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Univariate model-fitting analyses 12 

One limitation of the mvMORPH multivariate models, which are used for our primary 

model-fitting analyses, is that they do not permit the evolutionary rate (σ) or strength of 14 

attraction to optima (α) to vary between the two selective regimes (‘gliders’ and ‘non-

gliders’). This likely results in poor model performance because the datasets were 16 

simulated such that ‘gliders’ and ‘non-gliders’ should have different rates and attraction 

strengths. For example, the ‘non-gliders’ are evolved by BM, and thus they are not 18 

expected to exhibit attraction to a trait optimum, whereas the convergent ‘glider’ 

lineages are expected to exhibit strong attraction due to being simulated by an OU 20 

process. Further, the phylogenetic half-life (ln(2)/α) of the ‘glider’ regime cannot be 

calculated independent of the ‘non-glider’ regime if the α parameter is uniform across 22 

both regimes, which is the case with the multivariate models.  

 Thus, we also fit seven univariate evolutionary models to the subset of simulated 24 

datasets, including several multiple-regime OU models that permit σ and α to vary 

between regimes. Using functions in the OUwie R package (Beaulieu et al. 2012), we fit 26 

these models to the first principal component (PC1) scores of a principal components 

analysis of the six simulated traits. The univariate models include uniform (or single-28 

regime) BM and OU models, as well as a suite of multiple-regime OU models (i.e., 

‘OUM’ models of Beaulieu et al. 2012). The OU2 model keeps α and σ constant for both 30 

regimes, the OU2A model allows α (but not σ) to vary between regimes, the OU2V 
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model allows σ2 (but not α) to vary between regimes, and the OU2VA model allows both 32 

σ and α to vary between regimes. As with the multivariate analyses, all models were 

fitted across 10 ‘simmaps’ for each of the 30 datasets and relative support for models 34 

was measured using AICcW.  

We recognize that fitting models to PC scores can lead to biased results (Uyeda 36 

et al. 2015), and thus our univariate results should be considered with caution. 

However, we feel that using PC1 scores here is justified for two reasons. First, the 38 

alternative option is to fit models to each of the six simulated traits individually, but four 

of the traits are evolved via a strong OU process and two traits are evolved via BM (in 40 

our subset of datasets used in model-fitting analyses; see Methods), and thus the 

model-fitting results are expected to vary considerably between those two types of 42 

traits. PC1 provides a single value for which results can be more easily interpreted 

compared to results for the six traits. Second, our conclusions concerning the use of 44 

model-fitting analyses for testing for convergence are based entirely on the multivariate 

model-fitting analyses (see Results & Discussion), and thus the results of the univariate 46 

model-fitting analyses (which are congruent with the multivariate results; Tables 2 and 

S1) do not influence the broad conclusions of this study. The univariate model-fitting 48 

analyses are simply a supplemental analysis that provide a fitted α value and 

phylogenetic half-life for the ‘glider’ regime.  50 

 

Ct-measures 52 

We used the R script from Zelditch et al. (2017) as a foundation for the updated 

functions for calculating Ct1–Ct4 and simulation-based p-values because they are 54 

computationally faster than the original R functions in the convevol R package (Stayton 

2015, Stayton 2018). Note that the relevant R functions are titled calcConv (C 56 

calculations) and convSig (significance testing) in the R code of Zelditch et al. (2017), 

convrat and convratsig in the original convevol R package, and convrat.t and 58 

convratsig.t for our updated measures. 

Dmax.t measurement. The primary change made by the Ct-measures in 60 

comparison to Stayton's (2015) original C-measures is the way in which Dmax is defined. 

Ct-measures were designed to ensure Dmax (now referred to as Dmax.t) was obtained 62 
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from comparisons of synchronous time points along the evolutionary paths leading to 

the putatively convergent taxa of interest. In this way it prevents the inflation of Dmax.t 64 

that resulted from comparison of asynchronous nodes (e.g., tips and internal nodes) 

which often occurred when using the original metrics on lineages with outlying 66 

morphologies (Figs. 3C and 4). Several modifications to the source R code were made 

to facilitate this change. Candidate Dmax.t measurements for putatively convergent 68 

lineages are now measured at each internal node along the branch paths from the most 

recent common ancestor (MRCA) of the lineages (e.g., see Figures 4 and 5B). At each 70 

of these points we extracted the phenotypic distance between lineages as the euclidean 

distance between the ancestral reconstruction at the focal node and the coincident 72 

reconstruction along the branch path of the other lineage. Where this corresponds to a 

point along a branch (which is most cases) the ancestral state is estimated using 74 

formula [2] from Felsenstein (1985), which allows ancestral states to be interpolated at 

any point along a given branch from reconstructions at the branch's ancestral and 76 

descendant nodes. The code for this was largely repurposed from the contMap function 

of the phytools R package (Revell 2012). If no contemporaneous point exists on the 78 

opposite path for a given internal node (e.g., when comparing extinct and extant taxa), 

then a measurement is not taken at that node. All distances measured between paths 80 

are stored for each pair of user defined tips. Dmax.t is the maximum of these distance 

values, but it is restricted to predate either focal tip (i.e., Dmax.t cannot equal Dtip).  82 

Restriction of Dmax.t to predate the focal tips means the minimum Ct1 value is no 

longer set to zero as in the original C1-measure. This allows for some degree of 84 

divergence to be captured (i.e., relatively more negative Ct1 values may represent 

greater divergence). However, users are cautioned from using this to test the magnitude 86 

of divergence between clades. This is because in divergent clades Dmax.t will almost 

always be the last time point before the oldest focal tip. The method will thus reflect only 88 

a small portion of the period when lineages were undergoing divergent evolution. 

Degree of divergence will then be a function of both phenotypic rates of evolution and of 90 

subtending branch length. The latter will in many practical situations be a function of 

sampling, with long subtending branches due to poor sampling likely to inflate 92 

divergence measures substantially since they will provide the best scenario for a large 
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time difference between Dmax and Dtip (and thus capture the greatest proportion of 94 

divergent evolution). 

The changes to Dmax were the most consequential of those made to modify the 96 

original C-measures. However, a number of other new options were also included. 

These are briefly described below. Full documentation of these options will be available 98 

as part of the next update to the convevol R package (Stayton, 2018).  

User-defined groups. The first new option is for users to provide grouping 100 

assignments to the tips being tested, thus allowing comparisons of clades with multiple 

lineages, whereas the original C-measures are limited to comparisons of individual 102 

lineages. This option removes pairwise comparison between tips within the same group 

(e.g., two flying squirrels would not be compared if all flying squirrels are defined as one 104 

group) and returns results for each unique comparison between groups in addition to 

overall results. This option is useful if it is hypothesized that two (or more) clades 106 

converged, and relieves the user from needing to average tip values of a clade or 

manually define all of the desired comparisons. When using this option, the overall (for 108 

all pairwise comparisons) and comparison-specific Ct and p values are returned. Overall 

results are provided as both raw values (means of all pairwise comparisons, excluding 110 

within-group comparisons) and weighted values. The latter allows each inter-group 

comparison to impact the overall average equally, so that larger within group sample 112 

sizes don't skew overall results. For instance, if there are three putatively convergent 

groups (Group A, Group B, and Group C), and Groups A and B both include a single 114 

lineage and Group C includes 10 lineages, then there would be 21 total pairwise 

comparisons among groups (one for A-B, 10 for A-C, and 10 for B-C). Although 116 

constituting one third of the unique inter-group comparisons, Ct measurements taken 

from comparison of Groups A and B constitute less than 5% of those used to compute 118 

overall (average) Ct values. Thus, Groups A and B have a relatively smaller impact than 

Group C on the overall Ct scores and p-values. The weighted output scales the Ct 120 

results (and associated p-values) so that each unique inter-group comparison 

contributes equally to the overall results, whereas the raw overall result simply reports 122 

the mean value for all 21 pairwise comparisons. Both weighted and unweighted values 

are reported in the default output printed by the updated convSig function, but we 124 



 

5 

recommend the weighted result be used by default when comparing groups. 

Nevertheless, the raw result may be preferable in cases in which researchers believe 126 

that the more heavily sampled group(s) should have a larger impact on overall results. 

Note that it is possible to define groups even when those consist of a single tip. 128 

While doing so will not change which pairwise comparisons the model considers, it will 

provide the user with unique Ct scores and p-values for each comparison. This can be 130 

especially useful when the degree of convergence varies across the lineages of interest 

(e.g., see the pairwise results for anole species in Figure S5 and Table S2). 132 

Conservative Dmax.t option. When providing user-defined groups, a conservative 

Dmax.t option is available that limits candidate Dmax.t measurements to a time point 134 

predating the origination of both focal groups (i.e., the nodes of the MRCAs of each 

group). This is to prevent Dmax.t being skewed by an early transition of one lineage 136 

toward a shared adaptive optimum that is outlying in morphospace, which can result in 

inflated Ct scores, especially when the origins of the clades are very different in age. 138 

This issue is discussed in the Supplemental Results and illustrated in Figure S3. Note 

that this option is only meaningful when user defined groups are provided. When one of 140 

those groups consist of a single lineage the node immediately ancestral to the tip is 

used. Using this method, long branches can substantially alter inferred Dmax.t values. We 142 

have provided the option to print relevant information about the restrictions put on Dmax.t 

when using this method (by setting VERBOSE = TRUE in convrat.t). We strongly 144 

suggest that users investigate the impact of using the conservative Dmax.t option before 

committing to significance tests. 146 

Updated Ct4 computation. In addition to changes to Dmax.t, we also altered the 

way in which the C4-measure is computed. The new version (called Ct4) redefines 148 

Ltot.clade, which is the value used to standardize the C2 value (Dmax subtracted by Dtip) to 

obtain C4. Ltot.clade is described by Stayton (2015) as reflecting the total amount of 150 

morphological evolution which occurs in the clade originating with the MRCA of two 

putatively convergent tips. In the original C-measures, Ltot.clade values were obtained as 152 

a sum of the phenotypic distances from all pairwise comparisons between nodes in the 

clade, but this does not fully account for phylogenetic structure and is heavily influenced 154 

by sampling intensity. We have updated this to now be the sum of the phenotypic 
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distances accumulated along each branch in the clade of interest. This change brings 156 

C4 closer to the original description of the metric. 

Measuring convergence of single traits. By default, the original C-measures do 158 

not support investigation of convergence in a single trait (although see Spear and 

Williams, 2020; Law, 2022). To circumvent this limitation we have added code to the 160 

convrat.t function which appends an invariant trait (with value zero) to datasets 

consisting of a single trait. This approach was taken due to ease of integration with 162 

existing code, and although crude will provide the same phenotypic distances as would 

be obtained from the single trait.  164 

Model output. Additional changes were made to increase the amount of 

information returned to the user and facilitate plotting of results. This includes the 166 

addition of the novel plot.C function, which is described in the ‘Measuring convergence 

through time via Ct-measures’ section of the main text (with example output in Figure 168 

5B). 

 170 

SUPPLEMENTAL RESULTS 
 172 

Univariate model-fitting analyses 

For univariate models fit to PC1 scores the OU2VA model, which allows varying rates 174 

and attraction strengths between regimes, is the best fitting model at all trait optimum 

values for both convergence and divergences datasets (Table S1). However for 176 

convergence datasets, the null model (BM1) is the second best-fitting model when the 

trait optimum is zero and 20, and the total AICcW values for all OU2 models increases 178 

with greater optima values, indicating increased evidence of convergence in 

morphological outliers. These results are consistent with the results of the multivariate 180 

evolutionary models (Table 2).  

 182 

 
 184 
 
 186 
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 188 
 
 190 
Table S1. Tests of convergence among lineages of the simulated datasets using 
evolutionary models fit to univariate data (PC1 scores). Model-fitting results for each trait 192 
optimum are the mean AICcWs of 50 phylogenetic trees (five datasets with 10 ‘simmaps’ 
each). Model support for the two-regime models (any variation of the OU2 model) could be 194 
interpreted as support for convergence because this model reflects evolution of the 
putatively convergent lineages toward a shared adaptive peak (but see the Results & 196 
Discussion). Abbreviations: AICcW, small-sample corrected Akaike weights; BM, Brownian 
motion; OU, Ornstein-Uhlenbeck.  198 

 
 200 
 
 202 

 In the main text, we discuss a few factors that likely explain why the two-regime 

OU models are unexpectedly the best-fitting models to divergent data. Namely, the two-204 

regime OU may be the best-fitting of bad-fitting models, with the BM1 and OU1 models 

even worse fits to the data. An additional factor that may contribute to the relatively 206 

strong fits of two-regime OU models to divergence datasets is that we treated the 

datasets as we would with empirical datasets and used ‘simmaps’ for ancestral state 208 

reconstructions of regime states (gliding or non-gliding), rather than use the known node 

information (via the simulation data). For instance, the two marsupial glider groups in 210 

our dataset are closely related (but believed to have evolved gliding independently), and 
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thus the ‘simmaps’ might commonly (and mistakenly) reconstruct the MRCA of those 212 

lineages as having gliding behavior.  
 214 
C1–C4 and Ct1–Ct4 applied to simulated data 
In the main text we only present results for C1 (Fig. 3C, Table 1) and Ct1 (Fig. 5A, 216 

Table 1), which were applied to both the simulated convergence datasets and the 

simulated divergence datasets. However, Stayton (2015) developed four distance-218 

based convergence measures (C1–C4) and one frequency-based measure (C5), with 

C1 being the primary measure, and we altered C1-C4 to produce the Ct1–Ct4 220 

measures. Here, we provide full results for C1–C4 (Fig. S1) and Ct1–Ct4 (Fig. S2), 

which are also applied to both the convergence and divergence datasets. See the 222 

Methods and Stayton (2015) for descriptions of the four convergence measures, and 

see the Methods for information on the simulated datasets. Note that the Ct4 measure 224 

is calculated differently than the C4 measure (see Supplemental Methods). For C1–C4, 

all results for divergence simulations are greater than zero (Fig. S1), incorrectly 226 

indicating convergence, whereas the Ct1–Ct4 scores for divergence datasets are 

generally at or below zero (Fig. S2).  228 

 

 230 
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 232 
Figure S1. Plots of means and standard errors of C1–C4 scores for simulated convergent 
lineages (solid lines) and divergent lineages (dashed lines). Datasets varied in the number 234 
of convergent/divergent traits (represented by the different colored lines) and in the distance 
of trait optima from the ancestral morphology (approximated as the center of morphospace). 236 
Means and standard errors are computed from 15 simulated datasets. Greater C1–C4 
values indicate greater convergence. We did not simulate divergence for trait optima of 0, 238 
10, and 20 because at these optima our simulation methods may have inadvertently 
generated convergence patterns (see Methods and Figure 3). As a second means of 240 
simulating divergence, we allowed the lineages of interest (‘gliders’) to evolve via BM. These 
are provided as box-and-whisker plots, summarizing 15 simulated datasets of six traits (see 242 
Methods). Note that the divergence results are all greater than zero, incorrectly indicating 
convergence.  244 
 

 246 

 

 248 
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Figure S2. Plots of means and standard errors of Ct1–Ct4 scores for simulated convergent 250 
lineages (solid lines) and divergent lineages (dashed lines). Datasets varied in the number 
of convergent/divergent traits (represented by the different colored lines) and in the distance 252 
of trait optima from the ancestral morphology (approximated as the center of morphospace). 
Means and standard errors are each computed from 15 simulated datasets. Greater Ct1–254 
Ct4 values indicate greater convergence. We did not simulate divergence for trait optima of 
0, 10, and 20 because at these optima our simulation methods may have inadvertently 256 
generated convergence patterns (see Methods and Figure 3). As a second means of 
simulating divergence, we allowed the lineages of interest (‘gliders’) to evolve via BM. These 258 
are provided as box-and-whisker plots, summarizing 15 simulated datasets of six traits (see 
Methods). Note the differences in the scaling of the vertical axes of the Ct2 and Ct3 plots 260 
relative to the C2 and C3 plots (Fig. S1), respectively. (The scaling for C4 and Ct4 is 
different because these measures are calculated differently.) Also, note the different position 262 
of zero relative to results in the Ct1–Ct4 plots versus the position in C1–C4 plots (Fig. S1), 
as well as the overlap in the Ct1–Ct4 plots of divergence data simulated by both BM and OU 264 
processes. 

 266 

 

 268 
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Ct-measures – the influence of origination times on results 270 

As discussed in the main text, the Ct-measures limit candidate Dmax.t measurements to 

specific time slices at internal nodes, and thus the timing of evolutionary change among 272 

putatively convergent lineages can influence the results of Ct-measures. For instance, if 

different lineages of interest evolve toward (or away from) a specific morphology at 274 

different points in time, then the Dmax.t measurement may not measure the 

morphologically farthest distances between the lineages. This issue may be magnified 276 

when convergence is expected to be linked to adaptive changes (e.g., adaptations for 

gliding behavior) that evolved at specific times. For instance, if colugos (i.e., 278 

Dermoptera or ‘flying lemurs’) evolved traits associated with gliding behavior 

approximately 60 Ma, and flying squirrels (Pteromyini) evolved traits associated with 280 

gliding approximately 25 Ma (e.g., Grossnickle et al. 2020), then most of the candidate 

Dmax.t measurements will be comparisons of dermopterans with gliding traits to stem 282 

flying squirrels without gliding traits (from 60 to 25 Ma). If the older lineage (colugos) 

has already undergone considerable evolutionary change by the time that the younger 284 

lineage (flying squirrels) originated, then much of the convergent evolutionary change of 

the older lineage is not captured by the morphological distances measured at ‘time 286 

slices,’ which are limited to the time period in which the lineages overlap. Ideally, most 

candidate Dmax.t measurements would be comparisons of non-gliding stem colugos and 288 

non-gliding stem flying squirrels that lack the adaptive traits associated with gliding. This 

issue might lead to candidate Dmax.t measurements being smaller than expected, or at 290 

least smaller than those calculated by measures that ignore time (e.g., C-measures).  

Conversely, if the putatively convergent taxa evolve toward outlying regions of 292 

morphospace, then the asynchronous origins of the clades could inflate the Ct-

measures. We illustrate this in Figure S3. In the conceptual illustrations, the Ct1 score is 294 

consistently 0.3 when convergent lineages originate at the same time and/or when 

lineages evolve toward the ancestral morphology. However, when lineages originate at 296 

different times and evolve toward an outlying region of morphospace, then the Ct1 

score is 0.7. Thus, researchers should be cautious when applying Ct measures to 298 

datasets with outlying taxa of various origination ages, and we offer some suggestions 

in the main text for mitigating this issue. It is also worth noting that this latter scenario 300 
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assumes that the convergent lineages can reach adaptive zones; if the later-evolving 

convergent lineage is still evolving toward outlying morphospace (i.e., it has yet to reach 302 

an adaptive peak or zone) then the aforementioned issue may have less of an influence 

on Ct results.  304 

 

 306 

 

 308 

 
Figure S3. Conceptual illustrations demonstrating how Ct1 results can be influenced by a 310 
combination of outlying morphologies and varying origination times among convergent 
lineages. The Ct1 score is 0.3 in three of the scenarios but inflates to 0.7 when lineages 312 
both originate at different times and are outliers in morphospace (bottom right). To help 
mitigate this issue, we have included an option as part of the convrat.t function that allows 314 
users to limit candidate Dmax.t measurement to the time period prior to the origination of the 
focal lineages (see Supplemental Methods). See the main text for descriptions of Ct1, Dmax.t, 316 
and Dtip.  

 318 
 

 320 
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Influence of the number of traits on Ct results 322 

As discussed in the main text (see Results & Discussion), the number of traits used in 

analyses (with all else equal) can bias the Ct scores. Inference of ancestral states via 324 

BM tends to average variation at internal nodes; thus, Dtip typically increases at a higher 

rate than Dmax.t for each non-convergent trait that is added to a dataset. (Here, we use 326 

“non-convergent traits” to refer to BM-evolved traits that are not selected to evolve 

toward a trait optimum via an OU process. These are often divergent, although it should 328 

be noted that BM-evolved traits could still be convergent by chance.) This is illustrated 

in Figure S4. The effect of this pattern is that an increased number of traits in analyses 330 

(with all else equal) could result in a relative decrease in Ct scores, unless those added 

traits are strongly convergent.  332 
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 334 
Figure S4. Illustration of how the number of traits used in analyses can influence Ct-
measures, demonstrating the increased rate at which Dtip values increase relative to Dmax.t 336 
as additional non-convergent traits are included in analyses. (Here, ‘non-convergent traits’ 
refers to BM-evolved traits, which are expected to be divergent in most cases.) The left 338 
panel shows Dtip and Dmax.t measured between two ‘glider’ lineages with two simulated 
convergent traits (optimum = 100) and varying number of additional traits simulated via BM. 340 
The right panel shows the ratio between the Dtip and Dmax.t values. 

 342 
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Empirical example - Anolis ‘twig’ ecomorphotype 

To test the novel Ct-measures and compare Ct results to those of C-measures (see the 348 

Empirical examples subsection of the Results & Discussion), we re-analyzed a classic 

example of convergence among Anolis lizards (Mahler et al. 2013), focusing specifically 350 

on five ‘twig’ ecomorphotype lineages. We chose this ecomorphotype because the taxa 

are morphological outliers that occupy a unique region of Anolis morphospace (Huie et 352 

al. 2021), and they have especially strong C-measure scores (Stayton 2015, Huie et al. 

2021), although we believe that this is due in part to the lineages being morphological 354 

outliers (see Results & Discussion). Following the methods of Mahler et al. (2013), we 

size-corrected the traits via PGLS regression of each trait against the snout-to-vent 356 

length via PGLS. The Ct-measure results for this analysis are provided in Figure S5 and 

Table S2. Whereas the C1 score is 0.36 (Stayton 2015), but we find the overall Ct1 358 

score to be near zero for both the raw and weighted results (Table S2). This helps to 

highlight the inflated C-measure results due to the issues highlighted in the Results & 360 

Discussion. However, note that there is considerable diversity in the results among the 

ten pairwise comparisons; four are strongly statistically significant, whereas some (e.g., 362 

Anolis occultus and the A. paternus clade) show considerable divergence (Ct1 = -0.763; 

Table S2). To highlight the differences between convergent and non-convergent (or not 364 

significant convergence) pairwise comparisons, we separate those comparisons in 

Figure S5. Thus, we recommend that researchers examine and report results for 366 

pairwise comparisons whenever examining more than two putatively convergent 

lineages.  368 

 

 370 

 

 372 

 

 374 
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 376 
Figure S5. Summary of empirical tests of convergence in Anolis species belonging to the 
‘twig ecomorph’ (Mahler et al. 2013). We size-corrected (via PGLS regression) and then 378 
analyzed the ten skeletal traits of the dataset of Mahler et al. (2013), with taxa assigned to 
groups based upon unique origins of the ‘twig’ ecomorphotype (see the Ct-measures section 380 
of the Supplemental Methods). The plots are the output of the plot.C function of the 
convevol R package, although the distance-through-time plot has been split to show 382 
statistically significant (left) and not significant (right) pairwise comparisons separately (see 
also Table S2). Significant pairwise comparisons are also indicated in bold in the key. Note 384 
that two of the ‘non-convergent’ comparisons in the right panel do have a positive Ct1 value, 
but they are statistically not significant (Table S2). There are 50 null simulations (light gray 386 
lines).  
 388 

 
 390 
 
 392 

 
 394 
 
 396 
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Table S2. Ct-measure values obtained for analyses run using the anole dataset of Mahler et 
al. (2013; ten standardized skeletal traits). Values are reported for overall comparison of 398 
ten’twig ecomorph’ species in five groups (corresponding to each independent origin of the 
ecomorph; Fig. S5). Pairwise comparisons of groups are also illustrated in (Fig. S5). See the 400 
Supplemental Methods for an explanation of the difference between ‘overall raw’ and 
‘overall weighted’ results. Note that ‘pat’ refers to a five-species clade that includes Anolis 402 
paternus and four closely related species, whereas all other ‘twig’ taxa include a single 
lineage (Fig. S5); see the Methods for updates to the convevol R package that allow for 404 
comparisons among taxa with more than one lineage. Asterisks denote values returned as 
significantly different from null simulations (. - p < 0.1, * - p < 0.05, ** - p < 0.01). 406 
Abbreviations: dar, Anolis darlingtoni; ins, Anolis insolitus; occ, Anolis occultus; pat, Anolis 
paternus; val, Anolis valencienni. 408 
 

 410 
 

 412 
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