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The hippocampus and the entorhinal cortex display a rich oscillatory activity, believed to 
support neural information processing in key cognitive functions1. In the hippocampal 
region CA1, a “slow gamma” rhythm (30-80 Hz) generated in CA3 would support memory 
retrieval whereas a “medium gamma” rhythm (60-120 Hz) generated in the entorhinal 
cortex would support memory encoding2,3. However, descriptions involving discrete gamma 
sub-bands can only partially account for the haphazard diversity of oscillatory behaviors 
observed in individual recordings during spatial navigation behavior. Here, we stress that 
transient gamma oscillatory episodes at any frequency or phase relative to the ongoing theta 
(4-12 Hz) rhythm can be recorded at any layer within CA1. Eventually, the commonly 
reported averages are dominated by a minority of very strong power events overshadowing 
gamma heterogeneity. Nevertheless, we show that such gamma diversity can be naturally 
explained by a simple mechanistic model, and that behavior-related information (position 
within a maze) can be decoded from most individual gamma events, despite their low power 
and erratic-like nature. Our results indicate that behavior specifically shapes ensembles of 
irregular hippocampal gamma oscillations, in a way which evolves with learning, depends 
on the hippocampal layer and is hard to reconcile with the hypothesis of rigid, narrowly 
tuned gamma sub-bands. Beyond randomness, the pervasive gamma diversity may thus 
reflect complexity at the “fringe-of-synchrony”4 likely functional but invisible to classic 
average-based analyses. 

Coherent oscillations of neuronal activity are ubiquitous across brain spatial and temporal 
scales5,6. Oscillations at different frequencies have been associated with the formation of sensory 
or behavioral representations7,8, in the temporal organization of complex codes9 or in the flexible 
routing of information between neuronal populations10. The possible functional roles of 
oscillations have been particularly investigated in the hippocampal formation, where, in the CA1 
area of the dorsal hippocampus, convergent inputs could be disambiguated by the interaction of 
gamma and theta oscillations: different gamma-frequency carriers, timed at different phases of the 
ongoing global theta oscillations, would mediate information from different sources2,11. Hence, 
slow gamma (gammaS; 30-80 Hz) predominates in the CA1 stratum radiatum (rad, where the 
inputs from CA3 are localized) mostly at the trough/descending phase of CA1 pyramidal layer 
theta. On the other hand, medium gamma (gammaM; 60-120 Hz) predominates in the CA1 stratum 
lacunosum moleculare (l-m, where the inputs from the entorhinal cortex layer 3 are localized), 
preferentially at the peak of CA1 pyramidal layer theta2. According to this prevalent model, layer-
specific gamma oscillations in CA1 would identify the temporal dynamics of the afferent inputs, 
mediating specific memory-related processes (encoding for gammaM vs retrieval for gammaS11). 

Such a model, appealing for its simplicity and the link it proposes between distinct functions 
and discrete gamma sub-bands, may however fail to capture fully the richness of CA1 theta-gamma 
interactions. Recent studies investigating gamma oscillations at the theta cycle timescale reveal 
indeed a more dynamic and diverse landscape of gamma oscillations, with a broader variety of 
possible associations between gamma frequencies, theta phase and anatomical layer of occurrence 
(see12 for a recent review). Yet, these studies continued to yield a classification of hippocampal 
gamma into distinct sub-types, reporting a multiplicity of supposedly typical average theta-gamma 
patterns: from two3 to three2 or more13,14 gamma sub-bands. Here, we refrain from distinguishing 
sub-types, acknowledging that even stochastic-like oscillations with fluctuating frequency and 
irregular timing can self-organize to process information4. We therefore characterize in detail the 
properties of individual transient gamma events, without ignoring their broad and ubiquitous 
variability, which may be informative about behavior rather than merely noise. 
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Gamma diversity is present in every CA1 layer 
To characterize theta-gamma diversity, we analyzed local field potentials (LFPs) 

simultaneously recorded in the dorsal hippocampal CA1 area using 16- or 32-channel silicon probe 
(n=5 mice; Fig. 1a). For every channel, we spectrally decomposed the LFP into its main frequency 
components through an unsupervised algorithm (EEMD approach15, Extended Data Fig. 1a). We 
then computed the Current Source Density (CSD) signals using composite gamma LFPs, that is, 
the sum of the components peaking within a broad gamma band (30-250 Hz; Extended Data Fig. 
1b-d). Such approach avoids any filtering within narrow gamma bands imposed a priori. An 
analogous procedure was used to construct a theta composite signal from the hippocampal fissure 
(4-12 Hz; Extended Data Fig 1d; fissure theta shows larger, more defined theta cycles than 
pyramidal-layer theta but with a 180° phase-shift). We then performed a time-frequency analysis 
to segment the gamma CSD signal into short epochs corresponding to individual theta cycles (Fig. 
1b, left). For each segment, we characterized each of its local peaks in the gamma spectrogram 
(Fig. 1b, right) as a multidimensional vector (i.e., a gamma element) describing its amplitude, 
frequency and phase of occurrence relative to the coincident theta cycle (3 gamma features), as 
well as the amplitude, frequency and asymmetry of this theta cycle (3 theta features). We restricted 
the extraction to the four strongest gamma elements per theta cycle, obtaining thousands of gamma 
elements per channel and mouse (see theta and gamma counts on Extended Data Fig 2).  

According to the dominant view of a theta-phase and frequency specificity of the gamma 
contents between hippocampal layers, we calculated the mean probability density function of these 
two gamma features per layer across mice (Fig. 1c). Unexpectedly, a substantial overlap was 
observed between layers for both variables, although the l-m presented slightly more gammaM 
events as well as more phase-locking to the theta trough. We thus considered the joint distribution 
of the three gamma features for all the gamma elements per layer and animal (Fig. 1d for an 
example; Extended Data Fig. 2 for all mice and layers), with a similar conclusion: gamma 
elements were broadly scattered in both frequency and theta-phase, although with a relatively 
stronger concentration of these in the l-m. Such diversity was confirmed even when extracting 
gamma elements with alternative techniques (e.g. filtering or independent-component analysis, 
Extended Data Fig. 3a) or from publicly available state-of-the-art recordings in rats2 (Extended 
Data Fig. 3b).  

However, when computing the rad and l-m average theta-gamma spectrograms using the same 
theta cycles than for the gamma elements characterization (Fig. 1e), we found that they were 
compatible with the classic, previously reported dichotomy between a gammaS-dominated rad and 
a gammaM-dominated l-m (Extended Fig. 2 for all mice and layers). In fact, our count approach 
revealed an increasing divergence between these layers in their frequency and theta-phase modes 
as the analysis was restricted to gamma elements with gradually stronger power (see details 
statistics on Extended Data Fig. 4). The discrepancy between the two approaches (“count vs 
average”) thus indicates that average theta-gamma spectrograms are biased by only a minority of 
high-power transient gamma events. 

This impression was confirmed by a dimensionality reduction analysis in which we visualized 
in two dimensions the landscape of observed multi-dimensional gamma elements through a 
distance-preserving t-distributed stochastic neighbor embedding (t-SNE) nonlinear projection16. 
Strikingly, the domains covered by the projection of rad and l-m elements were largely 
overlapping, at the exception of the gamma elements with the highest power (see Fig. 1f for a 
representative mouse, rad and l-m are jointly projected but plot separately for visual clarity). In 
Fig. 1g, we represent as well, on the same dimensionally reduced representations, the frequencies 
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and phases of different elements (see Extended Fig. 5 for other features and mice), confirming 
once again the wide diversity of features and the lack of a simple way to discriminate between rad 
and l-m elements in terms of few features only. Finally, we took advantages of recent publicly 
available recordings made in mice undergoing transient deafferentation of CA1 via silencing of 
the entorhinal cortex and/or CA3 inputs17. Again, we confirmed that both inputs send gamma 
elements scattered in phase and frequency, at the notable exception of the high amplitude ones 
which exhibit stronger locking (see the difference maps of Extended Data Fig. 6). 

In conclusion, we found no evidence for narrow gamma bands. The actual observations are on 
the contrary more compliant with a description in terms of diverse ensembles of transient gamma 
oscillations, widely scattered in frequency, phase and other features. 

Diverse gamma ensembles are expected at the “fringe-of-synchrony” 
The observed diversity of gamma elements puts out a challenge to structure-driven views in 

which oscillations with different frequencies would be generated by distinct source 
populations18,19. Eventually, through a simple spiking model for generic balanced excitatory-
inhibitory populations, we show that gamma diversity, rather than surprising, should be expected, 
as it robustly emerges for most parameter combinations provided the network remains not too far, 
but still below a transition to strongly synchronized oscillatory firing (i.e. at the “fringe of 
synchrony”, rather than in a regime with fully-developed synchrony). We considered a network 
with thousands of randomly interconnected excitatory (E) and inhibitory (I) quadratic integrate-
and-fire (QIF) neurons20, driven by an external theta-modulated current input and we simulated 
unit activity and the associated LFP-like signals (Fig. 2a). Fig. 2b-c shows a representative raster 
plot of activity and the corresponding LFP spectrogram. Extracting gamma elements from 
simulated theta-gamma spectrograms yields a diversity of gamma frequencies and phases 
comparable to actual data (Fig. 2d). Interestingly, diversity in gamma oscillatory events is a robust 
property that can be obtained without the need of model parameters fine-tuning but rather arise for 
a very broad range of conductance and drive intensity. Gamma frequency diversity, quantified in 
terms of spectral entropy, remains uniformly high over most of the represented parameter space, 
colocalizing with regimes of weakly synchronized and low-amplitude oscillations (triangle, circle 
and square example working points in Fig. 2e and Extended Data Fig. 7a). Spectral entropy drops 
uniquely above a transition to a strongly synchronized oscillatory regime, characterized by higher 
amplitude fluctuations of the mean membrane potential (star symbol in Fig. 2e). Wherever spectral 
entropy is high, oscillations are transient and display scattering in frequency and phase like in 
empirical data (four paradigmatic cases are characterized in Extended Data Fig. 7c). Yet, the 
relative probability of occurrence of elements with higher or lower frequencies can be smoothly 
controlled, by varying the strength of the coupling of excitatory to inhibitory neurons (triangle 
circle, and square symbols in Extended Data Fig. 7b-c). In sum, a local balanced E/I circuit at the 
fringe-of-synchrony is not expected to generate a gamma rhythm with a narrowly tuned frequency 
but, on the contrary, a diverse ensemble of transient gamma events with dynamically adjustable 
average frequency. 

Navigation behavior can be decoded from individual gamma elements 
Diversity of gamma elements is thus pervasive, both in vivo and in silico. But is this diversity 

potentially functional? In our computational model, the diversity of gamma elements is the 
byproduct of balanced activity within a circuit with irregular connectivity. It is possible however 
that, in empirical recordings, the stochastic-like variations across theta cycles of gamma power, 
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frequency, and phase are modulated by actual behavior. To answer this question, we trained the 
mice to learn a novel spatial reference memory task (Fig. 3a). In this task, mice seek for an 
appetitive target located within an 8-arm radial maze. They need to learn a unique, stable goal 
location over multiple days of training (10 days; 4 daily trials). The change of departure arm in 
each of the few daily trials enforces the comparison of allocentric cues with internal 
representations. We therefore attempted decoding the current position of the mouse within the 
maze during navigation behavior, based on the features of the simultaneously recorded gamma 
elements. To do so, we trained machine learning classifiers (ensembles of randomized decision 
trees, Fig. 3b) to predict the rough location of the mouse (four non-overlapping maze sections: 
target arm approach, target arm reward field (Reward RF), other arms’ reward fields (other RF, no 
reward) and rest of the maze; Fig. 3b) based on the six-dimensional vector parametrization of a 
coincident individual gamma element recorded on a specific channel. The training set for each 
classifier was restricted to elements from a subset of randomly chosen theta cycles, the unused 
elements being allotted for later cross-validation of the performance. Decoding yielded 
performances well above chance-level, particularly for the target arm and the reward field, for any 
layer within CA1 (Fig 3c for a representative mouse; Extended Data Fig. 8a-e for all mice). Given 
the limited modulation of the performance by the anatomical position (channel), we summarized 
the achieved channel-averaged performances of decoding for all mice. We showed that 
performance for decoding target arm, reward field and other arm end-fields were well above 
chance level for every mouse (Extended Data Figure 9a, see also the confusion matrix in 
Extended Data Figure 9b). Even if location could be better decoded from events whose amplitude 
belonged to the largest quartile of the amplitude distributions –the one dominating spectrograms 
(cf. Fig. 1e)–, decoding was possible even from elements at weaker amplitudes in the other 
quartiles, with the exclusion of only the lowest quartile of amplitudes (Fig. 3d, left, for target arm 
and reward field decoding performance by gamma amplitude quartile; Extended Data Fig. 9c for 
other locations). We then analyzed whether the performance of location decoding depends on the 
speed of movement of the mouse (Fig. 3d, right, and Extended Data Fig. 9d). Decodability of 
reward field and other arms ending zones was higher when speed was low (lowest quartile) and 
when speed was high (highest quartile) for the target arm. When speed was large, decoding was 
significant for all four considered maze locations and confusion between locations was reduced 
(Extended Data Fig. 9d). Yet, we were able to significantly decode location from elements in 
other speed quartiles (down to the second quartile for target and up to the fourth quartile for 
reward) indicating that speed is not the unique determinant of gamma element modulations by 
maze location (note that speed distributions over the different maze sections are not identical but, 
still, largely overlapping, cf. Extended Data Fig. 9l). Analogously, decodability was maintained 
across several quartiles of the other features in the gamma element parametrization, that is, gamma 
frequency and phase relative to theta, and theta cycle amplitude, frequency and asymmetry 
(Extended Data Fig. 9e-i). In short, decodability was not limited to narrow categories of elements 
with specific feature combinations, but was on the contrary rather pervasive, extending notably to 
gamma elements strongly deviating from spectrogram averages. In some cases, more information 
could even be extracted from weak than from strong amplitude gamma elements (as when 
decoding presence in the reward-less other RF locations, Extended Data Fig. 9c).  

To further verify that our classifier extracted genuine behavior-related information from 
individual gamma elements, we first modified our classifier design by training the classifier not to 
specially identify the target arm but a randomly chosen arm among the behaviorally non-saliant 
(i.e., neither departure nor target arm) ones. The decoding performance that could be reached for 
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these generic arms was not as high as when decoding the approach to the actual target arm 
(although the decoding of the reward zone was not significantly changed, Fig. 3e, and Extended 
Data Fig. 9j other boxes). This indicates that classifiers can detect signatures in gamma elements 
–akin to an “eureka” signal– which specifically reflect behaviors observed when approaching the 
target arm but no other arms of the maze. Second, at the end of task learning, we performed a 
probe trial in which the reward was removed. Such probe condition modified the behavior during 
target arm approach and reward field exploration (cf. Fig. 3a, right), as reward was unexpectedly 
missing at the previously learned location and context was thus altered. As shown by Fig. 3e and 
Extended Data Fig. 9j (“probe” boxes), classifiers trained to decode target arm and reward fields 
in learning trials could still significantly decode transit in the target arm zone (although with a 
lower performance) but the performance in decoding the reward field dropped at chance level. 
Such pattern of performance modification was consistently observed across all recording channels 
and mice (cf. Extended Data Fig. 8f-j). Thus, behavior induced by the probe condition translates 
into modified gamma element signatures, since the same classifiers that decoded relevant maze 
locations in preceding trials could not identify them anymore in the probe trial. 

Therefore, the features of individual gamma elements –very diverse, especially when gamma 
amplitude is low– are modulated by maze location and behavior in complex but consistent ways 
that machine learning classifiers can successfully identify. 

Different features of theta and gamma oscillations synergistically reflect behavior 
Which features give the largest contribution to the successful decoding of maze location from 

diverse gamma elements? To address this question, we constructed machine learning classifiers 
using, as input alternative, smaller subsets of features: only the three gamma features (gamma-
only) or only the three theta features (theta-only). Target arm and reward field could still be 
decoded above chance level based on the gamma-only or the theta-only subset of features, 
however, the performance dropped with respect to the original classifier, indicating that theta and 
gamma-related dimensions of the gamma elements convey non-redundant information (Fig. 3f and 
Extended Data Fig. 9k). Information theory and, specifically, the framework of Partial 
Information Decomposition (PID21) can be used to further investigate the nature of this non-
redundancy. Indeed, two input features f and g (e.g., theta and gamma amplitudes) can convey: 
unique mutual information about an output feature L (here, maze location), conveyed by one but 
not the other input; redundant mutual information, shared by both inputs; and, beyond that, 
synergistic mutual information which the two inputs convey in joint coordination, but not when 
considered independently. Given the growing intricacy of the PID framework for larger groups of 
input variables, we computed here partial decompositions for the information about location 
conveyed by pairs of gamma element features. 

We first averaged these PID analyses over pairs of input features pooled by feature (i.e., all 
pairs including gamma frequency, all pairs including gamma amplitude, etc.; see Fig. 3g for a 
synoptic view and Extended Data Figure 10 for non-averaged pairs). The considered gamma and 
theta feature pairs carried on average over 75% of the information needed to perfectly specify 
maze location at any time, thus explaining why decoding of location is feasible. Next, we 
fractionated the total mutual information into the parts constituted by the unique, redundant and 
synergistic fractions (respectively in yellow, green and orange colors, Fig. 3g). Remarkably, the 
synergistic fraction was by far the most important, accounting in most cases for over 70% of the 
total information conveyed by the feature pairs about maze location. These indicate that individual 
theta- and gamma-related oscillatory aspects have individually complex and changing relations 
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with maze location (hence the low unique information fractions) but that their joint patterns of 
general covariation do depend on it (hence the large synergistic fractions).  

We also considered mutual information between maze location and speed of movement, as the 
distributions of the speed of movement were not completely identical for different maze sections 
(Extended Data Fig. 9l). As shown by the leftmost bar of Fig. 3g, predictor pairs including speed 
among the input variables did not convey significantly more total information about maze location 
than any other pair of gamma element features. The only specificity of speed as an input feature 
was that it conveyed more unique information about maze location than any other oscillatory 
feature taken individually, at least for rad (but not for l-m) gamma elements (cf. also, in more 
detail, Extended Data Fig. 10). Yet, even if feature pairs involving speed do not carry more maze 
location information, the encoding of maze location by oscillatory features may still indirectly 
reflect relations with speed, via the dependence of the oscillatory features themselves on speed. 
Therefore, we also computed the redundancy of speed with the other oscillatory features. 
Individual oscillatory features of the rad shared more information with speed than oscillatory 
features of the l-m (see Extended Data Figure 10). However, the shared information with speed 
never explained more than 5% of their variation entropy (Fig. 3h). Together these results indicate 
that variations of gamma element features are not completely explained by speed, but 
synergistically convey genuine maze location information, beyond mere speed variations across 
locations. The dramatic drop in inter-feature synergies observed during probe trials may thus 
explain the lower maze location decoding performance in these with respect to learning trials (Fig. 
3e and Extended Data Figure 9j and 10). 

Complex gamma ensembles evolve with task learning 
Behavior can be decoded out of gamma elements, but is the decoding grammar similar across 

learning? And is the decoding performance improving with training? We explored this by training 
classifiers over gamma elements from trials within restricted ranges, starting from early trials and 
then sliding the inclusion range to the latest trials. Gamma element outstanding diversity was 
present at any trial range, noticeably never losing their continuous and broadly dispersed frequency 
and theta-phase distributions despite slight changes (Fig. 4a, see also the t-SNE projections in 
Extended Data Fig. 6c and polar plots in Extended Data Fig. 11). Maze location information 
could be significantly decoded from these diverse gamma elements at any trial range, although the 
detailed profiles of variation across learning were heterogeneous for different mice, possibly 
reflecting idiosyncratic navigation learning strategy. Yet, the cross-validated fraction of correct 
predictions was larger for late than for early trials, with a performance improvement on average of 
~7% for the l-m and of ~15% for the rad layers (Fig. 4b).  

We then compared the complex ways in which gamma element variations reflected maze 
location by adopting a cross-classification approach. Classifiers trained on trials within a specific 
training trial range were used to predict maze location on trials from another testing trial range, 
and the obtained fractions of correct prediction were compiled into cross-prediction performance 
matrices (see Fig. 4c for a representative rad layer example and Extended Data Fig. 12a for rad 
and l-m layers in all mice). The obtained matrices of cross-prediction performance across trial 
ranges were characteristically asymmetric: the larger upper than lower triangular parts indicate 
that a classifier trained in one trial range can better predict location from past rather than future 
trial ranges (cf. more yellow above the diagonal in Fig. 4c and Extended Data Fig. 12a; see also 
Fig. 4d for a quantification). The performance of decoding yet dropped when the training and 
testing trial ranges were separated by a timespan too large (cf. blue zone at the upper right corner 
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in Fig. 4c and Extended Data Fig. 12a). We interpret these findings as an indication that the 
complex mapping of maze location by gamma ensemble features is not frozen but smoothly 
evolves through time. However, the drift of this mapping is specifically shaped by previous 
experience, hence the existence of an “arrow of time” in cross-trial decodability. 

Complex gamma ensembles are spatially organized 
We adopted an analogous cross classification approach to compare the mappings of maze 

location by gamma ensembles recorded at different anatomical locations. Fig. 4e shows a 
representative matrix of the fraction of correct predictions obtained when training a classifier on 
gamma elements recorded on a channel and testing it from gamma elements recorded on another 
channel (see Extended Data Figure 12b for all mice). This matrix displays a hierarchical block 
organization. Classifiers trained on channels within the hippocampus can decode maze location 
from other hippocampal, but not extra-hippocampal, channels (and vice versa). Furthermore, 
within CA1, at least two blocks can be distinguished including channels located within the pyr and 
upper rad layers, and lower rad and l-m layers, respectively. Cross-decodability between 
classifiers was high between channels from the same block, but low with extra-block channels, 
indicating that at least two types of CA1 gamma ensembles exist, differentially modulated by 
behavior despite their large overlap in frequency and phase distributions. 

We then repeated this spatial cross-classification analysis but separately for earlier and later 
trials along the learning of the task (Extended Data Figure 12b). We found that the cross-
decodability between the l-m-like and upper rad-like channel blocks increased in later trials. In 
general, cross-decodability increased with task learning between all channels. However, this was 
particularly noticeable for classifiers trained within the l-m-like channel block as they gradually 
improved in decoding the maze location from gamma elements recorded in the upper rad-including 
channel range (Fig. 4f). Such results may suggest a convergence of current sensory representations 
conveyed by entorhinal inputs to the l-m layer, onto internal model representations, provided by 
CA3 inputs to the rad layer (see Discussion). 

Discussion 
Using machine learning-based decoding of electrophysiological recordings during a behavioral 

task, we showed that in vivo hippocampal gamma oscillations are not well described by sharply 
distinct narrow-band modes. On the contrary, at every CA1 channel, we observed broad 
distributions of gamma frequency and theta-phase of appearance, largely overlapping between 
distinct anatomical layers (Fig. 1, Extended Data Figs. 2-6). Hippocampal oscillations would thus 
be better described in terms of a collection of complex “gamma ensembles”, i.e. collections of 
transient oscillatory events that, despite their heterogeneity in phase and frequency and their 
generally low amplitude, are distinctively modulated by both behavior and learning. This diversity 
of gamma oscillations is widespread and common to all analyzed datasets (Extended Data Figs. 
3). However, even studies reporting this diversity and calling for abandoning a strict dual gamma 
band view chose implicitly to emphasize a minority of high amplitude oscillatory events2,13,14,22, 
more localized in phase and frequency, which are the ones dominating average pattern analyses3 
but are not well representative of the transient oscillatory dynamics most frequently observed when 
not averaging.  

Here we argue that the haphazard heterogeneity of frequencies and phases presented by low 
amplitude gamma oscillatory elements can have natural mechanistic explanations. Our 
computational model shows that a balanced excitatory-inhibitory recurrent circuit can generate 
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oscillatory events with fluctuating and diverse frequencies –and thus a complex gamma ensemble– 
if parameters are liberally chosen to be in a broad fringe in proximity but still below a transition 
to partially synchronized collective oscillations 23. This contrasts with many previous models 24,25 
which operated in more synchronous regimes: their narrowly tuned rhythms, although matching 
prescribed target frequencies based on average oscillatory patterns observed in vivo, cannot indeed 
render the strong variability observed for individual gamma elements. Nevertheless, even these 
exceedingly synchronous models already showed that the frequencies of gamma oscillations are 
not hardwired but result from a complex interplay of network-level factors and could thus be 
dynamic. Dynamics at the fringe-of-synchrony, like the one produced by our model, are 
intrinsically collective, robustly emerging from local network interactions without the need of 
neuronal properties fine-tuning. Despite their apparent stochasticity, oscillatory transients at the 
fringe-of-synchrony can still route information and self-organize into well-defined phase-relations 
with other coupled populations, at least during short-lived events with high power4. Such predicted 
phenomenology is well compliant with the observed properties of inputs received at the l-m and 
originating mostly from the entorhinal cortex, which are a mixture of low-power gamma elements 
scattered in phase with higher-power elements concentrated around a specific phase (Fig. 2, 
Extended Data Fig. 2 and 6). On the contrary, inputs received at the rad layer are scattered in 
phase at all power levels, suggesting that the generating populations in CA3 may be tuned in an 
even more asynchronous regime, only transiently “ringing” as an effect of filtering noise26,27. 

We also additionally proved that fluctuating gamma elements convey information about 
behavior. Maze location can be decoded with comparable accuracies from both low and high 
gamma amplitude events, showing that behavior is not only modulating the extreme gamma 
elements which dominate ordinary averages but also those within the distribution bulk and ignored 
by more conventional analyses. A possible explanation for the success of our decoding is that 
oscillatory features such as phase, amplitude and frequency or cross-frequency relations provide a 
code for location, or, in other words, that their modulations have a representational meaning. This 
hypothesis is implicit in some previous studies that already performed decoding of location based 
on hippocampal signals28. Another possibility is that oscillatory fluctuations are just indirect 
signatures of other codes, relying on cell ensemble firing29 or the dynamic selection of internal 
attractors or assemblies30,31. Changing neuronal correlation and firing may translate into broadband 
deformations of the extracellular field power spectrum shape32, thus explaining why information 
can be decoded even from oscillatory events at frequencies remote from spectral peaks.  

Previous studies showed that increasing speed was associated with modulations of gamma 
amplitude, frequency or theta-phase, often with elaborate nonlinear relations, possibly dependent 
on learning32. The difficulty to identify relations between individual oscillatory features and speed 
may reflect the essentially synergistic, and thus conditional, nature of the mapping between gamma 
element variability and exploration behavior (Fig. 3e-g). Some aspects of the performance of our 
decoders may well hint at an influence of speed on the classifier decisions. For instance, it was 
easier to correctly identify presence in the target arm when speed was high, and in the reward field 
when speed was low. Similarly, gamma elements during fast movement in other arms tended to be 
misclassified as occurring in the target arm (cf. Extended Data Fig. 9b). Nevertheless, decoding 
performance remained well above chance level for all speed quartiles. Furthermore, the 
redundancies of individual gamma elements feature with speed (Fig. 3h) and the unique 
information about maze location conveyed by speed (Fig. 3g) both remained very low. Maze 
location affects the features of gamma elements in complex and synergistic ways, particularly in 
the case of the l-m gamma ensemble, whose synergistic mutual information levels where 
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systematically larger than for the rad (cf. Extended data Figure 10), possibly reflecting richer 
and higher-dimensional encoding schemes by the activity of entorhinal cortex than of CA3 circuits. 
It is likely that superior decoding, potentially allowing a finer identification of location beyond our 
rough subdivisions, becomes accessible when going beyond individual gamma elements to 
consider combinations of them (either temporal sequences or co-occurrences across layers). 

Despite a substantial overlap in the frequency distributions of gamma elements at all layers, our 
cross-decodability analyses could yet reveal the existence of at least two types of gamma 
ensembles, corresponding to distinct blocks in the matrices of Fig. 4e and Extended Data Fig. 
12b. Gamma elements recorded within the l-m (and the dentate gyrus) were modulated by maze 
location in very similar ways, but differently from channels within the more superficial rad. 
Remarkably, it is at the algorithmic level33 of how behavior-related information is encoded that 
we can recover a clear distinction between the rad and l-m layers that was not so evident at the 
level of frequency and phase distributions. Our results provide a further confirmation that spatial 
location and navigation behavior are differently represented by the entorhinal cortex and CA3 
circuits, serving as the input sources for functionally distinct gamma ensembles. These 
representations are not fixed but evolve through the learning of the task, and more information 
about location can be decoded from late trials (Fig. 4b). Such improvement is paralleled by (and 
may be attributed to) an increase in the cross-decodability between layers, meaning that the nature 
of the representation is dynamically transformed. Decoders able to read sensory-related 
representations at layers receiving an entorhinal input become increasingly able to equally read 
model-based representations at layers innervated by CA3 (Fig. 4f). In other words, the grammar 
of sensory-related inputs, parsed by our decoders, becomes more and more compliant with the one 
of internal models. This result finds a natural interpretation within a predictive brain framework, 
since, with the learning of an internal model, the activity of sensory-processing regions shifts 
toward representing model-based inferences, beyond a passive encoding of external evidence34.  

Finally, our results show that there is not a sharp distinction between naïve and expert types of 
location representations, but rather that these representations are smoothly adjusted through time 
as an effect of idiosyncratic experience. Our analyses indeed reveal an “arrow of time”, with 
present decoders able to read out information from past gamma elements but not yet future ones 
(Fig. 4c-d). Each mouse has a different history of learning and, thus, potentially, a different way 
of coding rich individual behavior into differently organized but invariantly complex languages 
based on gamma ensembles (eventually, cross-classification between mice was not significant). 

To conclude, hippocampal theta-gamma activity is more diversified than a limited number of 
narrow frequency bands used by afferent generators at specific phases of the ongoing theta 
oscillation. At first sight, this variety may seem to threaten prominent views in which information 
from the two main afferents is conditionally routed and disentangled at the neuronal level thanks 
to their distinct preferential frequency and theta-phase14,22,35,36. In these views, indeed it is a precise 
temporal and spectral separation of inputs which allows different structural pathways to mediate 
distinct cognitive functions11,37. Here, we show that such precise separation in frequency and phase 
most of the times does not occur. Yet, the diversity of gamma ensembles is not mere noise as 
random-like gamma elements, usually discarded, still allow the successful decoding of behavior. 
Furthermore, their complex conditional distributions, harnessed by our machine-learning 
classifiers, are still meaningfully coupled to both anatomy and learning. By emphasizing the 
relevance of low power events with “misbehaving” phase and frequency, our results suggest that 
system’s function may rely on the self-organized coordination between noisy and weak oscillatory 
bursts4 rather than on rigid architectures with precisely tuned oscillations.   
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Methods 
Animals and surgery. 
Subjects. Five adults male CD1 mice (~3-month-old at the time of surgery) were housed in 
individual cages post-surgery, under a 12-h light/dark cycle (light at 8:00 A.M.). They had water 
and food ad libitum till the start of the habituation period; they were then water-restricted (2h-daily 
access, ~2h after testing) for the entire duration of the experimental protocol. All experimental 
protocols agreed with the European Committee Council directive (2016/63/UE) regarding animal 
experimentation and were approved by the French Ministry of Research (APAFIS#20388-
2019042517013497). 
Surgery. Animals were anesthetized with isoflurane during the entire surgery. Linear silicon 
probes with either 16 or 32 channels (50 µm-spacing; A1x16-3mm-50-177-CM16LP or A1x32-
6mm-50-177-CM32, Neuronexus, Ann Arbor, USA) were chronically implanted through the 
CA1-DG axis of the right dorsal hippocampus (AP: 2.06 and ML: 1.3 from bregma; DV: 1.7 from 
the dura). They were covered with DiI stain (Invitrogen Molecular probes, USA) before insertion. 
Two screws were positioned in posterior and anterior portions of the skull, serving as ground and 
reference electrodes, respectively. 
Histological procedures. The mice were perfused with 0.1 M PBS followed by 4% 
paraformaldehyde in PBS solution with added heparin (25 kUI). Brains were postfixed for 24 h in 
4% paraformaldehyde before being cryoprotected in 20% sucrose solution for 48 h. They were 
then frozen in isopentane and sliced into 40-µm coronal sections. Implantation sites were 
visualized through a fluorescence microscope (Zeiss) thanks to the Dil stain. 

Behavioral apparatus and protocols.  
Eight-arm radial maze. The radial arm maze consisted in a central platform (52-cm diameter) from 
which eight identical arms (55 x 10 cm) expanded, separated by a 45-degree angle. Each arm was 
surrounded by a 3-cm high wall. A shallow circular recess at the end of each arm could hold the 
reward (75 µL of 5%-sucrose solution). The maze was situated 65 cm above the floor in a room 
displaying numerous distal visual cues that remained in position for the entire duration of the 
experiment. Mice were transferred from their home cage to the maze using an opaque box (start 
box: 20x10x15 cm). 
Habituation to the apparatus. One week after surgery, mice were habituated to the experimental 
apparatus and the experimenter. A recording cable was plugged on a permanent basis to the head-
mounted pre-amplifier so the mice could get used to its presence and weight. The animals were 
then handled by the experimenter for a few days before starting the habituation per se. This period 
consisted in transferring the mouse from its home cage to a single arm removed from the maze and 
placed elsewhere in the room. The mouse had to wait for 20 s in the start box (positioned at the 
entry of the arm) before the door opening. The aim was to reach the other end of the arm to 
consume the reward. This was repeated for three to five days, with five to eight trials a day (or 
until the mouse was not showing clear signs of anxiety). Mice were then exposed to the radial arm 
maze for two days during a daily 10-min trial in which the start box was positioned at the center 
of the maze and opened after 20 s. Every arm was reinforced only once per trial to promote 
exploration of all arms across both days. The inter-trial interval was of five min, during which the 
apparatus was cleaned with 35% ethanol. 
Arm-to-Arm task. In the Arm-to-Arm (ATA) task, mice must find the rewarded arm, the same 
across the 10 days of training (~24 h between sessions). The four daily trials start each from one 
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of the four possible departure arms (two and three arms away from the target arm, both left and 
right; identical across sessions to ensure a constant distance to target) following a pseudo-random 
order to promote allocentric navigation. Hence, the animals wait in the start box positioned at the 
end of one arm for 20 s before opening of the door. It then has up to three min to find the rewarded 
arm otherwise the trial is stopped. The inter-trial interval was of five min, during which the 
apparatus was cleaned with 35% ethanol. On the 11th day, a five min probe test is carried out to 
assess the animal’s spatial reference memory: the mouse is released from a new departure arm 
(opposite to the target) and no reward is available. The mouse is considered to have learned the 
reward location if it either visited more often or spent more time in the target and its two adjacent 
arms than chance (proportion: 0.125). 

Electrophysiological recordings and analysis.  
Recording and preprocessing. The electrophysiological activity was recorded with an Intan 
recording controller (RHD Recording Controller, Intan Technologies, USA). The signals were 
amplified 200x, recorded whole-band (0.1-10 kHz) and digitized at 20 kHz. They were 
synchronized with a video system tracking the position of the animal at 20 Hz (Imetronic, France). 
The basic pre-processing of the LFPs included the removal of both slow variations and 50-Hz (and 
harmonics up to 200 Hz) electrical noise (Chronux Matlab toolbox38), artefact correction39 and 
finally downsampling to 1 kHz.  
Anatomical localization of the electrodes. Each electrode was assigned to an anatomical 
hippocampal layer depending on its distance from the hippocampal fissure along the estimated 
probe position in the histological slice. The theta power from each electrode was calculated by a 
group of complex Morlet wavelets (1-14 Hz by 1-Hz steps; 2-s duration; number of cycles linearly 
dependent on frequency, between 2 and 4 cycles) on the LFPs filtered for theta range (4-12 Hz; 
zero-phase digital filtering using a finite impulse response filter of order = 256). The fissure was 
located at the peak of the Gaussian fit of the theta power curve, possibly between two electrodes. 
Signal decomposition. For further analyses, instead of using a classic passband filter, we used an 
unsupervised, nonlinear and non-stationary technique to isolate the dominant oscillations present 
in the LFPs in time, amplitude and frequency: the Empirical Ensemble Mode Decomposition 
(EEMD 40). The resultant components, termed Intrinsic Mode Functions (IMFs), can then be 
summed to recompose the original signal. Hence, to filter the LFPs in either theta (4-12 Hz) or 
gamma (30-250 Hz) frequency range, we summed the IMFs whose mean of the Hilbert-derived 
instantaneous frequency fell within the relevant range, thus obtaining a theta and a gamma 
composite LFP signals. For every trial, LFPs were decomposed independently for the period of 
actual navigation, that is, from when the animal is about to navigate in the maze (hence excluding 
start box or behavioral inactivity periods sometimes following the box opening) to up to 5 s 
following arrival to reward (or trial end if the animal did not find the water). Ten IMFs were 
requested, resulting from the average of 2000 iterations with added noise (input noise level of 0.3 
except for some trials from two mice [mouse #3 and #4] needing 0.8 to satisfactorily alleviate 
mode mixing). To reduce confounds from potential theta harmonics, we started our gamma range 
at 30 Hz2 unlike some previous reports of a lower bound at 25 Hz (see41 for a recent review). Note 
that, to contrast our results with established methods (Extended Data fig 3), we also processed 
the signal using a finite impulse response filter combined with a zero-phase filtering for both theta 
and gamma bands or with an independent component analysis (KD-ICA algorithm within 
‘ICAofLFPs’ Matlab toolbox42) instead of the EEMD decomposition. 
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Theta cycles identification and selection. Theta cycles were identified on the theta LFP composite 
from the closest channel to the hippocampal fissure. Using the fissure as a theta reference offers 
larger, more defined theta cycles but implies an inverted theta phase compared to theta recorded 
within the CA1 pyramidal and oriens layers. Peaks in the signal were identified as the start/end of 
each candidate cycle. The trough was determined as the point with the lowest amplitude between 
two consecutive peaks, and the flanks, as the points at half-amplitude between the trough and these 
surrounding peaks. The theta phases (0-360°; peak = 0/360°) were obtained by linear interpolation 
within each quadrant formed by the starting peak-descending flank (0-90°), the descending flank-
trough (90-180°), the trough-ascending flank (180-270°) and the ascending flank-next peak (270-
360°). This waveform-derived phase determination is more respectful of the theta waves 
asymmetry than the one from the Hilbert transform43,44 although we compared both methods 
(Extended Data fig 3). Note that EEMD-based composite signals are supposed to better respect 
the wave asymmetry than classic filters13. To be selected for analysis, the candidate theta cycles 
had to meet the following criteria13: a duration compatible with the theta frequency band (i.e., 83 
to 250 ms) and a sufficient power (amplitude of the envelope of the theta LFP composite signal at 
the cycle start, mid and end points superior to the envelope of the 1-4 Hz infra-theta LFP composite 
signal). They further needed a coincident video sample to determine the animal position in the 
maze at that time.  
Amplitude of theta cycle-nested gamma. To lessen volume-conducted activity, the amplitude of 
gamma oscillations was calculated on the current source-density (CSD) signal derived from 
gamma LFP composites as previously described for LFP36. CSD at a given time point t was 
calculated as follows:  
 

𝐶𝑆𝐷(𝑛, 𝑡) =
−𝐿𝐹𝑃(𝑛 − 1, 𝑡) + 2 ∗ 𝐿𝐹𝑃(𝑛, 𝑡) − 𝐿𝐹𝑃(𝑛 + 1, 𝑡)

𝛥𝑑!
 

 
where LFP(n,t) is the gamma LFP composite recorded at the electrode n, LFP(n+1,t) and LFP(n-1,t) are 
the gamma LFP composites from electrodes directly above and below, respectively, and Δd is the 
distance (in mm) between contacts.  
The continuous amplitude of the CSD signal, used as an instantaneous metric of power, was then 
obtained for each channel using complex Morlet wavelets convolution (0.5-s duration; from 15 to 
200 Hz by 5-Hz steps and assessed by a number of cycles linearly dependent on the wavelet main 
frequency, between 6 and 20 cycles). The portion of this convolution corresponding to the time of 
each theta cycle was then isolated13,14 and the CSD amplitude for each gamma frequency was 
averaged per theta phase (10° phase bins). Hence, the gamma spectral contents of each theta cycle 
were summarized in a ‘snippet’ (38 x 36 matrix: frequency x theta phase bin).  
Gamma bouts detection. Within each individual theta-cycle, we extracted gamma elements as 
patches of locally higher gamma composite power in the CSD spectrogram. To identify these 
patches, we treated single-theta cycle spectrograms as color-scale images and binarized them, 
assigning to pixels with a gamma composite power larger or lower than a fixed threshold black or 
white color, respectively. We then used a standard flood-fill algorithm45 to identify connected 
components within the binarized spectrogram image, each corresponding to a potential gamma 
patch. Since the number of connected components depend on the applied threshold, we decreased 
systematically the threshold starting from a value equal to the maximum power value within the 
original spectrogram. When reducing the threshold, more image pixels rise above threshold and 
the number of connected components tend to increase, apart from a few exceptions (see below). 
The scanning of decreasing threshold values stopped when a maximum (arbitrarily chosen) 
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number of four connected patches (and thus gamma elements per theta cycle) was identified. Cases 
could arise in which the addition of new black pixels to the binarized image caused patches 
disconnected at higher threshold values to finally merge. However, such patch fusion should be 
prevented, as the merged patch includes multiple and distinct power peaks. We thus added tracked 
record of the components’ extensions immediately prior to merging, storing them as separated. 
Another special case needing ad hoc handling was the one of components located at the boundaries 
of the theta cycle and therefore potentially extending across two contiguous theta-cycle. To avoid 
double counting of a same component (detectable in both the cycles across which it is split), we 
thus parsed simultaneously neighboring theta cycles, to identify the complete extension of cross-
cycle boundaries patches and count them only once (assigning them to the cycle over which the 
strongest amount of power was located). 
After determining connected components segregated from the background and correcting for patch 
fusion and double counting, we then computed for each retained component the following gamma 
element features: gamma amplitude, frequency and theta-phase of occurrence. Each pixel within 
a component was associated to a specific power, frequency and phase triplet of values 
(respectively, the color, the vertical and the horizontal coordinate within the single-theta cycle 
spectrogram image). The gamma element power was evaluated as the average power over all pixels 
within a connected component. The gamma element frequency and phase were then determined as 
the average among the frequencies and phases of the pixels within the component, weighted pixel-
by-pixel by the pixel power.  
We also compute the associated theta wave instantaneous frequency (inferred from cycle duration), 
amplitude (average voltage difference between the trough and the two adjacent peaks) and 
asymmetry (rise – decay ratio). 
All gamma elements were appended to a list for each trial and channel, which was then filtered to 
exclude the top and lowest 1 % amplitude gamma elements. Analogously, we excluded some 
gamma elements occurring in theta cycles coincident to unlikely large running speed (> 100 cm/s).  

Dimensionally reduced representations of gamma elements.  
We used a standard t-Stochastic Neighborood Embedding (t-SNE) algorithm16 to create 
bidimensional representations of the diversity of gamma elements. This algorithm guarantees that 
distance inter-relations between data-points in the source high-dimensional space are preserved as 
much as possible in the target bidimensional space representation. The projection was learned for 
all gamma elements simultaneously (all layers and trials), then different group of elements could 
be shown in different panels (see. Fig. 1f-g and Extended Data Fig. 5) filtering a same common 
and frozen projection. We used standard hyperparameters (perplexity = 30, no exaggeration) with 
an approximated Barnes-Hut algorithm. We used a Euclidean distance metric except for the theta 
phase of gamma appearance where circular distance was used. 

Computational model of gamma elements generation. 
Model definition and parameters. We considered a network composed of N=2000 quadratic 
integrate and fire (QIF) neurons20, 80% of them excitatory (E) and 20% inhibitory (I). The 
membrane potential 𝑣!"(𝑣!#) of each excitatory (inhibitory) neuron j obeyed the following 
differential equations:  
 
𝜏"# 𝑣$#̇ = 7𝑣%#8

! + 𝛪&(𝑡) + 𝐼%# + 2𝜏"' ;𝑔## ∑ 𝜀%(##(:*!
(#)+* 𝛿 @𝑡 − 𝑡(

(-)A − 𝑔#/ ∑ 𝜀%0#/(:*%
(&)+* 𝛿 @𝑡 − 𝑡0

(")AB, 
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𝜏"1 𝑣$/˙ = 7𝑣%/8
! + 𝛪&(𝑡) + 𝐼%/ + 2𝜏"1 ;𝑔/# ∑ 𝜀%(/#(:*!

(#)+* 𝛿 @𝑡 − 𝑡(
(-)A − 𝑔#/ ∑ 𝜀%0//(:*%

(&)+* 𝛿 @𝑡 − 𝑡0
(")AB, 

 
where 𝜏$" = 10𝑚𝑠 (𝜏$# = 4.5𝑚𝑠) is the excitatory (inhibitory) membrane time constant and 𝐼!"(𝐼!#) 
the neuronal excitability encompassing single neuron characteristics as well as synaptic drives 
originating from other neural regions and acting on the excitatory (inhibitory) neuron j. The input 
term 𝛪%(𝑡) is a forcing current periodically modulated at a θ-like frequency of 10Hz and 𝑔&' the 
synaptic coupling strength between a post-synaptic neuron s in population β and pre-synaptic 
neurons in population α, with [α,β] being either E (excitatory) or I (inhibitory). The connectivity 
matrix elements 𝜀!(

&' are equal to 1 (0) if a connection from a pre-synaptic neuron l of population 
β towards a post-synaptic neuron j of population α, exists (or not). Furthermore,  𝑘!

&' = ∑ 𝜀!(
&'

(  is 
the number of pre-synaptic neurons in population β connected to a neuron j in population α, or, in 
other terms, its in-degree restricted to population β. The emission of the n-th spike emitted by 
neuron l of population α occurs at time 𝑡(

(*)whenever the membrane potential 𝑣& crosses threshold 
for firing, while the reset mechanism is modeled by resetting 𝑣& to a rest value, immediately after 
the spike emission (see 46 for details on threshold and reset in QIF neuron model). For the sake of 
simplicity, we assumed synapses to be fast and synaptic transmission instantaneous, therefore the 
post-synaptic potentials were modeled as δ-pulses without any delayed activity. Connectivity 
within the E and I populations was random and quenched, with in-degrees 𝑘&& distributed 
according to a Gaussian distribution with mean 𝐾&& and with a standard deviation 𝛥&&, this latter 
parameter measuring the level of structural heterogeneity in each population. We chose here to set 
𝐾"" = 𝐾## ≡ 𝐾, providing a common scale for the strength of local connectivity in the model. As 
a further simplification (suitable for potential mean-field reduction not explored in this study), we 
then assumed that the E and I populations are globally cross-coupled, i.e. 𝜀!(

&' = 1, 𝑓𝑜𝑟𝑎𝑛𝑦𝑗, 𝑙 if 
𝛼 ≠ 𝛽. The neuronal excitabilities 𝐼!& were distributed according to a Gaussian distribution with 
mean 𝐼,&  and standard deviation 𝐷&. The DC currents and the synaptic coupling were rescaled 
with the median in-degree as 𝐼& = 𝐼,&√𝐾 and 𝑔&' = 𝑔,

&' √𝐾⁄  to obtain a self-sustained balanced 
dynamics for 𝐾 → ∞ 23,47,48. The structural heterogeneity parameters were rescaled as 𝛥&& =
𝛥,&&√𝐾 in analogy to Erdοs-Renyi networks 23. We employed, unless stated otherwise, the 
following values of the parameters: 𝐼," = 0.2;𝐼,# = 0.16;𝐷" = 𝐼,";𝐷# = 𝐼,# ;𝐾 = 20;𝛥"" =
0.1;𝛥## = 0.1;𝑔,"" = 0.27;𝑔,## = 2.12; 𝑔,"# = 0.01; 𝑔,#" = 0.024. The θ-forcing was assumed to 
be perfectly sinusoidal, as 𝛪%(𝑡) = 𝐴√𝐾𝑐𝑜𝑠	(2𝜋𝜈𝑡), with 𝜈 = 10𝐻𝑧 and 𝐴 = 0.042. 
Simulated Local Field Potential. The Local Field Potential was modelled as LFP= (|𝐼- |+|𝐼. |), 
which is the sum of the absolute values of AMPA and GABA currents impinging on pyramidal 
cells, following49. The global currents 𝐼- and 𝐼.  were the linear sum of contributions induced by 
single pre-synaptic spikes, each represented as a combination of two exponentially decaying 
functions. This representation can be obtained using auxiliary variables 𝑥-!,𝑥.!. The time 
evolution of AMPA and GABA-type currents of neuron j were thus described by the following 
ordinary differential equations: 

𝜏23
𝑑𝐼3%
𝑑𝑡

= −𝐼3% + 𝑥3%  
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𝜏24
𝑑𝐼4%
𝑑𝑡

= −𝐼4% + 𝑥4%  

𝜏53
𝑑𝑥3%
𝑑𝑡

= −𝑥3% + 2𝜏"# 𝑔## D 𝜀%(##

(:*!
(#)+*

𝛿 @𝑡 − 𝑡(
(-)A 

𝜏54
𝑑𝑥4%
𝑑𝑡

= −𝑥4% + 2𝜏"# 𝑔#/ D 𝜀%0#/

(:*%
(&)+*

𝛿 @𝑡 − 𝑡0
(")A 

where 𝜏/-(𝜏/.) and 𝜏0-(𝜏0.) are respectively the decay and rise time of the AMPA-type (GABA-
type) synaptic currents. Always following49, we high-pass filtered the obtained model LFP signal 
at 1 Hz with a 4th order Butterworth filter and employed 𝜏0- = 0.4𝑚𝑠; 𝜏0. = 0.25𝑚𝑠; 𝜏/- =
2𝑚𝑠;𝜏/. = 5𝑚𝑠.  
Numerical simulations. Numerical simulations of the model were performed with a standard Euler 
integration scheme with time step δt=0.001ms. Since all disorder in connectivity and conductance 
is quenched, a deterministic integration scheme can be used as in46. Simulations were performed 
scanning a range of K and 𝑔,#" values to explore different dynamical regimes (cf. Fig. 2 and 
Extended Data Fig. 7). 
Indicators of dynamic regime. After the generation of synthetic LFPs, gamma elements could be 
extracted from them following the same procedures as for real LFP and CSD signals. We also 
computed an indicator of power distribution across frequencies, computing spectral entropy. To 
do so, the power spectrum P(f) of simulated time-series was computed and over a range between 
𝑓$1* = 25 Hz and 𝑓$23 = 125 Hz sampled at df=0.1Hz and normalized to provide a density 
functional. We then evaluated spectral Entropy as the quantity 𝐸 = 4

"!"#
∑ 𝑃(𝑓) ∙ 𝑙𝑜𝑔5	W𝑃(𝑓)X6 , 

where 𝐸$23 = 𝑙𝑜𝑔5(𝑀) and 𝑀 = (𝑓$23 − 𝑓$1*) 𝑑𝑓⁄ . Higher values of E correspond to higher 
dispersion of power across gamma frequencies.  
We also estimated the ratio between the amounts of high- and low gamma power, estimating the 
total power in the low (25-50 Hz) gamma band Plow, and the total power in the high (50-100 Hz) 
gamma band Phigh. The ratio rgamma= (Plow- Phigh)/( Phigh+ Plow) indicated whether the LFP is 
dominated by high gamma (positive rgamma ), by low gamma (negative rgamma), or by an equilibrated 
mix of the two (rgamma close to zero). 
Finally, we computed standard deviation of the mean membrane potentials across inhibitory 
neurons as a measure of the amplitude of generated gamma oscillations. 
The values of spectral entropy, high/low gamma power ratio and standard deviation of potential 
were computed for simulations of models with different connectivity to study the dependency on 
them of the obtained dynamical regimes. 

Classifier training. 
General classification approach. We used a supervised classification approach to predict rough 
location within the maze based on an input vector parameterizing individual gamma elements. The 
input was given by a six-dimensional vector including general information about the theta cycle 
(theta-composite amplitude, frequency and asymmetry) and specific features of the considered 
element (gamma element power, frequency and theta phase of occurrence), computed as described 
in previous sections. The output was a categorical label, referring to a subdivision of the maze in 
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four sections: “Reward RF” (end-field of target arm where reward was delivered); “target arm” 
(including the arm leading to the reward location and the outer area of approach to this same arm, 
“); “other RFs” (arm end field other than the reward field); and, finally, “other locations” 
(including all areas not including in the previous subdivisions, i.e. maze center and generic maze 
arms not leading to reward).  
As multi-class classifiers, we used boosted ensembles of classification trees, limiting the maximum 
number of decision splits in a tree to 500, and the number of learners in an ensemble to 500 trees. 
Tree ensembles were fitted using the RUSBoost algorithm50, with a slow learning rate of 0.01, to 
alleviate the problem of output class unbalance (as some classes, as “target arm” or “Reward RF” 
are under-represented relatively to others). In this algorithm, random undersampling is applied to 
training sets to guarantee that each class is represented by close numbers of samples, providing 
simultaneously capability to learn rare classes and protection against biases due to variations across 
different conditions (e.g. early vs late trials) of the fractions of samples per class. 
Classification performance. Classification performance was evaluated both in terms of 
resubstitution error (error on same data samples used for training) and generalization error (error 
on data samples not used for training), estimated via 4-fold cross-validation. In generating the 
random partitions into training and testing sets of elements, beyond output class balancing, we 
took care to use for testing gamma elements measured in theta cycles not included in the training 
set, thus conferring protection against overfitting, as covariations in features may subsist among 
gamma elements occurring within the same theta cycle. The list of theta cycles (and gamma 
elements therein) available for selection of training and testing pools corresponded to the total list 
of elements retained for a channel in a mouse, over all the trials (unless otherwise specified, see 
next section on cross-classification). Different classifiers were trained independently for each 
different channel. Fig. 3d-f and Extended Data Fig. 9 report average performances over all CA1 
channels, as classification performance was shown to have only weak dependency from the layer 
(cf. Fig. 3c and Extended Data Fig. 8). Generally, unless otherwise specified, classification 
performances (and misclassification rates) are expressed in terms of correct (incorrect) 
classification fraction, evaluated over all available gamma elements (cross-validation ensuring that 
prediction on an element was performed in terms of classifiers not having seen this element during 
training). Despite cross-validated training had access to the whole list of gamma elements 
extracted from a channel, after training, we could also evaluate classification performance on 
subsets of gamma elements to assess whether the probability of correct classification depended on 
various features of the gamma elements fed as input. We thus separated gamma elements according 
to them belonging to different quartiles of the distribution of different features (from Q4, with top 
values, to Q1, with the lowest values): the six features of the gamma element descriptive vector 
(gamma power, frequency and phase, theta amplitude, frequency and asymmetry), as well as 
motion speed (averaged over the time range of the considered theta cycle); and computed fractions 
of correct classification separately over each distribution quartile. 
Classification with alternative input features. We also trained classifiers using alternative reduced 
sets of input features. Instead of using the full six-dimensional descriptive vectors of gamma 
elements as input vector (as in the “theta + gamma” classifiers just described), the “theta-only” 
(or “gamma-only”) classifiers were trained just in terms of the three theta (or gamma) features 
entries. 
Classification of alternative arm and in probe trials. We also used an alternative set of output 
labels in which the “Target arm” section of the maze was merged with the “other locations” 
section, but in which an “Alternative arm” was considered instead as a separate section, with the 
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same extension of the Target arm zone (arm plus outer arm approach zone) but including an arm 
different from the one leading to reward. This alternative arm was chosen to be opposite to the 
target one. In this alternative zone labelling, the “reward RF” zone was left unchanged, i.e. it still 
included the reward location (and was therefore not contiguous to the “Alternative arm” zone). 
Classifiers were trained on this new labelling in a completely independent way from the classifiers 
trained on the original labels.  
Probe trials were not used for training, but locations prediction was performed using classifiers 
trained over control trials, with the ordinary output zone labeling (i.e., including the “Target arm” 
and not the “alternative arm” zone). 

Cross-classification. 
General approach. Once trained, a classifier serves as an implicit model of the distribution of 
gamma ensembles in relation to behavior. Changes of the ensembles-to-behavior relation across 
conditions or channels can be studied using a cross-classification approach, in which classifiers 
trained on a sample are evaluated on a different sample. Preserved or decreased performance levels 
will then denote, respectively, similarity or dissimilarity or relation to behavior.  
Cross-classification through learning. To study evolution of the ensemble-to-behavior mapping 
across task learning by the mice, we selected gamma ensembles over subsets of trials only. 
Specifically, we sorted all trials available from the earliest to the latest and compiled a table of 
how many gamma elements each trial provided on average over all channels. We then defined two 
“early” and “late” trials ranges, including trials with ordinal number respectively smaller and 
larger or equal than a pivot trial number. This pivot trial number was chosen such that the 
cumulative sums of gamma ensemble counts per trial over the early and late ranges were as close 
as possible between them. The early and late trial range specifications were therefore adapted to 
the actual behavioral history of each mouse. Furthermore, the early and late trial ranges usually 
included unequal numbers of trials, as maze exploration is faster in later than in earlier trials and, 
consequently, individual late trials usually contribute smaller counts of gamma ensembles.  
We then adopted a finer subdivision of trials when constructing the cross-classification matrices 
of Fig. 4c and Extended Data Fig. 12a. Once again, we ordered trials and grouped them into 
smaller window ranges such that the cumulative sum of gamma ensemble counts for the trials 
included in each window was as close as possible to 3000 elements. Every window included all 
trials with ordinal number between the ones of a start and stop trials. Windows could have an 
overlap, but two consecutive windows could not have the same start and stop trials. Different 
windows generally included different numbers of trials, with windows at earlier times being 
generally narrower than windows at later times. 
Classifiers were then trained over just the early or late range of trials, or, yet, just trials within a 
specific learning window, using the same class-balanced, cross-validated approach described in 
previous section. The partial datasets were randomly downsampled to exactly include the same 
number of elements (as the numbers of elements provided by early and late trials ranges or by 
different windows were close between them, but not identical). Although cross-validation was still 
used in training, it could not be systematically used in evaluating cross-classification 
performances, as the original and checking datasets did not include the same theta cycles and 
partitions generated for the one was thus invalid for the other. Therefore, in the cross-classification 
performance matrices of Fig. 4c and Extended Data Fig. 12a, we reported average resubstitution 
error along the diagonal and, in off-diagonal entries, direct average performance on the considered 
checking dataset.  
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The improvement of decodability in late relatively to early trials (Fig. 4b) was evaluated, for each 
mouse, as relative percent difference between cross-validated performance, averaged over all 
classes, of classifiers trained just on late or early trials (for a representative channel in the middle 
of rad or of the l-m layers). The performance asymmetry in classifying past vs future trials (Fig. 
4d) was evaluated as relative percent difference between the averages of the upper and lower 
triangular parts of the cross-classification matrices of Fig. 4c and Extended Data Fig. 12a. 
Cross-classification through channels. Classifiers trained on a channel were used to extract 
location based on gamma elements of another channel. We computed cross-classification 
performance across channels based on the whole set of available trials (Fig. 4e and Extended Data 
Fig. 12b) and also based on just trials in the early and late ranges. For a better comparison with 
cross-classification analyses across trials we once again computed cross-classification 
performances and relative percent variations in terms of resubstitution and direct checking errors. 
Cross-classifiability between rad and l-m layers was evaluated averaging cross-classification 
matrix entries in blocks delimited by channel ranges matching the different layers. Note that some 
uncertainty exists at layer edges, as electrodes could slightly move from one day to the next, 
causing some of them to transit above or below the depth delimiting two layers. A channel was 
thus included in the block average only if it belonged to a specific layer in at least three quarters 
of the trials used to build the classifier. 

Information-theoretical analyses of element features to behavior relation. 
Mutual Information between pairs of features and maze location. To study the nature of the 
relation existing between different descriptive features of the gamma element and maze location, 
we complemented decoding by machine-learning classifiers with information theory analyses 51 
and computed mutual information between pairs of input variables and simultaneously visited 
maze location. We used a rough estimation of the probability distributions of input variables, 
quantizing them into four unequal bins, matching the distribution quartile limits. By replacing 
feature values by their quartile label in the feature distribution, we then automatically maximized 
single variable entropies, as entropy for discretized variables is maximal for uniform distributions. 
Output labels were already categorical and in a number of four, corresponding to the four rough 
maze sections previously described (Reward RF, Target Arm, Other RF, Other locations). For each 
pair of quantized input features f and g and output maze location labels L, we computed over the 
list of all gamma elements for representative channels in rad and l-m layers the joint normalized 
frequency histogram P(f,g,L) and, out of it, the total mutual information that the pair of inputs (f,g) 
carries about the output L: 
 

𝐼(𝑓, 𝑔; 𝐿) = D 𝑃(𝑓, 𝑔, 𝐿)log!
𝑃(𝑓, 𝑔, 𝐿)
𝑃(𝑓, 𝑔)𝑃(𝐿)

6,8,9

 

 
normalized by the total entropy 𝐻(𝐿) = −∑ 𝑃(𝐿)log5𝑃(𝐿)7  of the output variable (to quantify 
the fraction of location information carried by the pair of input features). 
Partial Information Decomposition. We then decomposed this total mutual information using the 
Partial Information Decomposition (PID) framework21 into: unique fractions of information, i.e. 
information that f (or g) carry about L but that g (or f) don’t carry; a redundant fraction of 
information, i.e. information that both f and g carry about L; and a synergistic fraction of 
information, i.e. information that neither f or g alone carry about L but that they carry when jointly 
considered. We evaluate the synergistic information of f and g relative to L as: 
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𝑆𝑦𝑛(𝑓, 𝑔; 𝐿) = 𝐼(𝑓, 𝑔; 𝐿) − 𝐼(𝑓; 𝐿) − 𝐼(𝑔; 𝐿) + 𝑅𝑒𝑑(𝑓, 𝑔; 𝐿) 
 
where 𝑅𝑒𝑑(𝑓, 𝑔; 𝐿) is the redundant fraction of information and must be added back once because 
twice removed from the total mutual information 𝐼(𝑓, 𝑔; 𝐿) when subtracting 𝐼(𝑓; 𝐿) and 𝐼(𝑔; 𝐿), 
mutual information of L which just f or just g. To estimate redundancy, we use the so-called 
Minimal Mutual Information ansatz, under which the redundant information fraction is made to 
correspond exactly to the minimum between the two individual mutual information terms, i.e. 
𝑅𝑒𝑑(𝑓, 𝑔; 𝐿) = 𝑚𝑖𝑛	[𝐼(𝑓; 𝐿), 𝐼(𝑔; 𝐿)]. In this way, the unique information carried by the least 
informative of the two variables (say, g) is set to zero, and the remaining difference equated to the 
unique information carried by the most informative variable, i.e. 𝑈𝑛𝑖𝑞𝑢𝑒(𝑓; 𝐿) = 𝐼(𝑓; 𝐿) −
𝐼(𝑔; 𝐿). Unique, redundant and synergistic fractions of the total mutual information can also be 
normalized by the entropy of the stimulus. Fig. 3g shows average total mutual information with 
location and decomposed fractions, averaged over all pairs of input features including a specific 
reference feature. Besides the six features describing gamma elements we also considered pairs of 
inputs including motion speed V as input variable, discretized in a quantile-based way as the other 
features. We also analyzed separately the four gamma elements extracted out of each theta cycle, 
ranking them in decreasing order of power, to reveal whether the informative content of elements 
concentrated on the strongest power elements or was uniform across stronger or weaker gamma 
power elements. Details about the decomposition for specific pairs of features are shown in 
Extended Data Fig. 10. 
Redundancy with speed. The general dependency of gamma element features on speed could be 
assessed by the redundancy between discretized gamma element features f and the speed variable 
V, i.e. 𝑅𝑒𝑑(𝑓; 𝑉) = 𝐼(𝑓; 𝑉). Such redundancy was then normalized by the entropy of f, to quantify 
the fraction of information about the variability of f explained by the variability of V (cf. Fig. 3f). 

Statistical analysis. 
All statistics were performed using either built-in Matlab (R2021a) functions, Matlab toolboxes, 
or Statistica 13.  
Electrophysiological data was analyzed on all 40 trials per animal except for mice mouse #3 
(missing trial 15) and mouse# 4 (missing trials 21-24) due to technical issues with the 
electrophysiological recording. 
Behavior. Average latency to reach the reward during the learning phase of the task (i.e., days 1-
10) was analysed by a non-parametric Friedman ANOVA (within-factor: days). For the probe test, 
we carried out a repeated measure ANOVA (within-factor: arms) on the ratio of number of visits 
in each arm compared to chance level (0.125). Post-hoc tests were used when appropriate. For all 
analyses, the significance threshold was 0.05.  
Distributions of gamma bouts features. The probability density function (pdf) of each gamma 
feature (amplitude, frequency and theta-phase) was established across all trials, per electrode. As 
the pdfs of gamma frequency often displayed a wide range whatever the channel and the animal, 
we restricted most of our analyses to one representative channel per anatomical layer: the channel 
displaying the pdf the most consistent with expectations from the dual-gamma band literature, 
usually based only on very strong gamma episodes (here: the strongest 5 % gamma bouts). Hence, 
we favored channels showing a dominance of lower gamma frequencies in the rad, and faster 
gamma frequencies in the l-m. The mean pdf of each layer was calculated across mice, before 
generating an artificial sample of the relevant gamma feature matching this pdf (n=10000; random 
sample with replacement). For the frequency, the statistical difference in the distribution from each 
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pair of layers was evaluated using a bootstrap method (2000 repetitions using 1500 subsamples) 
on the Kullback-Leibler divergence52 so that to be significant, the mean divergence between 
separate layers had to be greater than the upper 95% confidence interval on the mean divergence 
between shuffled layers. In addition, both the modes of the individual mouse frequency pdfs and 
the ratio between gammaM and gammaS were compared across layers using one-way ANOVA or 
non-parametric Kruskal-Wallis tests on the between-factor ‘layer’, with post-hoc comparisons. 
The ratio was defined as:  

 
𝑟𝑎𝑡𝑖𝑜 = Q

𝑔𝑎𝑚𝑚𝑎: − 𝑔𝑎𝑚𝑚𝑎;
𝑔𝑎𝑚𝑚𝑎: + 𝑔𝑎𝑚𝑚𝑎;

S 

 
with gammaS and gammaM being the sum of probabilities for the individual mouse frequency range 
centered on the frequency modes between 25-50 Hz and 60-100 Hz, respectively, and whose 
probability is ≥ 50 % of this mode. 
For the phase, all statistical analyses were carried out using the ‘circStat’ Matlab toolbox53. First, 
the statistical difference between artificial distributions from each pair of layers, generated as for 
the frequency mean pdf, was assessed using the Kuiper two-sample test (note that very similar 
results were obtained using the circular Watson’s U2 test with 1000 permutations). Second, their 
mean phases were compared by pairs of layers using the Watson-Williams test for circular means 
after checking the non-uniformity of these distributions (omnibus test). This latter analysis was 
also done on the individual mouse distributions (n=5) to compare the grand mean phase across 
layers. All the above analyses were performed iteratively on distributions containing a varying 
range of data, from all data (0th percentile: no further data selection) to the 95th percentile of the 
maximum amplitude (i.e., only the gamma bouts with the 5 % strongest amplitude), by steps of 
five percentiles. Percentiles were calculated for each trial and electrode before pooling the bouts 
from all trials per electrode.  
Classification, cross-classification and mutual information. For single mouse performance levels 
(fraction of classification correct and confusion matrices), as well as for information theoretical 
quantities we evaluated 95% confidence intervals using a bootstrap with replacement approach 
(1000 replicas) over the lists of gamma elements retained for inclusion in each of the analyses. 
When comparing multi-mouse samples of performance metrics or testing their significance against 
a threshold (as in the boxplots of Fig. 3-4 and Extended Data Fig. 9), we used t-test (two-tailed 
for inter-sample comparisons and one-tailed for comparison of single samples against a chance-
level or zero threshold). We report uncorrected p-values in captions and text, however significance, 
unless specified otherwise, is assessed using Bonferroni correction for multiple comparisons (*, 
**, *** denote corrected p-values smaller, respectively, than 0.05, 0.01, 0.001; symbols in brackets 
indicate significance only prior to multiple comparisons correction; when significant deviations in 
both directions above or below chance level occur, we use upward ↑ or downward ↓ symbols 
instead of *’s). Boxes in the boxplot mark the inter-quartile range (IQR), the horizontal line sample 
mean µ, the whiskers µ ± 2*σ where σ is sample standard deviation. 

Code availability.  
Available upon reasonable request.  
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Figures 
 

 
 

Figure 1. Hippocampal CA1 layers have overlapping gamma frequency and phase distributions.  
a, Electrodes along the silicon probe were localized in the different layers of the dorsal hippocampus using 
various indices to identify the hippocampal fissure, including the location of the maximum theta power and 
of the largest sink in the average theta-triggered CSD. b, Left: The gamma composite CSD wavelet 
spectrogram from each channel was first segmented into theta cycles (two consecutive peaks) from the theta 
composite signal recorded in the hippocampal fissure (white overlay). Right: local gamma peaks within the 
spectrogram were then detected within each theta cycle via a patch detection algorithm. These “gamma 
elements” were then characterized extracting a vector of six features: three gamma features (amplitude, 
frequency and theta-phase of the gamma element) and three theta features (amplitude, frequency and 
symmetry of the coincident theta cycle). c, Average distributions (mean pdf ± SEM; n=5 mice) of gamma 
elements frequency and theta phase for each CA1 layer. Even if significant differences can be found 
between these distributions (see Extended Data Figure 5 for details), whatever the layer considered, most 
of the gamma elements frequency distributions were spread across broad and overlapping ranges of 
frequencies, encompassing both the classical gammaS and gammaM sub-bands definition (full width at half 
maximum range: oriens (or), 35-97 Hz; pyramidale (pyr), 34-102 Hz; rad, 31-97 Hz; l-m, 38-100 Hz). d, 
A joint representation of the three gamma features emphasizes the haphazard diversity of frequency (radius) 
and phase (angle) between gamma elements (dots) recorded in both the rad and l-m layers, especially at 
low amplitude (color: percentile of gamma amplitude). e, Average theta-gamma spectrograms, on the 
contrary, put forward a marked distinction in frequency (and phase in a lesser extent) between the rad and 
l-m layers, suggesting these are respectively largely dominated by gammaS and gammaM oscillations. The 
apparent conflict between the representations in panels d and e is explained by the fact that average 
spectrograms are dominated by strong amplitude events. This is well visualized by dimensionally reduced 
representations (f, g) of the six-dimensional vectors describing gamma elements (obtained via a distance-
respecting t-SNE algorithm). f, Gamma elements from the rad and l-m layers cover similar areas in their 
joint bidimensional projection. However, the elements with high gamma amplitude (top 30%, dots with 
darker shade) occupy complementary zones for the two layers. g, A color-coding by gamma frequency and 
phase of the same bidimensional projection shows that these strong elements tend to be: of gammaM type 
at theta trough, for the l-m layer; and gammaS at most phases, for the rad layer. These minorities of strong 
gamma elements are thus precisely the ones giving rise to rad and l-m average spectrogram peaks in panel 
(e). Panels b-e: examples from a representative mouse (mouse #3).  
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512498doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512498
http://creativecommons.org/licenses/by-nc/4.0/


 

25 

 
 

Figure 2. Large diversity of gamma elements is expected at the fringe-of-synchrony.   
a, We generated simulated LFP-like signals using a computational model of a generic local circuit, 
generating gamma oscillations and driven by an external theta-modulated input current. The model network 
included thousands of randomly interconnected spiking excitatory (E) and inhibitory (I) neurons.  b, Typical 
raster plot of the spiking activity of selected neurons, with superposed trace of the associated LFP-like 
signal computed from the model. c, Spectrograms of the gamma composite component of simulated LFP-
like signals reveal the existence of transient gamma oscillatory events at variable frequencies and phases 
(cf. Figure 1b). d, Gamma elements extracted from simulations have a landscape of feature diversity 
comparable to real recordings (individual dots are individual gamma elements, same representation as in 
Figure 1d). e, The diversity and frequency distribution of simulated gamma elements depend on model 
parameters, such as the density of within-population connectivity K and the average strength of I-to-E 
synaptic coupling. The parameter-dependency surface of spectral entropy (left; larger when power is spread 
more uniformly across frequencies) show that narrower-band oscillations with a more precise frequency 
occur only when connectivity K is very large (star working point). However, in this case, the level of 
synchronization in the population would be unrealistically large, as manifested by a very large signal 
standard deviation (right; larger when population oscillations have stronger amplitude). On the contrary, 
the simulations of panels (b-d) have been realized at the circle working point, for which activity is more 
irregular and only sparsely synchronized (fringe-of-synchrony regime, robustly leading to higher spectral 
entropy and lower signal standard deviation).  Changing the strength of I-to-E synaptic coupling maintains 
the system within a fringe-of-synchrony regime but shifts the mode of the generated gamma elements’ 
frequency distribution (cf. Extended Data Figure 7; triangle working point: mode in gammaS range; square 
working point: mode in gammaM range). 
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Figure 3. Location during exploration behavior can be decoded from individual gamma elements. 
a, In our spatial navigation task, reward is located at the end-box of a fixed target arm in a radial maze. The 
mouse enters the maze from a different arm at every trial. Few trials are performed every day, over several 
days. Left: example trajectories at different days of learning. Middle: the latency to reward decreases across 
days (ANOVA, p < 0.02), indicating that mice learn the task. Right: In probe trials, no reward is given at 
the reward location. Mice spend a larger amount of time exploring the former rewarded arm than an opposite 
one, denoting memory of the reward location (one-tailed t-test, p < 0.03). b, We trained tree-ensemble 
classifiers to decode rough location within the maze (target arm, reward RF, other RFs and the remaining 
locations) from individual gamma elements (three theta and three gamma features, cf. Fig. 1b). We also 
trained alternative classifiers to detect an alternative arm, remote from reward. c, Fraction of correctly 
classified locations, by maze location (colors as in b), for a representative mouse (mouse #3; see Extended 
Data Figure 8 for other mice and prediction performance with alternative feature sets and in probe trials). 
Different classifiers were trained for different depths along the dorsal hippocampal axis (cf. Figure 1a). 
Solid lines indicate average performance across all trials (shading, 95% bootstrap c.i.). Performance in 
detecting target arm, reward and other arms RFs was significantly above chance level (dashed black line) 
for every anatomical layer. d-f, Decoding performance was robust and affected by various factors (dots, 
performance averaged over trials and electrodes for different mice; boxes, IQRs and sample mean; 
whiskers, 95% sample c.i.; *, p < 0.05; **, p < 0.01; ***, p < 0.001 after Bonferroni correction; symbols in 
brackets denote significance only before Bonferroni correction; one-tailed t-tests of sample vs chance level; 
two-tailed t-tests between samples). d, Left: dependence on gamma amplitude. Performance is significantly 
higher for amplitudes in larger than smaller distribution quartiles (p < 0.002 for target; p < 0.033 for 
reward), however it remains significant for all but the lowest quartile (p < 0.006 for target Q3). Right: 
dependence on motion speed. Decoding performance for target arm (reward RF) was higher for larger 
(lower) quartiles of speed (p < 0.004 for target, p < 0.001 for reward), but was significant even for low 
(high) speed quartiles (target Q3, p < 0.0025; reward Q1, p < 0.011). e, In probe trials, decoding 
performance dropped for both target arm (p < 0.0005) and reward RF (p < 0.0001). Decodability of a generic 
other arm was lower than for target arm (p < 0.0027), but performance did not drop significantly for reward. 
f, When training classifiers to decode maze location based on reduced input feature sets (only gamma- or 
theta-related features) decoding performance dropped (e.g., when comparing gamma-only with combined 
theta and gamma inputs, p < 0.0199 for target arm and p < 0.0014 for reward RF). g, Fractions of maze 
location information conveyed by pair of features were large (bars, averages over mice and feature pairs, 
grouped by pairs including a specific feature, for representative rad and l-m channels; whiskers, 95% 
bootstrap c.i). Mutual information was mostly due to synergy between features, which conveyed little 
unique or redundant information about location. h, Speed accounted for a small fraction only of the 
variability of individual gamma element features, as revealed by normalized mutual information with speed 
(averages over all mice and features, for representative channels; whiskers, 95% bootstrap c.i).   
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Figure 4. Relations of gamma elements with behavior depend on training and anatomical layer.  
a, Polar scatter plots of individual gamma elements distribution (as in Figure 1d), separate for early (days 
1-3) and late (days 8-10) trials. Wide diversity of gamma elements features is observed at all stages of task 
learning (here for mouse #3; see Extended Data Figures 2, 5a and 11 for more details and all mice). 
Although remaining complex, the distributions are however evolving with learning. In boxplots: dots denote 
relative performance improvement between late and early trials, for different mice; boxes, IQRs; horizontal 
line, sample mean; whiskers, 95% sample c.i.; *, p < 0.05; **, p < 0.01; ***, p < 0.001 after Bonferroni 
correction; symbols in brackets denote significance only before Bonferroni correction. One-tailed t-tests 
are used for both comparisons of: samples with chance level; and between samples. b, The average 
performance of decoding maze location (average over all classes, for reference channels in rad and l-m) is 
higher for late than for early trials, as revealed by boxplots of percent performance improvement for 
representative channels in both rad and l-m layers (p < 0.013 for rad and p < 0.04 for l-m). c-d, We 
performed cross-classification analyses, training classifiers to decode maze location from gamma 
ensembles in a range of trials and using them to extract information from other trials in past or future time 
ranges. c, The resulting cross-prediction error matrix (here for a representative rad channel for mouse #3; 
see Extended Data Figure 12a for l-m layer and other mice) is asymmetric with respect to the diagonal, 
indicating that classifiers trained on future trial ranges can decode information from past trial ranges better 
than in the opposite direction. d, This asymmetry is quantitively confirmed by positive percent difference 
between performances in past-on-future or future-on-past prediction directions (positivity of the increment, 
p < 0.006 for rad and p < 0.0006 for l-m). e-f, We also studied cross-classification between different 
recording locations and its variations along task learning. e, The cross-prediction error matrix (all trials, 
mouse #3; see Extended Data Figure 12b for other mice) displays a block structure, indicating that different 
anatomical locations have alternative types of gamma elements -to- behavior inter-relations. Hippocampal 
and non-hippocampal channels form different blocks. Within hippocampus CA1, superior rad and l-m 
channels belong as well to different sub-blocks. f, These anatomically-organized patterns of inter-relations 
evolve along task learning, as revealed by increased l-m vs rad cross-decodability in late with respect to 
early stages (percent improvement of cross-prediction performance; p < 0.016 for both l-m-on-rad and rad-
on-l-m cross-prediction directions). The improvement in cross-predictability across learning was larger in 
the l-m-to-rad than in the rad-to-l-m direction (significance of difference, p < 0.042). 
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