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Abstract 

Advancements in cancer immunotherapy have shown significant outcomes in treating various 

types of cancers. In order to design effective immunotherapy, it is important to understand 

immune response of a patient based on its genomic profile. We compute prognostic 

biomarkers from 8346 cancer patients for twenty types of cancer. These prognostic 

biomarkers has been computed based on i) presence of 352 human leucocyte antigen class-I 

(HLA-I), ii) 660959 tumor-specific HLA1 neobinders and iii) expression profile of 153 

cytokines. It was observed that survival risk of cancer patients depends on presence of certain 

type of HLA-I alleles; for example LIHC cancer patients with HLA-A*03:01 are on lower 

risk. Our analysis indicate that neobinders of HLA-I alleles have high correlation with overall 

survival of certain type of cancer patients. For example HLA-B*07:02 binders have 0.49 

correlation with survival of LUSC and -0.77 with KICH cancer patients. It is clear from 

above analysis that HLA and their binders have major role in survival of cancer patients 

suffering from different types of cancer. In addition, we compute prognostic biomarkers for 

20 types of cancer based on each type of cytokine expression.  Higher expression of few 

cytokines is survival favourable like IL-2 for BLCA cancer patients whereas  IL-5R survival 

unfavourable for KICH cancer patients. In order to facilitate scientific community we 

developed a web-based platform CancerHLA1 that maintain raw and analyzed data 

(https://webs.iiitd.edu.in/raghava/cancerhla1/).   

Keywords: HLA-alleles, neobinders, cancer, prognostic biomarkers, cytokines  

List of Abbreviations 

• BLCA- bladder urothelial carcinoma 

• BRCA- beast invasive carcinoma 

• CESC- cervical squamous cell carcinoma and endocervical adenocarcinoma 

• CHOL- cholangiocarcinoma 

• GBM- glioblastoma multiforme 

• HNSC- head and neck squamous cell carcinoma 

• KICH- kidney chromophobe 

• KIRC- kidney renal clear cell carcinoma 

• KIRP- kidney renal papillary cell carcinoma 

• LIHC- liver hepatocellular carcinoma 
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• LUAD- lung adenocarcinoma 

• LUSC- lung squamous cell carcinoma 

• OV- ovarian serous cystadenocarcinoma 

• PAAD- pancreatic adenocarcinoma 

• PRAD- prostate adenocarcinoma 

• READ- rectum adenocarcinoma 

• SKCM- skin cutaneous melanoma 

• STAD- stomach adenocarcinoma 

• THCA- thyroid carcinoma 

• UCEC- uterine corpus endometrial carcinoma    

Introduction 

Cancer is one of the top causes of mortality worldwide; GLOBOCAN estimates that 19.3 

million new cancer cases and 10 million deaths will be reported in 2020 (Sung et al., 2021). 

Several researchers have worked tirelessly over the last few decades to develop novel cures 

and treatments to fight against the deadly disease (Pucci et al., 2019). Traditional therapies 

like chemotherapy, radiation, and surgery are the most commonly used treatments (Arruebo 

et al., 2011). These radiation-based therapies have negative consequences on the patient’s 

health and survival (Altun and Sonkaya, 2018;Pucci et al., 2019;Dilalla et al., 2020). To 

circumvent the drawbacks of conventional medicines, new treatment regimens have been 

developed, including targeted cancer therapies, adoptive T cell therapy, immune checkpoint 

inhibitor-based therapies, immunomodulators, interferons and oncolytic viruses (Padma, 

2015;Dine et al., 2017;Esfahani et al., 2020;Franzin et al., 2020;Hemminki et al., 2020). 

Cancer immunotherapy have resulted in considerable outcomes and increase the life duration 

of many patients suffering from various solid tumours (Amin et al., 2020;Ruiz-Patino et al., 

2020).  

The central pillars of immunotherapy are immune checkpoint inhibitors and chimeric antigen 

receptor (CAR) T cells. These therapies are entirely dependent on T-lymphocytes (T cells), 

which recognise tumor-associated peptides displayed on the tumor cell surface by human 

leukocyte antigens (HLA) (Waldman et al., 2020). HLAs are the highly complex and 

polymorphic genes in the human genome, situated on chromosome 6. Class-I HLA alleles 

interact with the CD8+ T cell receptors to activate T cells which further induce several 
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immune responses to knock off the tumor cells from our system (Buhrman and Slansky, 

2013;Engels et al., 2013;Chan et al., 2018;He et al., 2019). The immunotherapies are entirely 

based on the T cells, which identify tumor-associated peptides presented by human 

leukocytes antigens (HLA) on the infected cell surface. Recently, scientists majorly focused 

on HLA-dependent therapies, including CD8+ T cell therapy, tumor-infiltrating lymphocytes 

(TILs) therapy, and TCR-engineered T cells (TCR-Ts) and neoantigen-based therapy (Sun et 

al., 2021;Yarmarkovich et al., 2021) to treat cancer patients. HLA-dependent treatments are 

more effective and efficient than traditional chemotherapies. HLA-peptide binding is critical 

for determining cancer immunogenicity.  

In the past number of repositories such as TCIA (Charoentong et al., 2017), TSNAdb (Wu et 

al., 2018), NEPdb (Xia et al., 2021), dbpepNeo (Tan et al., 2020), Ovirusdb (Lathwal et al., 

2020), CancerTope (Gupta et al., 2016) have been developed for designing immunotherapy. 

However, these databases lack with information of impact of class-I HLA-alleles, neobinders 

and cytokines on the survival of cancer patients. To stratify patient-specific therapy, HLA-

typing, neoantigens, and binding affinity must be identified. It is now possible to detect 

patient-specific HLA-alleles with the help of latest technologies and the availability of 

sequencing data. To construct patient-specific therapy, genetic information such as HLA-

alleles, neoantigens, HLA-peptide binding affinity, and immune response need to be 

considered. In the piolet study, we have developed a resource which provide patient-specific 

information from public repositories such as (TCGA and TCIA) and analysed patient survival 

based on HLA-alleles, as well as the correlation of the amount of neobinders specific to 

HLA-alleles with overall survival in various cancer types. Furthermore, we used correlational 

analysis to better understand the role of chemokines, cytokines, and their receptors in cancer 

patient prognosis. We combine all of the aforementioned analysis of 20 types of cancers onto 

a single user-friendly resource named as “CancerHLA-I” 

(https://webs.iiitd.edu.in/raghava/cancerhla1/). 

Material and Methods  

Overall study design  

The complete architecture of the study is depicted in Figure 1 
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Figure 1: Complete architecture of the study including dataset collection, analysis and 

website development 

Collection and pre-processing of datasets 

At first, we gathered the genomic and clinical data for 8346 patients with 20 different types 

of cancer (BLCA, BRCA, CESC, CRC, GBM, HNSC, KICH, KIRC, KIRP, LIHC, LUAD, 

LUSC, OV, PAAD, PRAD, READ, SKCM, STAD, THCA, and UCEC) from The Cancer 

Genome Atlas (TCGA) (Tomczak et al., 2015) and The Cancer Immunome Atlas TCIA 

(Charoentong et al., 2017) repositories. We obtain the control excess dataset patient-specific 

HLA-typing data and neoantigens data for 20 types of cancers available in TCIA [with the 

approval of dbGap (Project No. 17674)]. Furthermore, RNA-seq expression data of 

cytokines, chemokines, and their receptors was obtained using TCGA assembler 2.0. The 

expression profiles were then transformed into log2 values after addition of 1.0 as a constant 
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number to each of expression value. The survival information covers vital status and overall 

survival time (OS).  

Mean-overall and univariate survival analysis  

For each cancer type, we first built a binary matrix based on the presence or absence of HLA-

alleles. Each column represents HLA-alleles, and each row represents samples/patients. We 

used individual's survival data to calculate mean overall survival (MOS) based on the 

presence or absence of an HLA-allele. After that, we computed the difference in MOS 

(depending on presence/absence). Cox proportional hazard (Cox-PH) regression models were 

used in the current study to identify HLA-alleles linked with cancer patient survival. The 

“survival” package  in R (V.3.5.1) was used for univariate analysis. The cox regression 

coefficient greater than 0 indicates that the presence of an HLA-allele which affects survival 

(unfavourable), whereas less than 0 indicates that the presence of alleles increases survival 

(favourable). For each allele, we calculated the Hazard Ratio (HR) and 95% CI (Confidence 

Interval). HR >1 denotes high-risk HLA-alleles, while HR <1 depicts low-risk alleles; 

however, HR =1 has no effect on survival. Furthermore, the log-rank test and p-value were 

conducted to determine the significant distribution of low-risk and high-risk patients. To 

calculate the predictive performance of models, we used the Concordance index (C). In this 

study univariate survival analysis performed based on HLA-alleles, cytokines, and 

chemokines genes for 20 each cancer type.  

Correlation analysis 

We extracted the strong binding neoantigens/epitopes corresponding to each HLA-allele for 

each cancer type using the MHCflurry 2.0 software (O'Donnell et al., 2020). We classify 

neoepitopes as strong or weak binders using the MHCflurry software’s binding affinity (BA) 

percentile, where neoantigens with BA<2 are considered strong binders and BA>2 taken as 

weak binders. Following that, we built a count matrix with the number of strong binders 

matching to each HLA-allele and cancer type. We calculate the correlation coefficient 

between overall survival and the number of strong binders for each HLA-allele in order to 

understand the impact of number of binders on the survival using Pearson correlation test. 

The correlation coefficient and p-value (<0.05) demonstrate the significance of the number of 

HLA-binding neoepitopes on cancer patient survival. Moreover, we conducted correlation 
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analysis using the expression values of cytokines, chemokines genes for each cancer type. 

We used survival data and the expression of 153 cytokines, chemokines, and their receptors.  

Database implementation 

The web interface of CancerHLA-I (https://webs.iiitd.edu.in/raghava/cancerhla1/) was 

developed using MySQL and hosted on linux based apache server. In order to create the 

interactive user interface, we developed responsive framework made up of HTML, CSS, and 

JavaScript. To improve the data view, the user interface is responsive, which means that the 

web interface recognises the user device and modifies its structure and shape in accordance 

with the device resolution. With the help of this functionality, the interface is adaptable to a 

wide range of devices and browsers with various screen resolutions. The web-site can be 

searched using variety of devices (smartphones or tablets) and browsers (Google Chrome, 

Mozilla Firefox, and Safari).  

Results  

Statistical analysis of data of CancerHLA-I 

CancerHLA-I incorporates data on cancer associated HLA-alleles, neoantigens, cytokines, 

chemokine, and their relationship with the overall survival of 20 cancer types. The genomic 

and clinical information of 8346 cancer patients were downloaded from TCGA and TCIA 

repositories and processed to build this resource. In Figure 2, we have provided the 

description of 20 types of cancer, with number of samples, HLA-alleles, total number 

neoantigens, strong and weak binders. As shown in Figure 2B, HLA-B acquire maximum 

number of alleles i.e., 185 followed by HLA-A (97 alleles) and HLA-C (70 alleles). We 

observed that in the case of Uterine Corpus Endometrial Carcinoma (UCEC) highest number 

(i.e., 192 HLA-alleles) are reported, whereas Kidney Chromophobe (KICH) reported the 

lowest number i.e., 86 HLA-alleles (See Figure 2C). In addition, we reported top-20 most 

frequent HLA-alleles whose frequency distribution is maximum among cancer patients (See 

Figure 2D). Moreover, we have obtained more than 90,000 strong binder i.e., neobinders 

corresponding to Skin Cutaneous Melanoma (SKCM) and Uterine Corpus Endometrial 

Carcinoma (UCEC) cancers. However, we have less than 5000 neobinders for Kidney 

chromophobe (KICH) and Thyroid Carcinoma (THCA) cancer types (See Figure 2E). The 

complete data used in this analysis is stored in big MySQL table that can be searched and 
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browsed by various categories defined in the database such as cancer type, HLA-allele, 

neoantigen, HR, p-value, cytokine/chemokine, correlation coefficient etc.  

 

Figure 2: Complete distribution of dataset in 20 cancer types with number of samples, 

frequency of alleles, HLA-alleles corresponding to class-I genes, most frequent HLA-

alleles, and distribution of neoantigens 

Of note, we have generated the UpSet plot to understand the distribution of HLA-alleles in 

different cancer types. These overlapping and exclusive HLA-alleles among each cancer type 

(See Figure 3) are the ones that can serve the basis for explaining the molecular heterogeneity 

and similarity among the different cancer types. It also provides the potential insights into the 

progression of disease.  
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Figure 3: UpSet plot of top 40 interactions including both common and unique HLA-

alleles among each cancer type 

HLA-based prognostic biomarkers 

At first, we have combined all the cancer types to performed survival analysis in order to 

check the overall impact of presence/absence of HLA alleles on the survival of the cancer 

patients. As shown in the Supplementary Table S1, we have not observed any significant 

trend by combining all the cancer types due to tumor heterogeneity. So we have generated 

binary matrix corresponding to each cancer type based on the presence and absence of HLA-

alleles. With the utility of survival package we have performed survival analysis computed to 

identify the high risk and low risk HLA-alleles corresponding to each cancer type. In Table 1, 

we have reported only those whose HLA-alleles whose presence influences the survival of 

more than one type of cancer patients. For instance, presence of HLA-A*02:01 allele reduces 

the survival of kidney cancer (HR=5.46 with p-value=0.03) and skin cancer patients 

(HR=1.36 and p-value=0.02). We observed that presence of HLA-A*02:01, HLA-A*68:01, 
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HLA-B*52:01 and HLA-C*03:02 is significantly associated with the poor prognosis (with 

HR>2 and p-value<0.05) in different cancer patients, as shown in Table 1. Moreover, the 

presence of certain HLA-alleles significantly improves the survival rate of cancer patients for 

instance, HLA-C*14:02, HLA-C*12:03, HLA-A*03:01 significantly improve the survival 

rate and act as good prognostic markers in Bladder urothelial carcinoma (BLCA), Stomach 

Adenocarcinoma (STAD), Liver Hepatocellular Carcinoma (LIHC) and Glioblastoma 

Multiforme (GBM) (See Table 1).  

Table 1: Results of univariate survival analysis based on the presence/absence of HLA-

alleles in different type of cancers 

Cancer HLA-allele 
Allele Present 

(No. of Patients) 
Allele Absent 

(No. of Patients) 
Hazard Ratio 

p-value 
Concordance 

Index (95%CI) 

KICH 

HLA-A*02:01 

26 39 5.462 (1.135-26.299) 0.034 0.72 

SKCM 203 251 1.36 (1.038-1.781) 0.025 0.528 

CRC 

HLA-A*68:01 

24 431 2.466 (1.237-4.918) 0.01 0.532 

OV 21 399 1.936 (1.101-3.402) 0.022 0.51 

GBM 

HLA-B*44:03 

16 138 1.805 (1.025-3.181) 0.041 0.528 

LIHC 46 324 1.665 (1.041-2.663) 0.033 0.529 

OV 31 389 1.583 (1.019-2.459) 0.041 0.512 

THCA 

HLA-B*52:01 

25 480 4.057 (1.155-14.254) 0.029 0.62 

SKCM 16 438 2.183 (1.154-4.132) 0.016 0.515 

HNSC 18 483 2.113 (1.149-3.886) 0.016 0.514 

LIHC 

HLA-C*03:02 

16 354 2.268 (1.104-4.658) 0.026 0.517 

BRCA 96 997 1.659 (1.025-2.685) 0.039 0.52 

LIHC 43 327 1.651 (1.034-2.636) 0.036 0.533 

LUAD 

HLA-C*07:01 

140 367 1.366 (0.998-1.869) 0.051 0.538 

LUSC 139 356 1.365 (1.018-1.829) 0.037 0.526 
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LUAD 

HLA-C*12:03 

51 456 1.668 (1.075-2.587) 0.022 0.518 

BRCA 113 980 1.655 (1.042-2.627) 0.033 0.543 

GBM 22 132 0.527 (0.29-0.936) 0.029 0.532 

KIRP 
HLA-A*03:01 

74 215 1.884 (1.007-3.526) 0.044 0.531 

LIHC 72 298 0.635 (0.397-1.015) 0.046 0.526 

BLCA 
HLA-C*14:02 

15 392 0.140 (0.02-1.001) 0.048 0.517 

STAD 20 390 0.315 (0.1-0.988) 0.048 0.516 

 

HLA-I neobinders based correlation analysis 

In this study, we have used MHCflurry 2.0 (O'Donnell et al., 2020) software for the 

prediction of neoepitopes having strong binding potential with the class-I HLA alleles. We 

have identified strong HLA-specific neobinders for each cancer type. In order to understand 

the correlation or impact of number of neobinders with the survival of cancer patients, we 

performed Pearson correlation analysis. Figure 4, shows the correlation values for the nine 

HLA-alleles (HLA-A*02:01, HLA-A*03:01, HLA-C*07:01, HLA-C*07:02, HLA-A*01:01, 

HLA-B*07:02, HLA-B*08:01, HLA-A*24:02, and HLA-B*44:02) present in most of the 

samples and all cancer types. At first, we have computed the correlation between the 

neobinders irrespective of cancer type by combining all the data files. We observed that, the 

overall impact on combining binders for all the cancer types is very less or negligible (See 

Figure 4). While, some of the neobinders corresponding to particular HLA-allele have very 

high positive as well as negative correlation with the specific cancer types. For instance, 

HLA-B*07:02 neobinders have very high negative correlation (r = -0.77) with the survival of 

KICH patients, while on the opposite side it shows positive correlation of (r = 0.49) with the 

LUSC patients. In the case of BLCA, LUSC and OV most of the nine alleles shows positive 

correlation with the overall survival. However, in the case of KICH some of the alleles shows 

positive association and some of them shows negative association with the survival. This 

means binders corresponding to HLA-alleles have favourable and unfavourable impact 

depends upon the cancer types.  
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Figure 4: Correlation analysis based on the number of HLA-I neobinders with the 

overall survival of cancer patients 

Cytokines based prognostic biomarkers  

In order to understand the prognostic role of cytokines and chemokines we have performed 

univariate survival analysis using their expression profiles. In the Figure 5, we have reported 

those cytokine and chemokines whose expression significantly impact the survival rate of 

cancer patients. We observed that high expression of IL2, IFNB1, IFNA8, IL5 cytokines are 

having very good impact on the survival of different cancer patients (HR<0.4 and p-value 

<0.05). Whereas, IL5RA, TGFBR3, CCR4, TGFB2, IL17A are highly associated with the poor 

survival rate in KICH, READ, and GBM patients (HR >4 and p-value<0.05). The complete 

analysis of all other cytokines and chemokines is available on CancerHLA-I server.  
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Figure 5: Univariate survival analysis shows survival favourable (HR<1) and 

unfavourable (HR>1) cytokines, chemokines and their receptors in different cancer 

types 

Moreover, we have done correlation analysis by considering the gene expression of cytokine, 

chemokines and their receptors. The heatmap shows (Figure 6) the correlation of overall 

survival with the expression of some of the cytokines and chemokines in 20 cancer types. 

The darker blue colour shows the positive correlation, whereas light yellow colour depicts the 

negative correlation. We observed that cytokine IFNG have very high and significant positive 

correlation with the survival rate of GBM patients, higher expression of IL9 cytokine is 

associated with positive correlation in BLCA and OV cancer patients. Whereas, cytokine IL2, 

TNFA1P1, and TNF are associated with the negative correlations with the survival of KICH 

patients. In case of chemokines, we observed that CCL1 (CRC, KIRC and READ), CCL20 

(BLCA, READ, and PAAD), CCL27 (GBM, KICH and THCA) have positive correlation 
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with the overall survival. However, the over expression of CCL18, CCL28, CCL4, CCL5 

associated with negative correlation with most of the cancer types (See Figure 6). 

Figure 6: Correlation analysis based on the expression profile of cytokines & 

chemokines with the overall survival of cancer patients 

Utility of CancerHLA-I 

CancerHLA-I can be interactively browsed and searched in a variety of different ways to 

satisfy the query of the user. The homepage of CancerHLA-I website provides a simple search 

page, where users can search query in the database for specific cancer type, HLA-allele, 

neoantigens, cytokine/chemokine, and its survival association (See Figure 7). The advanced 

search page in the database provides customized search facility for user defined query using 

Boolean expressions (AND/OR). We compiled the data in a tabular form corresponding to 

each cancer type for easy and efficient access. The advantage of the browsing facility is that 

users can quickly obtain all the results by clicking onto specific entry under concerned 

category. Moreover, ‘Help’ page on the website provides detailed visualization of the usage of 

the CancerHLA-I database. The data can be downloaded as a tab-delimited, comma separated, 

JSON, PDF and XLSX file formats. 
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Figure 7: Schematic illustration of the utility of CancerHLA-I (A). Simple search page 

of the database CancerHLA-I, where users can select fields for querying against the 

database. Here we have shown the results for the HLA-A*01:01 in the quick search box 

(B). Complete results against this HLA-alleles are displayed in a responsive table (C). 

Users can select ID to get detailed information against this query (D). Users can also 

click on the neoepitopes and download HLA specific binders in the different file formats 

Discussion and Conclusion    

Class-I (HLA-A, HLA-B and HLA-C) molecules are essential for immunosurveillance and 

cancer immunotherapy (Sabbatino et al., 2020;Hazini et al., 2021). It is crucial to present 

tumor specific peptides or neoantigens via HLA-alleles for the detection and killing of tumor 

cells by our immune system (van den Bulk et al., 2018;Jiang et al., 2019;Peng et al., 

2019;Zhang et al., 2021). However, the loss of the functions of class-I HLA molecules 

exhibit escape mechanism by different cancer types (Garrido et al., 2016;Dhatchinamoorthy 

et al., 2021;Hazini et al., 2021). Studies also report that upregulation of class-I non-classical 
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HLA molecules play important role in the cancer immune escape (Bukur et al., 2012;Kochan 

et al., 2013). Due to mutations at genetic and epigenetic levels loss of heterozygosity occurs 

in HLA genes at chromosome 6 in non-small cell lung carcinoma and colorectal cancer 

patients (Hazini et al., 2021;Zhang and Sjoblom, 2021). A recent study reveal that the 

presence of specific HLA-allele can alter the effect of therapy in different cancers.  

Researchers observed the presence of HLA-A*03 allele in kidney cancer patients results into 

reduced survival and poor respond against immune checkpoint blockade (ICI) therapy 

(Naranbhai et al., 2022). In addition, previous studies report that HLA-B∗55 and HLA-A∗01 

significantly improves the survival while HLA-B∗50 allele reduces the survival rate in 

melanoma patients (Dhall et al., 2020). Moreover, mutations in type-I and II interferon 

pathway genes also effect the survival of cancer patients. Interleukins such as IL-6, IL-11, IL-

1, and TGF-β induces cancer cell proliferation and progression (Esquivel-Velazquez et al., 

2015). Studies reveals that cytokines play important role in the regulation of tumor 

microenvironment.  

 

Therefore, it is crucial to understand the prognostic role of HLA-alleles and cytokines in 

order to know the impact of efficacy of cancer immunotherapy. In the present work, we have 

conducted a study to investigate the connections of Class-I HLA alleles with cancer patient 

survival in order to aid researchers. We performed pan-cancer analysis on more than 8000 

patients in 20 different cancer types. The dataset used in this study obtained from TCGA and 

TCIA repositories. We used survival data to determine the association between the presence 

or absence of the 352 unique HLA-alleles. Furthermore, we investigate the relationship 

between cytokine expression with the overall survival in cancer patients. We observed that 

the HLA-A*02:01, HLA-A*68:01, HLA-B*52:01, HLA-C*03:02 associated with the poor 

survival and HLA-C*14:01, HLA-C*12:03 and HLA-A*03:01 improves the survival of 

cancer patients. Moreover, correlation analysis revealed the positive and negative association 

of neobinders with the survival rate of the cancer patients. Moreover, we also identified some 

of the high expression levels of cytokines IL2, IFNG, IFNB, TNF significantly improves the 

survival of cancer patients while some of the cytokines like IL5, IL17, CCR4, TGF reduces 

the survival rate significantly. We incorporated overall results in the highly interactive web-

based platform for the analysis and identification of cancer-specific biomarkers. We have 

integrated user-friendly browsing, searching, and analysis modules in our resource 

“CancerHLA-I” (https://webs.iiitd.edu.in/raghava/cancerhla1/ ) for easy data retrieval, data 
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comparison, and examination. We anticipate that our research yields promising novel HLA 

and cytokines based biomarkers for improved cancer immunotherapy and treatment. 
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