the log2-fold 

change between case and control groups (y-axis). Dots are color-coded to indicate statistically 

significant differential expression and the group with higher relative expression (case, control; 

blue, yellow, respectively) at p-adjusted < 0.05. (B)  Differential expression of genes associated 

with monocyte migration and differentiation for classical monocytes collected as in Figure 3A 

between case and control groups. Dots are sized to denote significance (p-values) and colored to 

reflect the group with higher relative expression (case, control; blue, yellow, respectively); x-axis 

indicates log2-fold change (case/control). 

 

Supplemental Figure 4. Heterogeneity in classical monocyte cells from ME/CFS patients 

Related to Figure 4 

(A) Calinski-Harabasz Index comparing performance of classification for using different cutoffs 

for predictions, using female classical monocytes at baseline. The threshold with the maximum 

CH Index value for the classifier was selected (0.4). (B) Performance of a classifier for male 

cells: percentage of cells predicted as diseased (pD) per sample; males only, examined at 

baseline. (C) Correlation (Spearman) between percentage of pD cells per sample, comparing 

paired baseline and post-CPET values per individual; males only. (D) Correlation (Spearman) 

between general health score and percentage of pD cells per sample; females only, examined at 

baseline. (E) Correlation (Spearman) between SF-36 physical component score and percentage 

of pD cells per sample; females only, examined at baseline. (F) Correlation (Spearman) between 

maximum change in PEM symptom severity and percentage of pD cells per sample; females 

only, examined at baseline. (G) Correlation (Spearman) between MFI-20 total score and 

percentage of pD cells per sample; males only, examined at baseline. (H) Correlation (Spearman) 

between general health score and percentage of pD cells per sample; males only, examined at 

baseline. (I) Top 5 gene sets differentially enriched in GSEA comparing average log2-fold 

change (FindMarkers) in case and control cells from females at baseline. Dots are color-coded to 

indicate enrichment in case (blue) or control (yellow) cells and sized to indicate corrected P 

values. (J) Top 5 gene sets differentially enriched in GSEA comparing predicted normal (pN) 

and pD cells from males at baseline. Dots are color-coded to indicate enrichment in pN (yellow) 

cells and sized to indicate corrected P values. (K) Expression of TMEM176B (y-axis) across 

indicated groups (X-axis) per sample, aggregating expression of cells from controls (yellow), pN 
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cells from cases (green), and pD cells from cases (blue), partitioned by sex, all at baseline. (L) 

PCA (principal components 1 and 2) of pseudobulk profiles from aggregated subsets of cells 

from controls (yellow), pN cells from cases (green), and pD cells from cases (blue), partitioned 

by sex, all at baseline. 

 

Supplemental Figure 5. Intercellular signaling in the circulating ME/CFS immune system 

Related to Figure 5 

(A)  Heatmap of differential interaction strengths between cell types at baseline, from female 

samples following down-sampling. Top bar plot indicates aggregate interaction strength of 

incoming signals to indicated clusters (X-axis); right bar plot indicates aggregate interaction 

strength of outgoing signals from indicated clusters (Y-axis). Positive values (blue) indicate 

increased signaling strength in cells from ME/CFS patients compared to controls; negative 

values (orange) indicate decreased signaling strength. (B) Violin plots of log-normalized 

expression levels for genes annotated under the CCL pathway in CellChatDB, per cluster, 

showing female cells at baseline in the control (orange) and ME/CFS (blue) cohorts.  
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Supplemental Files 
 
File S1 FileS1_cellrangerMetricsSummary.csv Related to Figure 1 
 
File S2 FileS2_cellCountsPerCluster.csv  Related to Figure 1 
 
File S3 FileS3_GSEAsignificantCounts.csv  Related to Figure 2 
 
File S4 FileS4_GSEAresults-3monocyteClusters.csv  Related to Figure 2 
 
File S5 FileS5_LeadingEdgeGenes-ChemokinesCytokines.csv  Related to Figure 2 
 
File S6 FileS6_GSEAresults-bulkMonocyteRNAseq.txt  Related to Figure 3 
 
File S7 FileS7_CellChat-ligandReceptorPairs.xlsx  Related to Figure 5 
 
File S8 FileS8_GSEAresults-plateletCluster.csv  Related to Figure 6 
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