1	Extreme mito-nuclear discordance within Anthozoa, with notes on unique properties of
2	their mitochondrial genomes
3	
4	
5	Andrea M. Quattrini ¹ , Karen Snyder ² , Risa Purow-Ruderman ² , Isabela G.L. Seiblitz ^{3,4} , Johnson
6	Hoang ² , Natasha Floerke ² , Nina I. Ramos ¹ , Herman H. Wirshing ¹ , Estefanía Rodriguez ⁵ , and
7	Catherine S. McFadden ²
8	
9	¹ Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian
10	Institution, 10th St. & Constitution Ave. NW, Washington, D.C. 20560, United States
11	² Department of Biology, Harvey Mudd College, Claremont CA 91711
12	³ Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil
13 14 15	⁴ Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, Brazil
16 17 18	⁵ Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79 th Street, New York NY 10024, USA
19	
20 21 22 23 24 25	Corresponding Author: Andrea Quattrini Washington, DC, 20560, USA Email address: quattrinia@si.edu
26 27 28 29 30 31	

32 Abstract

33 Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, 34 discordant patterns in species relationships between mitochondrial and nuclear phylogenies are 35 commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial-nuclear discordance 36 has not yet been examined using a large and comparable dataset. Here, we used data obtained 37 from target-capture enrichment sequencing to assemble and annotate mitochondrial genomes and 38 reconstruct phylogenies for comparisons to phylogenies inferred from 100s of nuclear loci 39 obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals 40 representing all orders and >50% of extant families. Results indicated rampant discordance 41 between datasets at every taxonomic level. This discordance is not attributable to substitution 42 saturation, but rather likely caused by recent and ancient introgressive hybridization and 43 selection. We also found strong purifying selection across the mitochondrial genomes, 44 cautioning their use in analyses that rely on assumptions of neutrality. Furthermore, unique 45 properties of the mitochondrial genomes were noted, including genome rearrangements and the 46 presence of *nad5* introns. Specifically, we note the presence of the homing endonuclease in 47 ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of 48 off-target reads generated from target-capture data for mitochondrial genome assembly and adds 49 to the growing knowledge of anthozoan evolution.

- 50
- 51
- 52
- 53
- 54

55 Introduction

56 Mitochondrial (mt) genes have a long history of use for phylogenetic reconstruction in 57 animals [1], and the relative ease with which complete mt genomes can now be obtained has 58 fueled an increase in their use to resolve phylogenetic relationships within many groups [2-4]. 59 Animal mt genomes typically include a highly conserved set of protein-coding genes with few 60 non-coding intergenic regions; are inherited uniparentally without undergoing recombination; 61 and in many cases have rates of substitution that may be an order of magnitude higher than those 62 of the nuclear genome [5]. While these properties are advantageous for phylogenetic 63 reconstruction, they may also generate phylogenetic signals that differ from those of the nuclear 64 genome. Discordance between nuclear and mt gene phylogenies is common and can result from 65 biological processes such as introgression or incomplete lineage sorting (ILS) that act differently 66 on mt vs. nuclear genomes [e.g., 6-8]. Alternatively, apparent mito-nuclear discordance can arise 67 from inaccurate estimation of phylogenies due to low statistical power, poor model fit or taxon 68 sampling issues [8]. Recent advances in computational models and increased taxon sampling of 69 both mt and nuclear genomes have allowed these alternative sources of discordance to be 70 evaluated in several well-sampled vertebrate taxa [6,8]. Studies have concluded that mito-nuclear 71 discordance more often arises from biological processes such as introgression and ILS and 72 persists even when factors that lead to inaccurate phylogenetic estimation have been addressed 73 [6-8].

Phylogenies of anthozoan cnidarians (e.g., corals and sea anemones) reconstructed from mt genes or genomes have often recovered relationships within and among orders that differ from those inferred from both nuclear genes and morphology. The mt genomes of these nonbilaterian metazoans have several unusual properties that are not found in bilaterians [9] that may

78 contribute to mito-nuclear discordance in this group. For example, the mt genomes of class 79 Hexacorallia (e.g., sea anemones, scleractinian corals and black corals) encode the standard 13 80 protein-coding genes found in bilaterians, but only two tRNAs (trnW, trnM) [10-14]. Many 81 hexacorals have group I introns in nad5 or cox1 [10-13], and the latter gene may have a LAGLI-82 DADG type homing endonuclease encoded within it [13]. The ceriantharian tube anemones have 83 multipartite linear mt genomes [15]. All members of class Octocorallia (e.g., soft corals, 84 gorgonians and sea pens) have just a single tRNA (trnM), but with only one known exception 85 (i.e., a member of genus *Pseudoanthomastus*; [16]) their mt genomes include an additional 86 protein-coding gene that encodes the DNA mismatch repair protein, *mtMutS* [17]. At least one 87 sea pen has a bipartite circular mt genome [18], and other octocoral lineages have undergone 88 frequent rearrangements (inversions) of gene order by a mechanism that appears to involve 89 intramolecular recombination [19-21]. 90 The unusual property of anthozoan mt genomes that has most impacted their utility for 91 phylogenetic reconstruction is, however, the rate at which they evolve. Unlike bilaterian mt 92 genomes that tend to evolve 5-10X faster than the nuclear genome [22-23], anthozoan mt genes 93 typically evolve 10-100X slower than nuclear genes [24]. As a result, mt genes that have been 94 widely used in bilaterians for barcoding, species-level phylogenetic analyses and 95 phylogeography are often invariant within—and sometimes between—anthozoan genera [25-26]. 96 These slow rates of mt gene evolution have, however, increased the potential utility of mt genes 97 for reconstructing deep phylogenetic relationships among the families and orders of Anthozoa, a 98 group of organisms that last shared a common ancestor in the pre-Cambrian [27-28]. 99 Nonetheless, phylogenies of Anthozoa reconstructed from complete mt genomes (or their 100 protein-coding genes) have often been incongruent with other sources of morphological and

101 phylogenomic evidence. The most notable of these discrepancies has been a lack of support for 102 the monophyly of the anthozoan classes, Hexacorallia and Octocorallia. Mitochondrial 103 phylogenies have often placed Octocorallia sister to the cnidarian sub-phylum Medusozoa [4, 21, 104 29, 30], despite the very strong morphological and life-history evidence for the monophyly of 105 Anthozoa [see 31], which has also been confirmed in several phylogenomic studies [32-33]. 106 Moreover, in some of these same analyses Hexacorallia has been recovered outside of Cnidaria, 107 as the sister to a clade of sponges [4, 34]. Mitochondrial gene phylogenies have also recovered 108 Ceriantharia (tube anemones) sister to the rest of Anthozoa [15, 30, 35] rather than within 109 Hexacorallia as supported by genomic-scale studies [27-28, 32]. In addition, previous studies 110 have suggested that Scleractinia is paraphyletic with Corallimorpharia [4, 12, 36]) and have 111 differed from nuclear gene phylogenies in the placement of the orders Actiniaria, Zoantharia and 112 Antipatharia and in the relationships among the major clades of Scleractinia [37-38]. Within 113 Octocorallia, mt genes and/or genomes have provided little statistical support for the deepest 114 nodes in either of the two major clades that have been recognized [29, 30, 39, 40]. 115 Explanations that have been proposed to explain the incongruence between mt and 116 nuclear or morphological phylogenies of Anthozoa include substitution saturation of the mt 117 genome [21, 36, 41], rate heterogeneity between the major lineages [29], and long branch 118 attraction (LBA) due to the combined effects of rate heterogeneity and incomplete or biased 119 taxon sampling [34]. Most mt genome phylogenies and phylogenomic analyses of anthozoans 120 published to date have been taxon-sparse, often omitting entire orders [29, 32, 33] or have drawn 121 comparisons between topologies generated from completely different taxon sets [41]. As a result, 122 it is still unclear if the source of incongruence between mt and nuclear gene phylogenies of 123 anthozoans is simply an artifact of incomplete, biased and incomparable taxon sampling or if the

evolutionary signal present in anthozoan mt genomes does indeed differ from that of the nucleargenome.

126	Recent advances in phylogenomic methods and technologies have facilitated the ability
127	to obtain complete mt genomes while simultaneously generating sequence reads for thousands of
128	nuclear genes. In particular, target-enrichment methods used to sequence ultraconserved
129	elements (UCEs) and exonic regions of the nuclear genome can recover complete or near-
130	complete mt genomes as off-target reads [3]. Comparisons of mt vs nuclear gene phylogenies
131	from the same set of taxa (often the same individuals) facilitate investigation of the causes of
132	mito-nuclear incongruence by eliminating artifacts that may be caused by unequal or different
133	taxon sampling.
134	In recent phylogenomic analyses of Anthozoa based on UCEs and exons [27-28],
135	complete or near-complete mt genomes were recovered for a majority of the taxa sequenced.
136	Here we used the complete set of mt protein-coding sequences to reconstruct the phylogenies of
137	the Octocorallia and Hexacorallia classes and compared those to nuclear gene phylogenies
138	generated for the same set of individuals. The dataset comprised a total of 202 species
139	representing all orders and >50% of extant families. With this comparable dataset, the impacts of
140	sampling biases were removed and we were able to robustly explore whether incongruence is
141	related to evolutionary signal. New findings on the unique properties of the recovered mt
142	genomes are also noted.
142	

143

144 Methods

145 Target-Enrichment Analyses

146	UCE and exon loci were target enriched and bioinformatically extracted from high-
147	throughput sequencing data as described in Quattrini et al. [42] and [27] using the anthozoa-v1
148	baitset [42]. Briefly, raw reads were cleaned using illumiprocessor [43] and Trimmomatic v 0.35
149	[44] and then assembled using either Spades v 3.1 ([45]; with thecareful andcov-cutoff 2
150	parameters) or Trinity v. 2.0 [46]. The phyluce pipeline was then used as described in the online
151	tutorials (https://phyluce.readthedocs.io/en/latest/tutorials/tutorial-1.html) with some
152	modifications (see supplemental code in 27, 42). Using phyluce, 75% and 50% taxon-occupancy
153	matrices were created for each nuclear locus, aligned with MAFFT v7.130b [47], and loci were
154	concatenated (<i>phyluce_align_format_nexus_files_for_raxml</i>) separately for hexacorals (n=108)
155	and octocorals (n=94).
156	
157	Mitochondrial Genome Analyses
158	Whole and partial mt genomes were extracted from the off-target reads in the target-
159	enrichment sequencing data. Mitochondrial genomes were extracted and assembled in three
160	ways. First, we used blastn to find whole or partial genomes in the Trinity or Spades assemblies
161	and then extracted those as fasta sequences. Second, we used Novoplasty v 2.6 [48] to assemble
162	mt genomes using the adapter-trimmed paired-end reads. Seed files were used to help assemble

163 each species and consisted of *cox1* sequences downloaded from GenBank for the species of

164 interest or a closely-related species. Third, Geneious Prime 2020 (<u>https://www.geneious.com</u>)

165 was used for genomes that were difficult to assemble with Spades and Novoplasty. Individual mt

166 loci from closely related taxa, either *mtMutS*, *cox1* or 16S, were used as seeds to initiate and

167 guide assemblies.

168	Following mt genome assembly, fasta files were uploaded to Mitos2 ([49],
169	http://mitos2.bioinf.uni-leipzig.de) for annotation (translation code=4). For further analyses, we
170	used only species whose mt genomes were represented by at least 50% of the protein coding
171	genes (hexacorals n=108, octocorals n=94, Suppl. Table 1), except that we included five
172	ceriantharians with low mitogenome recovery (e.g., for 15-53% of genes recovered for each
173	species). Protein-coding genes were then each aligned separately using MAFFT v7.130b [47]
174	and adjusted by eye to ensure the sequences were in frame. Loci were then concatenated with
175	phyluce_align_concatenate_alignments. Mitochondrial genomes of hexacorals were deposited in
176	GenBank under BioProject #XXX.
177	Some mt genomes for which we had corresponding nuclear data could not be easily
178	assembled, or were published in previous studies, and so sequences were downloaded from
179	GenBank and subsequently used in our analyses (Suppl. Table 1). We used mt data from
180	GenBank for 26 hexacorals; 16 of these were of the same individuals used in our study. All
181	octocoral mt genomes were also assembled concurrently in another study [16] and added to
182	GenBank by those authors.
183	
184	Phylogenomic Analyses

185 Removing loci that are saturated can improve phylogenomic analyses [50]. Therefore, we 186 ran saturation tests on each of the different locus datasets using Phylomad [51]. For nuclear loci, 187 we ran saturation tests using models of entropy on all sites and only on those that had no missing 188 data in each locus alignment. Datasets are denoted hereafter as LR (low risk loci) and LRM (low 189 risk loci with no missing data in saturation test). For the mt data, we ran saturation tests on sites 190 with no missing data for the concatenated alignment. Loci with substitution saturation were

removed and then various datasets were used for further phylogenetic analyses (Suppl. Table 2,Table 1).

193	Selection tests were conducted using codon-based models in codeml within PAML v. 4
194	[52]. The one ratio model (M0) was run on the mt alignment only for both octocorals and
195	hexacorals. This allowed us to estimate average omega (dN/dS) and kappa (ts/tv) values across
196	all branches in the corresponding mt phylogenies. Omega values =1 indicate the locus is
197	evolving neutrally, values >1 indicate positive selection and values <1 indicate negative or
198	purifying selection. Higher kappa values indicate transition relative to transversion bias.
199	Phylogenomic analyses were conducted using maximum likelihood in IQTree v 2.1 [53]
200	on each of the concatenated datasets (Table 1). We ran partitioned analyses on the different
201	datasets using the best model for each locus chosen with ModelFinder [54]. Ultrafast
202	bootstrapping (-bb 1000, [55]) and the Sh-like approximate likelihood ratio test (-alrt 1000, [56])
203	were conducted as well as site-concordance factors [57]. A species tree analysis was also
204	conducted using ASTRAL III v 5.7, which is statistically consistent under a multispecies
205	coalescent model [58]. Gene trees were constructed in IQTree using the best fit model of
206	evolution selected with ModelFinder for each gene. We used the 75% taxon-occupancy data
207	matrices for each class. Treeshrink [59] was used to remove long branches, and the newick
208	utility, nw_ed, was used to remove branches with <30 % bootstrap support prior to running
209	IQTree. Site concordance factors were also calculated on the species tree using the concatenated
210	alignment. The phylogenetic relationship of Renilla muelleri to other octocorals was spuriously
211	placed in some phylogenies. Because this species is well-supported in Pennatuloidea, we pruned
212	this species from all phylogenetic trees using the R phytools package [60].

213 Following phylogenetic inference, we conducted Robinson-Foulds distance (R-F, [61]) 214 tests using IQTree v2.1. R-F distances were calculated between all pairs of hexacoral unrooted 215 trees and all pairs of octocoral unrooted trees. The two most congruent mt and nuclear trees 216 based on maximum likelihood were determined based on the smallest R-F distances for both 217 hexacorals and octocorals and plotted. In cases where R-F distances were the same, we chose the 218 topology with the most bs support values > 95%. Hexacorals were rooted at the Ceriantharia 219 based on prior phylogenomic studies of the phylum Cnidaria [32-33] and Scleralcyonacea was 220 rooted to Malacalcyonacea based on prior phylogenomic studies [27-28, 40]. All code can be 221 found in Suppl. File S1 and all trees and alignments can be found on figshare.

222

223 Results

224 Mitogenome Assemblies

225 Herein we assembled complete or near complete mt genomes of 75 hexacorals from the 226 following orders: Actiniaria, Antipatharia, Ceriantharia, Corallimorpharia, and Scleractinia. 227 Ceriantharian mt genomes were difficult to assemble. Out of five ceriantharians, none had 228 complete mt genomes and only two genes were found for one species (Ceriantheomorphe 229 brasiliensis). Only one species, Botruanthus mexicanus, had a near complete genome assembly. 230 We confirmed the presence of Group I introns (Suppl. Table 3) in many taxa. In Actiniaria, 231 Antipatharia, Zoantharia, and *Relicanthus daphneae*, two protein coding genes, *nad1* and *nad3*, 232 were found inserted as introns within *nad5*. Ten protein coding genes were found in the *nad5* 233 intron of most scleractinians, with the exception of *Caryophyllia arnoldi* in which we found only 234 seven protein-coding genes and rns within the nad5 intron. In Corallimorpharia, 10 protein-235 coding genes were in the nad5 intron of Corallimorphus profundus, and for the rest of the

corallimorpharians (*Rhodactis osculifera, Discosoma carlgreni,* and *Ricordea florida*), all genes
but *trnW* were in the *nad5* intron. Another group 1 intron that encodes a homing endonuclease
from the LAGLI-DADG family was present in *cox1* of some hexacorals. We confirmed the
presence of this endonuclease in 24% of actiniarians, 28% of scleractinians, 17% of
antipatharians, and 100% of corallimorpharians (Suppl. Table 3). We also documented this
intron in two species of Ceriantharia, *Botruanthus mexicanus* and *Ceriantheomorphe brasiliensis*.

243 Of the complete (or near complete) mt genomes of hexacorals assembled in this study, 244 only three species displayed gene order rearrangements relative to other taxa in their respective 245 orders (Suppl. Table 3). Within Actiniaria, only one species sequenced, Alicia sansibarensis, 246 exhibited a mt genome rearrangement with cox2-nad4-nad6-cob inserted prior to atp8 instead of 247 between *nad6* and *rns*. Of the scleractinians, *Caryophyllia arnoldi* had a genome rearrangement 248 with the *cob-nad2-nad6* gene block inserted after the 3' end of *nad5* instead of within the *nad5* 249 intron. The mt genome of *Madrepora oculata* also had a gene rearrangement, with a switch in 250 the order of cox2 and cox3 compared to all other scleractinians. Corallimorphus profundus also 251 had a different genome rearrangement compared to R. osculifera. D. carlgreni, and R. florida 252 (Suppl. Fig. 3). Corallimorphus profundus had 10 protein-coding genes and rns within the nad5 253 intron. In contrast, R. osculifera, D. carlgreni and R. florida have all other genes but trnW within 254 the *nad5* intron.

255

256 Alignment Summary

For hexacorals, concatenated nuclear locus alignments across 50-75% taxon-occupancy
datasets ranged from 38,534 to 246,027 bp with 95 to 756 loci in each dataset (Table 1). For each

hexacoral species, locus recovery ranged from 303 to 1,156, with overall few loci (342 to 589)
recovered in ceriantharians (Suppl Table 1). For octocorals, concatenated nuclear locus
alignments across 50-75% taxon-occupancy datasets ranged from 213,477 to 555,701 bp with
408 to 1,252 loci (Table 1). For each octocoral species, 604 to 1,275 loci were recovered (Suppl.
Table 1).

All 13 protein-coding genes were included in the alignment for 79% of all hexacoral species (Suppl. Tables 1 and 3). The hexacoral mt genome alignment containing the 13 proteincoding genes was 12,465 bp, and for each gene at least 94-98% of the species were represented. For octocorals, all 14 protein-coding genes were included in the alignment for 80% of species. The octocoral mt genome alignment was 16,176 bp, and for each gene 96-100% of the species were represented, except for *mtMutS. mtMutS* was included for only 77% of the species as for some speices it was highly incomplete or highly divergent from the other species.

271 Selection tests on the mt genome alignments indicated that the mt genomes are under 272 strong purifying selection. The omega value (dN/dS) for hexacorals was 0.10 while the value for 273 octocorals was 0.14. The kappa value (ts/tv) for hexacorals was 2.7, whereas in octocorals it was 274 higher at 3.9. Saturation tests conducted using PhyloMad indicated that neither the hexacoral nor 275 octocoral mt alignment was under saturation as indicated by entropy tests (Suppl. Fig. 1, Suppl. 276 Table 2). For nuclear-locus datasets, 8-50% of the loci in each dataset had a high risk of 277 substitution saturation. Hexacorals tended to have more saturated loci, with 30-50% saturated 278 loci per dataset whereas octocorals had a lower number, with 8-35% of saturated loci per dataset. 279

280 Mito-nuclear Discordance

281 <u>Hexacorallia</u>

282 Overall, all phylogenies constructed for Hexacorallia were well supported (Table 1). 283 Among all nuclear trees constructed with ASTRAL and IQTree, 83 to 97% of nodes (106 total 284 nodes) on each tree had higher than 95% ultrafast bootstrap (bs) values, posterior probabilities 285 (pp), and SH-aLRT values. Similarly, the mt genome tree was well supported with 78-89% of 286 nodes having higher than 95% ultrafast bs values and SH-aLRT values. 287 There were some differences among all hexacoral phylogenies, but nuclear phylogenies 288 constructed with ASTRAL and IQTree were mostly congruent with one another (pairwise R-F 289 distances=4-28). The R-F distances between the hexacoral mt genome tree and the nuclear trees, 290 however, were much larger, ranging from 56 to 68. The mt genome tree was most similar to the 291 ASTRAL species trees (pairwise R-F distances=56-60) compared to the maximum likelihood 292 phylogenies (pairwise R-F distances=62-66); there were three maximum likelihood phylogenies

that were all equally congruent with the mt genome phylogeny (RF distances=62). The tree with

294 50% data occupancy and highly saturated loci removed (50LR) while allowing for missing data

in the saturation test had the highest BS support values. There were a few species on long

branches in the mt genome tree, but not the nuclear tree, including the zoantharians

297 Nanozoanthus harenaceus and Microzoanthus occultus and the scleractinian Paraconotrochus
298 antarcticus (see Suppl. Files).

Although there were several differences among shallow nodes in all topologies, two major differences were apparent at deep nodes (Fig. 1). First, the relationship of Zoantharia and Actiniaria to other orders differed among topologies. In the mt genome tree, Actiniaria was sister to all other hexacoral orders except Ceriantharia (bs=100, SHaLRT=100, sCF=82). This same relationship was also recovered in the ASTRAL species trees (bs=100, SHaLRT=100, sCF=54-56) and the 75LRM tree (bs=100, SHaLRT=100, sCF=56, Fig. 1, see Suppl. Files) analyses of

305	the nuclear dataset. In contrast, in the majority of maximum likelihood trees for the nuclear
306	dataset, Zoantharia diverged earlier than Actiniaria (bs=100, SHaLRT=100, pp=100, sCF=52-
307	84). Second, the relationship of Relicanthus daphneae to other orders differed among
308	phylogenies. In the mt genome phylogeny, R. daphneae was sister to the zoantharians (UF=88,
309	SHaLRT=77, sCF=42). In the majority of nuclear phylogenies, <i>R. daphneae</i> was recovered with
310	variable support (bs >84, SHaLRT >75, pp>41, sCF >32), as sister to Antipatharia-
311	Corallimorpharia-Scleractinia.
312	There were also some differences between mt genome and nuclear phylogenies within
313	each hexacoral order. Within Scleractinia, there were differences among trees at the shallow
314	nodes, including relationships among species of Porites (S4 clade), but the major difference was
315	the placement of the family Micrabaciidae (S1). Nuclear phylogenies all strongly support that
316	this family is sister to the Robust/Vacatina clade (S2) of Scleractinia (bs=100, SHaLRT=100,
317	pp=97-100, sCF=37-40). In contrast, in the mt genome phylogeny Micrabaciidae (S1) was
318	recovered as sister to all other Scleractinia (S2+S3) with strong support (bs=100, SHaLRT=99,
319	sCF=33). Within Actiniaria, the position of the superfamily Actinostoloidea (A2) differed
320	between mt genome and nuclear phylogenies. This superfamily was sister to the superfamilies
321	Metridioidea+Actinioidea (A4+A3) in the mt genome phylogeny (bs=100, SHaLRT=100,
322	sCF=48.6) whereas it was sister to the superfamily Actinioidea (A3) in all nuclear phylogenies
323	(bs=100, SHaLRT=99-100, pp=100, sCF=37-38). Within Antipatharia, the position of
324	Acanthopathes thyoides (A3) differed between mt genome and nuclear phylogenies. This species
325	was sister to all other antipatharians (An1+An2) in the mt genome phylogeny (bs=100,
326	SHaLRT=100, sCF=72) whereas it was sister to the family Schizopathidae (An2) in the majority
327	of nuclear phylogenies (bs=76-100, SHaLRT=23-100, pp=91-98, sCF=34-37), except for the

328 50LRM and ASTRAL LRM topologies (bs=100, SHaLRT=100, pp=100, sCF=65-67), which

- 329 matched the mt genome tree. Within Zoantharia, the placement of *Epizoanthus illoricatus* (Z2)
- and *Neozoanthus* aff. *uchina* (Z4 in part) differed among mt genome and nuclear phylogenies. In
- the mt genome tree, *E. illoricatus* (Z2) was sister to the rest of the zoantharians (bs=100,
- 332 SHaLRT=100, sCF=66), whereas in all nuclear phylogenies, *Nanozoanthus harenaceus* and
- 333 *Microzoanthus occultus* (Z1) were sister to the rest of the zoantharians (bs=100, SHaLRT=100,
- 334 pp=100, sCF=37-38). *Neozoanthus*. aff. *uchina* (Z4 in part) was sister to the family Zoanthidae
- 335 (Z5) in the mt genome phylogeny (bs=100 SHaLRT=100, sCF=49) whereas it was sister to
- 336 *Hydrozoanthus gracilis* (Z4) in all nuclear phylogenies (bs=100 SHaLRT=100, pp=100,
- 337 sCF=48-51). Within Corallimorpharia, there were differences within the Discosomidae family

338 (C1) with *R. osculifera* sister to *D. carlgreni* in the nuclear phylogeny yet sister to the remaining

- discosomids in the mt genome phylogeny.
- 340

341 Octocorallia

Nuclear gene phylogenies for Octocorallia were in general well supported. Among all nuclear trees constructed with ASTRAL and IQTree, 83 to 96% of nodes (91 total nodes) on each tree had higher than 95% ultrafast bootstrap (bs) values, posterior probabilities (pp), and SH-aLRT values. In contrast, mt genome trees for Octocorallia were not as well supported with only 76% of nodes having higher than 95% ultrafast bs and SHaLRT values.

Nuclear phylogenies constructed with ASTRAL and IQTree were somewhat congruent
with one another (pairwise R-F distances=4-36, Table 2, see Suppl. Files). The R-F distances
between the octocoral mt genome tree and the nuclear trees, however, were much larger, ranging
from 60 to 72. Octocoral mt genome trees were somewhat more similar to the maximum

351	likelihood phylogenies (pairwise R-F distances=60-68) as compared to the ASTRAL trees
352	(pairwise R-F distances=68-72). The most similar tree to the mt genome phylogeny was
353	constructed with a 75% taxon occupancy data matrix with highly saturated loci removed and no
354	missing data in the saturation test (75LRM). In general, branch lengths were much different
355	between mt genome and nuclear trees. In the mt genome tree, seven species were on very long
356	branches (Muricella sp., Leptophyton benayahu, Tenerodus fallax, Cornularia pabloi,
357	Pseudoanthomastus sp., Erythropodium caribaeorum, and Melithaea erythraea), a pattern not
358	recovered in nuclear phylogenies (see Suppl. Files).
359	Numerous differences were apparent among the octocoral mt genome and nuclear
360	phylogenies (Fig. 2). Within the order Scleralcyonacea, the placement of
361	Pennatuloidea+Ellisellidae (clade S1) differed. In the mt genome tree this clade was sister to the
362	Keratoisididae+Primnoidae+Chrysogorgiidae (S2) and Helioporidae (S3) clades (bs=90,
363	SHaLRT=100, sCF=29). In two maximum likelihood trees (50, 50LRM) and all ASTRAL trees
364	(bs=100, SHaLRT=100, pp=93-100, sCF=36), it was sister either to clades S3+S4 (bs=53-100,
365	SHaLRT=25-99, sCF=33-36) or to clades S2+S3+S4. <i>Cornularia pabloi</i> also changed positions,
366	diverging later (sister to clade S3) in the mt genome phylogeny (bs=90, SHaLRT=95, sCF=28)
367	as compared to all nuclear phylogenies where it was placed sister to all other scleralcyonaceans
368	(bs=100, SHaLRT=100, pp=100, sCF=37). Parasphaerasclera valdiviae was an early-diverging
369	lineage and sister to all other scleralcyonaceans in the mt genome phylogeny (bs=100,
370	SHaLRT=100, sCF=63) whereas it was sister to family Coralliidae in the nuclear phylogeny
371	(bs=100, SHaLRT=100, pp=100, sCF=37). Helioporidae (S3) was recovered as sister to clade S4
372	in the maximum likelihood nuclear phylogenies (bs=99-100, SHaLRT=99, sCF=36) but sister to
373	clade S2 in the mt genome phylogeny (bs=90, SHaLRT=97, sCF=34) and the ASTRAL

374	phylogenies, although the relationships in the species trees were poorly to moderately supported
375	(pp=0.5-86, sCF=34). Family Keratoisididae was recovered as sister to Primnoidae in the mt
376	genome phylogeny (bs=94, SHaLRT=96, sCF=32) and in one nuclear phylogeny (50LRM) but
377	with poor support (bs=79, SHaLRT=47, sCF=32). In all other nuclear phylogenies,
378	Keratoisididae was recovered sister to Chrysogorgiidae (bs=100, SHaLRT=100, pp=90-100,
379	sCF=36-37).
380	Within Malacalcyonacea, several differences among phylogenetic relationships were
381	noted, including some relationships among congeneric species. The
382	Incrustatidae+Malacacanthidae clade was an early-diverging lineage and sister to most
383	malacalcyonacean families (except for Clavularia inflata) in the mt genome tree (bs=100,
384	SHaLRT=100, sCF=50), but these families diverged later as part of the M2 clade in the nuclear
385	phylogenies. The Tubiporidae+Arulidae clade (M1) was sister to all malacalcyonaceans (except
386	for C. inflata) in the nuclear phylogeny (75LRM). In the mt genome phylogeny, it included
387	Nidalia and was sister to the Sarcophytidae+Carijoidae (clade M3a, bs=72, SHaLRT=86,
388	sCF=32). An Anthogorgiidae+Eunicellidae+Plexaurellidae clade (M8a) was sister to
389	Paramuriceidae (M8c) in the mt genome phylogeny (bs=99, SHaLRT=95, sCF=35). In contrast,
390	the Keroeidae+Taiaroidae+Astrogorgiidae clade (M8b) was sister to the Paramuriceidae (M8c)
391	in the nuclear phylogenies (bs=99-100, SHaLRT=99-100, pp=100, sCF=34-42). Within
392	Sarcophytidae, relationships differed among species between mt genome and nuclear
393	phylogenies.
394	
395	Discussion

396 Mitochondrial Genome Properties

397 Utilizing a total of 202 complete or near-complete mitochondrial (mt) genomes, we were 398 able to examine mito-nuclear discordance within the Anthozoa and explore the unique mt 399 genome properties of all orders belonging to this sub-phylum of Cnidaria. In addition to the mt 400 genomes newly assembled here, most of the previously published mt genomes [16, 38, 62] that 401 we included in our analyses had been assembled from the raw sequence data from Ouattrini et al. 402 [27, 42]. This large dataset of mt genomes further demonstrates the utility of off-target reads 403 generated from target-capture data for the assembly of mt genomes and adds to the growing 404 knowledge of mt genome evolution within the sub-phylum Anthozoa. 405 Although group I introns have been previously recorded in hexacorals [10-14, 62-65], we 406 note their pervasiveness across the group. A nad5 intron of at least two protein-coding genes and 407 up to all 13 is present in the majority of hexacoral families. From our data, it also appears that 408 this intron is present in Ceriantharia, however, this needs further confirmation as we had 409 difficulties assembling mt genomes in that order. The other group I intron that encodes a homing 410 endonuclease from the LAGLI-DADG family is present in *cox1* in many hexacorals. Both gains 411 and/or losses of this gene have been previously noted in the hexacoral orders, Scleractinia [13], 412 Corallimorpharia [64], Actiniaria [65], and Zoantharia [62]. This endonuclease appears to be 413 more common in some orders (Zoantharia, Corallimorpharia) than others (Scleractinia). Based 414 on annotation from Mitos2, we also documented this intron in two ceriantharians. To our 415 knowledge, this intron has not yet been documented in the order Ceriantharia. Based on its

416 distribution across the phylogeny, the homing endonuclease, likely a result of horizontal

417 transmission [13], has been gained and lost within Hexacorallia for several hundred million

418 years, with origins dating to 300-400 MYA [27]. To date, no introns have been recorded from

the Octocorallia.

420 Mitochondrial genome rearrangements within Anthozoa have been a topic of interest for 421 over two decades, as species in this sub-phylum exhibit several gene order changes. However, 422 within hexacorals, genome rearrangements are seemingly rare. Of the 102 complete (or near 423 complete) mt genomes of hexacorals examined in this study, only 7% displayed gene order 424 rearrangements relative to the canonical gene order within their taxonomic order; many of which 425 have been described in prior studies [e.g., 12, 65, 66]. In contrast to hexacorals, octocorals have 426 undergone gene rearrangements more frequently across their phylogenetic history [18-21, 67]. 427 Of the 92 complete to near complete octocoral mt genomes used in this study, 21% had gene 428 rearrangements. Brockman and McFadden [20] suggested that octocoral gene rearrangements 429 evolve via inversions of conserved gene blocks (or intramolecular recombination) whereas 430 hexacoral gene rearrangements are likely caused by gene shuffling. Additionally, they 431 hypothesized that the presence of the mt mis-match repair protein, *mtMutS* (unique to 432 Octocorallia) might play a role in mediating these gene inversions. A recent review by Johansen 433 and Emblem [68] suggested that the large *nad5* intron that is ubiquitous in hexacorals (but absent 434 from octocorals) perhaps stabilizes mt genome organization in that class. With the increasing 435 availability and decreasing costs of high-throughput sequencing combined with new analytical 436 methods for assembling and annotating mt genomes (e.g., MitoFinder, [3]), many new 437 discoveries likely await regarding the mt genome evolution of anthozoan cnidarians.

438

439 Mito-nuclear Discordance

Advances in genomic approaches have also facilitated comparisons of the phylogenetic
histories of nuclear and mt genomes. This has allowed us to explore the patterns and underlying
causes of mito-nuclear discordance. In both Hexacorallia and Octocorallia, we found a high-

443 degree of mito-nuclear discordance at every level (i.e., order to species) even when comparing 444 the mt phylogeny to the most similar nuclear phylogeny. At deep nodes in the phylogenies, the 445 most apparent differences in the hexacoral phylogenies included the positions of the anemone 446 groups Actiniaria, Zoantharia, and R. daphneae. Within octocorals, the most apparent differences 447 at deep nodes were relationships among clades within the order Scleralcyonacea and among the 448 early-diverging lineages within Malacalcyonacea. Discordance at deep nodes complicates 449 interpretations of ancestral state reconstructions through deep time. In addition, this level of 450 discordance causes concern for using just one source of sequence data (i.e. nuclear or whole mt 451 genomes) for phylogenetic reconstruction, but also highlights how different datasets used in 452 compliment present a unique opportunity to better understand the cause of the discordance from 453 an evolutionary perspective.

454 Substitution saturation of mt genomes has been suggested to be the cause of mito-nuclear 455 discordance in anthozoans [21,41]. Using entropy tests on our extensive dataset of ~100 456 genomes in each class, we did not find evidence for substitution saturation. The entropy-based t 457 statistic tests saturation on phylogenetically informative sites, is suitable for assessing misleading 458 tree topologies, and it has several advantages, including: 1) it is robust across a range of confounding factors, including rate variation across sites; and 2) the negative influence of 459 460 slowly-evolving sites is removed in the measurement of overall base composition [50]. Thus, our 461 results might differ from prior studies that used other methods, particularly if slowly-evolving 462 sites were not taken into account. Alternatively, the different results could be driven by the 463 number (2-3X less) and choice of taxa used in prior phylogenetic studies. In contrast to mt 464 genomes, we found that ~10 to 50% of UCE and exon nuclear loci were saturated, depending on 465 dataset. A recent study examining substitution saturation of UCE and exon loci across a range of

466 taxa (e.g., hymenopterans, fishes, and crustaceans), also found similar numbers of saturated loci 467 [50]. We removed UCE and exon loci with substitution saturation from the dataset prior to 468 phylogenetic analysis, yet even so, the nuclear and mt topologies were quite incongruent. 469 Therefore, substitution saturation is not the primary cause of the observed discordance among 470 nuclear and mt phylogenies. 471 Introgression is another biological process that can result in discordance among nuclear 472 and mt phylogenies. Within Anthozoa, introgressive hybridization has been suggested to be an 473 important mechanism in generating species diversity [71-77]. Because mt genomes are 474 maternally inherited and non-recombining, species or groups of species that have undergone past 475 hybridization might be expected to have mt genomes that are more similar than their nuclear 476 genomes [e.g., 78-79]. Using D-statistics and ABBA BABA tests, Quattrini et al. [75] 477 determined that hybridization is an important mechanism in shaping diversity within the soft 478 octocoral genus *Sclerophytum* (=*Sinularia*). Similarly, hybridization has been noted within 479 multiple species in the scleractinian genus *Porites* [76-77]. Indeed, we found strong

480 incongruence between mt and nuclear phylogenies within both genera. In combination, these

482 the trees. Mitochondrial introgression is more likely and happens at a faster rate than nuclear

results suggest that introgression might explain some of the incongruence, at least at the tips of

481

483 introgression, cautioning the use of mt gene trees as accurate depictions of a species trees [79].

484 Future studies should consider explicitly testing for mt introgression in pairs or groups of taxa

485 using, for example, ABBA-BABA tests and isolation with migration models [e.g., 80].

486 Studies that have tested for introgressive hybridization as a cause of discordance among 487 mt and nuclear phylogenies have often focused on closely related species groups that have 488 diverged in the recent past [e.g., 6, 8, 81-82]. Whether or not hybridization is the cause of

489 incongruent relationships at nodes deeper in a phylogeny is more difficult to discern. However, 490 ancient introgression of ghost lineages (e.g., extinct, unknown or unsampled lineages that remain 491 in extant species likely due to ancient hybridization; [83]) could play a role in generating 492 incongruence. Li and Wu [84] hypothesized that species with widespread distributions are likely 493 to contain genetic components of ghost lineages. Marine invertebrates, such as anthozoans, fit 494 that category. The case of the enigmatic giant deep-sea anemone *Relicanthus* particularly fits this 495 scenario, so far being the only representative of its kind within hexacorals. We urge future 496 research on ghost lineages and the potential for ancient introgression to drive some of the 497 topological incongruence in Anthozoa. Notably, the deep divergences of sea anemone groups 498 within hexacorals and the deep divergences within both orders of octocorals were the most 499 unstable nodes and require further scrutiny.

500 The slow-evolutionary rate of mt genomes in anthozoans [24, 79] could also be partly 501 responsible for the extreme mito-nuclear discordance seen here. Shearer et al. [79] hypothesized 502 that background selection is influencing the slow substitution rates within mt genomes of 503 anthozoans. Due to non-recombining mt loci, selection reduces variation not only at sites under 504 selection, but at those that are linked as well [85]. We found that the mt genome is under strong 505 purifying selection in both Hexacorallia and Octocorallia, with omega values close to zero in 506 both classes. Another recent study found that some genes are under relaxed purifying selection in 507 deep-sea taxa, with some sites in particular genes under positive selection [86]. We were not 508 able to test for selection on nuclear loci, as none were in correct reading frames. However, 509 because of the large number of loci used, we would not anticipate that all or even most nuclear 510 loci would evolve under the same type of selection.

511

512 Summary

513	Our results have demonstrated extreme mito-nuclear discordance in Anthozoa. Overall,
514	non-recombining mt genomes that do not evolve neutrally and are likely to rapidly introgress are
515	most likely influencing our ability to reconstruct accurate species relationships. Other studies
516	have cautioned against the use of mtDNA for resolving phylogenetic relationships in anthozoans
517	[21, 41] and even more broadly in metazoans [1], but unequal taxon sampling and non-matching
518	tips have always been potential confounding issues in mito-nuclear comparisons. We included
519	the same tips in the mt and nuclear phylogenies and sampled widely across all orders.
520	Nonetheless, it is still possible that inadequate taxon sampling could influence the patterns of
521	mito-nuclear discordance we observed, and that including more taxa in particular regions of the
522	trees would stabilize some relationships. Even so, mito-nuclear discordance in hexacorals and
523	octocorals is not an artifact of biased and incomparable taxon sampling, but instead, a signal of
524	evolutionary processes that have shaped the genetic diversity of Anthozoa.
525	
526	References
527	1. Ballard, J. W. O., & Whitlock, M. C. The incomplete natural history of
528	mitochondria. Mol. Ecol. 13(4), 729-744 (2004).
529	2. Janiak, M. C. et al. 205 newly assembled mitogenomes provide mixed evidence for
530	rivers as drivers of speciation for Amazonian primates. Mol. Ecol. (2022)
531	3. Allio, R. et al. MitoFinder: efficient automated large-scale extraction of mitogenomic
532	data in target enrichment phylogenomics. Mol. Ecol. Res., 20(4), 892-905 (2020)

533	4.	Xiao, M et al. Mitogenomics suggests a sister relationship of Relicanthus daphneae
534		(Cnidaria: Anthozoa: Hexacorallia: incerti ordinis) with Actiniaria. Sci. Rep., 9(1), 1-10.
535		(2019).
536	5.	Brown, W.M., George, M. & Wilson, A. C. Rapid evolution of animal mitochondrial
537		DNA. Proc. Natl. Acad. Sci. U.S.A. 76, 1967–1971 (1979).
538	6.	Platt, R. N. et al. Conflicting evolutionary histories of the mitochondrial and nuclear
539		genomes in new world Myotis bats. Syst. Biol. 67, 236-249 (2018).
540	7.	Tamashiro, R. A. et al. What are the roles of taxon sampling and model fit in tests of
541		cyto-nuclear discordance using avian mitogenomic data? Mol. Phylogenet. Evol. 130,
542		132–142 (2019).
543	8.	Kimball, R. T., Guido, M., Hosner, P. A. & Braun, E.L. When good mitochondria go bad:
544		Cyto-nuclear discordance in landfowl (Aves: Galliformes). Gene. 801, 145841 (2021).
545	9.	Lavrov, D. V. & Pett, W. Animal mitochondrial DNA as we do not know it: mt-genome
546		organization and evolution in nonbilaterian lineages. Genome. Biol. Evol. 8, 2896–2913
547		(2016).
548	10	. Beagley, C. T., Okada, N. A., & Wolstenholme, D. R. (1996). Two mitochondrial group I
549		introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for
550		subunits 1 and 3 of NADH dehydrogenase. PNAS, 93(11), 5619-5623.
551	11	. van Oppen, M. J., Catmull, J., McDonald, B. J., Hislop, N. R., Hagerman, P. J., & Miller,
552		D. J. The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a
553		large group I intron and a candidate control region. J. Mol. Evol. 55(1), 1 (2002).
554	12	. Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V. & Boore, J. L. Naked corals:
555		Skeleton loss in Scleractinia. PNAS. 103, 9096–9100 (2006).

556	13. Fukami, H., Chen, C. A., Chiou, C. Y., & Knowlton, N. Novel group I introns encoding a
557	putative homing endonuclease in the mitochondrial $cox1$ gene of Scleractinian corals. J.
558	Mol. Evol. 64, 591-600 (2007).
559	14. Brugler, M. R., & France, S. C. The complete mitochondrial genome of the black coral
560	Chrysopathes formosa (Cnidaria: Anthozoa: Antipatharia) supports classification of
561	antipatharians within the subclass Hexacorallia. Mol. Phylogenet. Evol. 42, 776-788
562	(2007).
563	15. Stampar, S. N. et al. Linear mitochondrial genome in Anthozoa (Cnidaria): A case study
564	in Ceriantharia. Sci Rep. 9, 6094 (2019).
565	16. Muthye, V., Mackereth, C. D., Stewart, J. B. & Lavrov, D. V. Large dataset of octocoral
566	mitochondrial genomes provides new insights into <i>mt-mutS</i> evolution and function. DNA
567	Repair (Amst). 110 (2022).
568	17. Bilewitch, J. P., & Degnan, S. M. A unique horizontal gene transfer event has provided
569	the octocoral mitochondrial genome with an active mismatch repair gene that has
570	potential for an unusual self-contained function. BMC Evol. Biol., 11, 1-15 (2011)
571	18. Hogan, R. I., Hopkins, K., Wheeler, A. J., Allcock, A. L. & Yesson, C. Novel diversity in
572	mitochondrial genomes of deep-sea Pennatulacea (Cnidaria: Anthozoa: Octocorallia).
573	Mitochondrial DNA Part A. 30, 764–777 (2019).
574	19. Uda, K. et al. Complete mitochondrial genomes of two Japanese precious corals,
575	Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae):
576	Notable differences in gene arrangement. Gene. 476, 27–37 (2011).
577	20. Brockman, S. A. & McFadden, C. S. The mitochondrial genome of Paraminabea
578	aldersladei (Cnidaria: Anthozoa: Octocorallia) supports intramolecular recombination as

- 579 the primary mechanism of gene rearrangement in octocoral mitochondrial genomes.
- 580 *Genome. Biol. Evol.* **4**, 994–1006 (2012).
- 581 21. Figueroa, D. F. & Baco, A. R. Octocoral mitochondrial genomes provide insights into the
- 582 phylogenetic history of gene order rearrangements, order reversals, and cnidarian
- 583 phylogenetics. *Genome. Biol. Evol.* **7**, 391–409 (2015).
- 584 22. Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. Mitochondrial DNA sequences
- 585 of primates: Tempo and mode of evolution. *J. Mol. Evol.* **18**, 225–239 (1982).
- 586 23. Vawter, L. & Brown, W. M. Nuclear and mitochondrial DNA comparisons reveal
- 587 extreme rate variation in the molecular clock. *Science*. **234**, 194–196 (1986).
- 588 24. Hellberg, M. E. No variation and low synonymous substitution rates in coral mtDNA
 589 despite high nuclear variation. *BMC Evol. Biol.* 6, 24 (2006).
- 590 25. Shearer, T. L. & Coffroth, M. A. DNA Barcoding: Barcoding corals: limited by
- 591 interspecific divergence, not intraspecific variation. *Mol. Ecol Res.* **8**, 247–255 (2008).
- 592 26. Huang, D., Meier, R., Todd, P. A. & Chou, L. M. Slow mitochondrial COI sequence
- 593 evolution at the base of the metazoan tree and its implications for DNA barcoding. J.

594 *Mol. Evol.* **66**, 167–174 (2008).

- 595 27. Quattrini, A. M. *et al.* Palaeoclimate ocean conditions shaped the evolution of corals and
 596 their skeletons through deep time. *Nat. Ecol. Evol.* 4, 1531–1538 (2020).
- 597 28. McFadden, C. S. *et al.* Phylogenomics, origin, and diversification of anthozoans (Phylum
 598 Cnidaria). *Syst Biol.* **70**, 635–647 (2021).
- 599 29. Park, E. *et al.* Estimation of divergence times in cnidarian evolution based on
- 600 mitochondrial protein-coding genes and the fossil record. *Mol. Phylogenet. Evol.* **62**,
- 601 329–345 (2012).

- 30. Kayal, E., Roure, B., Philippe, H., Collins, A. G. & Lavrov, D. V. Cnidarian phylogenetic
 relationships as revealed by mitogenomics. *BMC Evol. Biol.* 13, 5 (2013).
- 60431. Daly, M. *et al.* The phylum Cnidaria: A review of phylogenetic patterns and diversity 300
- 605 years after Linnaeus. Zootaxa. 1668, 127–182 (2007).
- 606 32. Zapata, F. *et al.* Phylogenomic analyses support traditional relationships within Cnidaria.
- 607 *PLoS One.* **10**, e0139068; 10.1371/journal.pone.0139068. (2015).
- 608 33. Kayal, E. *et al.* Phylogenomics provides a robust topology of the major cnidarian lineages
 609 and insights on the origins of key organismal traits. *BMC Evol. Biol.* 18, 68 (2018).
- 610 34. Osigus, H-J., Eitel, M., Bernt, M., Donath, A. & Schierwater, B. Mitogenomics at the
- 611 base of metazoa. *Mol. Phylogenet. Evol.* **69**, 339–351 (2013).
- 612 35. Stampar, S. N., Maronna, M. M., Kitahara, M. V., Reimer, J. D. & Morandini, A. C. Fast-
- 613 evolving mitochondrial DNA in Ceriantharia: A reflection of Hexacorallia paraphyly?

614 *PLoS One.* **9**, e86612; 10.1371/journal.pone.0086612 (2014).

- 615 36. Kitahara, M. V. et al. The "Naked Coral" hypothesis revisited Evidence for and against
- 616 Scleractinian monophyly. *PLoS One*. **9**, e94774; 10.1371/journal.pone.0094774 (2014).
- 617 37. Seiblitz, I. G. L. *et al.* The earliest diverging extant scleractinian corals recovered by
- 618 mitochondrial genomes. *Sci. Rep.* **10**, 20714; 10.1038/s41598-020-77763-y (2020).
- 619 38. Stolarski, J. et al. A. A modern scleractinian coral with a two-component calcite-
- 620 aragonite skeleton. *PNAS*, **118(3)**, e2013316117 (2021).
- 621 39. McFadden, C. S., France, S. C., Sánchez, J. A. & Alderslade, P. A molecular
- 622 phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial
- 623 protein-coding sequences. *Mol. Phylogenet. Evol.* **41**, 513–527 (2006).

624	40. McFadden, C. S., van Ofwegen, L. P. & Quattrini, A. M. Revisionary systematics of
625	Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bull. Syst. Biol. 1, 8735;
626	https://doi.org/10.18061/bssb.v1i3.8735 (2022).
627	41. Pratlong, M., Rancurel, C., Pontarotti, P. & Aurelle, D. Monophyly of Anthozoa
628	(Cnidaria): Why do nuclear and mitochondrial phylogenies disagree? Zool Scr. 46, 363-
629	371 (2016).
630	42. Quattrini, A. M., et al. Universal target-enrichment baits for anthozoan (Cnidaria)
631	phylogenomics: New approaches to long-standing problems. Mol. Ecol. Resour. 18, 281-
632	295 (2018).
633	43. Faircloth, B. C. Illumiprocessor: a trimmomatic wrapper for parallel adapter and quality
634	trimming. <u>10.6079/J9ILL</u> (2013).
635	44. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
636	sequence data. <i>Bioinformatics</i> . 30 , 2114–2120 (2014).
637	45. Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to
638	single-cell sequencing. J. Comput. Biol. 19, 455-477 (2012).
639	46. Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the
640	Trinity platform for reference generation and analysis. <i>Nat Protoc.</i> 8, 1494–1512 (2013).
641	47. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7:
642	Improvements in performance and usability. Mol Biol Evol. 30, 772–780 (2013).
643	48. Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle
644	genomes from whole genome data. Nucleic Acids Res. 45, e18; 10.1093/nar/gkw955
645	(2016).

646	49. Donath, A. et al. Improved annotation of protein-coding genes boundaries in metazoan
647	mitochondrial genomes. Nucleic Acids Res. 47, 10543-10552 (2019).
648	50. Duchêne, D. A., Mather, N., van der Wal, C. & Ho, S. Y. W. Excluding loci with
649	substitution saturation improves inferences from phylogenomic data. Syst Biol. 71, 676-
650	689 (2021).
651	51. Duchêne, D. A., Duchêne, S. & Ho, S. Y. W. PhyloMAd: efficient assessment of
652	phylogenomic model adequacy. Bioinformatics. 34, 2300-2301 (2018).
653	52. Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24,
654	1586–1591 (2007).
655	53. Nguyen, L-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and
656	effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol.
657	<i>Evol.</i> 32 , 268–274 (2015).
658	54. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S.
659	ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 14,
660	587–589 (2017).
661	55. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2:
662	Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).
663	56. Anisimova, M., Gil, M., Dufayard, J-F., Dessimoz, C. & Gascuel, O. Survey of branch
664	support methods demonstrates accuracy, power, and robustness of fast likelihood-based
665	approximation schemes. Syst. Biol. 60, 685-699 (2011).
666	57. Minh, B. Q., Hahn, M. W. & Lanfear, R. New methods to calculate concordance factors
667	for phylogenomic datasets. Mol. Biol. Evol. 37, 2727-2733 (2020).

668	58. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species
669	tree reconstruction from partially resolved gene trees. BMC Bioinformatics. 19, 153
670	(2018).
671	59. Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other
672	things). Methods. Ecol. Evol. 2, 217-223 (2012).
673	60. Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in
674	collections of phylogenetic trees. BMC Genomics. 19, 272 (2018).
675	61. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Math Biosci. 53,
676	131–147 (1981).
677	62. Poliseno, A. et al. Evolutionary implications of analyses of complete mitochondrial
678	genomes across order Zoantharia (Cnidaria: Hexacorallia). J. Zool. Syst. Evol. Res. 58,
679	858–868 (2020).
680	63. Emblem, Å. <i>et al.</i> Sea anemones possess dynamic mitogenome structures. <i>Mol.</i>
681	Phylogenet. Evol. 75, 184-193 (2014).
682	64. Celis, J. S. et al. Evolutionary and biogeographical implications of degraded
683	LAGLIDADG endonuclease functionality and group I intron occurrence in stony corals
684	(Scleractinia) and mushroom corals (Corallimorpharia). PLoS One, 12, e0173734 (2017).
685	65. Foox, J., Brugler, M., Siddall, M. E., & Rodríguez, E. Multiplexed pyrosequencing of
686	nine sea anemone (Cnidaria: Anthozoa: Hexacorallia: Actiniaria) mitochondrial
687	genomes. Mitochondrial DNA A 27, 2826-2832 (2016).
688	66. Seiblitz, I. G. et al. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene
689	order: Insights from mitochondrial and nuclear phylogenomics. Mol. Phyl. Evol. 175,
690	107565 (2022).

691	67. Brugler, M. R., & France, S. C. The mitochondrial genome of a deep-sea bamboo coral
692	(Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of
693	replication are not conserved among octocorals. J. Mol. Evol, 67(2), 125-136.
694	68. Johansen, S. D., & Emblem, Å. Mitochondrial Group I introns in hexacorals are
695	regulatory genetic elements in Advances in the Studies of the Benthic Zone (IntechOpen)
696	101 (2020).
697	69. DeBiasse, M., et al. A cnidarian phylogenomic tree fitted with hundreds of 18S
698	leaves. bioRxiv. (2022)
699	70. Rodríguez, E., et al. Hidden among sea anemones: the first comprehensive phylogenetic
700	reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel
701	group of hexacorals. <i>PloS one</i> , 9(5) , e96998 (2014).
702	71. van Oppen, M. V., Willis, B. L., Vugt, H. V., & Miller, D. J. Examination of species
703	boundaries in the Acropora cervicornis group (Scleractinia, Cnidaria) using nuclear DNA
704	sequence analyses. Mol. Ecol. 9(9), 1363-1373 (2000).
705	72. Vollmer, S. V., & Palumbi, S. R. Hybridization and the evolution of reef coral
706	diversity. Science, 296(5575), 2023-2025. (2002)
707	73. Reimer, J. D., Takishita, K., Ono, S., Tsukahara, J., & Maruyama, T. Molecular evidence
708	suggesting interspecific hybridization in Zoanthus spp. (Anthozoa: Hexacorallia). Zool.
709	<i>Sci.</i> 24 , 346-359 (2007).
710	74. Combosch, D. J., & Vollmer, S. V. Trans-Pacific RAD-Seq population genomics
711	confirms introgressive hybridization in Eastern Pacific Pocillopora corals. Mol.
712	Phylogenet. Evol. 88, 154-162 (2015).

713	75. Quattrini, A. M. et al. A next generation approach to species delimitation reveals the role
714	of hybridization in a cryptic species complex of corals. BMC Evol. Biol. 19, 1-19 (2019).
715	76. Hellberg, M. E., Prada, C., Tan, M. H., Forsman, Z. H., & Baums, I. B. Getting a grip at
716	the edge: recolonization and introgression in eastern Pacific Porites corals. J.
717	Biogeogr. 43, 2147-2159 (2016).
718	77. Forsman, Z. H. et al. Coral hybridization or phenotypic variation? Genomic data reveal
719	gene flow between Porites lobata and P. compressa. Mol. Phylogenet. Evol. 111, 132-
720	148 (2017).
721	78. Chan, K. M., & Levin, S. A. Leaky prezygotic isolation and porous genomes: rapid
722	introgression of maternally inherited DNA. Evol. 59, 720-729 (2005).
723	79. Shearer, T. L., Van Oppen, M. J. H., Romano, S. L., & Wörheide, G. Slow mitochondrial
724	DNA sequence evolution in the Anthozoa (Cnidaria). Mol. Ecol. 11, 2475-2487 (2002).
725	80. Hey, J. Isolation with migration models for more than two populations. Mol. Biol.
726	Evol. 27(4), 905-920. (2010)
727	81. Gompert, Z., Forister, M. L., Fordyce, J. A., & Nice, C. C. Widespread mito-nuclear
728	discordance with evidence for introgressive hybridization and selective sweeps in
729	Lycaeides. Mol. Ecol. 17(24), 5231-5244 (2008).
730	82. Linnen, C. R., & Farrell, B. D. Mitonuclear discordance is caused by rampant
731	mitochondrial introgression in Neodiprion (Hymenoptera: Diprionidae)
732	sawflies. Evolution: International Journal of Organic Evolution, 61(6), 1417-1438
733	(2007).
734	83. Hibbins, M. S., & Hahn, M. W. Phylogenomic approaches to detecting and characterizing
735	introgression. Genetics 220, iyab173 (2022).

736	84. Li, Y., & Wu, D. D. Finding unknown species in the genomes of extant species. J.
737	Genetics Genomics. 48(10), 867-871 (2021)
738	85. Schrider, D. R. Background selection does not mimic the patterns of genetic diversity
739	produced by selective sweeps. Genetics 216, 499-519 (2020).
740	86. Ramos, N.I., DeLeo D.M., McFadden, C.S., & Quattrini, A.M. Selection in coral
741	mitogenomes, with insights into adaptations in the deep sea. Sci. Rep. Submitted.
742	
743	Acknowledgements
744	This project was supported by the National Science Foundation (grants DEB-1457817 and DEB-
745	1457581 to CSM and ER). P. Cowman provided the mt genome data for one specimen. A.
746	Poliseno, L. Gusmão, and M. Xiao provided preliminary alignments of Zoantharia, Actiniaria,
747	and Antipatharia. We thank D. Duchêne for providing advice on results of saturation tests.
748	
749	Author Contributions
750	AMQ, CSM, and ER conceived the study. AMQ conducted phylogenetic analyses, generated
751	tables and figures, and along with CSM wrote the manuscript. AMQ, CSM, KS, RPR, IGLS, JH,
752	and HHW assembled, annotated and aligned mitochondrial genes. NIR conducted selection tests.
753	CSM, IGLS, NIR, ER, and HHW edited the manuscript. All authors approved the final version.
754	
755	Competing interests
756	The author(s) declare no competing interests.
757	

758 Data Availability

759	Alignments, Tree files and code can be found on figshare XXXX
760	Mitochondrial genomes have been uploaded to genbank and respective numbers can be found in
761	supplemental tables.
762	
763	Figure Captions
764	Figure 1. Maximum likelihood tree of Hexacorallia inferred from (left) mitochondrial and (right)
765	nuclear loci (50% taxon occupancy, no loci with substitution saturation as denoted in saturation
766	tests with missing data included). Numbered squares on branches identify clades discussed in
767	Results.
768	
769	Figure 2. Maximum likelihood tree of Octocorallia inferred from (left) mitochondrial and (right)
770	nuclear loci (75% taxon occupancy, no loci with substitution saturation as denoted in saturation
771	tests without missing data). Numbered squares on branches identify clades discussed in Results.
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	
785	
786	
787	

- Figure 1.

- 804 Figure 2.

- 813
- 814
- 815
- 816 Supplemental Figure 1. Saturation test results produced by PhyloMad for (A) Hexacorallia and
- 817 (B) Octocorallia.
- 818

840

841

842

843 Table 1. Summary statistics for different alignment datasets.

Dataset	Taxon Occupancy	# Loci	Alignment Size	# BS >95	# BS 95-80	# BS < 80	# Sh >95	# Sh 95-80	# Sh <80
Hexacorallia									
ASTRAL	75%	222	NA	95*	2*	9*	NA	NA	NA
ASTRAL LR	75%	149	NA	89*	4*	13*	NA	NA	NA
ASTRAL LRM	75%	95	NA	92*	4*	10*	NA	NA	NA
75	75%	222	85327	100	3	3	101	1	5
75LR	75%	149	66567	100	3	3	100	1	4
75LRM	75%	95	38534	93	7	6	96	2	8
50	50%	756	246027	103	2	1	103	2	1
50LR	50%	545	196468	103	1	2	103	1	2
50LRM	50%	380	126183	99	6	1	100	3	3
Mito	94-98%	13	12465	94	7	5	83	11	12
Octocorallia									
ASTRAL	75%	621	NA	83*	4*	4*	NA	NA	NA
ASTRAL LR	75%	575	NA	83*	1*	7*	NA	NA	NA
ASTRAL LRM	75%	408	NA	76	7	8	NA	NA	NA
75	75%	621	305233	82	3	6	88	2	1
75LR	75%	575	290130	85	2	4	87	2	2
75LRM	75%	408	213477	80	8	4	85	4	2
50	50%	1252	555701	82	5	4	87	2	2
50LR	50%	1161	529092	85	2	4	85	1	5
50LRM	50%	827	385627	85	4	2	86	3	2
Mito	77-100%	14	16176	69	14	8	69	12	10

844 BS=bootstrap, SH= Shimodaira-Hasegawa approximate likelihood ratio test, LRM=low risk loci

only with no missing data in saturation test, LR=low risk loci only while allowing for missing

846 data in saturation test, mito=mitochondrial alignment, *=posterior probability

847

	ASTRAL	ASTRAL LR	ASTRAL LRM	75	75LR	75LRM	50	50LR	50LRM	Mito
Hexacorallia										
ASTRAL	0									
ASTRAL LR	4	0								
ASTRAL LRM	12	12	0							
75	18	20	28	0						
75LR	16	16	26	6	0					
75LRM	26	24	26	20	20	0				
50	14	14	20	14	14	22	0			
50LR	16	14	24	8	4	18	12	0		
50LRM	26	24	24	18	18	22	12	14	0	
Mito	58	60	56	62	62	66	64	64	62	0
Octocorallia										
ASTRAL	0									
ASTRAL LR	6	0								
ASTRAL LRM	14	12	0							
75	28	32	30	0						
75LR	34	36	36	6	0					
75LRM	30	30	28	14	20	0				
50	24	28	30	10	16	24	0			
50LR	28	32	32	4	10	18	6	0		
50LRM	28	32	32	4	10	18	10	8	0	
Mito	72	70	68	68	66	60	68	66	68	0

Table 2. Pairwise Robinson-Foulds distances between hexacoral topologies and octocoral topologies.

LRM=low risk loci only with no missing data in saturation test, LR=low risk loci only with missing data in saturation test, mito=mitochondrial alignment, 75=75% taxon occupancy dataset, 50=50% taxon occupancy dataset