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Abstract 1 

According to the language of thought hypothesis, regular sequences are compressed in human 2 

working memory using recursive loops akin to a mental program that predicts future items. 3 

We tested this theory by probing working memory for 16-item sequences made of two 4 

sounds. We recorded brain activity with functional MRI and magneto-encephalography (MEG) 5 

while participants listened to a hierarchy of sequences of variable complexity, whose minimal 6 

description required transition probabilities, chunking, or nested structures. Occasional 7 

deviant sounds probed the participants’ knowledge of the sequence. We predicted that task 8 

difficulty and brain activity would be proportional to minimal description length (MDL) in our 9 

formal language. Furthermore, activity should increase with MDL for learned sequences, and 10 

decrease with MDL for deviants. These predictions were upheld in both fMRI and MEG, 11 

indicating that sequence predictions are highly dependent on sequence structure and become 12 

weaker and delayed as complexity increases. The proposed language recruited bilateral 13 

superior temporal, precentral, anterior intraparietal and cerebellar cortices. These regions 14 

overlapped extensively with a localizer for mathematical calculation, and much less with 15 

spoken or written language processing. We propose that these areas collectively encode 16 

regular sequences as repetitions with variations and their recursive composition into nested 17 

structures. 18 
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Introduction 19 

The ability to learn and manipulate serially ordered lists of elements, i.e. sequence 20 

processing, is central to several human activities (Lashley, 1951). This capacity is inherent to 21 

the ordered series of subtasks that make up the actions of daily life, but is especially decisive 22 

for the implementation of high-level human skills such as language, mathematics, or music. In 23 

non-human primates, multiple levels of sequence encoding ability, with increasing complexity, 24 

have been identified, from the mere representation of transition probabilities and timings to 25 

ordinal knowledge (which element comes first, second, third…), recurring chunks, and even 26 

abstract patterns (e.g. does the sequence obey the pattern xxxxY, i.e a repetition ending with 27 

a different element) (Dehaene et al., 2015; Jiang et al., 2018; Shima et al., 2007; Wang et al., 28 

2015; Wilson et al., 2013). We and others, however, proposed that the representation of 29 

sequences in humans may be unique in its ability to encode recursively nested hierarchical 30 

structures, similar to the nested phrase structures that linguists postulate to underlie human 31 

language (Dehaene et al., 2015; Fitch & Martins, 2014; Hauser et al., 2002). Building on this 32 

idea, it was suggested that humans would spontaneously encode temporal sequences of 33 

stimuli using a language-like system of nested rules, a “language of thought” (LoT) (Fodor, 34 

1975) (Al Roumi et al., 2021; Amalric et al., 2017; Chater & Vitányi, 2003; Feldman, 2000; Li & 35 

Vitányi, 1993; Mathy & Feldman, 2012; Planton et al., 2021; Wang et al., 2019). For instance, 36 

when faced with a sequence such as xxYYxYxY, humans may encode it using an abstract 37 

internal expression equivalent to « 2 groups of 2, and then an alternation of 4 ».  38 

The assumption that humans encode sequences in a recursive, language-like manner, 39 

was recently tested with a non-linguistic visuo-spatial task, by asking human adults and 40 

children to memorize and track geometric sequences of locations on the vertices of an 41 

octagon (Al Roumi et al., 2021; Amalric et al., 2017; Wang et al., 2019). Behavioral and brain-42 

imaging studies showed that such sequences are internally compressed in human memory 43 

using an abstract “language of geometry” that captures their numerical and geometrical 44 

regularities (e.g., “next element clockwise”, “vertical symmetry”). Indeed, behavioral results 45 

showed that the difficulty of memorizing a sequence was linearly modulated, not by the actual 46 

sequence length, but by the length of the program capable of generating it using the proposed 47 

language (“minimal description length” or MDL; for a definition and brief review, see Dehaene 48 

et al., 2022). In a follow-up fMRI experiment where participants had to follow the same 49 
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sequences with their gaze, activity in the dorsal part of inferior prefrontal cortex correlated 50 

with the LoT-complexity while the right dorsolateral prefrontal cortex (dlPFC) encoded the 51 

presence of embedded structures. These results indicate that sequences are stored in memory 52 

in a compressed manner, the size of this code being the length of the shortest program that 53 

describes the sequence in the proposed formal language. Working memory for sequences 54 

would therefore follow the “minimal description length” principle inherited from information 55 

theory (Grunwald, 2004) and often used to capture various human behavior (Chater & Vitányi, 56 

2003; Feldman, 2000; Mathy & Feldman, 2012). Wang et al. (2019) further showed that the 57 

encoding and compression of such sequences involved brain areas supporting the processing 58 

of mathematical expressions rather than language-related areas, suggesting that multiple 59 

internal languages, not necessarily involving classical language areas, are present in the 60 

human brain. In a follow-up study, Al Roumi et al. (2021) showed with MEG that the spatial, 61 

ordinal, and geometrical primitive codes postulated in the proposed LoT could be extracted 62 

from brain activity. 63 

In the present work, we ask whether this LoT may also explain the human memory for 64 

binary auditory sequences (i.e. sequences made up of only two possible items, for instance 65 

two sounds with high and low pitch, respectively). While arguably minimal, binary sequences 66 

preserve the possibility of forming structures at different hierarchical levels. They therefore 67 

provide an elementary window into the mental representation of nested language-like rules, 68 

and which aspect of this representation, if any, is unique to the human species. While it would 69 

make little sense to ask if non-human animals can store spoken human sentences, it does 70 

seem more reasonable to submit them to a protocol with minimal, binary sound sequences, 71 

and ask whether they use a recursive language-like format for encoding in working memory, 72 

or whether they are confined to statistical learning or chunking. The latter mechanisms are 73 

important to consider because they are thought to underpin the processing of several aspects 74 

of sequence processing in human infants and adults as well as several animal species, such as 75 

the extraction of chunks within a stream of syllables, tones or shapes (Wang et al., 2019), or 76 

the community structure that generates a sequence of events (Karuza et al., 2019; Schapiro 77 

et al., 2013). Yet, very few studies have tried to separate the brain mechanisms underlying 78 

rule-based predictions from those of probabilistic sequence learning (Bhanji et al., 2010; 79 

Kóbor et al., 2018; Maheu et al., 2021). Our goal here is to develop such a paradigm in humans, 80 
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and to test the hypothesis that human internal models are based on a recursive language of 81 

thought. 82 

The present work capitalized on a series of behavioral experiments (Planton et al., 83 

2021), we recently proved that human performance in memorizing binary auditory sequences, 84 

as tested by the capacity to detect occasional violations, could be predicted by a modified 85 

version of the language of geometry, based on the hierarchical combination of very few 86 

primitives (repeat, alternate, concatenate, and integers). This work considered binary 87 

sequences of various lengths (from 6 to 16 items) mainly in the auditory but also in the visual 88 

modality, and showed that MDL in such a formal language accurately predicted participants’ 89 

oddball detection performance. This was especially true for longer sequences of 16 items as 90 

their length exceed typical working memory capacity (Cowan, 2001, 2010; Miller, 1956). In 91 

this work, LoT predictions were compared to competitor models of cognitive complexity and 92 

information compression (Aksentijevic & Gibson, 2012; Alexander & Carey, 1968; Delahaye & 93 

Zenil, 2012; Gauvrit et al., 2014; Glanzer & Clark, 1963; Psotka, 1975; Vitz & Todd, 1969). The 94 

predictive power of LoT outperformed all competing theories (Planton et al., 2021). 95 

Here, we use functional MRI and magneto-encephalography to investigate the cerebral 96 

underpinnings of the proposed language in the human brain. We exposed participants to 16-97 

item auditory binary sequences, with varying levels of regularity, while recording their brain 98 

activity with fMRI and MEG in two separate experiments (see Figure 1). By combining these 99 

two techniques, we aimed at obtaining both the spatial and the temporal resolution needed 100 

to characterize in depth the neural mechanisms supporting sequence encoding and 101 

compression.  102 

In both fMRI and MEG, the experiment was composed of two phases. In a habituation 103 

phase, the sequences were repeatedly presented in order for participants to memorize them, 104 

thus probing the complexity of their internal model. In a test phase, sequences were 105 

occasionally presented with deviants (a single tone A replacing another tone B), thus probing 106 

the violations of expectations generated by the internal model (Figure 1B). We focused on a 107 

very simple prediction arising from the hierarchical predictive coding framework (Friston, 108 

2005). According to this view, and to much experimental research (Bekinschtein et al., 2009; 109 

e.g. Chao et al., 2018; Heilbron & Chait, 2018; Summerfield & de Lange, 2014; Wacongne et 110 

al., 2011), the internal model of the sequence, as described by the postulated LoT, would be 111 

encoded by prefrontal regions of the brain, and would send anticipation signals to auditory 112 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.15.512361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512361


6 
 

areas, where they would be subtracted from incoming signals. As a consequence, we predict 113 

a reciprocal effect of LoT on the brain signals during habituation and during deviancy. In the 114 

habituation part of the experiment, lower amplitude response signals should be observed for 115 

sequences of low complexity – and conversely, during low complexity sequences, we expect 116 

top-down predictions to be stronger and therefore deviants to elicit larger responses, than for 117 

complex, hard to predict sequences.  118 

 

 119 
Figure 1. Experimental design probing sequence knowledge in humans. A) List of sequences used in MEG and 120 
fMRI experiments. All sequences comprised 16 occurrences of the same two sounds (low or high pitch, here 121 
depicted as A and B). Sequences formed a hierarchy of complexity in the proposed language of thought (LoT, 122 
right column). They were categorized according to the minimal type of knowledge assumed to be required for 123 
optimal memory encoding (left column). Orange lines indicate the positions at which violations could occur. Stars 124 
(*) show sequences used only in the fMRI experiment. B) Overview of the presentation paradigm: In each session, 125 
participants were first presented with several repetitions of a fixed sequence (habituation period), then their 126 
working memory for that sequence was tested with occasional deviant probes. Each sequence was tested twice 127 
in two different sessions, while reversing the mapping between A/B items and low/high pitch. 128 
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Results 129 

Stimulus design 130 

We designed a hierarchy of sequences (figure 1) of fixed length (16 items) that should 131 

systematically vary in complexity according to our previously proposed language of thought 132 

(Planton et al., 2021) and whose gradations separate the lower-level representations of 133 

sequences that may be accessible to non-human primates (as outlined in Dehaene et al., 134 

2015a) from the more abstract ones that may only be accessible to humans (Figure 1A). 135 

First, much evidence indicates that the brain spontaneously encodes statistical 136 

regularities such as transition probabilities in sequential sensory inputs and uses them to make 137 

predictions (e.g. Barascud et al., 2016; Bendixen et al., 2009; McDermott et al., 2013; Meyniel 138 

et al., 2016; Saffran et al., 1996), an ability well within the grasp of various non-human animals 139 

(e.g., Hauser et al., 2001; Meyer & Olson, 2011). The first two sequences in our hierarchy 140 

therefore consisted in predictable repetitions (AAAA…) and alternations (ABABA…). In terms 141 

of information compression, such sequences can be represented with a very short expression 142 

in our LoT model, in which repetitions or alternations are primitive operations out of which 143 

more complex expressions are built.  144 

At the next level, we tested chunking, the ability to group a recurring set of contiguous 145 

items into a single unit, another major sequence encoding mechanism which is also accessible 146 

to non-human primates (Buiatti et al., 2009; Fujii & Graybiel, 2003; Saffran et al., 1996; Sakai 147 

et al., 2003; Uhrig et al., 2014). Thus, we included sequences made of pairs (AABBAABB…) or 148 

quadruplets (AAAABBBB…). Our LoT model attributes them a high level of compressibility, but 149 

already some degree of hierarchy (a loop of chunks). Relative to the previous sequenes, they 150 

require monitoring the number of repetitions before a new chunk starts (ABABA… = 1; 151 

AABBAA… = 2; AAAABBBB… = 4), and may therefore be expected to engage the number 152 

system, though to involve the bilateral intraparietal sulci, particularly their horizontal and 153 

anterior segments (Dehaene et al., 2003; Eger et al., 2009; Harvey et al., 2013; Kanayet et al., 154 

2018). 155 

The next level probed a more abstract level of sequence encoding, requiring nested 156 

structures, or a hierarchical representation of smaller chunks embedded in larger chunks. 157 

Although there is some debate on whether this level of representation could be accessed by 158 
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non-human animals, especially with extensive training (Ferrigno et al., 2020; Gentner et al., 159 

2006; Jiang et al., 2018; van Heijningen et al., 2009), many agree that the ability to access it 160 

quickly and spontaneously is a potential human-specific trait in sequence learning and its 161 

many related cognitive domains (Dehaene et al., 2015; Fitch, 2004; Fitch & Martins, 2014; 162 

Hauser et al., 2002). We probe it using a variety of complex but compressible sequences such 163 

as “AABBABABAABBABAB” (whose hierarchical description is [A²B²[AB]²]² and can be 164 

paraphrased as “a repetition of two pairs followed by four alternations ). Here again, our LoT 165 

model easily compresses such nested structures by using only one additional bit whenever a 166 

chunk needs to be repeated, regardless of its hierarchical depth (for details, see Amalric et al., 167 

2017).  168 

Finally, as a control, our paradigm also includes a minimally compressible sequence, 169 

with balanced transition probabilities and minimal chunking possibilities. We selected a 170 

sequence which our language predicted to be of maximal complexity (highest MDL), and which 171 

was therefore predicted to challenge the limits of working memory (Figure 1A). Note that 172 

because such a complex sequences, devoid of recurring regularities, is not easily encodable 173 

within our language (except for a trivial concatenation of chunks), we may expect the brain 174 

areas involved in nested sequence coding to exhibit no further increase in activation, or even 175 

a decrease (Vogel & Machizawa, 2004). The presence of such a non-linear trend at the highest 176 

level of complexity may be tested by a quadratic contrast for MDL instead of a purely linear 177 

regression model.  178 

Behavioral data 179 

 After brain imaging, we asked all participants to report their intuitions of how each 180 

sequence could be parsed by drawing brackets on a visual representation of its contents (after 181 

listening to it). The results (see heatmaps in Figure 2A) indicated that participants agreed 182 

about how a sequence should be parsed and used bracketing levels appropriately for nested 183 

sequences. For instance, they consistently placed brackets in the middle of sequences that 184 

consisted in two phrases of 8 items, but did so less frequently both within those phrases and 185 

when the midpoint was not a predicted parsing point (sequences Pairs&Alt2 and CenterMirror 186 

in figure 2A). In order to assess the correspondence between the parsings and the organization 187 

proposed by the LoT model, we computed for each sequence the correlation between the 188 
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group-averaged number-of-brackets vector and the LoT model vector (obtained from the 189 

sequence segmentation derived from the LoT description in terms of repeat, alternate and 190 

concatenate instructions).  A strong correlation was found for sequences Repeat (Pearson r = 191 

0.96, p < .0001), Pairs (r = 0.88, p < .0001), Quadruplets (r = 0.96, p < .0001), Pairs&Alt.1 (r = 192 

0.94, p < .0001), Shrinking (r = 0.93, p < .0001), Pairs&Alt.2 (r = 0.85, p < .0001), ThreeTwo (r = 193 

0.95, p < .0001), CenterMirror (r = 0.95, p < .0001) and Complex (r = 0.84, p < .0001), but not 194 

for Alternate (r = 0.08, p = .77). For the latter, a minor departure from the proposed encoding 195 

was found, as the shortest LoT representation (i.e. [+0]^16<b>) can be paraphrased as “16 196 

alternations”, while the participants’ parses corresponded to “8 AB pairs”. The latter encoding, 197 

however, only has a marginally larger complexity, so this deviation should not affect 198 

subsequent results.  199 

Performance in the fMRI deviant detection task provided a more quantitative test of 200 

the model (similar to Planton et al., 2021). Sensitivity (d’) was calculated by examining the hit 201 

rate for each sequence and each violation position, relative to the overall false-alarm rate on 202 

standard no-violation trials. On average, participants managed to detect the deviants at above 203 

chance level in all sequences and at all positions (Figure Sxxx; min d’= 0.556, min T(22) = 2.919, 204 

p < .0080). Thus, they were able to detect a great variety of violation types in regular 205 

sequences (unexpected alternations, repetitions, change in number, or chunk boundaries). 206 

However, performance worsened as the 16-item sequence became too complex to be easily 207 

memorized. The group-averaged performance in violation detection for each sequence 208 

(regardless of deviant position) was linearly predicted by LoT complexity, both for response 209 

times (RTs) (F(1, 8) = 43.87, p < .0002, R² = .85) and for sensitivity (d’) (F(1, 8) = 159.4, p < 210 

.0001, R² = .95) (see Figure 2B). When including the participant as a  random factor in a linear 211 

mixed model, we obtained a very similar result for sensitivity (F(1, 206) = 192.92, p < .0001, 212 

with estimates of -0.092 ± 0.007 for the LoT complexity predictor, and 3.39 ± 0.17 for the 213 

intercept), as well as for responses times (F(1, 203) = 110.87, p < .0001, with estimates of 17.4 214 

ms ± 1.6 for the LoT complexity predictor, and 475.4 ms ± 38.6 for the intercept). As for false 215 

alarms, they were rare and no significant linear relationship was found in group averages (F(1, 216 

8) = 2.18, p = .18), although a small effect was found in a linear mixed model with participant 217 

as the random factor (F(1, 206) = 4.83, p < .03, with estimates of 0.038 ± 0.017 for the LoT 218 

complexity predictor, and 1.57 ± 0.39 for the intercept). 219 
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We evaluated whether these results could be explained by statistical learning, i.e. 220 

whether deviants were more easily or more rapidly detected when they violated the transition 221 

probabilities of the current sequence. For sensitivity, a likelihood ratio test showed that 222 

adding a transition-probability measure of surprise (Maheu et al., 2019; Meyniel et al., 2016) 223 

to the linear regression with LoT complexity slightly improved the goodness of fit (χ²(1) = 4.33, 224 

p < .038). The effect of surprise was indeed significant in the new model (F(1, 205) = 4.33, p < 225 

0.039), but the LoT complexity effect remained highly significant (F(1, 205) = 106.40, p < 226 

.0001). Similarly, for RTs, adding surprise to the model significantly improved model fit (χ²(1) 227 

= 12.28, p < .0005). Surprise explained some of the variance in RTs (F(1, 202) = 12.53, p < 228 

.0005), but the effect of LoT complexity remained highly significant (F(1, 202) = 46.3, p < 229 

.0001).  230 

 231 
 
Figure 2. Behavioral data supporting the existence of a recursive language of thought in humans. A) Bracketing 232 
task. After the experiment, participants were asked to place brackets around a visual depiction of the sequence 233 
to depict how they mentally structured it. The heatmap for each sequence represent the average number of 234 
opening or closing brackets draw by the participants around each item (with smoothing for illustration purposes 235 
only). The Pearson correlation coefficient with the vector of brackets predicted by the LoT model is reported on 236 
the right side. A high correlation was obtained for all sequences but Alternate, which several subjects segmented 237 
into 8 groups of 2 items, while the shortest LoT expression encodes it as a single group of 16 alternating items. 238 
B) Deviant detection task. Group-averaged sensitivity (d’) and response time for each sequence is plotted against 239 
LoT complexity. A significant linear relationship with LoT complexity was found in both cases. The Pearson 240 
correlation coefficient and associated p-value are reported. Error bars represent one standard error of the mean 241 
across participants (SEM).  242 
 243 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.15.512361doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.15.512361


11 
 

In summary, using a partially different set of sequences, we replicated the behavioral 244 

findings of Planton et al. (2021) showing that, especially for long sequences that largely exceed 245 

the storage capacity in working memory, violation detection (an index of learning quality) and 246 

response speed (potentially indexing the degree of predictability) were well predicted by our 247 

language-of-thought model of sequence compression. 248 

fMRI data 249 

A positive effect of complexity during sequence learning and tracking 250 

As predicted, during the habituation phase (i.e. during sequence learning), activation 251 

mostly increased with sequence complexity in a broad and bilateral network involving 252 

supplementary motor area (SMA), precentral gyrus (preCG) abutting the dorsal part of 253 

Brodmann area 44, cerebellum (lobules VI and VIII), superior and middle temporal gyri 254 

(STG/MTG), and the anterior intraparietal sulcus region (IPS, close to its junction with the 255 

postcentral gyrus) (Figure 3A and Table 1). These regions partially overlapped with those 256 

observed in sequence learning for a completely different domain, yet a similar language: the 257 

visuo-spatial sequences of Wang et al. (2019). In the opposite direction, a reduction of 258 

activation with complexity was seen in a smaller network, mostly corresponding to the 259 

default-mode network, which was increasingly deactivated as working memory load increased 260 

(Mazoyer et al., 2001; Raichle, 2015): medial frontal cortex, left middle cingulate gyrus, left 261 

angular gyrus (AG) and left pars orbitalis of the inferior frontal gyrus (IFGorb) (Table 1).  262 

We then computed the same contrast with the standard trials of the test phase 263 

(sequences without violation). The network of areas showing a positive complexity effect was 264 

much smaller than during habituation: it included bilateral superior parietal cortex extending 265 

into the precuneus, left dorsal premotor area as well as two cerebellar regions (right lobule 266 

IV, left lobule VIII) (Figure S1, Table S1). These areas were also found during the habituation 267 

phase, although the (predominantly left) parietal superior / precuneus activation was larger 268 

and extended more posteriorily than during habituation. These regions may constitute the 269 

minimal network needed to track sequences. Regions showing a negative LoT complexity 270 

effect in standard trials (reduced activation for increasing complexity) were more numerous: 271 

medial frontal regions, middle cingulate gyri, bilateral angular gyrus, bilateral anterior part of 272 

the inferior temporal gyrus, bilateral putamen, as well as left frontal orbital region and left 273 
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occipital gyrus. Here again, they largely resemble what was already observed in habituation 274 

trials (i.e. a deactivation of a default mode network), with a few additional elements such as 275 

the putamen. 276 

 277 

 278 
Figure 3. Sequence complexity in the proposed language of thought (LoT) modulates fMRI responses to 279 
standard and deviant sequences. A) brain areas showing an increase in activation with sequence LoT complexity 280 
during habituation (voxel-wise p < .001, uncorrected; cluster-wise p < .05, FDR corrected). Scatterplots represent 281 
the group-average activation for each of the ten sequences as a function of their LoT complexity (left panels: 282 
habituation trials; right panels, deviant trials) in each of nine ROIs. Data values are from a cross-validated 283 
participant-specific ROI analysis. Error bars represent SEM. Linear trend are represented by a solid line (with 95% 284 
CI in dark grey) and quadratic trend by a dashed line (with 95% CI in light grey). Pearson linear correlation 285 
coefficients are also reported. B) Time course of group-averaged BOLD signals for each sequence, for four 286 
representative ROIs. Each mini-session lasted 160-seconds and was composed of 5 blocks (2 habituation and 3 287 
tests) interspersed with short rest periods of variable duration (depicted in light gray). The full time course was 288 
reconstituted by resynchronizing the data at the onset of each successive block (see Methods). Shading around 289 
each time course represents one SEM.  290 
  291 
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Table 1. Coordinates of brain areas modulated by LoT complexity during habituation 292 
 293 

 294 
 

A negative effect of complexity on deviant responses 295 

The effect of LoT complexity at the whole brain level was first assessed on the responses to all 296 

deviant stimuli (whether detected or not). A positive linear effect of complexity was only 297 

found in a small cluster of the medial part of the superior frontal gyrus (SFG) (Table S2). As 298 

predicted, a much larger network showed a negative effect (i.e. reduced activation with 299 

complexity or increased activation for less complex sequences): bilateral postcentral gyrus 300 

(with major peak in the ventral part), supramarginal gyrus (SMG), IPS, STG, posterior MTG, 301 

ventral preCG, Insula, SMA and middle cingulate gyrus, cerebellum (lobules VI, VIII, and 302 

vermis) (red activation map of Figure 4, Table S2). This network is thus the possible brain 303 

counterpart of the increase in deviant detection performance observed as sequences become 304 

less and less complex. However, this result could be partly due to a motor effect, since manual 305 
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motor responses to deviants were less frequent for more complex sequences, as attested by 306 

an effect of LoT complexity on sensitivity. We therefore computed the same contrast using an 307 

alternative GLM modeling only deviant trials to which the participant correctly responded 308 

(note that this model consequently included fewer trials, especially for higher complexity 309 

sequences). Negative effects of LoT complexity were still present in this alternative model, 310 

now unconfounded by motor responses. As shown in Figure 4 (yellow) the negative effect 311 

network was a subpart of the network identified in the previous model, and concerned 312 

bilateral STG, MTG, SMG/postcentral gyrus, Insula, SMA and middle cingulate gyrus. A positive 313 

effect was still present in a medial SFG cluster, part of the default-mode network showing less 314 

deactivation for deviants as complexity increased. 315 

 316 
Figure 4. Brain responses to deviants decrease with LoT complexity. Colors indicate the brain areas whose 317 
activation on deviant trials decreased significantly with complexity, in two distinct general linear models (GLMs): 318 
one in which all deviant stimuli were modeled (red), and one in which only correctly-detected deviant stimuli 319 
were modeled (green) (voxel-wise p < .001, uncorrected; cluster-wise p < .05, FDR corrected). Overlap is shown 320 
in yellow.  321 
ROI analyses of the shape of the complexity effect 322 

We next used individual ROIs to measure the precise shape of the complexity effect 323 

and test the hypothesis that (1) activation increases with complexity but may reach a plateau 324 

or decrease for the most complex, incompressible sequence; and (2) on deviant trials, the 325 

complexity effect occurs in the opposite direction. We designed cross-validated individual ROI 326 

analyses, which consisted in (1) using half of the runs to identify responsive individual voxels 327 

within each ROI, using a contrast of positive effect of complexity during habituation; and (2) 328 

using the other half to extract the activation levels for each standard or deviant sequence. We 329 

focused on nine areas that exhibited a positive complexity contrast in habituation (figure 3), 330 
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where the effect was robust and was computed on the learning phase of the experiment, 331 

therefore uncontaminated by deviant stimuli and manual motor responses. 332 

In each ROI, mixed effect models with participants as the random factor were used to 333 

assess the replicability of the linear effect of complexity during habituation. A significant effect 334 

was found in all ROIs (after Bonferroni correction for nine ROIs), although with variable effect 335 

size: SMA: β estimate = 0.10, t(21) = 5.37, p.corr < .0003; L-STG: β = 0.06, t(21) = 4.75, p.corr < 336 

.001; L-CER6: β = 0.04, t(21) = 4.73, p.corr < .002; R-IPS: β = 0.07, t(21) = 4.08, p.corr < .005; L-337 

preCG: β = 0.07, t(21) = 3.98, p.corr < .007; R-preCG: β = 0.08, t(21) = 3.8, p.corr < .01; R-STG: 338 

β = 0.03, t(21) = 3.35, p.corr < .03; R-CER8: β = 0.03, t(21) = 3.32, p.corr < .03 and L-IPS: β = 339 

0.03, t(21) = 3.25, p.corr < .04. These results are illustrated in Figure 4A, showing the linear 340 

regression trend with values averaged per condition across participants. The addition of  a 341 

quadratic term was significant for seven ROIs (SMA, L-CER6, L-IPS, L-preCG, L-STG, R-CER8 and 342 

R-IPS), but did not reached significance in R-preCG nor in R-STG. This effect was always 343 

negative, indicating that the activation increase with complexity reached saturation or 344 

decreased from the most complex sequence (see dashed lines in the scatter plots of Figure 345 

4A). 346 

We also examined the time course of activation profiles within each mini-session of 347 

the experiment, i.e. two habituation blocks followed by three test blocks. As shown in Figure 348 

4B (see Figure S2 for all 9 ROIS), the activation time courses showed a brief activation to 349 

sequences, presumably corresponding to a brief search period. 5 to 10 seconds following the 350 

first block onset, however, activation quickly dropped to a similar and very low activation, or 351 

even a deactivation below the rest level, selectively for the 4 lowest-complexity sequences 352 

which involved only simple processes of transition probabilities or chunking. For other 353 

sequences, the BOLD effect shot up in rough proportion to complexity, yet with a midlevel 354 

amplitude for the most complex sequence reflecting the saturation, quadratic effect noted 355 

earlier. Thus, in 5-10 seconds, the profile of the complexity effect was firmly established, and 356 

it remained sustained over time during habituation and, with reduced amplitude, during test 357 

blocks. This finding indicated that the same areas were responsible for discovering the 358 

sequence profile and for monitoring it for violations during the test period. The profile was 359 

similar across regions, with one exception: while most areas showed the same, low activation 360 

to the first four, simplest sequences, the left and right IPS showed an increasing activation as 361 

a function of the number of items in a chunk (ABABAB… = 1; AABBAA… = 2; AAAABBBB… = 4). 362 
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This observation fits with the hypothesis that these regions are involved in numerosity 363 

representation, and may therefore implement the “for loops” postulated in our language. 364 

The ROI analyses were next performed with data from the deviant trials, in order to 365 

test whether areas previously identified as sensitive to sequence complexity when learning 366 

the sequence also showed an opposite modulation of their response to deviant trials. All ROIs 367 

indeed showed a significant negative effect of LoT complexity: R-STG: β = -0.46, t(197) = -8.01, 368 

p.corr < .0001; L-IPS: β = -0.44, t(197) = -6.35, p.corr < .0001; R-CER8: β = -0.23, t(197) = -5.09, 369 

p.corr < .0001; L-STG: β = -0.45, t(197) = -4.61, p.corr < .0001; L-CER6: β = -0.23, t(197) = -4.57, 370 

p.corr < .0001; R-preCG: β = -0.37, t(197) = -3.92, p.corr < .002; R-IPS: β = -0.49, t(197) = -3.85, 371 

p.corr < .002; SMA: β = -0.33, t(197) = -3.57, p.corr < .004 and L-preCG: β = -0.27, t(197) = -2.9, 372 

p.corr < .04. Interestingly, unlike during habituation, the addition of a quadratic term did not 373 

improve the regression except in a single area, L-STG: β = 0.05, t(196) = 3.9, p.corr < .002. 374 

Smaller effects of the quadratic term were present in three other areas, but they were not 375 

significant after Bonferonni correction: R-CER8: β = 0.02, t(196) = 2.68, p < .009; R-STG: β = 376 

0.02, t(196) = 2.42, p < .02 and L-IPS: β = 0.02, t(196) = 2.3, p < .03. 377 

As in the whole-brain analysis, we finally conducted a complementary analysis using 378 

activation computed with correctly-detected deviants trials only. The linear LoT complexity 379 

was now only significant in four of the nine ROIs: R-STG: β = -0.48, t(197) = -7.64, p.corr < 380 

.0001; L-IPS: β = -0.34, t(197) = -4.54, p.corr < .0001; L-STG: β = -0.42, t(197) = -4.12, p.corr < 381 

.0006; R-CER8: β = -0.15, t(197) = -3.17, p.corr < .02. When adding a quadratic term, no 382 

significant effects were observed at the predefined threshold, although uncorrected ones 383 

were present for L-STG: β = 0.03, t(196) = 2.37, p < .02 and R-CER8: β = 0.01, t(196) = 2.05, p < 384 

.05. 385 

Overlap with the brain networks for language and mathematics 386 

 Past and present behavioral results suggest that an inner “language” is required to 387 

explain human working memory for auditory sequences – but is this language similar to 388 

natural language? Or to the language of mathematics, and more specifically geometry, from 389 

which it is derived (Al Roumi et al., 2021; Amalric et al., 2017; Wang et al., 2019) ? By including 390 

in our fMRI protocol an independent language and mathematics localizer experiment, we 391 

tested whether the very same cortical sites are involved in natural sentence processing, 392 

mathematical processing, and auditory sequences.  393 
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 At the whole-brain group level, large amount of overlap was found between the 394 

mathematics network (whole-brain mental computation > sentences processing contrast, in a 395 

2nd level ANOVA analysis of the localizer experiment) and the LoT complexity network (see 396 

Figure 5A): SMA, bilateral precentral cortex, bilateral anterior IPS, and bilateral cerebellum 397 

(lobules VI). Some overlap was also present, to a lower extent, with the language network 398 

(auditory and visual sentences > auditory and visual control stimuli) and the LoT complexity 399 

network: left STG, SMA, left precentral gyrus, and right cerebellum. 400 

 Such group-level overlap, however, could be misleading since they involve a significant 401 

degree of intersubject smoothing and averaging. For a more precise assessment of overlap, 402 

we extracted, for each subject and within each of 7 language-related and 7 math-related ROIs 403 

(see figure 5), the subject-specific voxels that responded, respectively, to sentence processing 404 

and to mental calculation (same contrasts as above, but now within each subject). We then 405 

extracted the results from those ROIs and examined their variation with LoT complexity in the 406 

main experiment (during habituation). In the language network, a significant positive effect of 407 

LoT complexity during the habituation phase was only found in left IFGoper: β = 0.03, t(197) = 408 

4.25, p.corr < .0005 (Figure 5B). In fact, most other language areas showed either no activation 409 

or were deactivated (e.g. IFGorb, aSTS, TP, TPJ). As concerns deviants, a significant negative 410 

effect of LoT complexity was found in left IFGoper: β = -0.23, t(197) = -3.04, p.corr < .04; and 411 

in left pSTS: β = -0.24, t(197) = -3.27, p.corr < .02. The quadratic term was never found 412 

significant. 413 

On the contrary, in the mathematics-related network, all areas showed a positive LoT 414 

complexity effect in habituation (Figure 5B): SMA: β = 0.05, t(197) = 5.6, p.corr < .0001; left 415 

preCG/IFG: β = 0.05, t(197) = 5.03, p.corr < .0001; right IPS: β = 0.05, t(197) = 4.69, p.corr < 416 

.0001; right preCG/IFG: β = 0.05, t(197) = 4.56, p.corr < .0002; right SFG: β = 0.04, t(197) = 4, 417 

p.corr < .002; left IPS: β = 0.04, t(197) = 3.78, p.corr < .003 and left SFG: β = 0.02, t(197) = 3.15, 418 

p.corr < .03. The quadratic term in the second model was also significant for three of them: 419 

SMA: β = -0.01, t(196) = -4.11, p.corr < .0009; right preCG/IFG: β = 0, t(196) = -3.21, p.corr < 420 

.03 and left preCG/IFG: β = 0, t(196) = -3.1, p.corr < .04. A negative complexity effect for 421 

deviant trials reached significance in four areas: left IPS: β = -0.42, t(197) = -4.44, p.corr < 422 

.0003; left preCG/IFG: β = -0.48, t(197) = -4.31, p.corr < .0004; right IPS: β = -0.41, t(197) = -4, 423 

p.corr < .002 and SMA: β = -0.29, t(197) = -2.97, p.corr < .05. Their response pattern was not 424 

significantly quadratic.  425 
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To summarize, all dorsal regions previously identified as involved in mathematical 426 

processing regions were sensitive to the complexity of our auditory binary sequences, as 427 

manifested by an increase, up to a certain level of complexity, during habituation; and, for 428 

most regions, a reduction of the novelty to deviants (especially for SMA, left preCG and IPS). 429 

Such a sensitivity to complexity was conspicuously absent from language areas, except for the 430 

left pars opercularis of the IFG. 431 

 432 
Figure 5. Sequence complexity effects in mathematics and language networks. A) Overlap between the brain 433 
areas showing an increase of activation with sequence LoT complexity during habituation in the main experiment 434 
(in red) and the brain areas showing an increased activation for mathematical processing (relative to simple 435 
listening/reading of non-mathematical sentences) in the localizer experiment (in green; both maps thresholded 436 
at voxel-wise p < .001 uncorrected, cluster-wise p < .05, FDR corrected). Overlap between the two activation 437 
maps is shown in yellow. B) Overview of the 7 search volumes representing the mathematics network (left) and 438 
the 7 search volumes representing the language network (right) used in the ROI analyses. Within each ROI, each 439 
scatter plot represents the group-average activation for each of the ten sequences according to their LoT 440 
complexity, for habitation blocks and for deviant trials (same format as figure 3).  A star (*)indicates significance 441 
of the linear effect of LoT complexity in a linear mixed-effects model. 442 
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MEG Results 443 

The temporal resolution of fMRI did not permit tracking the successive sequence items, 444 

but only the average activity they induced. This lack of temporal resolution may have 445 

prevented us from detecting subtle effects, particularly in the timing of responses to deviants. 446 

To address this concern, a similar paradigm was tested with MEG. To maximize signal-to-noise, 447 

especially on the rare deviant trials, only seven sequences were selected (figures 1 and 6). 448 

Unlike the fMRI experiment, during MEG we merely asked participants to listen carefully to 449 

the presented sequences of sounds, without providing any button response, thus yielding 450 

pure measures of violation detection uncontaminated by the need to respond. 451 

Neural signatures of complexity at the univariate level 452 

We first determine if a summary measure of brain activity, the Global Field Power, is 453 

modulated by sequence complexity. To do so, we consider the brain responses to sounds 454 

occurring in the habituation phase, to non-deviant sounds occurring in the test phase (referred 455 

to as standard sounds) and to deviant sounds. On habituation trials, the late part of the 456 

auditory response (108ms – 208ms) correlated positively with complexity (p = 0.00024, see 457 

shaded area in the top panel of Figure 6A): the more complex the sequence, the larger the 458 

brain response. On standard trials, this modulation of the GFP by complexity had vanished 459 

(middle panel of Figure 6A). Finally, as predicted, the GFP computed on the deviant exhibited 460 

the reversed effect, i.e. a negative correlation with complexity on the 116 - 300 ms time-461 

window (p = 0.0005) and on the 312 – 560 ms time-window (p = 0.0005), indicating that 462 

deviants elicit larger brain responses in sequences with lower complexity (bottom panel of 463 

Figure 6A).  464 

To better characterize the mechanisms of sequence coding, we ran a linear regression 465 

of the evoked responses to sounds as a function of sequence complexity. Regression 466 

coefficients of the sequence complexity predictor were projected to source space. The results 467 

showed that complexity effects were present in temporal and precentral of the cortex. To 468 

assess the significance of the regression coefficients, we ran a spatiotemporal cluster-based 469 

permutation test at the sensor level. Several significant clusters were found for each of the 3 470 

trial types (habituation : cluster 1 from 72 to 216 ms, p = 0.0004, cluster 2 from 96 to 212 ms, 471 

p = 0.0002; standard : cluster 1 from 96 to 180ms,  p = 0.0038, cluster 2 from 96 to 184 ms, p 472 
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= 0.001; deviant : cluster 1 from 60 to 600 ms, p = 0.0002, cluster 2 from 56 to 600 ms, p = 473 

0.0002). Figure 6 illustrates one significant cluster for each trial type.  474 

 475 
Figure 6. Sequence complexity in the proposed language of thought (LoT) modulates MEG signals to 476 
habituation, standard and deviant trials. A) Global field power computed for each sequence (see color legend) 477 
from the evoked potentials of the Habituation, Standard and Deviant trials. 0 ms indicates sound onset. Note 478 
that the time-window ranges until 350 ms for Habituation and Standard trials (with a new sound onset at 479 
S0A=250 ms), and until 600 ms for Deviant trials and for the others. Significant correlation with sequence 480 
complexity was found in Habituation and Deviant GFPs and are indicated by the shaded areas. B) Regressions of 481 
MEG signals as a function of sequence complexity. Left: amplitude of the regression coefficients ẞ of the 482 
complexity regressor for each MEG sensor. Insets show the projection of those coefficients in source space at 483 
the maximal amplitude peak, indicated by a vertical dotted line. Right: spatiotemporal clusters where regression 484 
coefficients were significantly different from 0. While several clusters were found (see Text and Figure S3), for 485 
the sake of illustration, only one is shown for each trial type. The clusters involved the same sensors but on 486 
different time windows (indicated by the shaded areas) and with an opposite T-value for Deviant trials. Neural 487 
signals were averaged over significant sensors for each sequence type and were plotted separately. 488 
The clusters shown involve the same sensors but exhibit opposite regression signs for the 489 

brain responses to Deviant sounds, suggesting that, as in fMRI, the same brain regions are 490 
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involved in the processing of standard and deviant items but are affected by complexity in an 491 

opposite manner. 492 

Controlling for local transition probabilities 493 

Several studies have shown that the human brain is sensitive to the statistics of sounds 494 

and sound transitions in a sequence (Maheu et al., 2019; Meyniel et al., 2016; Näätänen et al., 495 

1989; Todorovic et al., 2011; Todorovic & Lange, 2012; Wacongne et al., 2012), including in 496 

infants 15/10/2022 17:30:00(Saffran et al., 1996). When listening to probabilistic binary 497 

sequences of sounds, early brain responses reflect simple statistics such as item frequency 498 

while later brain responses reflect more complex, longer-term inferences (Maheu et al., 2019). 499 

Since local surprise and global complexity were partially correlated in our sequences, could 500 

surprise alone account for our results? To disentangle the contributions of transition 501 

probabilities and sequence structure in the present brain responses, we regressed the brain 502 

signals as a function of complexity and of surprise based on transition probabilities. To capture 503 

the latter, we added several predictors: the presence of a repetition or an alternation and the 504 

surprise of an ideal observer that makes optimal inferences about transition probabilities from 505 

the past 100 items (see Maheu et al., 2019 for details). Both predictors were computed for 506 

two consecutive items: the one at stimulus onset (t=0ms) and the next item (t=250ms later) 507 

and included together with LoT complexity as multiple regressors of every time point. 508 

Figure S4 shows the temporal profile of the regression coefficient for sequence 509 

complexity for each MEG sensor and its projection onto the source space, once these 510 

controlling variables were introduced. The contribution of auditory regions was slightly 511 

diminished compared to the simple regression of brain signals as a function of complexity 512 

(Figure S3). To assess the significance of the regression coefficient, we ran a spatiotemporal 513 

cluster-based permutation test at the sensor level. Several significant clusters were found for 514 

each of the 3 trial types (habituation : cluster 1 from 96 to 244 ms, p = 0.0162, cluster 2 from 515 

112 to 220 ms, p = 0.014 ; standard : cluster 1 from 104.0 to 180.0 ms, cluster-value= 1.50, p 516 

= 0.0226, cluster 2 from 100 to 220 ms, p = 0.0004; deviant : cluster 1 from 224 to 600 ms, p 517 

= 0.0088, cluster 2 from 116 to 600 ms, p = 0.0006; see Figures S3 and S4 for complete cluster 518 

profiles). The results remained even when the surprise regressors were entered first, and then 519 

the regression on complexity was performed on the residuals (figure S4, right column). In 520 
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summary, the positive effect of complexity on habituation and standard trials, and its negative 521 

effect on deviant trials, were not solely due to local transition-based surprise signals. 522 

Time-resolved decoding of violation responses 523 

The above results were obtained by averaging sensor data across successive stimuli 524 

and across participants. A potentially more sensitive analysis method is multivariate decoding 525 

(King & Dehaene, 2014), which searches, at each time point and within each participant, for 526 

an optimal pattern of sensor activity reflecting a given type of mental representation. 527 

Therefore, to further characterize the brain representations of sequence structure and 528 

complexity, we next used multivariate time-resolved analyses, which allowed us to track 529 

sequence coding for each item in the sequence, at the millisecond scale.  530 

We trained a decoder to classify all standard versus all deviant trials (El Karoui et al., 531 

2015; King et al., 2013). As the two versions of the same sequence were presented on two 532 

separated runs (respectively starting with sound ‘x’ or ‘Y’), we trained and tested the decoder 533 

in a leave-one-run out manner, thus forcing it to identify non-stimulus specific sequence 534 

violation responses. In addition, and most importantly, we selected standard trials that 535 

matched the deviants’ ordinal position, which was specific to each sequence (see figure 1, 536 

orange lines). Figure 7 shows the average projection on the decision vector of the classifier’s 537 

predictions on left-out data for the different sequences, when tested on both position-538 

matched Deviants versus Standards (Figure 7A) and on Habituation trials (Figure 7B). 539 

Significance was determined by temporal cluster-based permutation tests. 540 

Decoding of deviants reached significance for all sequences except for the most 541 

complex one (with only a short burst of significance for the 2nd most complex Shrink 542 

sequence). For the simplest Repeat and Alternate sequences, which could be learned solely 543 

based on transition probabilities, a sharp initial mismatch response was seen, peaking at ~150 544 

ms. For all other sequences, the decoder exhibited a later, slower, lower-amplitude and 545 

sustained development of above-chance performance, suggesting that deviant items elicit 546 

decodable long-lasting brain signals. A temporal cluster-based permutation test on Pearson 547 

correlation with sequence complexity showed that the decoding of violations strongly 548 

correlated with complexity over a broad time-window (~90 - 580 ms).  549 

The time courses of the decoder performance on habituation trials also revealed a 550 

clear hierarchy in the time it took for the brain to decide that a given tone was not a deviant 551 
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(figure 7B). The seven curves were ordered by predicted sequence complexity. Thus, the 552 

decoder’s classification as Standard, quantified as the projection on the decision vector, 553 

decreased significantly with sequence complexity over two time windows (~90 - 220 ms and 554 

~330 - 460 ms). This suggests that the more the sequence is complex, the more brittle its 555 

classification as Standard is.  556 

 557 
 
Figure 7. Multivariate decoding of deviant trials from MEG signals, and its variation with sequence complexity. 558 
A, A decoder was trained to classify standard from deviant trials from MEG signals at a given time point. We here 559 
show the difference in the projection on the decision vector for Standard and Deviant trials, that is a measure of 560 
the decoder’s accuracy.  The decoder was trained jointly on all sequences, but its performance is plotted here 561 
for left-out trials separately for each sequence type. Shaded areas indicate s.e.m. and colored lines at bottom 562 
indicate significant time windows (p<0.05 corrected) obtained from cluster-based permutation test on the full 563 
window. The heatmap at the bottom represents the correlation of the performance with sequence complexity 564 
(Pearson’s r). Correlation is significant in the gray shaded time-window in the main graph (two tailed p<0.05, 565 
temporal cluster-based permutation test). B, Projection on the decision vector for Habituation trials. The early 566 
brain response is classified as deviant but later as standard. This projection time-course is increasingly delayed 567 
as a function of sequence complexity (same format as A). C, sensor map showing the relative contribution of 568 
each sensor to overall decoding performance. At the time of maximal overall decoding performance (165 ms) we 569 
trained and tested 4000 new decoders that used only a subset of 40 gradiometers at 20 sensor locations. For 570 
each sensor location, the color on the maps in the right column indicates the average decoding performance 571 
when this sensor location was used in decoding, thus assessing its contribution to overall decoding. 572 
Decoder performance over the full extent of each sequence  573 

To characterize the time course of brain activity over the entire course of each 574 

sequence, we projected each MEG time point onto the decoding axis of the standard/deviant 575 

decoder trained on data from a 130-210 ms time window (Figure 8). The projection was 576 

computed separately for each sequence, separately for habituation, standard, and the four 577 

possible positions of deviant trials. We determined if deviants differed from standards using 578 

a cluster-based permutation test on a 0 - 600ms window after each violation (colored lines at 579 

the bottom of each sequence in Figure 8A).  580 

All individual deviants elicited a significant decodable response except for the two 581 

highest-complexity sequences: Shrinking and Complex (failure at all positions exception the 582 

last one: 15). Interestingly, for the alternate sequence, two consecutive peaks indicate that, 583 
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when a single repetition is introduced in an alternating sequence (e.g. ABABBBAB… instead of 584 

ABABABAB…), the brain interprets it as two consecutive violations, probably due to transition 585 

probabilities, as each of the B items is predicted to be followed by an A.  586 

Most crucially, the analysis of specific violation responses allowed us to evaluate the 587 

range of properties that humans use to encode sequences, and to test the hypothesis that 588 

they integrate numerical and structural information at multiple nested levels (Wang et al., 589 

2015). First, within a chunk of consecutive items, they detect violations consisting in both 590 

chunk shortening (1 repeated tone instead of 2 in Pairs; 3 tones instead of 4 in Quadruplets) 591 

and chunk lengthening (3 repeated tones instead of 2, as well as 5 instead of 4). The contrast 592 

between those two sequences clearly shows that participants possess a sophisticated context-593 

dependent representation of each sequence. Thus, their brain emits a violation response upon 594 

hearing 3 consecutive items (AAA) within the Pairs sequence, where it is unexpected, but not 595 

when the same sequence occurs within the Quadruplets sequence. Conversely, participants 596 

are surprised to hear the transition BBAAB in the Quadruplet context, but not in the Pairs 597 

context. Finally, in the Pairs+Alt.1 sequence, such context dependence changes over time, 598 

thus indicating an additional level of nesting: at positions 9-12, subjects expect to hear two 599 

pairs (AABB) and are surprised to hear ABBB (unexpected alternation), but just a second later, 600 

at positions 13-16, they expect an alternation (ABAB) and are surprised to hear AAAB 601 

(unexpected repetition). Similar, though less significant, evidence for syntax-based violation 602 

responses are present in the Shrinking sequence, which also ends with two pairs and an 603 

alternation. 604 

Figure 8 also shows in great detail how the participants’ brain fluctuates between 605 

predictability (in blue) and violation detection (in red) during all phases of the experiment. 606 

Initially, during habituation (top line), sequences are partially unpredictable, as shown by red 607 

responses to successive stimuli, but that effect is strongly modulated by complexity, as 608 

previously reported (red responses, particularly for the most complex sequences). In a sense, 609 

while the sequence is being learned, all items in those sequences appear as deviants. As 610 

expected, after habituation, the deviancy response to standards is much reduced, but still 611 

ordered by complexity. Higher-complexity sequences such as Shrinking thus creates a globally 612 

less predictable environment (red colors) relative to which the violation responses to deviants 613 

appear to be reduced. 614 
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 615 
Figure 8. Time course of the deviancy decoder across the different types of sequences and deviants. A) Average 616 
projection of MEG signals onto the decoding axis of the standard/deviant decoder. For each sequence, the time 617 
course of the projection was computed separately for habituation trials, standard trials, and for the four types 618 
of trials containing a deviant at a given position. The figure shows the average output of decoders trained 619 
between 130 ms and 210 ms post-deviant. Red indicates that a trial tends to be classified as a deviant, blue as a 620 
standard. Colored lines at the bottom of each graph indicate time windows with a significant deviant signal 621 
(cluster permutation test comparing deviants and standards in a 0-600 ms window after deviant onset). B) 622 
Average generalization-across-time (GAT) matrix showing decoding performance as a function of training time 623 
(y axis) and testing time (x axis). The dashed lines indicate p < 0.05 cluster-level significance, corrected for 624 
multiple comparisons (see Methods). Simpler sequences exhibit overall greater performance as well as larger 625 
time windows of significance. We note that, while deviancy detection does not reach significance for Shrinking 626 
and Complex sequences in the GAT matrices, violation signals reached significance for deviant position 15. 627 

 

Figure 8B also shows how the Standard-Deviant decoder generalizes over time, 628 

separately for each sequence. The performance for the Repeat sequence exhibited a peak 629 

corresponding to the deviant item’s presentation (~ 150 ms) and a large and a partial square 630 

pattern, indicating a sustained maintenance of the deviance information. The performance 631 
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for the Alternate sequence shows 4 peaks spaced by the SOA, corresponding to the two 632 

deviant transitions elicited by the deviant item. Pairs, Quadruplets and Pairs+Alt.1 sequences 633 

still show significant decoding times but not Shrinking and Complex sequences, indicating that 634 

the ability to decode deviant signals decreases with complexity. 635 

Discussion 636 

The goal of this study was to characterize the mental representation that humans 637 

utilize to encode binary sequences of sounds in working memory and detect occasional 638 

deviants. The results indicate that, in the human brain, deviant responses go way beyond the 639 

sole detection of violations in habitual sounds (May & Tiitinen, 2010) or in transition 640 

probabilities (Wacongne et al., 2012), and are also sensitive to more complex, larger-scale 641 

regularities (Bekinschtein et al., 2009; Bendixen et al., 2007; Maheu et al., 2019; Schröger et 642 

al., 2007; Wacongne et al., 2011; Wang et al., 2015). Instead of merely storing each successive 643 

sound in a distinct memory slot (Baddeley, 2003; Baddeley & Hitch, 1974; Botvinick & 644 

Watanabe, 2007; Hurlstone et al., 2014), behavioral and brain imaging results suggest that 645 

participants mentally compressed these sequences using an algorithmic-like description 646 

where sequence regularities (Dehaene et al., 2015) are expressed in terms of combination of 647 

simple rules that are recursively integrated (Al Roumi et al., 2021; Planton et al., 2021). 648 

Consistently with the predictions of this formal language of thought (LoT), behavioral 649 

performance and brain responses were modulated by the minimal description length (MDL) 650 

of the sequence, which we term LoT complexity. We discuss those points in turn. 651 

Our behavioral results, obtained during fMRI, fully replicated our previously behavioral 652 

work (Planton et al., 2021) showing that, for long sequences, sequence learning difficulty is 653 

strongly modulated by minimal description length in our formal language. In absence of any 654 

regularity, a 16-item sequence should be way above the normal working memory span. When 655 

a deviant was correctly detected, the response time was modulated significantly as a function 656 

of LoT complexity, suggesting that novelty detection mechanisms were impacted by sequence 657 

structure. Finally, after the experiment, participants were asked to segment with brackets the 658 

sequences. The proposed segmentations matched on average the LoT sequence descriptions: 659 

participants did not rely solely on the presence of repetitions to segment the sequences, but 660 

also relied on transitions between higher level chunks were often identified. For instance, they 661 
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segmented the Pairs+Alt.1 sequence as [[AA][BB]][[ABAB]]. These behavioral results confirm 662 

that the postulated LoT provides a plausible description of how binary sequences are encoded. 663 

They fit with a long line of cognitive psychological research searching for computer-like 664 

languages that may capture the human notion of regularity for sequences (Leeuwenberg, 665 

1969; Restle, 1970; Restle & Brown, 1970; Simon, 1972; Simon & Kotovsky, 1963). While the 666 

present behavioral evidence is limited, Planton et al. (2021) provided a formal, statistical 667 

comparison demonstrating the superiority of LoT complexity against many competing 668 

measures such as transition probability, chunk complexity, entropy, subsymmetries, Lempel-669 

Ziv compression, change complexity or algorithmic complexity. In the next sections, we discuss 670 

how brain imaging results provide additional information on how sequence compression is 671 

implemented in the human brain. 672 

According to our hypothesis, the more complex the sequence, the longer the internal model 673 

and the larger the effort to parse it, encode it and maintain it in working memory. 674 

Consequently, we expected during the habituation phase larger brain activations for more 675 

complex sequences in regions that are involved in auditory sequence encoding. Both fMRI and 676 

MEG results support this hypothesis. Importantly, contrary to the fMRI experiment, the MEG 677 

did not require overt responses, yet several neural markers, such as Global Field Power, 678 

showed a significant increase with sequence complexity (Figure 6A). Furthermore, linear 679 

regressions showed that brain activity increased with sequence complexity for a given cluster 680 

of electrodes that corresponded to the auditory and inferior frontal regions (Figure 6B).  681 

Many levels of sequence processing mechanisms coexist in the human brain (Dehaene et al., 682 

2015). At a minimum, one should distinguish the coding of transition probabilities between 683 

consecutive sounds and of sequence structure as described by the postulated language of 684 

thought (Bekinschtein et al., 2009; Maheu et al., 2019; Wacongne et al., 2011). To separate 685 

them, we ran a linear multilinear regression model with regressors for transition-based 686 

statistics (lower-order statistical properties were not relevant as the overall item frequency 687 

was equalized). Even after adding four additional regressions for immediate and longer-term 688 

transition statistics, the regressor for complexity was still significant over similar sensor 689 

clusters and time-windows (figure S3). As shown in Figure S5, repetition/alternation impacted 690 

on both an early peak at 80ms and a later one at 176ms after stim onset, perhaps reflecting 691 

sensory bottom-up versus top-down processes. Transition-based surprise exhibited only one 692 
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peak at 104 ms after stim onset. The 20ms delay between the peaks supports the idea that 693 

the first reflects low-level neural adaptation while the second corresponds to a violation of 694 

expectations based on transition probabilities. Complexity effects, however, showed a later 695 

and more sustained response, extending way beyond 200 ms, in agreement with a distinct 696 

rule-based process.  697 

Previous fMRI results led us to expect several prefrontal regions to exhibit an increasing 698 

activity with sequence complexity (Badre, 2008; Badre et al., 2010; Barascud et al., 2016; 699 

Koechlin et al., 2003; Koechlin & Jubault, 2006; Wang et al., 2019), but no such activation was 700 

observed in MEG source reconstruction. This negative result has several potential 701 

explanations. First of all, sequence complexity may act as a context effect and therefore may 702 

be sustained across time (Barascud et al., 2016; Southwell & Chait, 2018). As we baselined the 703 

data on a short time-window before each sound onset, such a constant effect may be 704 

removed. Furthermore, frontal brain regions may be too distributed, intermixed and/or too 705 

far from the MEG helmet to be faithfully reconstructed. Finally, the fMRI experiment allowed 706 

us to clearly identify a large network of brain areas involved in complexity, but recruiting a 707 

rather posterior region of prefrontal cortex, the preCG (or dorsal premotor cortex, PMd, 708 

bordering on the dorsal part of Brodmann area 44) together with the STG, SMA, cerebellum, 709 

and IPS that all exhibited the predicted increase in activity with LoT complexity. All these 710 

regions showed the predicted increasing response with complexity during habituation, and 711 

decreasing response with complexity to deviants. 712 

All these areas have been shown to be associated with temporal sequence processing, 713 

although mostly with oddball paradigms using much shorter or simpler sequences 714 

(Bekinschtein et al., 2009; Huettel et al., 2002; Planton & Dehaene, 2021; Wang et al., 2015, 715 

2019). They can be decomposed into modality-specific and modality-independent regions 716 

(Frost et al., 2015). STG activation was observed for auditory sequences here and in other 717 

work (Bekinschtein et al., 2009; Wang et al., 2015) but not visuo-spatial ones (Wang et al., 718 

2019). The modality specificity of STG was explicitly confirmed by Planton and Dehaene (2021) 719 

using visual and auditory sequences with identical structures. Other regions, meanwhile, were 720 

modality-independent and coincided with those found in a similar paradigm with visuo-spatial 721 

sequences (Wang et al., 2019), consistent with a role in abstract rule formation. The IPS and 722 

preCG, in particular, are jointly activated in various conditions of mental calculation and 723 
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mathematics (Amalric & Dehaene, 2017; Dehaene et al., 2003), with anterior IPS housing a 724 

representation of number (Dehaene et al., 2003; Eger et al., 2009; Harvey et al., 2013; Kanayet 725 

et al., 2018). The overlap between auditory sequences and arithmetic was confirmed here 726 

using sensitive single-subject analyses (Figure 5). PreCG and IPS may thus be jointly involved 727 

in the nested “for i=1:n” loops of the proposed language, and in the real-time tracking of item 728 

and chunk number needed to follow a given auditory sequence even after it was learned. 729 

While here they coactivated with STG, in proportion to LoT complexity, in a visuo-spatial 730 

version of the present task they did so together with bilateral occipito-parietal areas (Wang et 731 

al., 2019). This is consistent with the behavioral observation that the very same language, 732 

involving concatenation, loops and recursion, when applied to distinct visual or auditory 733 

primitives, can account for both domains (Dehaene et al., 2022a; Planton et al., 2021).  734 

Our data also point to the SMA, or rather pre-SMA (Nachev et al., 2008), in processing 735 

increasingly complex sequences. Such a domain-general sequence processing function was 736 

indeed advocated by Cona & Semenza (2017) given its various involvements in action 737 

sequences, music processing, numerical cognition, spatial processing, time processing, as well 738 

as language. Remarkably, cerebellum also participates in our complexity network. Its role in 739 

working memory has been rarely reported or discussed and might have been underestimated 740 

in the parsing of non-motor sequences, as it is classically associated with motor sequence 741 

learning (Jenkins et al., 1994; Toni et al., 1998). The present results confirms that the 742 

cerebellum may be involved in abstract, non-motor sequence encoding and expectation 743 

(Leggio et al., 2008; Molinari et al., 2008; Nixon, 2003). Indeed, cerebellum, SMA and 744 

premotor cortex were already reported as involved in the passive listening of rhythms (J. L. 745 

Chen et al., 2008), consistent with a role in the identification of sequence regularities. A 746 

tentative hypothesis is that (pre)SMA, cerebellum and possibly premotor cortex may 747 

participate in a beat- (Morillon & Baillet, 2017) or time-processing network (Coull et al., 2011), 748 

thus possibly involved in the translation from the abstract structures of the proposed language 749 

to concrete, precisely timed sensory predictions. 750 

Interestingly, we found that, while task performance was strictly linearly related to LoT 751 

complexity, fMRI activity did not. Rather, as the sequence becomes too complex, activation 752 

tended to stop increasing, or even decreased, just yielding a significant downward quadratic 753 

trend. Wang et al. (2019) observed a similar effect with visuo-spatial sequences. In both cases, 754 
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we ensured that the highest complexity sequences did not have any significant regularity in 755 

our language and, given their length, couldn’t be easily memorized. The collapse of activity for 756 

maximum LoT complexity, in regions that are precisely involved in working memory is 757 

therefore logical. Indeed, in a more classical object memory task, Vogel and Machizawa (2004) 758 

found that working memory activity does not solely increase with the number of elements 759 

stored in working memory, but saturates or decreases when the storage capacity, thought to 760 

be around three or four items (Cowan, 2001) is exceeded. Naturally, such a collapse can only 761 

lead to reduced predictions and therefore reduced violation detection – thus explaining that 762 

fMRI, MEG and behavioral responses to deviants vary linearly with complexity, while model-763 

related fMRI activations vary as an inverted U function of complexity. An analogous 764 

phenomenon was described in infants (Kidd et al., 2012, 2014): they allocate their attention 765 

to visually or auditory presented sequences that are neither too simple nor too complex, thus 766 

showing a U-shaped pattern that implies boredom for stimuli with low information content 767 

and saturation from stimuli that exceed their cognitive resources. 768 

Detailed examination of the responses to violations in MEG confirmed that human 769 

participants were able to encode details of the hierarchical structures of sequences. Not only 770 

did the amplitude of violation responses tightly track the proposed LoT complexity (Figure 7), 771 

but the specific violation responses proved that the human brain changed its expectations in 772 

a hierarchical manner (Figure 8). This was clearest in the case of the Pairs+Alt1 sequence, 773 

which consists in 2 pairs (AABB) followed by 4 alternations (ABAB). In those two consecutive 774 

parts, the predictions are exactly opposite at central locations (AABB versus ABAB), such that 775 

what is a violation for one is a correct prediction for the other, and vice-versa. The fact that 776 

we observe significant violation responses at each of these locations (i.e. locations 10, 12, 14 777 

and 15 in the pairs+alt1 sequence), as well as for the matched Alternate and Pairs sequences, 778 

indicates that the human brain is able to quickly change its anticipations as a function of 779 

sequence hierarchical structure. To do so, it must contain a representation of sequences as 780 

nested parts with parts, and switch between those parts after a fixed number of items (4 in 781 

this case). Violation detection in the Pairs and Quadruplets sequences further confirmed that 782 

subjects kept track of the exact number of items in each subsequence, since their brain 783 

reacted to violations which either shortened or, on the contrary, lengthened a chunk of 784 

identical consecutive items. 785 
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While present and past results thus indicate that a language is necessary to account for the 786 

human encoding of binary auditory sequences (Dehaene et al., 2022a; Planton et al., 2021), 787 

this language appears to differ from those used for communication, since it involves 788 

repetitions, numbers and symmetries, while the syntax of natural language systematically 789 

avoids these features (Moro, 1997; Musso et al., 2003). In agreement with this observation, 790 

there was little overlap between our auditory sequence complexity network and the classical 791 

left-hemisphere language network. Instead, complexity effects were systematically 792 

distributed symmetrically in both hemispheres, unlike natural language processing. Within 793 

individually-defined language fROIs (defined by their activity during visual or auditory 794 

sentence processing relative to a low-level control), no significant complexity effect was found 795 

except in a single region, the left IFGoper (a negative effect of complexity for deviants was 796 

also found there and in pSTS). Even that finding may well be a partial volume effect, as this 797 

area was absent from whole-brain contrasts, and the centroid of the complexity-related 798 

activation was centered at a more dorsal location in preCG (Figure 3). Broca's area is the main 799 

candidate region for language-like processing of hierarchical structures, and such role is 800 

advocated for in various previous rule-learning studies using artificial grammars (Bahlmann et 801 

al., 2008; Fitch & Friederici, 2012; Friederici et al., 2006) structured sequences of actions 802 

(Badre & D’Esposito, 2007; Koechlin & Jubault, 2006), sequence processing (Wang et al., 803 

2015), and even music (Maess et al., 2001; Patel, 2003). However, Broca’s area is a 804 

heterogeneous region (Amunts et al., 2010), of which certain sub-regions support language 805 

while others underlie a variety of other cognitive functions, including mathematics and 806 

working memory (Fedorenko et al., 2012). Interpretation must remain careful since functions 807 

that were once thought to overlap in Broca’s area, such as language and musical syntax (Fadiga 808 

et al., 2009; Koelsch et al., 2002; Kunert et al., 2015), are now clearly dissociated by higher-809 

resolution single-subject analyses (X. Chen et al., 2021).   810 

Conversely, a very different picture was observed when examining the overlap of LoT 811 

complexity fMRI activity and the mathematical calculation network. There was considerable 812 

overlap at the whole-brain level (SMA, IPS, premotor cortex, cerebellum) and, most 813 

importantly, a significant sequence complexity effect within each of the individual 814 

mathematical fROIs. A similar result was reported by Wang et al. (2019); they found activation 815 

of mathematics-related regions but not language-related ones when participants were 816 
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processing visuo-spatial sequences. Planton and Dehaene (2021) actually already reached a 817 

similar conclusion by showing novelty effects to pattern violations of both visual and auditory 818 

short sequences in mathematics but not in language areas. Since theirs, as well as the present 819 

data, was obtained with binary sequences which, contrary to Wang et al. (2019) were devoid 820 

of geometrical content, overall those results that the amodal language of thought that 821 

encodes sequence pattern shares common neural mechanisms with mathematical thinking.  822 

The present results therefore support the hypothesis that the human brain hosts multiple 823 

internal languages, depending on the types of structures and contents that are being 824 

processed (Dehaene et al., 2022a; Fedorenko & Varley, 2016; Hagoort, 2013). While  the 825 

capacity to encode nested sequences may well be a fundamental overarching function of the 826 

human brain, fundamental to the manipulation of hierarchical structures in language, 827 

mathematics, music, complex actions, etc. (Dehaene et al., 2015; Fitch, 2014; Hauser et al., 828 

2002; Lashley, 1951), those abilities may rely on partially dissociable networks. This conclusion 829 

fits with much prior evidence that, at the individual level, language and mathematics do not 830 

share the same cerebral substrates and may be dissociated by brain injuries (Amalric & 831 

Dehaene, 2016, 2017; Fedorenko & Varley, 2016), just like language and music (J. L. Chen et 832 

al., 2008; Norman-Haignere et al., 2015; Peretz et al., 2015). During hominization, an 833 

enhanced functionality for recursive nesting may have jointly emerged in all of those neuronal 834 

circuits. In the future, this hypothesis could be tested by submitting non-human primates to 835 

the present hierarchy of sequences, and examine up to which level their brains can react to 836 

violation. We already know that the macaque monkey brain can detect violations of simple 837 

habitual, sequential or numerical patterns (Uhrig et al., 2014; Wilson et al., 2013), with both 838 

convergence (Wilson et al., 2017) and divergence (Wang et al., 2015) relative to human 839 

results. The present design may help determine precisely where to draw the line. 840 

841 
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Materials and methods 842 

Participants 843 

Nineteen participants (10 men, Mage = 27.6 years, SDage = 4.7 years) took part in the 844 

MEG experiment and twenty-three (11 men, Mage = 26.1 years, SDage = 4.7 years) in the fMRI 845 

experiment. We did not test any effect of gender on the results of this study. All participants 846 

had normal or corrected to normal vision and no history or indications of psychological or 847 

neurological disorders. In compliance with institutional guidelines, all subjects gave written 848 

informed consent prior to enrollment and received 90€ as compensation. The experiments 849 

were approved by the national ethical committees (CPP Ile-de-France III and CPP Sud-Est VI).  850 

Stimuli and tasks 851 

Auditory binary sequences of 16 sounds were used in both experiments. They were 852 

composed of low pitch and high pitch sounds, constructed as the superimposition of sinusoidal 853 

signals of respectively f = 350Hz, 700Hz and 1400Hz, and f = 500Hz, 1000Hz and 2000Hz. Each 854 

tone lasted 50 ms and the 16 tones were presented in sequence with a fixed SOA of 250ms. 855 

Ten 16-items sequential patterns spanning a large range of complexities were selected 856 

(see Figure 1A).  Six of them were used in previous behavioral experiments (Planton et al., 857 

2021). The complexity metric used to predict behavior and brain activity was the “Language-858 

of-thought – chunk” complexity, which was previously shown to be well correlated with 859 

behavior (Planton et al., 2021). This metric roughly measures the length of the shortest 860 

description of the pattern in a formal language that uses a small set of atomic rules (e.g. 861 

repetition, alternation) that can be recursively embedded. The chunk version of the metric 862 

includes only expressions that preserve chunks of consecutive repeated items (for instance, 863 

the sequence ABBA is parsed as [A][BB][A] rather than [AB][BA]). 10 sequences were used in 864 

the fMRI experiment, and 7 of them in the MEG experiment (i.e. all but Pairs&Alt.2, ThreeTwo 865 

and CenterMirror). 866 

Each auditory sequence (4000 ms long) was repeatedly presented to a participant in a 867 

mini-session with 500 ms ITI. Mini-sessions had the following structure. Participants first 868 

discovered and encoded the sequence during a habituation phase of 10 trials. Then, during a 869 
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test phase, occasional violations consisting in the replacement of a high pitch sound by a low 870 

pitch one (or vice-versa) were presented at the locations specified in Figure 1A. As described 871 

in Figure 1B, in the MEG experiment, the test phase included 36 trials of which 2/3 comprised 872 

a deviant sound. In the fMRI experiment, the test phase included 18 trials of which 1/3 873 

comprised a deviant sound. Participants were unaware of the mini-session structure. 874 

In the MEG experiment, habituation and test sequences followed each other 875 

seamlessly, and participants were merely asked to listen attentively. After each mini-session, 876 

they were asked one general question about what they had just heard such as: How many 877 

different sounds could you hear? Did you find it musical? How complex was the sequence of 878 

sounds? The full experiment was divided temporally into 2 parts such that the 7 sequence 879 

types appeared twice, once in each version (starting with A or B), once at the beginning and 880 

once at the end of the experiment. The overall experiment lasted about 80 minutes. 881 

In the fMRI experiment, participants were explicitly instructed to detect and respond 882 

to violations, by pressing a button, as quickly as possible, with either their right or left hand. 883 

The correct response button (left or right, counterbalanced over the two repetitions of each 884 

sequence) was indicated by a 2s visual message on the screen during the rest period preceding 885 

the first test trial. In order to optimize the estimation of the BOLD response, trials were 886 

presented in two blocks of 5 trials for the habituation phase, then three blocks of 6 trials for 887 

the test phase, separated by rest periods of variable duration (6s ± 1.5). The 10 sequences 888 

appeared twice, once in each version (starting with A or B). The 20 mini-sessions were 889 

presented across 5 fMRI sessions of approximately 11 minutes. 890 

Post-experimental sequence bracketing task 891 

After the experiment, participants were given a questionnaire to assess their own 892 

representation of the structure of the sequence. For each sequence of the experiment (i.e. 7 893 

for the MEG participants, 10 for the fMRI participants), after listening to it several times if 894 

needed, participants were asked to segment the sequence by drawing brackets (opening and 895 

closing) on its visual representation As and Bs were respectively represented by empty and 896 

filled circles on a sheet of paper). In this way, they were instructed to indicate how they tended 897 

to group consecutive items together in their mind when listening to the sequence, if they did. 898 
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MEG experiment procedures 899 

MEG recordings 900 

Participants listened to the sequences while sitting inside an electromagnetically 901 

shielded room. The magnetic component of their brain activity was recorded with a 306-902 

channel, whole-head MEG by Elekta Neuromag® (Helsinki, Finland). 102 triplets, each 903 

comprising one magnetometer and two orthogonal planar gradiometers composed the MEG 904 

helmet. The brain signals were acquired at a sampling rate of 1000 Hz with a hardware 905 

highpass filter at 0.1Hz. The data was then resampled at 250 Hz. 906 

Eye movements and heartbeats were monitored with vertical and horizontal electro-907 

oculograms (EOGs) and electrocardiograms (ECGs). Head shape was digitized using various 908 

points on the scalp as well as the nasion, left and right pre-auricular points (FASTTRACK, 909 

Polhemus). Subjects’ head position inside the helmet was measured at the beginning of each 910 

run with an isotrack Polhemus Inc. system from the location of four coils placed over frontal 911 

and mastoïdian skull areas. Sounds were presented using Eatymotic audio system (an HiFi-912 

quality artifact-free headphone system with wide frequency response) while participants had 913 

to fixate a central cross. The analysis was performed with MNE Python (Gramfort et al., 2013; 914 

Jas et al., 2018), version 0.23.0. 915 

Data cleaning: Maxfiltering 916 

We applied the signal space separation algorithm mne.preprocessing.maxwell_filter 917 

(Taulu et al., 2004) to suppress magnetic signals from outside the sensor helmet and 918 

interpolate bad channels that we identified visually in the raw signal and in the power 919 

spectrum. This algorithm also compensated for head movements between experimental 920 

blocks by realigning all data to an average head position. 921 

Data cleaning: ICA 922 

Oculomotor and cardiac artefacts were removed performing an independent 923 

component analysis (ICA) on the four last runs of the experiment. The components that 924 

correlated the most with the EOG and ECG signals were automatically detected. We then 925 

visually inspected their topography and correlation to the ECG and EOG time series to confirm 926 

their rejection from the MEG data. A maximum of 1 component for the cardiac artefact and 2 927 
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components for the ocular artefacts were considered. Finally, we removed them from the 928 

whole recording (14 runs). 929 

Data cleaning: Autoreject 930 

We used an automated algorithm for rejection and repair of bad trials (Jas et al., 2017) 931 

that computes the optimal peak-to-peak threshold per channel-type in a cross-validated 932 

manner. It was applied to baselined epochs and removed on average 4.6% of the epochs. 933 

Epoching parameters and projection on magnetometers 934 

Epochs on items were baselined from -50 ms to 0 ms (stimulus onset) and epochs on 935 

the full sequences were baselined between -200ms to 0ms (first sequence item onset). For 936 

sensor level analyses, instead of working with the 306 sensors (102 magnetometers and 206 937 

gradiometers), we projected the spherical sources of signal onto the magnetometers using 938 

MNE epochs method epochs.as_type(‘mag’,mode=’accurate’).  939 

Univariate analyses 940 

GFP and linear regressions 941 

Global field power was computed as the root-mean-square of evoked responses or the 942 

difference of evoked responses. Linear regressions were computed using 4-fold cross-943 

validation and with the linear_model.LinearRegression function of scikit-learn package version 944 

0.24.1. Pearson correlation was computed with the stats.pearsonr function from scipy 945 

package. The predictors for surprise from transition probabilities were computed using an 946 

ideal observer Bayesian model learning first-order transitions with an exponential memory 947 

decay over 100 items. This was done thanks to the TransitionProbModel python package, 948 

which is the python version of the Matlab version used in (Maheu et al., 2019; Meyniel et al., 949 

2016).  950 

Source reconstruction 951 

A T1-weighted anatomical MRI image with 1 mm isometric resolution was acquired for 952 

each participant (3T Prisma Siemens scanner). The anatomical MRI was segmented with 953 

FreeSurfer (Dale et al., 1999; Fischl et al., 2002) and co-registered with MEG data in MNE using 954 

the digitized markers. A three-layer boundary element model (inner skull, outer skull and 955 

outer skin) was used to estimate the current-source density distribution over the cortical 956 

surface. Source reconstruction was performed on the linear regression coefficients  using the 957 
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dSPM solution with MNE default values (loose orientation of 0.2, depth weighting of 0.8,  SNR 958 

value of 3) (Dale et al., 2000). The noise covariance matrix used for data whitening was 959 

estimated from the signal within the 200 ms preceding the onset of the first item of each 960 

sound sequence. The resulting sources estimates were transformed to a standard anatomical 961 

template (fsaverage) with 20484 vertices using the MNE morphing procedure, and averaged 962 

across subjects.  963 

Multivariate analyses 964 

Data was smoothed with a 100 ms sliding window and, instead of working with the 306 965 

sensors (102 magnetometers and 206 gradiometers), we projected the spherical sources of 966 

signal onto the magnetometers using MNE epochs method 967 

epochs.as_type(‘mag’,mode=’accurate’).  968 

 969 

Time-resolved multivariate decoding of brain responses to standard and deviant sounds 970 

The goal of multivariate of time-resolved decoding analyses was to predict from single-971 

trial brain activity (X) a specific categorical variable (y), namely if the trial corresponded to the 972 

presentation of a deviant sound or not. These analyses were performed following King et al’s 973 

preprocessing pipeline (King & Dehaene, 2014) using MNE-python (Gramfort et al., 2013). 974 

Prior to model fitting, channels were z-scored across trials for every time-point. The estimator 975 

was fitted on each participant separately, across all MEG sensors using the parameters set to 976 

their default values provided by the Scikit-Learn package (Pedregosa et al., 2011).  977 

Cross-validation  978 

One run was dedicated to each version of the sequence (7 sequence types x 2 versions 979 

[starting with A or starting with B] = 14 runs). To build the training set, we randomly picked 980 

one run for each sequence, irrespectively of the sequence version. We trained the decoder on 981 

all deviant trials of the 7 sequences and on standard trials (non-deviant trials from the test 982 

phase) that were matched to sequence-specific deviants in ordinal position. We then tested 983 

this decoder on the remaining 7 blocks, determining its performance for the 7 sequences 984 

separately. The training and the testing sets were then inverted, resulting in a 2-folds cross-985 

validation. This procedure avoided any confound with item identity, as the sounds A and B 986 

were swapped in the cross-validation folds. 987 
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Generalization across time 988 

To access the temporal organization of the neural representations, we computed the 989 

generalization-across-time (GAT) matrices (King & Dehaene, 2014). These matrices represent 990 

the decoding score of an estimator trained at time t (training time on the vertical axis) and 991 

tested with data from another time t’ (testing time on the horizontal axis). 992 

Statistical analyses 993 

Temporal, spatiotemporal and temporal-temporal cluster-based permutation tests 994 

were computed on the time-windows of interest (0-350ms for habituation and standard items 995 

and 0-600ms for deviants) using stats.permutation_cluster_1samp_test from MNE python 996 

package. To compute spatiotemporal clusters, we provided the function with an adjacency 997 

matrix from mne.channels.find_ch_connectivity.  998 

fMRI experiment procedures 999 

Localizer session 1000 

Together with the main sequence processing task described above, the fMRI 1001 

experimental protocol also included a 6-min localizer session, designed to localize cerebral 1002 

regions involved in language processing and in mathematics. It was derived from a previously 1003 

published functional localizer (see Pinel et al., 2007, for details) and was already used 1004 

elsewhere (Planton & Dehaene, 2021). A sentence processing network was identified in each 1005 

subject by contrasting sentence reading/listening conditions (i.e. visually and auditorily 1006 

presented sentences) from control conditions (i.e. meaningless auditory stimuli consisting in 1007 

rotated sentences, and meaningless visual stimuli of the same size and visual complexity as 1008 

visual words). A mathematics network was identified in each subject by contrasting mental 1009 

calculation conditions (i.e. mental processing of simple subtraction problems, such as 7 − 2, 1010 

presented visually, and auditorily) from sentence reading/listening conditions. 1011 

fMRI acquisition and preprocessing 1012 

MRI acquisition was performed on a 3T scanner (Siemens, Tim Trio), equipped with a 1013 

64-channel head coil. 354 functional scans covering the whole brain were acquired for each 1014 

of the 5 sessions of the main experiment, as well as 175 functional scans for the localizer 1015 

session, all using a T2*-weighted gradient echo-planar imaging (EPI) sequence (69 interleaved 1016 
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slices, TR = 1.81 s, TE = 30.4 ms, voxel size = 1.75 mm3, multiband factor = 3). To estimate 1017 

distortions, two volumes with opposite phase encoding direction were acquired: one volume 1018 

in the anterior to posterior direction (AP) and one volume in the other direction (PA). A 3D T1-1019 

weighted structural image was also acquired (TR = 2.30 s, TE = 2.98 ms, voxel size = 1.0 mm3). 1020 

Data processing (except the TOPUP correction) was performed with SPM12 (Wellcome 1021 

Department of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/spm). The anatomical scan 1022 

was spatially normalized to a standard Montreal Neurological Institute (MNI) reference 1023 

anatomical template brain using the default parameters. Functional images were unwarped 1024 

(using the AP/PA volumes, processed with the TOPUP software; FSL, fMRIB), corrected for slice 1025 

timing differences (first slice as reference), realigned (registered to the mean using 2nd degree 1026 

B-Splines), coregistered to the anatomy (using Normalized Mutual Information), spatially 1027 

normalized to the MNI brain space (using the parameters obtained from the normalization of 1028 

the anatomy), and smoothed with an isotropic Gaussian filter of 5-mm FWHM. 1029 

In addition to the 6 motion regressors from the realignment step, 12 regressors were 1030 

computed using the aCompCor method (Behzadi et al., 2007), applied to the CSF and to white 1031 

matter (first 5 components of two principal component analyses, and 1 for the raw signal), in 1032 

order to better correct for motion-related and physiological noise in the statistical models 1033 

(using the PhysIO Toolbox, Kasper et al., 2017). Additional regressors for motion outliers were 1034 

also computed (framewise displacement larger than 0.5 mm; see Power et al., 2012), they 1035 

represented 0.5% of volumes per subject on average. One participant was excluded from the 1036 

fMRI analyses due to excessive movement in the scanner (average translational displacement 1037 

of 2.9 mm within each fMRI session, which was 3.3 SD above group average). 1038 

fMRI analysis 1039 

General linear model 1040 

Statistical analyses were performed using SPM12 and general linear models (GLM) that 1041 

included the motion-related and physiological noise-related regressors (described above) as 1042 

covariates of no interest. fMRI images were high-pass filtered at 0.01 Hz. Time series from the 1043 

sequences of stimuli of each condition (each tone modeled as an event) were convolved with 1044 

the canonical hemodynamic response function (HRF). Specifically, for each of the twenty mini-1045 

sessions (i.e. each sequence being tested twice, reverting the attribution of the two tones), 1046 

one regressor for the items of the habituation phase, one for the items of the test phase and 1047 
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one for the deviant items were included in the GLM. Since motor responses and deviant trials 1048 

were highly collinear, manual motor responses were not modeled. However, motor responses 1049 

could be less frequent for more complex sequences (i.e. increased miss rate), thus creating a 1050 

potential confound with the effect of complexity in deviant trials. We thus also computed an 1051 

alternative model in which only correctly-detected deviants trials were included. In order to 1052 

test for a relationship between brain activation and LoT complexity in different trial types (i.e. 1053 

habituation trials, deviant trials), corresponding beta maps for each of the 10 sequences and 1054 

each participant were entered in second-level within-subject ANOVA analyses. Linear 1055 

parametric contrasts using the LoT complexity value were then computed. 1056 

Cross-validated ROI analyses 1057 

To further test the reliability of the complexity effect across participants, a cross-1058 

validated region-of-interest (ROI) analysis, using individually-defined functional ROIs (fROIs), 1059 

was conducted. Nine of the most salient peaks from the positive LoT complexity contrast in 1060 

habituation were first selected, and used to build nine 20-mm-diameter spherical search 1061 

volumes: supplementary motor area (SMA; coordinates: -1, 5, 65), right precentral gyrus (R-1062 

preCG; 46, 2, 44), left precentral gyrus (L-preCG; -47, 0, 45), right intraparietal sulcus (R-IPS; 1063 

36, -46, 56), left intraparietal sulcus (L-IPS; -31, -42, 44), right superior temporal gyrus (R-STG; 1064 

48, -32, 3), left superior temporal gyrus (L-STG; -68, -23, 5), lobule VI of the left cerebellar 1065 

hemisphere (L-CER6; -29, -56, -28) and lobule VI of the right cerebellar hemisphere (R-CER8; 1066 

22, -68, -51). Individual fROIs were then defined for each participant by selecting the 20% most 1067 

active voxels at the intersection between each search volume and the contrast “LoT 1068 

complexity effect in habituation” computed on half of the blocks (i.e. blocks of sequences 1069 

starting with “A”). Mean contrast estimates for each fROI and each condition was then 1070 

extracted using the other half of the blocks (i.e. blocks of sequences starting with “B”). The 1071 

same procedure was repeated a second time by reversing the role of the two halves (i.e. fROIs 1072 

computed using blocks of sequences starting with “B”, data extracted from blocks of 1073 

sequences starting with “A”). To test for the significance of the complexity effect in each ROI, 1074 

the mean of the output of the two procedures (i.e. the cross-validated activation value), for 1075 

each of the ten conditions (i.e. habituation blocks for each of the 10 sequences) and each 1076 

participant, was entered in a linear mixed model mixed effect model with participant as 1077 

random factor and LoT complexity value as a fixed effect predictor. P values were corrected 1078 
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for multiple comparison using Bonferroni correction for nine ROIs. Along with such linear 1079 

effect of complexity, we also tested a quadratic effect, by adding a quadratic term in the mixed 1080 

effect model. 1081 

In order to track activation over time, we also extracted, using the same cross validated 1082 

procedure, the BOLD activation time course for each 28-trials mini-session. To account for the 1083 

fact that the duration of rest periods between blocks could vary, data were actually extracted 1084 

for a [-6s – 32s] period relative to the onset of the first trial of each block rest period, and the 1085 

whole mini-session curve was recomposed by averaging over the overlapping period of two 1086 

consecutive parts (see vertical shadings in Figure 4A). Each individual time course was 1087 

upsampled and smoothed using cubic spline interpolation, and baseline-corrected with a 6-1088 

seconds period preceding the onset of the first trial. 1089 

Finally, two set of ROIs were selected in order to test for the involvement of language 1090 

and mathematics-related areas in the present sequence processing task, and especially to 1091 

assess a potential sequence complexity effect. Seven language-related ROIs came from the 1092 

sentence processing experiment of Pallier et al. (2011): pars orbitalis (IFGorb), triangularis 1093 

(IFGtri), and opercularis (IFGoper) of the inferior frontal gyrus, temporal pole (TP), 1094 

temporoparietal junction (TPJ), anterior superior temporal sulcus (aSTS) and posterior 1095 

superior temporal sulcus (pSTS). Seven mathematics-related ROIs came from the 1096 

mathematical thinking experiment of Amalric & Dehaene (2016): left and right intraparietal 1097 

sulcus (IPS), left and right superior frontal gyrus (SFG), left and right precentral/inferior frontal 1098 

gyrus (preCG/IFG), supplementary motor area (SMA). These two set of ROIs were already used 1099 

in the past (Planton & Dehaene, 2021; Wang et al., 2019). In order to build individual and 1100 

functional ROIs from these literature-based ROIs, we used the same procedure as Planton & 1101 

Dehaene (2021) consisting in selecting, for each subject, the 20% most active voxels within 1102 

the intersection between the ROI mask and an fMRI contrast of interest from the independent 1103 

localizer session. The contrast of interest was “Listening & reading sentences > Rotated speech 1104 

& false font script” for the ROIs of the language network, and “Mental calculation visual & 1105 

auditory > Sentence listening & reading” for the ROIs of the mathematics network. Mean 1106 

contrast estimates for each fROI and each condition was then extracted, and entered into 1107 

linear mixed model mixed effect model with participant as random factor and LoT complexity 1108 

value as a fixed effect predictor. A Bonferonni correction for 14 ROIs was applied to the p 1109 

values. 1110 
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Behavioral data analysis 1111 

Data for the sequence bracketing task included all productions collected in the fMRI 1112 

and MEG experiment (42 participants for seven sequences, and 23 participants for the three 1113 

that were only presented during fMRI). For each production, we counted the total number of 1114 

brackets (opening and closing) drawn at each interval between two consecutive items (as well 1115 

as before the first and after the last item, resulting in a vector of length 17) (see Figure 2A). To 1116 

determine if participants’ reported sequence structure matched the predictions of the LoT 1117 

model, we computed the correlation between the average over participants of the number of 1118 

brackets in each interval and the postulated bracketing of the sequence (derived from its 1119 

expression in the LoT). For the first two sequences, the representations “[A][A][A]…” and 1120 

“[AAA…]”, as well as “[A][B][A]…” and “[ABA…]”, respectively derived from the expressions 1121 

[+0]^16 and [+0]^16<b>, were considered as equivalent. 1122 

For the violation detection task of the fMRI experiment, we considered as a correct 1123 

response (or “hit”) all button presses occurring between 200 ms and 2500 ms after the onset 1124 

of a deviant sound. We thus allowed for potential delayed responses (but found that 97.7% of 1125 

correct responses were below 1500 ms). An absence of response in this interval was counted 1126 

as a miss, a button press outside this interval was counted as a false alarm. We then computed, 1127 

for each subject and each sequence, the average response time as well as, using the 1128 

proportions of hits and false alarms, the sensitivity (or d’). The method of Hautus (1995) was 1129 

used to adjust extreme values. In order to test whether subject performance was predicted 1130 

by LoT complexity, we performed linear regressions on group-averaged data, as well linear 1131 

mixed models including participant as random factor on the by-subject data. Analyses were 1132 

performed in R 4.0.2 (R Core Team, 2020), using the lme4 (Bates et al., 2015) and lmerTest 1133 

(Kuznetsova et al., 2017) packages. Surprise for each deviant item was computed from 1134 

transition probabilities, within each block for each subject, using an ideal observer Bayesian 1135 

model (Maheu et al., 2019; Meyniel et al., 2016), and tested as an additional predictor in the 1136 

mixed effect models. For the analysis of d’, we used the average surprise of the deviant items 1137 

of the block (i.e. all deviants presented to the subject, whether or not they detected them). 1138 

For the analysis of response times, we used the average surprise of the correctly-detected 1139 

deviant items of the block  1140 

  1141 
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 1528 
Figure S1. Task performance: average sensitivity (d’), for each position and each sequence. Error bars 1529 
represent SEM. 1530 

 
 
 

 1531 
Figure S2. Positive effects of LoT complexity effects on standard trials (voxel-wise p < .001, uncorrected; 1532 
cluster-wise p < .05, FDR corrected). 1533 
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 1534 
Figure S3. Time course of group-averaged BOLD signals for each sequence in nine ROIs where a LoT complexity 1535 
effect was found. Each mini-session lasted 160-seconds and was composed of 5 blocks (2 habituation and 3 tests) 1536 
interspersed with short rest periods of variable duration (depicted in light gray). The full time course was 1537 
reconstituted by resynchronizing the data at the onset of each successive block (see Methods). Shading around 1538 
each time course represents one SEM. 1539 
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 1540 
Figure S4 Unconfounding the effects of statistical surprise and sequence complexity on MEG signals. Left: 1541 
amplitude of the regression coefficients ẞ of the complexity regressor for each MEG sensor, in a general linear 1542 
model where surprise, repetition and alternation were also modeled. Insets show the projection of these 1543 
coefficients on the source space for its maximal amplitude value, indicated by the vertical dotted lines. Right: 1544 
illustration of spatiotemporal clusters where regression coefficients were significantly different from 0. 1545 
Significant time windows are indicated by the shaded areas and have an opposite T-value for Deviant trials. 1546 
Neural signals were averaged over the significant sensors for each sequence type and were plotted separately 1547 
(see color legend).  Note that the time-window goes until 600 ms for Deviant trials and until 350 ms for the other 1548 
trials. 1549 
  1550 
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 1551 
Figure S5. Significant spatiotemporal clusters for the complexity regressor in sensor space, shown separately for 1552 
the 3 trial types (Habituation, Standard, Deviant) and 3 general linear models of MEG signals: with complexity 1553 
alone (left column); with complexity, surprise and repeat/alternate (middle column); and with complexity after 1554 
regressing out surprise and repeat/alternate signals. The clusters are very similar in all three cases, suggesting a 1555 
robust effect of complexity irrespectively of transition statistics. 1556 
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 1557 
 
Figure S6. Amplitude of the regression coefficient ẞ for each MEG sensor for the 4 regressors of transition 1558 
statistics: Repetition/Alternation for item n (presented at t=0 ms), Repetition/Alternation for item n+1 1559 
(presented at t=250 ms), Surprise for item n and Surprise for item n+1. The Surprise predictor is computed using 1560 
an ideal observer estimating surprise over 100 past observations. The projection on the source space at the time 1561 
of its maximal amplitude is also shown. 1562 
  1563 
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Table S1. fMRI complexity effect on standard trials (voxel-wise p < .001, uncorrected; cluster-wise p < .05, FDR 1564 
corrected) 1565 
 

 1566 
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Table S2. fMRI complexity effect on deviant trials (voxel-wise p < .001, uncorrected; cluster-wise p < .05, FDR 1567 
corrected) 1568 
 1569 

 1570 
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