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Abstract. In the realm of single-cell analysis, computational approaches
have brought an increasing number of fantastic prospects for innovation
and invention. Meanwhile, it also presents enormous hurdles to repro-
ducing the results of these models due to their diversity and complexity.
In addition, the lack of gold-standard benchmark datasets, metrics, and
implementations prevents systematic evaluations and fair comparisons
of available methods. Thus, we introduce the DANCE platform, the first
standard, generic, and extensible benchmark platform for accessing and
evaluating computational methods across the spectrum of benchmark
datasets for numerous single-cell analysis tasks. Currently, DANCE sup-
ports 3 modules and 8 popular tasks with 32 state-of-art methods on
21 benchmark datasets. People can easily reproduce the results of sup-
ported algorithms across major benchmark datasets via minimal efforts
(e.g., only one command line). In addition, DANCE provides an ecosys-
tem of deep learning architectures and tools for researchers to develop
their own models conveniently. The goal of DANCE is to accelerate the
development of deep learning models with complete validation and facil-
itate the overall advancement of single-cell analysis research. DANCE is
an open-source python package that welcomes all kinds of contributions.
All resources are integrated and available at https://omicsml.ai/.
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2 J. Ding et al.

1 Introduction

Single-cell profiling technology has undergone rapid development in recent years,
spanning from single modality profiling (RNA, protein, and open chromatin)
[19,41,62,67,74,95,102,117,129], multimodal profiling [14,24,54,91,143] to spa-
tial transcriptomics [7,22,28,89,96,130,138,142]. The fast revolution in this field
has encouraged an explosion in the number of computational methods, especially
machine learning-based methods. However, the diversity and complexity of cur-
rent methods make it difficult for researchers to reproduce the results as shown
in the original papers. The major challenges include no publicly available code-
base, hyperparameter tuning, and differences between programming languages.
Furthermore, a systematic benchmarking procedure is necessary to comprehen-
sively evaluate methods since the majority of existing works have only reported
their performance on limited datasets and comparison with insufficient meth-
ods. Therefore, a generic and extensible benchmark platform with comprehensive
benchmark datasets and metric evaluation is highly desired to easily reproduce
any algorithm other than state-of-art methods under different tasks across pop-
ular benchmark datasets via minimal efforts (e.g., only one command line). Con-
sidering deep learning methods like Graph Neural Networks [26,118,121,140,143]
have shown promising performance in single-cell analysis, but the customized in-
terfaces of such tools are largely missing in the existing packages. Those motivate
the development of our DANCE system that not only acts as a benchmark plat-
form, but also provides customized deep learning infrastructure interfaces to help
researchers conveniently develop their models..

In this work, we present DANCE as a deep learning library and benchmark
to facilitate research and development for single cell analysis. DANCE provides
an end-to-end toolkit to facilitate single cell analysis algorithm development and
fair performance comparison on different benchmark datasets. DANCE currently
supports 3 modules, 8 tasks, 32 models and 21 datasets. Table 1 summarizes the
key differences between DANCE and existing single-cell libraries and toolkits.
The highlights of DANCE are summarized as follows:

– Comprehensive Module Coverage: Squidpy [101] proposes an efficient
and scalable infrastructure only for spatial omics analysis. DeepCell [136]
forms a deep learning library for single-cell analysis but only biological images
are covered. The library specializes in models for cell segmentation and cell
tracking. Even though the popular Scanpy [144] provides a powerful tool
for single-cell analysis spanning all modules, it focuses on the field of data
preprocessing instead of modeling. Similarly, even though Seurat [54] touches
on all three modules, its R language-based interface restricts its applicability
for the development of deep learning methods due to limited R interface
support within the deep learning community. Instead, DANCE supports all
types of data preprocessing and modeling across all modules including single
modality, multimodality and spatial transcriptomics.

– Deep Learning Infrastructure: With the great increase in the number
of single cells, classical methods [15, 68] cannot effectively enjoy the benefit
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from big single-cell data, while deep learning has been proven to be effec-
tive. Furthermore, deep learning techniques are also good at handling high
dimensional data, which is common for single-cell data. Unfortunately, the
backend framework of the well-known Seurat is R, which limits its potential
in the deep learning community due to restricted R interface support in the
deep learning community. Scanpy only contains classical methodologies for
downstream tasks. Recently scvi-tools [43] presents a Python library for deep
probabilistic analysis of single-cell omics data. With 12 models, scvi-tools of-
fers standardized access to 9 tasks. scvi-tools includes some deep learning
methods but lacks the recent Graph Neural Networks (GNNs) based meth-
ods. In terms of models, scvi-tools selects baselines with a concentration on
statistical models according to their supporting data protocol. As a compar-
ison, DANCE is a comprehensive deep learning library of single-cell analysis.
Popular deep learning infrastructures like Autoencoders [116] and GNNs are
supported and applicable for all modules.

– Standardized Benchmarks: To the best of our knowledge, DANCE is the
first comprehensive benchmark platform covering all modules in single-cell
analysis. A few unique features have been developed to achieve this goal. We
first collect task specific standard benchmark datasets and provide easy access
to them by simply changing the parameter setting. Under each task, repre-
sentative classical and deep learning algorithms are implemented as baselines.
Those baselines are further fine-tuned on all collected benchmark datasets to
reproduce similar or even better performance compared to original papers.
To easily reproduce the results of our finetuned models, end users only need
to run one command line where we wrap all super-parameters in advance to
obtain reported performance.

Scanpy Seurat scvi-tools DeepCell Squidpy DANCE

Comprehensive
Module Coverage

Single Modality ✓ ✓ ✓ ✓ ✗ ✓

Multimodality ✓ ✓ ✓ ✗ ✗ ✓

Spatial ✓ ✓ ✓ ✗ ✓ ✓

Deep Learning
Infrastructure

Classical Deep Learning ✗ ✗ ✓ ✓ ✓ ✓

GNNs ✗ ✗ ✗ ✗ ✓ ✓

Standardized
Benchmarks

Benchmark Datasets ✗ ✗ ✗ ✓ ✗ ✓

Task Specific Algorithms ✗ ✗ ✗ ✓ ✗ ✓

Reproducible Command Lines ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparison between DANCE and other popular single-cell libraries and
toolkits.

One of the highlights of DANCE is the reproducibility of models. The diverse
programming languages and backend frameworks of existing methods make sys-
tematic benchmark evaluation challenging for fair performance comparison. In
such case, we implement all models in a unified development environment based
on python language using Pytorch [105], Deep Graph Library (DGL) [141] and
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4 J. Ding et al.

PyTorch Geometric (PyG) [40] as backbone frameworks. In addition, we formu-
late all baselines into a generic fit-predict-score paradigm. From the reproducibil-
ity perspective, for each task, every implemented algorithm is fine-tuned on all
collected standard benchmarks via grid search to get the best model, and the
corresponding super-parameters are saved into only one command line for user’s
reproducibility. We also provide one example for each model as a reference.

2 Related Work

2.1 Single-Cell Analysis

Single Modality Next-generation sequencing allows for high-throughput tran-
scriptome analysis. While bulk RNA sequencing data focuses on average gene
expression profiles [76, 100, 110], single-cell RNA-sequencing (scRNA-seq) data
quantifies gene expression at the cell level, offering unprecedented advantages to
understanding biological mechanisms. In scRNA-seq experiments, single cells
need to be isolated and captured; then, the captured cells go through lysis
[66, 76, 100]. Reverse transcription is then applied to lysed cells for mRNA se-
lection and cDNA synthesis, which is a key step that determines experiment
sensitivity and the level of technical noise due to sampling noise, which is often
assumed to have a Poisson distribution [58]. The rapid development of sequenc-
ing technologies has enabled highly scalable experiments where a massive num-
ber of cells could be processed simultaneously through microwell-based meth-
ods such as CytoSeq [58], microfluidics-based methods like Fluidigm C1 HT,
or droplet-based methods like Drop-seq [86] and Chromium 10X [155]. In par-
ticular, the development of unique molecular identifiers (UMIs) improves the
quality of scRNA-seq by barcoding each mRNA molecule within a cell individu-
ally during reverse transcription and thus mitigates PCR amplification bias. In
addition to scRNA-sequencing, other types of single-cell sequencing assays also
emerged recently. Two common branches are sequencing for surface protein such
as CITE-seq [124] and sequencing for chromatin accessibility as represented by
scATAC-seq [70].

Single-cell sequencing technology enables the simultaneous screening of thou-
sands of genes in a massive number of cells and yields valuable insights in cell het-
erogeneity and functions. For instance, it has shed light on new understandings in
oncological studies [72,88,145], cell characterizations [27,48,49,112,133,134,137],
immune heterogeneity [44, 103, 154], and cell differentiation [12, 69, 97, 115]. In
order to answer important biological questions, new algorithms are required
that are specially devised for single-cell sequencing data. Unlike bulk sequenc-
ing, single-cell sequencing technologies profile thousands or even millions of cells,
resulting in high-dimensional datasets. Furthermore, single-cell sequencing data
suffers from high sparsity [71], i.e, a large proportion of genes with zero reads
in the count matrix, a phenomenon known as dropout [8,63,66,113]. Thus, new
algorithms are needed to efficiently analyze single-cell sequencing data in or-
der to tackle tasks such as data imputation, cell clustering, cell typing, and cell
trajectory inferences.
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Multimodality There have been exploding experiment technologies that ob-
tain high-resolution features of single-cell, and many of them devoted to adapting
assays of different omics to single-cell resolution (e.g., scDNA-seq [87], scATAC-
seq [70], REAP-seq [108], etc)Recently, advances in single-cell technology have
led to simultaneous assays of multi-omics in a single cell. For example, cel-
lular indexing of transcriptome and epitopes by sequencing (CITE-seq) [124]
simultaneously profiles mRNA gene expression and surface protein abundance;
sci-CAR [16] and SNARE-seq [23] jointly measure mRNA gene expression and
chromatin accessibility. Integrated analysis of multi-omics single-cell data has
brought many important applications and achievements, such as revealing new
cell populations [54] or regulatory networks [37,59,82,153]. Current multi-omics
analysis can be roughly categorized into two types, i.e., the joint analysis of data
from different single-modal sources, and the analysis of data from multi-modal
assays. Both of them can provide new insights into cell states. The most impor-
tant problem in multimodal data analysis is how to integrate multimodal data
to provide more accurate and in-depth cellular representation. To this end, inte-
gration algorithms can also be considered in two categories. The first category
of methods [18,37,59,61,77,122,152,153] focus on alignment between datasets,
while the second category of methods [92,143,146,149,158] dedicate to capture
cellular characterization from multimodality.

Although various successful downstream applications have demonstrated the
effectiveness of multimodal data, it is still difficult to directly evaluate and com-
pare the performance of different integration methods. One common way to
evaluate those methods is to calculate Normalized Mutual Information (NMI)
between the predicted cluster labels and predefined cell type labels. A more
reasonable way to benchmark multimodal integration, as suggested in a recent
work [80], is to leverage multi-omics aligned data to provide ground truth for
multimodal integration, where two modalities are simultaneously measured in
each cell (e.g. CITE-seq [124]). Three key tasks have been defined( i.e., modality
prediction, modality matching, and joint embedding) to comprehensively evalu-
ate the power of various integration methods. Modality prediction is to predict
one modality from another. In modality matching, we aim to identify obser-
vations of the same cells among different modalities, while the ground truth
correspondence is given by the dataset. Joint embedding is to directly evaluate
the integrated embedding by comprehensive metrics based on biological states
preservation and batch effects removal.

Spatial Transcriptomics While single-cell sequencing technologies are able to
isolate cells from heterogeneous cell populations, they lose sight of the original
microenvironments in the process. Spatial transcriptomics technologies are a
more recent development in transcriptomics profiling. They are able to spatially
resolve transcriptomics profiles. This allows researchers to further investigate
and understand the spatial context of cells, and cell clusters [13]. However, the
spatially resolved profiling regions for most technologies are not at single-cell
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resolution, which motivates the problem of spatial (cell-type) deconvolution and
segmentation.

Spatially resolved RNA profiling technologies can be roughly categorized as
profiler-based and imager-based technologies [55]. Profiler-based technologies use
Next-Generation Sequencing (NGS) readouts, and include Spatial Transcrip-
tomics (10x Visium platform) [126], Slide-seqV2 [123], and Digital Spatial Pro-
filing (Nanonstring GeoMx platform) [90]. The profiler-based technologies offer
high-plex data, though not at single-cell resolution. Imager-based technologies
apply a sequence of cyclic In situ hybridization (ISH) and imaging. Recent meth-
ods include MERFISH (Visgen MERSCOPE platform) [93], seqFISH+ [39], and
the Spatial Molecular Imager (Nanostring CosMx platform) [55]. Imager-based
technologies offer single-cell resolution (even sub-cellular), though usually not as
high-plex as the profiler-based methods [55].

2.2 Graph Representation Learning

Graph representation learning has attracted increasing attention [84], since graph
data are ubiquitous in the real world, e.g. social networks [98], knowledge graphs [60]
and biological networks [106]. However, graph data has a more complex topology
than text or image data with regular structures, causing it difficult to analyze.
To facilitate downstream analysis, a natural idea is to denote each node with a
vector while encoding intrinsic graph properties. This kind of methods is called
graph embedding [84], including random-walk-based methods [47, 107], matrix-
factorization-based methods [4, 10], and deep learning methods [147].

Random walk approaches (e.g., deepwalk [107], node2vec [47]) start with
sampling the neighborhoods of nodes rather than directly using the global infor-
mation of the entire graph. This allows the model to capture higher-order rela-
tionships between nodes, but they also lose some global structural information.
Matrix factorization methods (e.g., graph laplacian eigenmaps [10], graph fac-
torization [4]) have a solid mathematical foundation, but they are not scalable to
large graphs, due to the high space complexity of proximity matrix construction
and computational complexity of eigen decomposition. Moreover, most factoriza-
tion methods only conserve the first-order proximity [20]. Deep learning models,
also known as graph neural networks (e.g., GCN [64], GraphSAGE [50]), are gen-
erally achieving state-of-the-art performance in various applications. However,
they are mathematically complex and thus lack interpretability. To be concrete,
graph neural works (GNNs) iteratively propagate and transform node features
to obtain node embeddings [46]. Therefore the node embeddings encode high-
order topological structure information. In addition, GNNs provide denoising
effects by smoothing graph signals through filtering eigenvalues of the graph
Laplacian [83]. Because of these advantages, graph representation learning can
be very effective for single-cell analysis. For instance, it can facilitate cell-cell
interaction detection [73] and gene-network inference [59].
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2.3 Deep Learning for Single Cell Analysis

In contrast to the bulk sampling techniques, single-cell sequencing techniques can
produce millions of samples in a single experiment, which far exceeds the sample
size of previous datasets. Along with this is the emergence of a large number of
new research topics, mainly focusing on understanding the association between
gene expressions and cellular behaviors. These changes have led researchers to
focus on machine learning algorithms, which make good use of large training
sets to optimize a given objective function. Particularly, deep learning meth-
ods consistently show outstanding performance in numerous machine learning
applications [34, 111]. As a result, deep learning models are now widely used
in single-cell analysis and have greatly aided the development of immunology,
oncology, pharmacology, and many other disciplines [21,45,135].

The enormous potential of single-cell data comes with great complexity caused
by various underlying biological and technical factors. To address this issue, sev-
eral pre-processing steps are developed into the analysis pipeline. In the early
stages, quality control and normalization are carefully designed. After that, com-
plex machine learning tasks are introduced, e.g., batch effect correction, data
imputation, and dimension reduction. Special types of single-cell data may re-
quire further processing, such as multimodal data integration for multi-omics
and cell deconvolution for spatial transcriptomics. All these tasks can be fa-
cilitated by deep learning methods [6, 79, 114, 139]. Meanwhile, Deep learning
methods [26,32,36,42,81,99,128,131,132,148,151] consistently outperform other
classical machine learning techniques in downstream tasks, including clustering,
cell type annotation, disease prediction, gene network inference, and trajectory
analysis.

3 An Overview of DANCE

3.1 Environment Requirements and Setup

DANCE works on python≥ 3.8 and Pytorch≥ 1.11.0. All dependencies are listed
in Appendix A. After cloning this repository, run setup.py to install DANCE into
the local python environment or install it directly from pip install as below:

pip install pydance

3.2 The Architecture Design

Figure 1 provides an overall design of the architecture of the DANCE package.
The DANCE package consists of two key components: lower-level infrastructure
and upper-level task development.

Lower-level Infrastructure From the hardware perspective, CPU running is
supported for all methods developed in DANCE. In addition, for deep learning
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based methods, we also support GPU running to accelerate the training process,
especially for large-scale datasets. In the future, cluster running for deep learning
methods would be also developed to support model training across multiple
GPUs. The backbone framework in DANCE is Pytorch [105], which is used for
high-performance deep learning model development. To support various methods
for deep learning on graphs and other irregular structures, we take both Deep
Graph Library (DGL) [141] and PyTorch Geometric (PyG) [40] as graph engines
in DANCE. Various types of preprocessing functionalities are provided in the
Transforms folder to process data before model training. For methods based
on Graph Neural Networks (GNNs), we also support distinct ways of graph
construction to convert cell-gene data like RNA sequencing (RNA-seq) to cell-
cell, cell-gene and gene-gene graphs. What’s more, spatial coordinates and image
features of single cells can be also extracted to help construct graphs for spatial
transcriptomics. Those lower-level interfaces are helpful for developers to build
their models on downstream tasks without building “wheels” from scratch.

Upper-level Task Development Based on the infrastructure described above,
individual modules and tasks can be further defined and developed. Currently, we
support tasks under single modality profiling, multimodal profiling, and spatial
transcriptomics modules, which correspond to three stages of single-cell tech-
nology development. Under each module, classic tasks are covered, and repre-
sentative methods are implemented through the evaluation on several standard
benchmarks. Note that upper-level task development is highly flexible and ex-
tensible. This indicates that users can readily extend their new modules, tasks,
models, and datasets into the existing repository of DANCE.

3.3 A Pipeline of DANCE

Data Loading For each task, we have a generic interface to load datasets.
All datasets supported by DANCE are cached on the cloud. Users don’t have
to download their interested datasets manually. They just need to specify an
individual dataset when calling the data loader interface. For example, we can
run graph-sc model on 10X PBMC dataset for the clustering task using the
following command line:

python graphsc.py --dataset=’10 X_PBMC ’

Data Processing After data loading, a collection of data processing methods
is provided before model training. They are divided into two parts: preprocessing
and graph construction.

– Preprocessing: We provide rich preprocessing functions such as normal-
ization, dimension reduction, gene filtering and so on. Take graph-sc model
as an example, we filter out the rarely expressed genes and normalize the
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Fig. 1: The architecture of DANCE package.

remaining to obtain the same total count for each cell. Then only the highly
expressed genes (top 3000 by default) are kept for clustering [26].

– Graph Construction: This is required for GNNs based method. Before
model training, we have to convert data to graphs in preparation for graph
operations. DANCE provides a variety of ways of graph construction. In
graph-sc implementation, we construct a weighted heterogeneous cell-to-gene
graph, where the types of nodes can be cell and gene nodes. The weight
of each edge between each cell node and its corresponding gene node is
determined by gene counts, and there is no edge linked between any pairs of
cell or gene nodes.

Model Training and Evaluation All models in DANCE have generic
interfaces for model training and evaluation. The unified interface for model
training is model.fit() while that for model prediction is model.predict(),
which returns the predictions of test data. Furthermore, model.score() acts as
a generic interface to evaluate how well each model is. The metric of the score
function depends on each task. Take graph-sc for an example, after fitting the
model with chosen hyperparameters, we can access the performance of graph-sc
by calling the score function, which will return ARI and NMI scores to indicate
the quality of the clusters.
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4 DANCE Benchmark: Modules, Tasks, Models, and
Datasets

As shown in Figure 2, DANCE is capable of supporting modules of single modal-
ity, multimodality and spatial transcriptomics. Under each module, we bench-
mark several tasks with popular models across standard datasets. Here, we take
the task of Clustering in the module of single modality as an example. Vari-
ous types of methods are implemented including Graph Neural Networks based
methods including graph-sc [26], scTAG [151] and scDSC [42] and AutoEncoders
based methods including scDeepCluster [131] and scDCC [132]. To ensure a sys-
tematic evaluation and fair performance comparison of different models, sev-
eral standard benchmark datasets such as 10X PBMC 4K [156], Mouse Bladder
Cells [51], Worm Neuron Cells [17] and Mouse Embryonic Stem CellS [65] for
the task are collected for evaluation. Currently, there are 3 modules, 8 tasks, 32
models and 21 datasets supported by DANCE. Please refer to Appendix D and
Appendix C for more details about supported models and datasets, respectively.

Fig. 2: A summary of modules, tasks, models and datasets supported by the
DANCE package.

5 Benchmarking and Reproduction

One of the highlights of DANCE is the reproducibility and potential bench-
marking. It is always challenging but helpful to reproduce the performance
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of the published works in single-cell analysis since the implementations are
based on different programming languages and different backend frameworks.
To tackle this challenge, we implement all models based on Pytorch, PyG and
DGL, and put all baselines into the fit-predict-score structure. For every task,
we choose several benchmark datasets and tune all baselines on every dataset.
When implementing baselines, we refer to the implementation details in the
original GitHub repositories and the corresponding papers. For models with-
out suggested parameters, we perform grid search and random search to ob-
tain the best parameters. All the parameter settings can be found via https:

//github.com/OmicsML/dance/tree/main/examples, where we keep command
line information for reproduction at the end of every example file.

To illustrate reproducibility and benchmarking in DANCE, we delve deeper
into the cell type annotation task. Note that all reproductions are accessible
on GitHub: https://github.com/OmicsML/dance. Currently, DANCE supports
five models for this task. It includes scDeepsort [118] as a GNN-based method.
ACTINN [81] and singleCellNet [128] are representative deep learning methods.
We also cover support vector machine (SVM) and Celltypist [32] as traditional
machine learning baselines. We select datasets on which all five models have
reported results, i.e., MCA [52] for mouse and HCL [53] for human. As for the
evaluation purpose, we pull three tissues from the MCA and pick one dataset
from each tissue, i.e., Mouse Brain 2695, Mouse Spleen 1759 and Mouse Kidney
203.

Model Mouse Brain 2695 Mouse Spleen 1759 Mouse Kidney 203
(current / reported) (current / reported) (current / reported)

scDeepsort 0.363 / 0.363 0.965 / 0.965 0.901 / 0.911
Celltypist∗ 0.680 / 0.666 0.966 / 0.848 0.879 / 0.832

singleCellNet 0.693 / 0.803 0.975 / 0.975 0.795 / 0.842
ACTINN 0.860 / 0.778 0.516 / 0.236 0.829 / 0.798
SVM 0.683 / 0.683 0.056 / 0.049 0.704 / 0.695

Table 2: Reproduced and reported ACC for the cell type annotation task.

*To meet the format requirements, we renormalize datasets before running the
original implementation of Celltypist.

Table 2 demonstrates the reproduced and reported results of the cell-type
annotation task in terms of accuracy (ACC). For every table cell, on the left,
we have the reproduced annotation ACC based on DANCE, and on the right,
we show the reported ACC in the original works. As shown in Table 2, SVM
and scDeepsort [118] get similar results as reported. Impressively, Celltypist [32]
and ACTINN [81] bring out advancement under the DANCE implementation
with an average absolute increase of 7% and 44% over three datasets, respec-
tively. Note that only singleCellNet [128] produces lower ACC compared to the
reported results. Among all supported tasks, DANCE achieves uniform bench-
marking grounded in Pytorch, which requires less configuration and allows users
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to conduct analysis solely using Python. The structure of some models may be
modified in the process of transformation from R or TensorFlow to Pytorch,
which in consequence affects the reproduced results (e.g., singleCellNet).

6 Open-Source Contribution

DANCE is an open-source package, and everyone can contribute to this platform
with extra tasks, models, and standard benchmark datasets by following the
instructions below:

– Codebase Structure Guidance: Before contributing to DANCE, you need
to understand the codebase structure in DANCE and make sure you are going
to modify the correct files or put new files into the correct place. dance is the
root of the package. datasets is the dataloader module, which contains task spe-
cific data loaders. modules is the model module, which covers all implemented
algorithms. Each model is created as an individual file under the corresponding
task folder. transforms is the data processing module, which deals with data
preprocessing in preprocess and graph construction in graph construct. You
are flexible to pick up any existing functionalities in those two files for your
model development and welcome to contribute new ones if your desired ones
are not provided. examples is the example reference module, which presents
one example for one model.

– Code Style Guidance: The contributed codes are required to follow the
standard python coding style. For more details, please refer to Style Guide for
Python Code.

– Testing: To ensure that your contributed code does not impact the normal
operation of the existing codebase, you need to ensure that all tests pass before
submitting. Please refer to the Run Test section in DANCE for how to run
tests.

– Reproducibility: This is only required for contributed new models. An ex-
ample file is necessary to present how to run your model on existing standard
benchmarks. Furthermore, you need to place command lines at the end of the
example file to obtain the best performance for reproducibility purposes. One
command line corresponds to one standard benchmark dataset running of your
contributed model.

– Documentation: Submitted code should be documented or commented on
for easy readability purposes by users. Please refer to Numpy Style Docstring
Guide for more details.

7 Impacts and Future Directions

In face of reproducibility issues of computational models in the field of single-cell
analysis, we believe the DANCE platform will bring meaningful contributions to
the whole single-cell community. To be specific, end users don’t have to spend
a lot of effort in implementing and tuning models. Instead, they only need to

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://github.com/OmicsML/dance/tree/main/dance
https://github.com/OmicsML/dance/tree/main/dance/datasets
https://github.com/OmicsML/dance/tree/main/dance/modules
https://github.com/OmicsML/dance/tree/main/dance/transforms
https://github.com/OmicsML/dance/blob/main/dance/transforms/preprocess.py
https://github.com/OmicsML/dance/blob/main/dance/transforms/graph_construct.py
https://github.com/OmicsML/dance/tree/main/examples
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/format.html
https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


DANCE: A Deep Learning Library and Benchmark for Single-Cell Analysis 13

run the command line we provide to easily reproduce results from the original
paper. In addition, with our implementation, the performance of some models
is even better than that reported in the original paper; we also provide GPUs
support for the accelerated training purpose for deep learning based models in
our implementation. It is worth noting that our DANCE package is an open-
source package where every developer can contribute to advancing this field.

Since the functionalities of preprocessing and graph construction in current
DANCE are not consolidated. It would be enhanced in the future. DANCE would
be released as a SaaS service, which means that users are not limited to their
local computation and storage resources. The interactive interface will be also
provided for end users to use. In such case, after users upload their datasets to
the platform, they only need to click on some buttons to select the preprocess-
ing functions and the interested tasks and models for running without coding
skills requirement. The results would be visualized on the website instantly. The
leaderboard can be further developed to evaluate the efficacy and generalizability
of state-of-the-art computational methods. From the data perspective, the col-
lected datasets enable us to integrate them into atlas reference database via the
exploration of integrating different modalities or even tissues. Later on, this atlas
would be released for public access to further research in the whole single-cell
community. Last but not least, AutoML and model explainability will be sup-
ported which can further minimize the efforts and ML background requirements
for DANCE users.
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Brucker, S.Y., Schenke-Layland, K., Weiss, M.: Targeted protein profiling of in
vivo nipp-treated tissues using digiwest technology. Applied Sciences 11(23),
11238 (2021)

118. Shao, X., Yang, H., Zhuang, X., Liao, J., Yang, P., Cheng, J., Lu, X., Chen,
H., Fan, X.: scdeepsort: a pre-trained cell-type annotation method for single-
cell transcriptomics using deep learning with a weighted graph neural network.
Nucleic acids research 49(21), e122–e122 (2021)

119. Shi, Y., Paige, B., Torr, P., et al.: Variational mixture-of-experts autoencoders for
multi-modal deep generative models. Advances in Neural Information Processing
Systems 32 (2019)

120. Song, Q., Su, J.: Dstg: deconvoluting spatial transcriptomics data through graph-
based artificial intelligence. Briefings in Bioinformatics 22(3), 1–13 (2021)

121. Song, Q., Su, J., Zhang, W.: scgcn is a graph convolutional networks algorithm
for knowledge transfer in single cell omics. Nature Communications 12(1), 1–11
(2021)

122. Stanley III, J.S., Gigante, S., Wolf, G., Krishnaswamy, S.: Harmonic alignment.
In: Proceedings of the 2020 SIAM International Conference on Data Mining. pp.
316–324. SIAM (2020)

123. Stickels, R.R., Murray, Evan Kumar, P., Li, J., Marshall, J.L., Di Bella, D.J.,
Arlotta, P., Macosko, E.Z., Chen, F.: Highly sensitive spatial transcriptomics
at near-cellular resolution with slide-seqv2. Nature Biotechnology (03 2021).
https://doi.org/10.1038/s41587-020-0739-1

124. Stoeckius, M., Hafemeister, C., Stephenson, W., Houck-Loomis, B., Chattopad-
hyay, P.K., Swerdlow, H., Satija, R., Smibert, P.: Simultaneous epitope and tran-
scriptome measurement in single cells. Nature methods 14(9), 865–868 (2017)

125. Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck III,
W.M., Hao, Y., Stoeckius, M., Smibert, P., Satija, R.: Comprehensive integration
of single-cell data. Cell 177(7), 1888–1902 (2019)

126. St̊ahl, P.L., Salmén, F., Vickovic, S., Lundmark, A., Navarro, J.F., Magnusson,
J., Giacomello, S., Asp, M., Westholm, J.O., Huss, M., Mollbrink, A., Linnars-
son, S., Codeluppi, S., Åke Borg, Pontén, F., Costea, P.I., Sahlén, P., Mulder,
J., Bergmann, O., Lundeberg, J., Frisén, J.: Visualization and analysis of gene
expression in tissue sections by spatial transcriptomics. Science 353(6294), 78–82
(2016). https://doi.org/10.1126/science.aaf2403

127. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette,
M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al.: Gene set
enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences 102(43),
15545–15550 (2005)

128. Tan, Y., Cahan, P.: Singlecellnet: a computational tool to classify single cell rna-
seq data across platforms and across species. Cell systems 9(2), 207–213 (2019)

129. Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X.,
Bodeau, J., Tuch, B.B., Siddiqui, A., et al.: mrna-seq whole-transcriptome analysis
of a single cell. Nature methods 6(5), 377–382 (2009)

130. Teves, J.M., Won, K.J.: Mapping cellular coordinates through advances in spatial
transcriptomics technology. Molecules and Cells 43(7), 591 (2020)

131. Tian, T., Wan, J., Song, Q., Wei, Z.: Clustering single-cell rna-seq data with a
model-based deep learning approach. Nature Machine Intelligence 1(4), 191–198
(2019)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1038/s41587-020-0739-1
https://doi.org/10.1126/science.aaf2403
https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


DANCE: A Deep Learning Library and Benchmark for Single-Cell Analysis 25

132. Tian, T., Zhang, J., Lin, X., Wei, Z., Hakonarson, H.: Model-based deep em-
bedding for constrained clustering analysis of single cell rna-seq data. Nature
communications 12(1), 1–12 (2021)

133. Trapnell, C.: Defining cell types and states with single-cell genomics. Genome
Research 25(10), 1491–1498 (Oct 2015). https://doi.org/10.1101/gr.190595.115,
https://doi.org/10.1101/gr.190595.115

134. Travaglini, K.J., Nabhan, A.N., Penland, L., Sinha, R., Gillich, A., Sit, R.V.,
Chang, S., Conley, S.D., Mori, Y., Seita, J., Berry, G.J., Shrager, J.B., Met-
zger, R.J., Kuo, C.S., Neff, N., Weissman, I.L., Quake, S.R., Krasnow, M.A.:
A molecular cell atlas of the human lung from single-cell RNA sequencing. Na-
ture 587(7835), 619–625 (Nov 2020). https://doi.org/10.1038/s41586-020-2922-4,
https://doi.org/10.1038/s41586-020-2922-4

135. Valdes-Mora, F., Handler, K., Law, A.M., Salomon, R., Oakes, S.R., Ormandy,
C.J., Gallego-Ortega, D.: Single-cell transcriptomics in cancer immunobiology:
the future of precision oncology. Frontiers in Immunology 9, 2582 (2018)

136. Van Valen, D.A., Kudo, T., Lane, K.M., Macklin, D.N., Quach, N.T., DeFelice,
M.M., Maayan, I., Tanouchi, Y., Ashley, E.A., Covert, M.W.: Deep learning auto-
mates the quantitative analysis of individual cells in live-cell imaging experiments.
PLoS computational biology 12(11), e1005177 (2016)

137. Villani, A.C., Satija, R., Reynolds, G., Sarkizova, S., Shekhar, K., Fletcher, J.,
Griesbeck, M., Butler, A., Zheng, S., Lazo, S., Jardine, L., Dixon, D., Stephenson,
E., Nilsson, E., Grundberg, I., McDonald, D., Filby, A., Li, W., Jager, P.L.D.,
Rozenblatt-Rosen, O., Lane, A.A., Haniffa, M., Regev, A., Hacohen, N.: Single-cell
RNA-seq reveals new types of human blood dendritic cells, monocytes, and pro-
genitors. Science 356(6335) (Apr 2017). https://doi.org/10.1126/science.aah4573,
https://doi.org/10.1126/science.aah4573

138. Wang, G., Moffitt, J.R., Zhuang, X.: Multiplexed imaging of high-density libraries
of rnas with merfish and expansion microscopy. Scientific reports 8(1), 1–13 (2018)

139. Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H.,
Ma, Q., Xu, D.: scGNN is a novel graph neural network framework for single-cell
RNA-Seq analyses 12(1), 1882

140. Wang, J., Ma, A., Chang, Y., Gong, J., Jiang, Y., Qi, R., Wang, C., Fu, H., Ma,
Q., Xu, D.: scgnn is a novel graph neural network framework for single-cell rna-seq
analyses. Nature communications 12(1), 1–11 (2021)

141. Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L.,
Gai, Y., et al.: Deep graph library: A graph-centric, highly-performant package
for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

142. Waylen, L.N., Nim, H.T., Martelotto, L.G., Ramialison, M.: From whole-mount
to single-cell spatial assessment of gene expression in 3d. Communications biology
3(1), 1–11 (2020)

143. Wen, H., Ding, J., Jin, W., Wang, Y., Xie, Y., Tang, J.: Graph neural networks
for multimodal single-cell data integration. In: Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. pp. 4153–4163
(2022)

144. Wolf, F.A., Angerer, P., Theis, F.J.: Scanpy: large-scale single-cell gene expression
data analysis. Genome biology 19(1), 1–5 (2018)

145. Wu, J., Xiao, Y., Sun, J., Sun, H., Chen, H., Zhu, Y., Fu, H., Yu, C., E., W., Lai,
S., Ma, L., Li, J., Fei, L., Jiang, M., Wang, J., Ye, F., Wang, R., Zhou, Z., Zhang,
G., Zhang, T., Ding, Q., Wang, Z., Hao, S., Liu, L., Zheng, W., He, J., Huang,
W., Wang, Y., Xie, J., Li, T., Cheng, T., Han, X., Huang, H., Guo, G.: A single-
cell survey of cellular hierarchy in acute myeloid leukemia. Journal of Hematology

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1101/gr.190595.115
https://doi.org/10.1038/s41586-020-2922-4
https://doi.org/10.1038/s41586-020-2922-4
https://doi.org/10.1126/science.aah4573
https://doi.org/10.1126/science.aah4573
https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


26 J. Ding et al.

&amp Oncology 13(1) (Sep 2020). https://doi.org/10.1186/s13045-020-00941-y,
https://doi.org/10.1186/s13045-020-00941-y

146. Wu, K.E., Yost, K.E., Chang, H.Y., Zou, J.: Babel enables cross-modality trans-
lation between multiomic profiles at single-cell resolution. Proceedings of the Na-
tional Academy of Sciences 118(15), e2023070118 (2021)

147. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive sur-
vey on graph neural networks. IEEE transactions on neural networks and learning
systems 32(1), 4–24 (2020)

148. Xie, S., Yu, Z., Lv, Z.: Multi-disease prediction based on deep learning: a survey.
CMES-computer Modeling in Engineering and Sciences (2021)

149. Yang, K.D., Belyaeva, A., Venkatachalapathy, S., Damodaran, K., Katcoff, A.,
Radhakrishnan, A., Shivashankar, G., Uhler, C.: Multi-domain translation be-
tween single-cell imaging and sequencing data using autoencoders. Nature com-
munications 12(1), 1–10 (2021)

150. Yeung, K.Y., Ruzzo, W.L.: Details of the adjusted rand index and clustering
algorithms, supplement to the paper an empirical study on principal component
analysis for clustering gene expression data. Bioinformatics 17(9), 763–774 (2001)

151. Yu, Z., Lu, Y., Wang, Y., Tang, F., Wong, K.C., Li, X.: Zinb-based graph embed-
ding autoencoder for single-cell rna-seq interpretations. Proceedings of the AAAI
Conference on Artificial Intelligence 36(4), 4671–4679 (2022)

152. Zeng, P., Lin, Z.: Couple coc+: an information-theoretic co-clustering-based trans-
fer learning framework for the integrative analysis of single-cell genomic data.
PLoS Computational Biology 17(6), e1009064 (2021)

153. Zeng, W., Chen, X., Duren, Z., Wang, Y., Jiang, R., Wong, W.H.: Dc3 is a method
for deconvolution and coupled clustering from bulk and single-cell genomics data.
Nature communications 10(1), 1–11 (2019)

154. Zhang, J.Y., Wang, X.M., Xing, X., Xu, Z., Zhang, C., Song, J.W., Fan, X.,
Xia, P., Fu, J.L., Wang, S.Y., Xu, R.N., Dai, X.P., Shi, L., Huang, L., Jiang,
T.J., Shi, M., Zhang, Y., Zumla, A., Maeurer, M., Bai, F., Wang, F.S.: Single-
cell landscape of immunological responses in patients with COVID-19. Nature
Immunology 21(9), 1107–1118 (Aug 2020). https://doi.org/10.1038/s41590-020-
0762-x, https://doi.org/10.1038/s41590-020-0762-x

155. Zheng, G.X.Y., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson,
R., Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., Gregory, M.T.,
Shuga, J., Montesclaros, L., Underwood, J.G., Masquelier, D.A., Nishimura,
S.Y., Schnall-Levin, M., Wyatt, P.W., Hindson, C.M., Bharadwaj, R., Wong,
A., Ness, K.D., Beppu, L.W., Deeg, H.J., McFarland, C., Loeb, K.R., Valente,
W.J., Ericson, N.G., Stevens, E.A., Radich, J.P., Mikkelsen, T.S., Hindson, B.J.,
Bielas, J.H.: Massively parallel digital transcriptional profiling of single cells
8(1), 14049. https://doi.org/10.1038/ncomms14049, http://www.nature.com/

articles/ncomms14049, Dataset Link: https://support.10xgenomics.com/single-
cell-gene-expression/datasets/3.1.0/5kpbmcproteinv3

156. Zheng, G.X., Terry, J.M., Belgrader, P., Ryvkin, P., Bent, Z.W., Wilson, R.,
Ziraldo, S.B., Wheeler, T.D., McDermott, G.P., Zhu, J., et al.: Massively paral-
lel digital transcriptional profiling of single cells. Nature communications 8(1),
1–12 (2017), Dataset Link: https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k

157. Zuo, C., Chen, L.: Deep-joint-learning analysis model of single cell transcriptome
and open chromatin accessibility data. Briefings in Bioinformatics 22(4), bbaa287
(2021)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1186/s13045-020-00941-y
https://doi.org/10.1186/s13045-020-00941-y
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1038/s41590-020-0762-x
https://doi.org/10.1038/ncomms14049
http://www.nature.com/articles/ncomms14049
http://www.nature.com/articles/ncomms14049
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k pbmc protein v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k pbmc protein v3?
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k
https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


DANCE: A Deep Learning Library and Benchmark for Single-Cell Analysis 27

158. Zuo, C., Dai, H., Chen, L.: Deep cross-omics cycle attention model for joint anal-
ysis of single-cell multi-omics data. Bioinformatics 37(22), 4091–4099 (2021)

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


28 J. Ding et al.

A Environment Dependencies

For the dependencies of our first version of the DANCE package, please refer to
Table 3 for more details.

Dependency Version

h5py ≥3.7.0
leidenalg ≥0.8.10
networkx ≥2.8.5
numba ≥0.56.0
opencv-python ≥4.6.0.66
openpyxl ≥3.0.10
psutil ≥5.9.1
pyro-ppl ≥1.8.1
python-igraph ≥0.9.11
rdata ≥0.8
scanpy ≥1.9.1
scikit-learn ≥1.1.2
scikit-misc ≥0.1.4
scipy ≥1.9.0
seaborn ≥0.11.2
skorch ≥0.11.0
statsmodels ≥0.13.2
torch ≥1.11.0
torchnmf ≥0.3.4
torchvision ≥0.12.0
tqdm ≥4.64.0

Table 3: Dependencies of DANCE Package
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B Performance Display

In this section, we show the performance comparison between our implementa-
tion and the original implementation for tasks as below:

– Single Modality Module: Imputation, Cell Type Annotation and Cluster-
ing.

– Multi-modality Module: Modality Prediction, Modality Matching and
Joint Embedding

– Spatial Module: Spatial Domain and Cell Type Deconvolution.

If the original implementation is unavailable to the public or is based on non-
python language, we re-implement them with generic python language in our
DANCE package. If the original implementation exists, we transform them into
the generic fit-predict-score structure. Note that not all methods are tested on
all standard benchmark datasets. To bridge this gap, we test them on each stan-
dard benchmark dataset for system evaluation and fair comparison. In all per-
formance comparison tables, we compare the performance of our re-implemented
algorithms denoted as “current” with that of original ones denoted as “reported”.
Note that N/A means that the performance is not available on this dataset.

Table 4: Imputation Task: performance comparison between our and original
implementations in DANCE.

Model Evaluation Metric
Mouse Brain

(current/reported)
Mouse Embryo

(current/reported)

DeepImpute MSE 0.12 / N/A 0.12 / N/A

ScGNN MSE 0.47 / N/A 1.10 / N/A

GraphSCI MSE 0.42 / N/A 0.87 / N/A

Louvain ARI 0.31 / 0.33 0.2528 / N/A
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Table 5: Cell Type Annotation: performance comparison between our and origi-
nal implementations in DANCE. (Note: * Benchmark datasets have been renor-
malized when running the original implementation of Celltypist to meet its for-
mat requirements.)

Model
Evaluation

Metric
Mouse Brain 2695
(current/reported)

Mouse Spleen 1759
(current/reported)

Mouse Kidney 203
(current/reported)

scDeepsort ACC 0.363/0.363 0.965 /0.965 0.901/0.911

Celltypist* ACC 0.680/0.666 0.966/0.848 0.879/0.832

singleCellNet ACC 0.693/0.803 0.975/0.975 0.795/0.842

ACTINN ACC 0.860/0.778 0.516/0.236 0.829/0.798

SVM ACC 0.683/0.683 0.056/0.049 0.704/0.695

Table 6: Clustering Task: performance comparison between our and original
implementations in DANCE.

Model
Evaluation

Metric
10x PBMC

(current/reported)
Mouse ES

(current/reported)
Worm Neuron

(current/reported)
Mouse Bladder

(current/reported)

graph-sc ARI 0.72 / 0.70 0.82 / 0.78 0.57 / 0.46 0.68 / 0.63

scDCC ARI 0.82 / 0.81 0.98 / N/A 0.51 / 0.58 0.60 / 0.66

scDeepCluster ARI 0.81 / 0.78 0.98 / 0.97 0.51 / 0.52 0.56 / 0.58

scDSC ARI 0.72 / 0.78 0.84 / N/A 0.46 / 0.65 0.65 / 0.72

scTAG ARI 0.75 / N/A 0.96 / N/A 0.53 / N/A 0.60 / N/A

Table 7: Modality Prediction Task: performance comparison between our and
original implementations in DANCE.

Model
Evaluation

Metric
GEX2ADT

(current/reported)
ADT2GEX

(current/reported)
GEX2ATAC

(current/reported)
ATAC2GEX

(current/reported)

ScMoGCN RMSE 0.3885 / 0.3885 0.3242 / 0.3242 0.1778 / 0.1778 0.2315 / 0.2315

SCMM RMSE 0.6264 / N/A 0.4458 / N/A 0.2163 / N/A 0.3730 / N/A

Cross-modal
autoencoders

RMSE 0.5725 / N/A 0.3585 / N/A 0.1917 / N/A 0.2551 / N/A

BABEL RMSE 0.4335 / N/A 0.3673 / N/A 0.1816 / N/A 0.2394 / N/A

scTAG ARI 0.75 / N/A 0.96 / N/A 0.53 / N/A 0.60 / N/A

Table 8: Modality Matching Task: performance comparison between our and
original implementations in DANCE.

Model
Evaluation

Metric
GEX2ADT

(current/reported)
GEX2ATAC

(current/reported)

ScMoGCN ACC 0.0827 / 0.0810 0.0600 / 0.0630

SCMM ACC 0.005 / N/A 5e-5 / N/A

Cross-modal
autoencoders

ACC 0.0002 / N/A 0.0002 / N/A
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Table 9: Joint Embedding Task: performance comparison between our and orig-
inal implementations in DANCE.

Model
Evaluation

Metric
GEX2ADT

(current/reported)
GEX2ATAC

(current/reported)

ScMoGCN ARI 0.706 / N/A 0.702 / N/A

ScMoGCNv2 ARI 0.734 / N/A N/A / N/A

scMVAE ARI 0.499 / N/A 0.577 / N/A

scDEC(JAE) ARI 0.705 / N/A 0.735 / N/A

DCCA ARI 0.35 / N/A 0.381 / N/A

Table 10: Spatial Domain Task: performance comparison between our and orig-
inal implementations in DANCE.

Model
Evaluation

Metric
Slice 151673

(current/reported)
Slice 151676

(current/reported)
Slice 151507

(current/reported)

SpaGCN ARI 0.51 / 0.522 0.41 / N/A 0.45 / N/A

STAGATE ARI 0.59 / N/A 0.60 / 0.60 0.608 / N/A

stLearn ARI 0.30 / 0.36 0.29 / N/A 0.31 / N/A

Louvain ARI 0.31 / 0.33 0.2528 / N/A 0.28 / N/A

Table 11: Cell Type Deconvolution: performance comparison between our and
original implementations in DANCE.

Model
Evaluation

Metric
GSE174746

(current/reported)
CARD Synthetic
(current/reported)

SPOTlight Synthetic
(current/reported)

DSTG MSE 0.172 / N/A 0.0247 / N/A 0.042 / N/A

SpatialDecon MSE 0.0014 / 0.009 0.0077 / N/A 0.0055 / N/A

SPOTlight MSE 0.0098 / N/A 0.0246 / 0.118 0.0109 / 0.16

CARD MSE 0.0012 / N/A 0.0078 / 0.0062 0.0076 / N/A
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C Details of Supported Datasets

All supported datasets across 8 tasks in DANCE are summarized in Table 12.
For each supported dataset, we list what type of species and tissue it is about,
dataset dimensions including the number of cells and genes, and also the protocol
about how to generate the dataset for reference. In the column of “Availability”,
the dataset link is provided once you click the reference.

Table 12: A summary of all supported datasets in DANCE.

Module Task Dataset Species&Tissue
Dataset
Dimensions

Protocol Availability

Single Modality

Imputation

10X PBMC 5K Human, PBMC
5,247 cells
33,570 genes

10x Genomics [155]

Human Embryonic
stem cells (ESC)

Human, ESC
758 cells
17,826 genes

Illumina HiSeq 2500 [25]

Mouse Neuron
Cells 10k

Mouse, Neuron
11,843 cells
31,053 genes

10x Genomics [155]

Mouse ESC Mouse, Neuron
2,717 cells
24,175 genes

Droplet Barcoding [65]

Cell Type
Annotation

HCL Human
562,977 cells
56 tissues

Smart-seq2 [53]

MCA Mouse
201,764 cells
32 tissues

Smart-seq2 [52]

Clustering

10X PBMC 4K Human, PBMC
4,271 cells
16,653 genes

10x Genomics [156]

Mouse Bladder Cells Mouse, Bladder
2,746 cells
20,670 genes

Microwell-seq [51]

Worm Neuron Cells Worm, Nerve
4,186 cells
13,488 genes

sci-RNA-seq [17]

Mouse Embryonic
Stem Cells

Mouse, Embryo
2,717 cells
24,175 genes

Droplet Barcoding [65]

Multimodality

Modality
Prediction

Openproblems
Neurips2021 CITE

Human, BMMC
81,241 cells
13,953 genes
134 surface proteins

10X TotalSeq B [5]

Openproblems
Neurips2021 Multiome

Human, BMMC
62,501 cells
13,431 genes
116,490 peaks

10X Multiome [5]

Modality
Matching

Openproblems
Neurips2021 CITE

Human, BMMC
81,241 cells
13,953 genes
134 surface proteins

10X TotalSeq B [5]

Openproblems
Neurips2021 Multiome

Human, BMMC
62,501 cells
13,431 genes
116,490 peaks

10X Multiome [5]

Joint
Embedding

Openproblems
Neurips2021 CITE

Human, BMMC
81,241 cells
13,953 genes
134 surface proteins

10X TotalSeq B [5]

Openproblems
Neurips2021 Multiome

Human, BMMC
62,501 cells
13,431 genes
116,490 peaks

10X Multiome [5]

Spatial

Spatial
Domain

LIBD Human Dorsolateral
Prefrontal Cortex

Human, Dorsolateral
prefrontal cortex

12 slices
Slice 151673:
3,639 spots
33,538 genes

10X Visium [104]

Cell Type
Deconvolution

Mouse Posterior Brain Mouse, Posterior brain
3,353 spots
31,053 genes

10X Visium [2]

Mouse Olfactory Bulb Mouse, Olfactory bulb
1,185 spots
11,176 genes

10X Visium [1]

HEK293T and
CCRF-CEM

Human
56 mixtures
1,414 genes

NanoString GeoMx [29]

Human PDAC Human, Pancreas
3,353 spots
31,053 genes

Spatial Transcriptomics [94]
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D Details of Supported Tasks and Models

D.1 Single Modality Module

Imputation The goal of imputation for scRNA-seq data is to address artificial
zeros in scRNA-seq data generated during the sequencing process systematically
or by chance due to technological limitations. Imputation aims at correcting
these artificial zeros by filling in realistic values that reflect true biological gene
expressions [71]. Thus, a good imputation method should be able to distinguish
artificial zeros from biologically true zeros and recover true expressions for arti-
ficial zeros. As the corresponding biologically true expression values are unavail-
able for entries of artificial zeros in the gene-cell matrix, dropouts are simulated
for benchmarking such that metrics such as cosine similarity, correlations, or
MSE-related metrics can then be used to evaluate imputation algorithms; al-
ternatively, prior cell information, such as cell types, can be used to evaluate
whether an imputation method could recover biological signals by comparing
clustering patterns using original and imputed expressions [6,31,56,75,114,139].

dance.modules.single modality.imputation.deepimpute DeepImpute [6]
builds multiple neural networks in parallel to impute target genes using a set
of input genes. Given a scRNA-seq matrix X, target genes, i.e, genes to be
imputed, are selected based on the variance over mean ratio, which are split into
N random subsets. Each subset corresponds to a neural network consisting of two
layers: a dense layer and a dropout layer with ReLu and softplus as activations,
respectively. The inputs to each neural network are genes highly correlated with
corresponding target genes based on Pearson’s correlation coefficient. The loss
function is the Weighted mean squared error (MSE).

dance.modules.single modality.imputation.scgnn scGNN [139] uses an
integrative autoencoder framework for scRNA-seq gene expression imputation
that incorporates gene regulatory signals (TRS). It includes a feature autoen-
coder, a graph autoencoder, and a cluster autoencoder that are trained itera-
tively, whose outputs are used in the final imputation autoencoder to recover
gene expressions.

scgnn uses left-truncated mixed Gaussian (LTMG) to account for regulatory
signals. The normalized expression for a gene is modeled by a mixture of k Gaus-
sian distributions representing k TRSs, and left truncation is used to account
for dropouts and lowly expressed values. The expression of gene i in cell j can
then be assigned to the TRS under whose Gaussian distribution the observed
value is most likely to occur. All parameters in this step are estimated by MLE.

Given an input scRNA-seq expression matrix X, the feature autoencoder
extracts a lower-dimensional embedding X ′ and reconstructs the expression X̂,
which is composed of two dense layers in both the encoder and the decoder. The
loss function is MSE integrated with gene regulation information

L = (1− α)
∑

(X − X̂)2 + α
∑(

(X − X̂)2 ⊙ TRS
)

(1)
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where α ∈ [0, 1] and ⊙ denotes element-wise product.
A KNN cell graph is constructed from the learned embeddings in the feature

autoencoder, which is pruned by the Isolation Forest. With node feature matrix
X ′, the two-layer GCN encoder is constructed as

Z = ReLU(ÃReLU(ÃX ′W1)W2). (2)

where Ã is the symmetrically normalized adjacency matrix of the cell graph and
W1,W2 are learnable parameters.

The associated decoder is:

Â = sigmoid(ZZ⊤) (3)

The parameters are learned through the cross-entropy loss

L(A, Â) = − 1

N2

N∑
i=1

N∑
j=1

(aij ∗ log(âij) + (1− aij) ∗ log(1− âij)) (4)

where aij and âij are elements in A and Â.
The k-means clustering is then applied to the learned embedding in the

graph autoencoder. The number of clusters is determined by the Louvain al-
gorithm. Each cell cluster has an autoencoder to regenerate gene expressions
within a cluster, whose structure is the same as the feature autoencoder with-
out being regularized by TRS. The reconstructed gene expression is fed back
into the feature encoder iteratively until the convergence of adjacency matrix
(Ãt − Ãt−1 < γ1)and cell clusters converge (ARI> γ2).

After convergence, a final imputation autoencoder is trained, which has a
similar structure and loss to the feature autoencoder but with three additional
regularizations:

L = (1− α)
∑

(X − X̂)2 + α
∑(

(X − X̂)2 ◦ TRS
)

+ β
∑

|w|+ γ1
∑(

A · (X − X̂)2
)
+ γ2

∑(
B · (X − X̂)2

) (5)

where β ∈ [0, 1] controls the intensity of the L1 penalization and B is a matrix
indicating whether two cells belong to the same cluster.

dance.modules.single modality.imputation.graphsci GraphSCI [114] is a
GNN-based method to impute scRNA-seq data expressions. Given a gene ex-
pression matrix X with N genes and M cells, a gene graph associated with an
N × N adjacency matrix A is derived based on gene-wise Pearson correlation
coefficients. The gene expression matrix and the constructed gene graph are
the input to 1) a two-layer GCN whose lower-dimensional embedding gives the
Gaussian distribution representing gene relationships and 2) a two-layer fully
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connected neural network (NN) from which a ZINB distribution for scRNA-seq
data expressions can be inferred. In particular, the GCN is formulated as

H
(1)
N = ReLU(ÃXW

(0)
N ) (6)

[µN , σ2
N ] = ÃH

(1)
N W

(1)
N (7)

where W
(0)
N , W

(1)
N are the trainable parameters.

The fully-connected neural network is defined as

H
(1)
M = tanh(X⊤(W

(0)
M ⊙A) + b(0)) (8)

[µM, θM, πM] = σ(H
(1)
M W

(1)
M + b(1)) (9)

where µM, θM, πM are the mean, dispersion, and dropout probability for the

ZINB distribution, and W
(0)
M , W

(1)
M , b(0), b(1) are trainable parameters.

The learned latent variables ([µN , σ2
N ], [µM, θM, πM] are re-parameterized

as ZN and ZM, i.e, the latent space representation of the GCN and NN, to be
used by the decoder to construct the imputed gene expression X̂. Specifically,
the imputed gene expression for gene i in cell j is

X̂ij = gφ1(Z
cMj ) = diag(s⃗j)× ZM

j (10)

where s⃗j is the size factor of cell j.
Meanwhile, the reconstructed edge weight between gene i and gene j is

Âij = gφ2
(ZN

i , ZN
j ) = sigmoid((ZN

i )⊤ZN
j ) (11)

ZN and ZM are optimized by variational lower bound

L(ϕ, φ) = Eqϕ

 ∑
i∈N ,j∈M

log pφ1(X̂ij |ZN
i , ZM

j )

+ Eqϕ

 ∑
i,j∈N

log pφ2(Âij |ZN
i , ZN

j )


−DKL(qϕ(Z

M|A,X⊤)||p(ZM))−DKL(qϕ(Z
N |A,X⊤)||p(ZN ))

(12)

where Eqϕ is the cross-entropy function and and DKL(q||p) is the Kullback-
Leibler divergence between distributions q and p.

Cell Type Annotation Cell type annotation targets applying statistics of cel-
lular properties to infer cell types. Given the gene expression of several cell types,
for each cell with a certain single-cell expression matrix, the degree of similarity
can be calculated. Based on the optimal similarity result, the cell type can then
be inferred. In DANCE, we support 5 models that establish measurements of
evaluating the similarity of gene expression profiles of unknown cells to gene
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expression matrices of known cell types. The model performance is evaluated by
prediction accuracy.

dance.modules.single modality.cell type annotation.scdeepsort Scdeep-
sort [118] includes three modules: an embedding layer, a weighted graph aggre-
gator, and linear classification towers. Given m genes and n cells, we have the
input single-cell data matrix D ∈ Rm×n. To generate the weighted cell-gene
graph, we first apply PCA to extract d dimensional representations of initial
representations. A weighted adjacency matrix A ∈ R(m+n)2 and a node embed-
ding X ∈ R(m+n)×d are generated from D. For a gene node j, the shareable
parameter βj denotes the confidence value for the edges interacting with node
j. For the self-loop edge for each cell, we use α to denote its confidence value.
Let hk

i be the node i’s embedding vector in the kth layer, the aggregator layer is

hk
i = σ(W k−1

αhk−1
i +

∑
j∈N(i) βjaijh

k−1
j

1 + |N(i)|
+ bk−1), (13)

where aij is the normalized weight of an edge from nodes i to j. Then cell node
representations are fed into linear classifier layers

ŷi = softmax(Whk
i + b) (14)

Cross entropy loss is applied in the objective function:

θ̂ = argminθ

C∑
c=1

yclogŷc, (15)

where θ represents all trainable parameters.
dance.modules.single modality.cell type annotation.celltypist Celltypist
[32] uses a multinomial logistic regression classifier defined as:

l(x) =
1

1 + e−wtx
, (16)

where l(x) is the decision score with x as the input vector. Then the decision
score for each cell is defined as the linear combination of the scaled gene ex-
pression and the model coefficients associated with the given gene type, and the
possibility is calculated by transforming the decision score by a sigmoid function.
dance.modules.single modality.cell type annotation.singlecellnet Single-
Cellnet [128] revamped the random forest classifier method to enable classifica-
tion of scRNA-seq data cross platforms and cross-species. It sends the input
features into a number of decision tree classifiers and uses majority voting to
make predictions.
dance.modules.single modality.cell type annotation.actinnACTINN [81]
proposes a neural network based model for cell type annotation. It applies mul-
tilayer perceptron for the identification of cell types that can be implemented
as:

xi = g(Wixi−1 + bi−1), (17)
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where xi is the output from the ith layer, Wi and bi represent the weight matrix
and the bias in the ith layer and g represents the activation function used in the
neural network. In the input layers and hidden layers, the activation function is
ReLU as:

ReLU(x) = max(0, x). (18)

It utilizes the softmax function as the activation function g for the output layer,
which is defined as:

softmax(xj) =
exp(xj)∑k
i=1 exp(xi)

(19)

where xj represents the jth element of the input vector for the output layer and
k is the length of the vector x.
dance.modules.single modality.cell type annotation.svm Support vector
machine(SVM) is widely adopted as a benchmark in many studies [3,118]. Given
the input x and label y, the prediction function is

ŷ = wx+ b, (20)

where w represents the weights and b is the interception in the SVM. Based on
Eq 20, SVM optimizes the following problem:

min
w,b

1

2
||w||2,

subject to y(wx+ b)− 1 ≥ 0.

Clustering Clustering is a crucial part of single-cell analysis. With clustering,
researchers can identify cell types or cell-type subgroups within the gene expres-
sion data. In the clustering task, we now support 5 models. The first 3 models
are GNN based, and the later 2 models are non-GNN based with autoencoder as
the backbone. The clustering performance is evaluated by Adjusted Rand index
(ARI).

dance.modules.single modality.clustering.scdeepcluster scDeepCluster [131]
introduces a ZINB-based autoencoder. The input matrix is corrupted by a Gaus-
sian noise e: Xcorrupt = X + e. Then the encoder produces latent representation
Z from Xcorrupt. The decoder can be formulated as:

Π = sigmoid (WπfD(Z))

M = diag(si)× exp (WµfD(Z))

Θ = exp (WθfD(Z))

(21)

where fD(·) is the decoder function; si is the size factor; {Π,M,Θ} are the esti-
mations of ZINB distribution parameters {π, µ, θ}, respectively. The clustering
process is based on soft assignment. The soft label qij of embedded point zi is
defined as:

qij =

(
1 + ∥zi − µj∥2

)−1∑
k (1 + ∥zi − µk∥2)−1 (22)
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where µj is the j-th cluster center.

dance.modules.single modality.clustering.scdcc scDCC [132] shares the
same model structure as scDeepCluster. In the training process, pairwise con-
straints are integrated into the loss function. There are two types of pairwise
constraints, i.e., must-link (ML) and cannot-link (CL). Two instances with a
must-link constraint should have similar soft labels as:

LML = −
∑

(a,b)∈ML

log
∑
j

qaj × qbj (23)

While two instances with cannot-link should have different soft labels as:

LCL = −
∑

(a,b)∈CL

log

∑
j

qaj × qbj

 (24)

where qaj and qbj are soft labels defined in (22).

dance.modules.single modality.clustering.graphsc graph-sc [26] utilizes
gene-to-cell graph as the input of graph autoencoder. In the gene-to-cell graph,
genes and cells are nodes, and there are weighted edges between cell nodes and
the expressed gene nodes. Let the raw data matrix be X, then the weight of

gene i to cell j is wij = X[i,j]∑m
k=0 X[k,j] . We use W , Z0, and A to denote the graph

weight matrix, the input features, and the adjacency matrix. Ā = D− 1
2AD− 1

2

is the normalized adjacency matrix with D as the degree matrix of A. The cell
embeddings can be obtained by:

Z = ReLU(ReLU(ĀZ0W1W )W2) (25)

where W1 and W2 are learnable weights. The new adjacency matrix Â is then
reconstructed by Â = sigmoid(ZZ⊤).

dance.modules.single modality.clustering.sctag scTAG [151] first gener-
ates a K-nearest neighbor cell-to-cell graph. It then adopts a ZINB-based graph
autoencoder to process it, which takes topology adaptive graph convolutional
network (TAGCN) [35] as the graph encoder. Consider the l-th hidden layer, let

the input data be x
(l)
c ∈ RN , where c = 1, 2, . . . , Cl, Cl is the number of features

of each node, and N denotes the number of samples. The graph convolution
process can be defined as follows:

x
(l+1)
f = ReLU

(
Cl∑
c=1

K∑
k=0

g
(l)
c,f,kA

kx(l)
c + bf1N

)
(26)

where bf is a learnable bias; K is the number of convolution kernels; and g
(l)
c,f,k

denotes the polynomial coefficients. Denote Z as the latent embedded representa-
tion. The new adjacency matrix Â is then reconstructed by Â = sigmoid(ZZ⊤).
The estimations of ZINB distribution parameters {π, µ, θ} are obtained by (21).
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dance.modules.single modality.clustering.scdsc scDSC [42] consists of a
ZINB-based autoencoder and a graph autoencoder with the KNN cell-to-cell
graph. In the ZINB-based autoencoder, let the latent representation be H, the
output of last decoding layer be D, benc and bdec be bias of encoder and decoder,
respectively. The autoencoder is formulated as follows:

H = fenc(WencX + benc)

X̄ = fdec(WdecH + bdec)
(27)

where X̄ is the reconstructed expression matrix. The estimations of ZINB dis-
tribution parameters {π, µ, θ} are similar to those in (21). In the graph encoder,
denote the representation of l-th layer as Z(l), the adjacency matrix as A, and
the degree matrix as D. The new representation is generated by:

Z(l+1) = ϕ
(
D− 1

2AD− 1
2

(
σZ(l) + (1− σ)H(l)

)
W(l)

)
(28)

where ϕ(·) is an activation function; σ is a hyperparameter; and H(l) is the
representation of l-th layer of ZINB-based encoder.

D.2 Multimodality Module

Modality Prediction Modality prediction is to predict features of a target
modality from features of an input modality. The evaluation is based on rooted
mean squared error (RMSE) between ground-truth features and prediction. In
this task, DANCE supports 4 models. All of them are deep learning models, one
of which is based on graph neural networks.

dance.modules.multi modality.predict modality.scmogcn scMoGNN [143]
first converts the input feature matrix into a cell-feature bipartite graph G = (V, E)
where each node v represents a cell or a feature. For instance, for the input of
gene expression, each node can be a cell or a gene. Meanwhile, additional gene-
gene connections are added based on an external pathway dataset [127]. Every
pair of vertices in V are connected by a weighted edge, which either depends on
the read count of a feature in a cell, or the correlation between features.

Specifically, we use X ∈ RN×k to denote the feature matrix of input modality
with N the number of cells and k the dimension of input features. The adjacency
matrix A of the constructed cell-feature bipartite graph G is:

A =

(
O X
XT P

)
, (29)

where O is a zero matrix, and P ∈ Rk×k indicates the gene-gene links.
To learn node embeddings on G, scMoGNN introduce a heterogeneous graph

convolutional network. The proposed heterogeneous graph convolutional network
can be stated as:

H(l+1)
c = GCNfc(Afc,H

(l)), (30)
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H
(l+1)
f = GCNcf(Acf,H

(l)) + GCNfc(Aff,H
(l)), (31)

where H
(l)
f is the embeddings of feature nodes in l-th layer, H

(l)
c is the embed-

dings of cell nodes in l-th layer. Subscripts cf, textfc and textff denote the graph
convolution over all the cell-to-feature edges, feature-to-cell edges and feature-
to-feature edges respectively. After stacking convolutional layers, cell node em-
beddings from each layer are collected by a weighted sum, denoted as

Ĥ =
L∑

l=1

wlH
l
c, (32)

where w is a learnable weight vector, L is the total number of layers. Ĥ is then
passed to the downstream modules. In the case of modality prediction, a fully-
connected predictive head is added. The final prediction Z ∈ RN×d of scMoGNN
can be thus written as:

Z = ReLU
(
ĤW + b

)
(33)

where W and b are the parameters of the predictive head. Overall, a mean
squared error MSE(Z,Y) is optimized through training, where Y ∈ RN×d is
ground-truth features of the target modality.

dance.modules.multi modality.predict modality.babel BABEL [146] trains
two neural-network-based encoders and two decoders on the paired data to trans-
late data from one modality to the other and to reconstruct itself, thus eventually
obtaining shared embedding. A special design in BABEL is to add a prior dis-
tribution to the decoder. Instead of directly outputting the feature values, the
decoder estimates the parameters of feature distribution.

Formally, for each cell, the RNA decoder models the likelihood of expressions
y as a negative binomial (NB) distribution, written as:

P (y; ŷ, θ) =
Γ (y + θ)

y!Γ (y)

(
θ

θ + ŷ

)θ (
ŷ

θ + ŷ

)y

(34)

where Γ denotes the gamma function, ŷ and θ are the estimation of the mean and
dispersion of the distribution. In practice, these estimations come from neural
network encoders and decoders. The optimization problem is thus formalized by
minimizing the negative log-likelihood:

LNB(y; ŷ, θ) = −θ(log(θ + ϵ)− log(θ + ŷ))− y(log(ŷ + ϵ)− log(θ + ŷ))

− logΓ (y + θ) + logΓ (y + 1) + logΓ (θ + ϵ)
(35)

where ϵ is a tiny constant for numerical stability.
The ATAC decoder has a different modeling approach since the feature for

each peak is binary. The loss function for the ATAC decoder is based on binary
cross-entropy, shown below:

LBCE(x; x̂) = −(x log x̂+ (1− x) log(1− x̂)) (36)
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where x represents ground-truth ATAC-seq features, and x̂ denotes the predic-
tion from the ATAC decoder.

The overall loss function is hereby formulated as:

L = LNB (r, rRNA)+βLBCE (a, aATAC)+βLBCE (a, aRNA)+LNB (r, rATAC) (37)

where r and a are the ground-truth RNA-seq features and ATAC-seq features
respectively, subscripts indicate from which modality the features are predicted
(e.g., aRNA represents the ATAC features predicted from RNA). The first two
terms in the loss function are similar to reconstruction loss in autoencoders. The
latter two terms can be considered as modality prediction loss.

For testing, we simply take aRNA as the prediction of ATAC-seq from RNA-
seq, and take rATAC as the prediction of RNA-seq from ATAC-seq.

dance.modules.multi modality.predict modality.cmae Cross-modal Au-
toencoders [149] uses autoencoders to map vastly different modalities (including
images) to a shared latent space. Specifically, a discriminator and adversarial
loss are added to force the distributions of different modalities to be matched in
the latent space. To make use of prior knowledge, an additional loss term can
further be added to align specific markers or anchoring cells.

Formally, an invariant latent distribution for two modalities i and j is learned
as follows. We denote the input features of two modalities as Xi and Xj . For
modality i, we optimize the objective:

min
Ei,Di

Ex∼PXi
L1 (x,Di (Ei(x))) + λL2

(
Ei#PXi

| PẐ

)
(38)

while for modality j, we optimize:

min
Ej ,Dj

Ex∼PXj
L1 (x,Dj (Ej(x))) + λL2

(
Ej#PXj

| PẐ

)
(39)

Here, Ei#PXi refers to the distribution of modality i in the latent space Z, PẐi

is the expected distribution of joint latent space Z. D and E refer to encoders
and decoders parameterized by neural networks. L1 is the Euclidean distance
metric, which is equivalent to a reconstruction loss. L2 represents a divergence
between probability distributions, since PẐi

is unknown, it can be adapted to a
discriminator and an adversarial loss.

Several additional losses can be added to the model to incorporate prior
knowledge. For example, if training data include paired multimodal data, those
cells with more than one modality can be considered as anchors. Suppose (x1, x

′
1) , (x2, x

′
2) , . . . , (xm, x′

m)
are corresponding points from two datasets, we can add the following anchor loss,

m∑
i=1

||E (xi)− E′ (x′
i) || (40)

where E and E′ are encoders for the two modalities, respectively.
The final prediction from modality i to modality j is Dj (Ei(X)).
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dance.modules.multi modality.predict modality.scmm scMM [92] lever-
ages a mixture-of-experts (MoE) multimodal variational autoencoder [119] (VAE)
to explore the latent dimensions that associate with multimodal regulatory pro-
grams. It models raw count features from each modality using various probability
distributions in an end-to-end way. Specifically, an MoE multimodal VAE (MM-
VAE) is to learn a multimodal generative model:

pΘ (z,x1:M ) = p(z)
M∏
m

pθm (xm | z) , (41)

where pθm (xm | z) is the likelihood for m-th modality, and pθm is parameterized
by a neural network decoder. To optimize the model, a typical training objective
for VAE is to maximize the ELBO:

ELBO = Ez∼qΦ (z | x1:M )

[
log

pΘ (z, x1:M )

qΦ (z | x1:M )

]
(42)

where qΦ (z | x1:M ) is the joint variational posterior that can be parameterized
by a neural network encoder. In addition, an MMVAE factorizes the joint pos-
terior with an MoE:

qΦ (z | x1:M ) =
M∑
m

αmqφm
(z | xm) , αm = 1/M, (43)

where the posterior of the m-th modality is qφm
(z | xm). It is parameterized by

the encoder. When using stratified sampling, ELBO can be re-written as:

ELBO =
1

M

M∑
m

Ezm∼qφm
(z | xm)

[
log

pΘ (zm,x1:M )

qϕ (zm | x1:M )

]

=
1

M

M∑
m

{
Ezm∼qφm(z|xmi)

[log pΘ (x1:M | zm)]−KL [qφm
(z | xm) ∥p(z)]

}
(44)

The first expectation term is to measure the reconstruction performance. Here,
latent variables of each modality would be used to reconstruct all modalities, in-
cluding cross-modal translation. The second term is a regularization term forcing
the variational posterior to be consistent the prior distribution p(z), which is a
Laplacian distribution in practice. In the modality prediction task, we take the
cross-modal generation results as the prediction of the model.

Modality Matching The objective of the modality matching task is to iden-
tify the cell correspondence across modalities. To be concrete, we separate each
modality of the jointly profiled dataset into a subset, and the order of cells in
each subset is disturbed. In the training dataset, the cell correspondence labels
between subsets are given. While in the testing data, the correspondence is not
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given. The model needs to learn to identify cell correspondence from the labeled
training data and evaluate it on the testing data.

To provide a more flexible protocol, the model output is adapted to a match-
ing score matrix S ∈ Rn×n, where n is the number of cells, Si,j is the probability
that cell i from one modality corresponds to cell j from the other modality.
Therefore, S is a non-negative matrix where each row sums to 1. As metrics,
we compute the average probability assigned to the correct matching. In this
module, DANCE now supports 3 models. All of them are deep learning models,
one of which is based on graph neural networks.

dance.modules.multi modality.match modality.scmogcn The overall struc-
ture of scMoGNN in the modality matching task is the same as in the modality
prediction task. However, in the modality prediction task, the input is only one
modality, while in the modality matching task, features of two modalities are
given altogether. Therefore, scMoGMM constructs two graphs G1 and G2 for two
modalities respectively. The cell node embeddings are obtained in the same way
as before, denoted as Ĥ1 and Ĥ2. Then a matching head is added, formulated
as:

S = Ĥ1 · ĤT
2 (45)

where S is the desired output matrix of matching scores. For training, we cal-
culate the cross entropy loss between S and a ground-truth matching matrix
M ∈ Rn×n, where Mi,j = 1 only when cell i in modality 1 corresponds to
cell j in modality 2. In addition, several auxiliary losses are added, including a
reconstruction loss and a translation loss.

For testing, a bipartite matching via the Hungarian algorithm is implemented
as post-processing. It generates an optimized sparse score matrix over the raw
S matrix.

dance.modules.multi modality.match modality.cmae The overall struc-
ture of Cross-modal Autoencoders is the same as in the modality prediction task,
where we implement encoders and decoders for all the modalities. Hereby in the
modality matching task, we directly utilize the latent space instead of using a
decoder to generate target modality.

To be specific, the embeddings from each modality can be denoted as:

H1 = E1 (X1) ,H2 = E2 (X2) (46)

where we denote input matrix, encoder and embeddings of m-th modality as
Em, Hm and Xm respectively. Then the score matrix is obtained by:

S = H1 ·HT
2 (47)

where S is the output score matrix.

dance.modules.multi modality.match modality.scmm The overall struc-
ture of scMM is the same as in the modality prediction task, where we im-
plemented a neural network encoder Em for each modality m to estimate the
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variational posterior qΦ (z | x1:M ). In the modality matching task, we hereby
take the latent vectors generated by encoders as the source for matching. The
whole process is the same as Eq. 46 and 47.

Joint Embedding Joint embedding aims to encode features from two modali-
ties into a low-dimensional joint latent space. To be consistent with the NeurIPS
competition [80], we set the latent dimension size to 100. For the evaluation,
currently, we only support NMI and ARI with the k-means clustering as metrics
in our DANCE package. These metrics evaluate the consistency between latent
clusters and the ground-truth cell type labels. More comprehensive metrics were
introduced in the competition, and we are going to incorporate them into our
package in the future. In this module, we now support 4 models. All of them are
deep learning models, one of which is a graph neural network.

dance.modules.multi modality.joint embedding.scmogcn The overall struc-
ture of scMoGNN in the joint embedding task is still similar to what is shown
in the modality prediction task. However, different from previous tasks, here
scMoGNN first preprocesses data as suggested by Seurat [125]. It reduces the
dimension of modality m to a predefined km dimension, using latent semantic
indexing (LSI). Empirically, we set km = 256 for RNA-seq features, km = 512
for ATAC-seq features, and no dimension reduction for surface protein features.
Next, the preprocessed features of two modalities are concatenated and jointly
considered as feature nodes in the graph construction, as described in Eq. 29.
Since no feature interactions are specified, here we replace matrix P in Eq. 29
with O. With the graph G so constructed, scMoGNN is further trained by min-
imizing a reconstruction loss, a cell type auxiliary loss and a regularization loss.

Specifically, cell embeddings Ĥ are obtained as Eq. 32. An MLP decoder fθ is
involved to reconstruct the input features from Ĥ. The first T dimensions in Ĥ
are also used to predict cell type, where T is equal to the number of predefined
cell types, and a regularization loss is added to the rest of the dimensions. The
overall loss function can be written as:

L = Lrecon + Lcell type + Lregular

=
1

N

N∑
i=1

(X− fθ(Ĥ))2 +

T∑
t=1

Yt log(Ŷt) + β ∗ ∥ĤJ̃ ∥2
(48)

where fθ is a two-layer MLP decoder, X ∈ Rn×(k1+k2) is the pre-processed
feature matrix, k1 and k2 are specified feature dimensions of two modalities,
Y ∈ RN×T is predefined cell types for each cell in a sparse form, and ĤJ̃ refers

to the hidden dimensions other than first T dimensions. Ŷ is calculated by a
softmax function over the first T dimensions of Ĥ, formulated as:

Ŷi,t =
eĤi,t∑T

k=1 e
Ĥi,k

(49)
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In the end, Ĥ is the resulting joint cell embeddings from scMoGNN, which is
expected to encode cellular information that is essential in the joint embedding
task.

dance.modules.multi modality.joint embedding.jae JAE is an adapted
model from scDEC [78]. It is proposed by the authors of scDEC in the NeurIPS
competition [80] to better leverage cell annotations. Formally, JAE follows the
typical autoencoder architecture with an encoder fθ and a decoder gθ. They are
parameterized by MLPs, denoted as:

H = fθ (X) ,Z = gθ (H) (50)

where H ∈ Rn×d is the joint embeddings, and Z is the recovered input features.
The novelty of JAE is that it separates cell embeddings into four parts, written
as:

H = [H′|C|B|S] (51)

where | denotes concatenation, C ∈ Rn×c is additionally supervised by cell
type labels, B ∈ Rn×b is additionally supervised by batch labels, S ∈ Rn×s is
additionally supervised by cell cycle phase score, H′ ∈ Rn×z is the remaining
dimensions. Therefore z + b + s + c = d. The overall loss function of JAE is
formulated as:

L = Lrecon + Lcell type + Lbatch + Lcell cycle

= MSE(Z,X) + CrossEntropy(C, Ĉ)

+ CrossEntropy(B, B̂) +MSE(SW + b, Ŝ)

(52)

where Ĉ, B̂, Ŝ are cell type labels, batch labels and cell cycle scores, respectively.
W ∈ Rs×2 and b ∈ R2 are an extra linear transformation to project S to cell
cycle score vector space. Eventually, H is the output joint embedding from JAE.

dance.modules.multi modality.joint embedding.scmvae scMVAE [157]
learn the distribution of multi-omics via three learning strategies simultaneously:
product of experts (PoE), neural networks, and concatenation of multi-omics
features. In addition, scMVAE models raw count features from each modality
through a ZINB distribution. Specifically, let z be the joint embeddings obtained
from multimodal encoders. p(z|c) is a Gaussian mixture distribution. Its mean
vector µc and a covariance matrix σc are conditioned on c, where c is a discrete
categorical variable indicating cell types. This Gaussian mixture prior of z is
introduced in MVAE to enhance the interpretability of the latent representations
and the performance of generation. Let x and y be features of two modalities.
Then the distribution p(x, y, z, c, lx, ly) is formulated as:

p (x, y, z, c, lx, ly) = p (x | z, lx) p (y | z, ly) p(z | c)p(c)p (lx) p (ly) (53)

where lx and ly are the library size factors of two modalities.
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The prior distributions for all the random variables are listed below:

z ∼ N
(
µc, σ

2
cI
)

lx ∼ log norm
(
µlx, σ

2
lx

)
, ly ∼ log norm

(
µly, σly

2
)

µx ∼ Gamma (fµx(f(z)), fθx(f(z))) , µy ∼ Gamma (fµy(f(z)), fθy(f(z)))

x′ ∼ Possion (lxµx) , y
′ ∼ Possion (lyµy)

πx ∼ Bernoulli (fπx(f(z))) , πy ∼ Bernoulli (fπy(f(z)))

xr =

{
x′ if πx = 0
0 otherwise

, yr =

{
y′ if πy = 0
0 otherwise

(54)

where fθx (f(z)) and fθy (f(z)) are the inverse desperations of two modalities
from the variational Bayesian inference. fµx and fµy are two neural network
decoders that estimate the mean proportions of features for two modalities in
each cell by using a softmax function, which simulates the library-size normalized
features. fπx and fπy are neural network decoders that estimate the probability
of features being dropped out due to technical issues. They use a sigmoid function
to model this probability.

To train scMVAE, we maximize the log-likelihood of the multi-omics obser-
vations. Following the convention of variational autoencoders, this objective is
converted to optimizing an evidence lower bound (ELBO):

log p (x, y | z, c, lx, ly) ≥ Eqφ(z, c, lx, ly | x, y)
)

[λ1 log (pθ1 (x | z, lx)) + λ2 log (pθ2 (y | z, ly))]
−α1DKL (q (lx | x) ∥p (lx))− α2DKL (q (ly | y) ∥p (ly))

−βDKL(q(z, c | x, y)∥p(z, c))

(55)

Both modalities in the ELBO have two reconstruction terms, and three regu-
larization terms are implemented by KL divergence. qφ refers to a multimodal
encoder. While pθ1 and pθ2 refer to decoders, for two modalities respectively.
The latent vector z estimated from E is the eventual joint embedding.

dance.modules.multi modality.joint embedding.dcca In DCCA [157], data
of each modality are modeled by a variational autoencoder (VAE). Specifi-
cally, for modality m, an encoder Em transforms the input features into latent
space zm. A decoder Dm then transforms zm into the parameters of the NB or
Bernoulli. For example, RNA-seq and ADT data follow NB distribution, denoted
as:

p (x | zx) = NB (x;ux, θx) = NB (x, lx;Dux
(zx) , Dθx (zx))

NB (x;ux, θx) =
Γ (x+ θx)

Γ (θx)Γ (x+ 1)

(
ux

ux + θx

)x(
θx

θx + ux

)θx (56)

whereDux
andDθx are decoders, each dimension of ux and θx indicates the mean

and variance of NB distribution for each feature, and one-dimensional constant
variable lx indicates the library size of each cell. While ATAC-seq data follow
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Bernoulli distribution, denoted as:

p (y | zy) = Bernoulli (y;uy) = Bernoulli
(
y;Duy

(zy)
)

Bernoulli (y;uy) = y log (uy) + (1− y) log (1− uy)
(57)

where Duy refers to the ATAC-seq decoder.
Each VAE is first trained separately with each modality. Then, two VAEs

are trained together to maximize the similarity between two latent spaces. For
example, given the embeddings from a VAERNA and a VAEATAC, they optimize
an objective function that combines reconstruction loss with the cell embeddings
similarity loss. Hence, the total ELBO for VAERNA and VAEATAC can be written
as:

LRNA = log p (x | zx)− β1

K−1∑
i=0

∥∥zyi − zx
i
∥∥
2

≥ Ezx∼q(zx|x;Ex) (log p (x | zx;Dux, Dθx))− λ1DKL (q (zx | x;Ex) ∥p(z))

−β1

K−1∑
i=0

∥∥zyi − zx
i
∥∥
2

(58)

LATAC = log p (y | zy)− β2

K−1∑
i=0

∥∥zxi − zy
i
∥∥
2

≥ Ezy∼q(zy|y;Ey) (log p (y | zy;Duy))− λ2DKL (q (zy | y;Ey) ∥p(z))

−β2

K−1∑
i=0

∥∥zxi − zy
i
∥∥
2

(59)

According to the DCCA paper, after jointly training two VAEs, the embed-
ding from VAERNA is selected as the final embedding for downstream analysis.

D.3 Spatial Transcriptomics Module

Spatial Domain In spatial transcriptomics, the spatial data is referring to
spots with x,y coordinates, and each spot captures several cells. The objective of
the spatial domain is to partition the spatial data into meaningful clusters. Each
cluster uncovered by this analysis is regarded as a spatial domain. Spots in the
same spatial area are comparable and consistent in gene expression and histology,
but spots in different spatial regions are distinct [13]. For evaluation, Adjusted
Rand Index (ARI) [150] is utilized to compare the efficacy of various clustering
techniques. It computes the similarity between the algorithm-predicted cluster-
ing labels and the actual labels. In the spatial domain task, DANCE supports 4
models including 2 GNN-based models and 2 traditional models.

dance.modules.spatial.spatial domain.spagcn SpaGCN [57] first constructs
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a weighted undirected graph, G(V,E) from the gene expression and histological
image data. In G, each vertex v ∈ V is a spot, and every pair of vertices in V
are connected by a weighted edge, which assesses the correlation between the
two spots. The weight for the pair (u,v) is calculated as:

w(u, v) = exp

(
−d(u, v)2

2l2

)
(60)

where hyperparameter l represents characteristic length scale, and d(u, v) calcu-
lates Euclidean distance between spots u and v. This distance is computed by the
spatial distance and the corresponding histology information between two spots.
The initial node representation in the graph is gene expression after dimension
reduction. A process known as graph convolution is utilized by SpaGCN to ag-
gregate gene expression data in accordance with edge weights. Then the output
of the graph convolution layer would be new node representation capturing in-
formation on gene expression, histology and physical location. Based on the new
spot representation, an unsupervised clustering algorithm is further employed to
iteratively cluster the spots into spatial domains. The probability of assigning
spot i to cluster j is defined as:

qij =

(
1 + hi − µ2

j

)−1

∑K
j′=1

(
1 + hi − µ2

j′

)−1 (61)

where hi is the embedded point for spot i, and uj indicates centroid j. Then the
clusters are refined iteratively by a target distribution P from qij :

pij =
q2ij/

∑N
i=1 qij∑K

j′=1

(
q2ij′/

∑N
i=1 qij′

) (62)

which gives more weight to locations that have been recognized with high confi-
dence and normalizes each centroid’s contribution to the loss function to avoid
having large clusters distort the hidden feature space. The objective function is
based on a Kullback–Leibler (KL) divergence as:

L = KL(P∥Q) =
N∑
i=1

K∑
j=1

pij log
pij
qij

(63)

where N is the number of spot samples, and K is the number of clusterings.

dance.modules.spatial.spatial domain.stagate STAGATE [33] is a graph
attention based autoencoder [116] with encoder, decoder and graph attention
layers. For graph construction, it builds up an undirected graph with a radius
r that has been predefined based on physical distance. We useA to denote the
adjacency matrix of the graph where Aij = 1 if the Euclidean distance between
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spots i and j is less than r. In addition, STAGATE also builds up a cell type-
aware graph via updating the previously constructed graph based on the pre-
clustering of gene expressions.

The encoder in STAGATE takes the gene expressions that have been nor-
malized as its inputs. It then generates embedding for each spot by aggregating
information from its surrounding nodes collectively. The latent representation
for spot i is calculated as:

h
(k)
i = σ

∑
j∈Si

att
(k)
ij

(
Wkh

(k−1)
j

) (64)

where σ is the activation function, Wk is the trainable weight matrix, Si is the

neighbors of spot i, k indicates k-th encoder layer and att
(k)
ij is the attention

score (i.e., the edge weight) between spots i and j obtained from the k-th graph
attention layer’s output.

Contrarily, using the encoder’s output as input, the decoder transforms the
latent embedding into a reconstructed normalized expression profile.

ĥ
(k−1)
i = σ

∑
j∈Si

âtt
(k−1)

ij

(
Ŵkĥ

(k)
j

) (65)

In graph attention layer, a widely-used self-attention technique for graph
neural networks is adopted to learn the similarity between surrounding spots in
an adaptive manner. The edge weight between spot i and its surrounding spot
j in the k-th encoder layer is calculated as:

e
(k)
ij = Sigmoid

(
v(k)T

s

(
Wkh

(k−1)
i

)
+ v(k)T

r

(
Wkh

(k−1)
j

))
(66)

where v
(k)
s and v

(k)
r are the trainable weights.

The attention score is further normalized by a softmax function in the fol-
lowing way:

att
(k)
ij =

exp
(
e
(k)
ij

)
∑

i∈Si
exp

(
e
(k)
ij

) (67)

Eventually, STAGATE aims to minimize the reconstruction loss of normal-
ized expressions in the following way:

N∑
i=1

∥∥∥xi − ĥi

∥∥∥
2

(68)

where xi is the original normalized gene expressions, and ĥi is the reconstructed
normalized gene expression for spot i.

dance.modules.spatial.spatial domain.louvain Louvain [11] is to extract
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the community structure of large networks, which draws inspiration from the
optimization of modularity. A modularity measure shows how densely edges
inside communities are clustered in comparison to edges outside communities.
Theoretically, optimizing this value leads to the optimal grouping of nodes in a
particular network. Due to the impracticality of traversing all possible iterations
of the nodes into groups, heuristic approaches are utilized. The modularity is
defined as:

Q =
1

2m

∑
ij

[
Aij −

kikj
2m

]
δ (ci, cj) (69)

where Aij is the edge weight between nodes i and j, m represents the total
weight of all edges in the graph, the weights of the edges that connect nodes i
and j are added up to get ki and kj , ci and cj denote node communities, and δ
represents Kronecker delta function [9] (δ(x, y) = 1 if x = y; else, 0).

To efficiently maximize the modularity, there are two looping phases. First, a
community is associated with each node in the network. Because of this primary
partitioning, there is consequently the same number of communities as nodes.
Then, the change in modularity is determined for each node i by removing it from
its own community and inserting it in the community of each of i’s neighbors
j. Integration of a previously isolated node i into a community C results in an
increase in modularity ∆Q equal to:

∆Q =

[
Σin + 2ki,in

2m
−
(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(

ki
2m

)2
]

(70)

where
∑

tot is the total link weights occurring to nodes in C,
∑

in represents the
total link weights within C, ki denotes the sum of the link weights associated
with node i, ki,in represents the total link weights from node i to all other
nodes in C, and m is the total link weights for the whole network. Once this
value is computed for all communities to which i belongs, i is assigned to the
community where the modularity increase was largest. If there is no possibility of
expansion, i stays in the same community. This technique is repeated and applied
successively to all nodes until no further growth in modularity is possible. The
first step concludes when this modularity maximum is reached.

In the second phase, all nodes inside the same community are grouped to-
gether and a new network consisting of communities from the first phase is
constructed. The connections between multiple nodes within the same commu-
nity and a node in a separate community are now described by weighted edges
between communities. The second stage is complete when the new network is
set up, at which point the first stage can be applied to it again.

dance.modules.spatial.spatial domain.stlearn stLearn [109] performs un-
supervised clustering on SME-normalized data to group similar areas into clus-
ters and discover sub-clustering alternatives based on the geographic separation
of clusters inside the tissue. The name of this stLearn function is SMEcluster. Us-
ing normalized expression values, stLearn separates cell types in a tissue through
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a two-step spatial clustering approach. stLearn implements a conventional Lou-
vain clustering technique for scRNAseq data as the initial step. Linear Principal
Component Analysis (PCA) is used to reduce the dimensionality of the SME
normalized matrix, and then non-linear UMAP embedding is used to generate
the k-nearest neighbor (kNN) graph. kNN’s graph adjacency matrix is then clus-
tered using Louvain clustering or k-means clustering. In the second stage, spatial
information is utilized to identify sub-clusters from large clusters that span two
or more physically distinct places. Using each location’s spatial coordinates, a
two-dimensional k-d tree neighbour search is conducted.

Cell Type Deconvolution Cell-type deconvolution is the task of estimating
cell-type composition in cell-pools from their aggregate transcriptomic informa-
tion. This is a type of inverse problem, as we are trying to determine the sig-
nal of individual cell-types from aggregated readings across multiple cell-types.
Moreover, due to the nature of the spatial (or bulk) transcriptomics profiling
technologies, the true cell-type compositions are most often not given. Solving
this task then requires some transfer learning approaches, in most cases using
scRNA-seq data as a reference (transfer source).

The problem is formulated as follows. We’re given mixed-cell expression data
X ∈ Rd×n where each cell-pool i ∈ [1, n] is composed of a mixture of cell-types
[1,K]. Then for each cell-pool i ∈ [1, n], we wish to construct an estimator
ŷi ∈ ∆K−1 of the true cell-type composition yi ∈ ∆K−1. Here, ∆K−1 is the
regular K-simplex

∆K−1 = {x ∈ RK :
K∑

k=1

xk = 1, xk ≥ 0 for k = 1, 2, ...,K} (71)

We are also given some reference scRNA-seq expression data Xs ∈ Rd×N with
one-hot labeled cell-types C ∈ RN×K . Then construct the estimator of cell-type
compositions for the n cell-pools by some function

Ŷ = F (X,Xs, C) ∈ Rn×K (72)

If the spatial information (2D or 3D coordinates in the given tissue)

S =

s1...
sn

 ∈ Rn×m, m ∈ {2, 3}

of the cell-pools are available, then we may incorporate this into the estimator
of cell-type compositions for the n cell-pools by some function

Ŷ = F (X,S,Xs, C) ∈ Rn×K (73)

For the task of cell-type deconvolution, DANCE supports 4 models, one GNN
based model and 3 non-GNN based models with classical regression models as
their backbone.
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dance.modules.spatial.cell type deconvo.dstg DSTG [120] is a GNN based
method that constructs a graph from similarities between real mixed-cell expres-
sion data X ∈ Rd×n and pseudo mixed-cell expression data X̃ ∈ Rd×np from
reference scRNA-seq expression data Xs ∈ Rd×N . First, the pseudo mixed-cell
expression data is generated taking np random samples (with replacement) of
2 to 8 cells from the scRNA-seq reference, and aggregating their UMI counts,
downsampling to adjust for realistic bulk UMI counts. The pseudo and real
mixed-cell data are then aligned in a lower dimensional (S < d) gene-space us-
ing Canonical Correlation Analysis (CCA). The projections to the s = 1, 2, ..., S
dimensions are given by the canonical variables

Us = X̃µ∗
s

Vs = Xν∗s
(74)

where
µ∗
s, ν

∗
s = argmax

µs,νs∈Rd

{νTs X̃TXνs} s.t. UT
s Us′ = V T

s Vs′ = δss′ (75)

are the canonical correlation vector pairs. These embeddings are then used to
construct a graph by considering Mutual Nearest Neighbors (MNN) as adjacent
in the graph. That is, given a pair of sample cell-pools i, j, we let

Ai,j =

{
1 if i and j are mutual nearest neighbors

0 otherwise
(76)

Here, adjacencies can be between simulated-to-real and real-to-real samples.
With Xin = [X̃X] ∈ Rd×N (N = np + n) and the normalized adjacency matrix

Ã as input, the L ≥ 1 (default 1) graph convolution (GCN) layers of the DSTG
model are given by

H(0) = Xin

H(l) = ReLU(ÃH(l−1)W (l)) for l ∈ [1, L]
(77)

where W (l) is the weight matrix for the lth layer. The output of the DSTG model
is the predicted composition of K cell-types, given by[

Ŷp

Ŷ

]
= softmax(ÃH(L)W ) ∈ RN×K (78)

where Ŷp and Ŷ are the predictions for the pseudo and real cell-pools, respec-
tively. The loss function is then defined as the cross-entropy between the pre-
dicted and true cell-type compositions of the pseudo cell-pools

L = −
np∑
i=1

K∑
k=1

y
(p)
i,k ln(ŷ

(p)
i,k ) (79)
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where ŷ
(p)
i,k and y

(p)
i,k are the predicted and true composition of cell-type k in the

ith pseudo cell-pool.

dance.modules.spatial.cell type deconvo.spotlight SPOTlight [38] builds
on the classic non-negative least squares approach to cell-type deconvolution by
incorporating topic-modeling for both the reference scRNA-seq expression data
Xs ∈ Rd×N and the mixed-cell expression data X ∈ Rd×n. First, non-negative
matrix factorization (NMF) is applied to the reference Xs to get

W,H = argmin
W ′,H′≥0

∥∥Xs −W ′H ′∥∥
F

(80)

where the rows of H ∈ RK×N are the cell-topic embeddings, and the columns of
W ∈ Rd×K the corresponding weightings. Cell-topic profiles H̃ ∈ RK×K are then
constructed from H by taking the median over each cell-type. Next, spot-topic
profiles P ∈ RK×n are constructed through NNLS of X onto W

P = argmin
P ′≥0

∥X −WP ′∥F (81)

Finally, the estimator of cell-type compositions for the n cell-pools is then given
by

Ŷ = argmin
B≥0

∥P − H̃B∥F (82)

dance.modules.spatial.cell type deconvo.spatialdecon SpatialDecon [30]
is non-negative linear regression based method that assumes a log-normal mul-
tiplicative error model between the mixed-cell data X ∈ Rd×n and a cell-profile
(signature) matrix X̃ ∈ Rd×K . The cell-profile matrix X̃ is a measure of center
(median by default) expression for each of the K cell-types, constructed from
the reference scRNA-seq data Xs ∈ Rd×N . The log-normal multiplicative error
model is given by

log(Xi·) = log(X̃T
i·B) + ϵi, where ϵi ∼ N (0, σ2In) and B ∈ RK×n (83)

The estimator of cell-type compositions for the n cell-pools is then given by

Ŷ = argmin
B≥0

∥∥log(X)− log(X̃TB)
∥∥
2

(84)

dance.modules.spatial.cell type deconvo.card CARD [85] applies a condi-
tional autoregressive (CAR) assumption on the coefficients of the classical non-
negative linear model between the mixed-cell expression X and a cell-profile
matrix X̃s, constructed from reference scRNA-seq Xs. The linear model is given
by

X = X̃sB + ϵ, ϵ ∼ N (0, σ2
eIn) (85)

The CAR assumption then incorporates 2D spatial information

S =

s1...
sn

 ∈ Rn×2 through an intrinsic prior on the cell-type compositions (the
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model coefficients) by modeling compositions in each location as a weighted
combination of compositions in all other locations. This modeling assumption is
given by

Bki = bk + ϕ
n∑

j=1,j ̸=i

Wij(Bkj − bk) + ϵki, ϵki ∼ N (0, σ2
ki) (86)

where the weights Wij are given by the Gaussian kernel

Wij = KG(si, sj ;σ
2) = exp(−∥si − sj∥22

2σ2
) (87)

with default scaling parameter σ2 = 0.1. CARD then estimates the cell-type
composition of the n cell-pools through constrained maximum likelihood esti-
mation.
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E Structure Tree

The structure tree below shows our codebase structure in DANCE. Basically it
consists of two parts: dance source code and examples. In example folder, each
file represent one example to show how to leverage one specific model on dataset.

|___ LICENSE

|___ README.md

|___ dance

| |___ __init__.py

| |___ data

| | |___ __init__.py

| |___ datasets

| | |___ __init__.py

| | |___ multimodality.py

| | |___ singlemodality.py

| | |___ spatial.py

| |___ modules

| | |___ __init__.py

| | |___ multi_modality

| | | |___ __init__.py

| | | |___ joint_embedding

| | | | |___ __init__.py

| | | | |___ dcca.py

| | | | |___ jae.py

| | | | |___ scmogcn.py

| | | | |___ scmogcnv2.py

| | | | |___ scmvae.py

| | | |___ match_modality

| | | | |___ __init__.py

| | | | |___ cmae.py

| | | | |___ scmm.py

| | | | |___ scmogcn.py

| | | |___ predict_modality

| | | |___ __init__.py

| | | |___ babel.py

| | | |___ cmae.py

| | | |___ scmm.py

| | | |___ scmogcn.py

| | |___ single_modality

| | | |___ __init__.py

| | | |___ cell_type_annotation

| | | | |___ __init__.py

| | | | |___ actinn.py

| | | | |___ celltypist.py

| | | | |___ scdeepsort.py

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


56 J. Ding et al.

| | | | |___ singlecellnet.py

| | | | |___ svm.py

| | | |___ clustering

| | | | |___ __init__.py

| | | | |___ graphsc.py

| | | | |___ scdcc.py

| | | | |___ scdeepcluster.py

| | | | |___ scdsc.py

| | | | |___ sctag.py

| | | |___ imputation

| | | |___ __init__.py

| | | |___ deepimpute.py

| | | |___ graphsci.py

| | | |___ scgnn.py

| | |___ spatial

| | |___ __init__.py

| | |___ cell_type_deconvo

| | | |___ __init__.py

| | | |___ card.py

| | | |___ dstg.py

| | | |___ spatialdecon.py

| | | |___ spotlight.py

| | |___ spatial_domain

| | |___ __init__.py

| | |___ louvain.py

| | |___ spagcn.py

| | |___ stagate.py

| | |___ stlearn.py

| |___ plotting

| | |___ __init__.py

| |___ transforms

| | |___ __init__.py

| | |___ graph_construct.py

| | |___ preprocess.py

| |___ utils

| |___ __init__.py

| |___ loss.py

| |___ metrics.py

|___ docs

| |___ Makefile

| |___ make.bat

| |___ requirements.txt

| |___ source

| |___ conf.py

| |___ index.rst

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


DANCE: A Deep Learning Library and Benchmark for Single-Cell Analysis 57

| |___ modules

| |___ multi_modality.rst

| |___ single_modality.rst

| |___ spatial.rst

|___ examples

| |___ multi_modality

| | |___ joint_embedding

| | | |___ dcca.py

| | | |___ jae.py

| | | |___ scmogcn.py

| | | |___ scmogcnv2.py

| | | |___ scmvae.py

| | |___ match_modality

| | | |___ cmae.py

| | | |___ scmm.py

| | | |___ scmogcn.py

| | |___ predict_modality

| | |___ babel.py

| | |___ cmae.py

| | |___ scmm.py

| | |___ scmogcn.py

| |___ single_modality

| | |___ cell_type_annotation

| | | |___ actinn.py

| | | |___ celltypist.py

| | | |___ scdeepsort.py

| | | |___ singlecellnet.py

| | | |___ svm.py

| | |___ clustering

| | | |___ graphsc.py

| | | |___ scdcc.py

| | | |___ scdeepcluster.py

| | | |___ scdsc.py

| | | |___ sctag.py

| | |___ imputation

| | |___ deepimpute.py

| | |___ graphsci.py

| | |___ scgnn.py

| |___ spatial

| |___ cell_type_deconvo

| | |___ card.py

| | |___ dstg.py

| | |___ spatialdecon.py

| | |___ spotlight.py

| |___ spatial_domain

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.19.512741doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512741
http://creativecommons.org/licenses/by-nd/4.0/


58 J. Ding et al.
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