Extremely-fast construction and querying of compacted and colored de Bruijn graphs with GGCAT*

Andrea Cracco1 and Alexandru I. Tomescu2

1Department of Computer Science, University of Verona, andrea.cracco@univr.it
2Department of Computer Science, University of Helsinki, alexandru.tomescu@helsinki.fi

Abstract

Compacted de Bruijn graphs are one of the most fundamental data structures in computational genomics. Colored compacted graphs Bruijn graphs are a variant built on a collection of sequences, and associate to each k-mer the sequences in which it appears.

Here we present GGCAT, a tool for constructing both types of graphs. Compared to Cuttlefish 2 (Genome Biology, 2022), the state-of-the-art for constructing compacted de Bruijn graphs, GGCAT has a speedup of up to $3.4\times$ for $k = 63$ and up to $20.8\times$ for $k = 255$. Compared to Bifrost (Genome Biology, 2020), the state-of-the-art for constructing the colored variant, GGCAT achieves a speedup of up to $12.6\times$ for $k = 27$. GGCAT is up to $480\times$ faster than BiFrost for batch sequence queries on colored graphs. GGCAT is based on a new approach merging the k-mer counting step with the unitig construction step, and on many practical optimizations.

GGCAT is implemented in Rust and is freely available at https://github.com/algbio/ggcat

*This work was partially funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 851093, SAFEBIO), and partially by the Academy of Finland (grants No. 322595, 352821, 346968).
1 Introduction

Motivation. De Bruijn graphs are one of the most fundamental data structures in computational genomics, appearing in countless applications, for example [16, 29, 18, 17, 5], just to name a few. To obtain a de Bruijn graph[1] of order k for a set of strings (usually sequencing reads, or assembled genomes), for every k-mer of in the strings, one adds an edge from the node corresponding to its prefix of length $k - 1$, to the node corresponding to its suffix of length $k - 1$. De Bruijn graphs usually have associated also an abundance threshold a, so that edges (and thus nodes) are added only for k-mers appearing at least a times in the input strings.

De Bruijn graphs are appealing for several reasons. First, by increasing the abundance threshold, one can have a very simple but effective method of filtering out sequencing errors (i.e., erroneous k-mers). Second, having a graph structure allows for a smaller representation of the data in the presence of repeated regions, since equal substrings are represented only once in the graph. Third, by focusing on maximal non-branching paths, i.e., maximal paths whose internal nodes have in-degree and out-degree equal to 1 (also called maximal unitigs), one can discover “variation-free” regions.

Originally, maximal unitigs were introduced for the genome assembly problem; for example, assembly contigs are usually unitigs of a corrected assembly graph[2] [23]. However, by replacing each unitig with e.g., an edge labeled with the label of the unitig (label obtained by identifying the overlapping ($k - 2$)-mers), one gets an equivalent graph, but of much smaller size. Such a graph is usually called a compacted de Bruijn graph[3]. Many of the applications cited above actually use a compacted graph, due to their equivalent representation power, but significantly smaller size. In fact, if one just wants to represent the k-mers of a dataset in plain text form, there exist more efficient[25, 4, 13] (and even optimal[31, 30]) equivalent representations, all using maximal unitigs as a starting point.

A popular variant of a de Bruijn graph is the colored de Bruijn graph[12]. Such graph is built from a collection of datasets, for example different sequencing datasets or different (full) genome sequences. For every k-mer, colored de Bruijn graphs also store the identifiers (colors) of the datasets in which the k-mer appears. One can think of a colored de Bruijn graph as a compressed representation of the k-mers in a collection of datasets, but which retains enough information (i.e., the color of every k-mer) in order to identify each dataset in this combined graph. Applications include [34, 3, 19, 33, 10], just to name a few.

Related work. While computing the maximal unitigs of a de Bruijn graph can be done with a simple linear-time algorithm, the practical hardness of the problem stems from the fact that the initial de Bruijn graph does not fit the main memory in applications. Practical tools computing compacted de Bruijn graphs have to cleverly use disk to store intermediary data, partition the data in order to use many CPU cores efficiently, and minimize CPU, RAM and I/O bottlenecks. One of the first major tools for computing maximal unitigs was BCALM2[7]. BCALM2 first does a k-mer counting step inspired by KMC2[8] and a filtering pass based on the multiplicity of the k-mers. Then it finds k-mers that should be joined together by bucketing them on their left/right minimizers[26] (corresponding to the minimizers of the leftmost and rightmost ($k - 1$)-mers). Each bucket is processed independently and in parallel to find all the possible extensions. Finally, BCALM2 glues all the unitigs that were produced in different buckets together using an union-find data structure.

The state-of-the-art tool for maximal unitig computation is Cuttlefish 2[13]. It starts with an initial k-mer counting step using KMC3[15]. It employs a perfect hash computation on the k-mers using BBHash[17]. The key insight relies on a novel automaton-based approach to compute the branching state of every ($k - 1$)-mer, using only the minimum amount of information, i.e., zero, one, or more than one left / right neighbors. Then, it builds the graph by looking at the automaton of every ($k - 1$)-mer, and extending if for an ending this state is one neighbor and the next ($k - 1$)-mer does not branch backwards. Cuttlefish 2 tends to significantly write to disk to further resplit the intermediate buckets and keep the maximum memory usage low. Like BCALM2, it also does not compress the buckets on disk (except for prefix collapsing) and thus...
very repetitive datasets still require large disk I/O. Moreover, for higher \(k \) values, KMC3 tends to use more time and memory, as it has to store the exact \(k \)-mers all the time, which in consequence also affects the behavior of Cuttlefish 2.

The state-of-the-art tool for maximal unitig computation with associated color information is BiFrost \[11\]. It uses an in-memory only approach, with various blocked Bloom filters \[2, 24\] partially indexed by minimizers that approximate the \(k \)-mers present in the final graph, and does several passes on the original input to remove the false edges wrongly created due to the use of Bloom filters. Then it internally stores the \(k \)-mers grouped by minimizers, allowing for relatively fast deletions and insertions of new \(k \)-mers. However, while blocked Bloom filters are very memory efficient, they are also not very cache efficient (even with the infra-block sse2 optimizations done in BiFrost). Also the memory representation of the \(k \)-mers gives a tradeoff between the ease of doing small updates to the graph and the speed of inserting batches of \(k \)-mers, thus the build time of the graph is still considerably high. To (optionally) build a colored graph, it uses various types of compressed bitmaps (roaring \[6\], or simple bitsets) to store the set of colors of each \(k \)-mer. While this allows fast insertions and querying, it stores redundant color sets information since \(k \)-mers that share the same set of colors are still encoded as two separate sets.

Contribution. In this paper we propose a new tool for constructing compacted, and optionally colored, de Bruijn graphs, GGCAT. As opposed to BCALM2 and Cuttlefish 2, the first idea of GGCAT is to merge the \(k \)-mer counting step with unitig construction, by adding a little more “context” information that allows us to compute valid global unitigs inside each bucket that the input is split into. This avoids the storage of every single \(k \)-mer, since only unitigs built inside the buckets are written to disk. Moreover, as opposed to other tools, these unitigs are lz4-compressed before writing to disk, which allows for a substantial reduction in disk usage for highly repetitive datasets. Second, we avoid a union-find data structure (used by BCALM2) with a new joining step across buckets, that guarantees exact results with very low expected running time. Third, we devise a parallelization pipeline that divides the algorithm into smaller execution units (e.g., reading from disk, \(k \)-mer counting, \(k \)-mer extension), thus preventing core stalling due to waiting for data. Finally, on the theoretical side, we give a string-based definition of maximal unitig in the presence of reverse complements (canonical maximal unitig, Definition \[1\] that (i) allows us to avoid introducing a heavy formalism based on e.g. bidirected de Bruijn graphs and (ii) closely mimics our algorithm, thus leading to a simple proof of correctness.

For colored graphs we extend our algorithm above with an approach inspired by BiFrost, but with several optimizations that allow smaller colormap sizes with improved build times. The main difference w.r.t. BiFrost is to map each color set to a color set index, instead of using an individual (compressed) color bitmap for each possible \(k \)-mer. In addition, to store each color set, we compute the difference between consecutive colors and compress them using a run-length encoding. Since CuttleFish 2 is significantly faster than BiFrost (on non-colored graphs), this idea, combined with our improvements over Cuttlefish 2, leads to a major speed up over BiFrost for colored graphs.

2 Methods

2.1 Preliminaries

In this paper all strings are over the same alphabet \(\Sigma = \{A, C, G, T\} \). We denote concatenation of two strings \(x \) and \(y \) as \(x \cdot y \). If \(x \) is a substring of \(y \), we write \(x \in y \). We denote the length of a string \(x \) as \(|x| \).

Given a string \(x \) of length at least \(k \), we denote by \(\text{pre}_k(x) \) the prefix of \(x \) of length \(k \), and by \(\text{suf}_k(x) \) the suffix of \(x \) of length \(k \). For two strings \(x \) and \(y \) such that \(\text{suf}_k(x) = \text{pre}_k(y) \), we denote by \(x \odot^k y \) the string \(x\text{suf}_{|y|−k}(y) \) (the merge of \(x \) and \(y \)). Given a set \(S \), we denote \(\text{ends}_k(S) = \{\text{pre}_k(x), \text{suf}_k(x) : x \in S\} \).

A \(k \)-\(\text{mer} \) is a string of a given length \(k \) over the alphabet \(\Sigma \). Given a \(k \)-\(\text{mer} \) \(q \), we say that \(q \) is a \(k \)-\(\text{mer} \) of a string \(x \) if \(q \in x \) (in this case, we also say that \(q \) appears, or occurs in \(x \)). Given a set \(S \) of strings, we say that \(q \) appears in \(S \), and write \(q \in S \), if \(q \) appears in some string in \(S \). The edge-centric De Bruijn graph or order \(k \) of a set \(R \) of strings is defined as the directed graph having as nodes the \((k−1)\)-mers
appearing in \(R \), and we add an edge from node \(x \) to node \(y \) if \(\text{suf}_{k-2}(x) = \text{pre}_{k-2}(y) \) and \(x \circ^{k-1} y \in R \). That is, the set of edges is exactly the set of all \(k \)-mers of \(R \). The maximal unitigs of \(R \) are defined to be the strings corresponding to the maximal paths (i.e., obtained by the merge of their \((k-2)\)-mers) such that their internal nodes have in-degree and out-degree equal to one, of the de Bruijn graph of \(R \).

For the rest of this paper, we consider an alternative definition of maximal unitigs that does not explicitly use a de Bruijn graph. This has several advantages: it connects to the recent literature on spectrum preserving string sets (unitigs being one such type of sets) \[\text{[25] 1 [30]} \], it naturally extends to reverse complements without introducing heavy definitions related to bidirected de Bruijn graphs, and ultimately it matches our algorithm, which proceeds bottom-up by iteratively merging \(k \)-mers and unitigs as long as possible (i.e., the existence of branches in the de Bruijn graph is checked implicitly via \(k \)-mer queries).

Given a set \(S \) of strings, and a string \(x \), we denote by \(\text{occ}(x,S) \) the number of occurrences of \(x \) in the strings of \(S \), each different occurrence in a same string in \(S \) is counted individually. Given a string \(x \in \Sigma \), we denote by \(x^{-1} \in \Sigma \) the reverse complement of \(x \). Given a set \(S \) of strings, and a string \(x \), if \(x \neq x^{-1} \), we define \(\text{occ}_{rc}(x,S) = \text{occ}(x,S) + \text{occ}(x^{-1},S) \), otherwise \(\text{occ}_{rc}(x,S) = \text{occ}(x,S) \). We analogously define \(\text{app}(x,S) = \min(1,\text{occ}(x,S)) \) and \(\text{app}_{rc}(x,S) = \min(1,\text{occ}_{rc}(x,S)) \).

Given sets of strings \(R \) and \(U \), we say that \(R \) and \(U \) have the same \(k \)-mer spectrum if any \(k \)-mer that appears in one of the sets also appears in the other set. Analogously, we say that \(R \) and \(U \) have the same canonical \(k \)-mer spectrum if any \(k \)-mer \(q \) that appears in one of the sets, \(q \) or \(q^{-1} \) appears in the other set. We can equivalently express the fact that sets \(R \) and \(U \) have the same non-canonical \(k \)-mer spectrum with the condition

\[
\forall q \in \Sigma^k \quad \text{occ}(q,R) \geq 1 \iff \text{occ}(q,U) \geq 1.
\]

Likewise, \(R \) and \(U \) have the same canonical \(k \)-mer spectrum if:

\[
\forall q \in \Sigma^k \quad \text{occ}_{rc}(q,R) \geq 1 \iff \text{occ}_{rc}(q,U) \geq 1.
\]

As a warm-up, we now give an equivalent \emph{string-centric} definition of the set \(U \) of maximal unitigs of a set \(R \) of strings, under our formalism. We start with the case when we do not have reverse complements.

First, we require that \(R \) and \(U \) have the same \(k \)-mer spectrum. Second, if a \((k-1)\)-mer appears at least two times in \(U \), then it cannot be an internal node in any unitig. In other words, we forbid merging two separate unitigs at a branching \((k-1)\)-mer, since such branching \((k-1)\)-mer must appear in at least one other string in \(U \):

\[
\forall q \in \Sigma^{k-1} \quad \text{occ}(q,U) > 1 \text{ then } q \text{ appears only as prefix or suffix of strings in } U.
\]

To impose also maximality, we state that a \((k-1)\)-mer is an internal node of a unitig if and only if not branching, and is not a sink and not a source:

\[
\forall q \in \text{ends}_{k-1}(U), \quad \sum_{c \in \Sigma} \text{app}(q \cdot c, U) \neq 1 \text{ or } \sum_{c \in \Sigma} \text{app}(c \cdot q, U) \neq 1.
\]

Having defined maximal unitigs without reverse complements, we now give the string-centric definition of maximal unitigs assuming also reverse complements (which we call \emph{canonical maximal unitigs}). In fact, we give a more general one, handling also a required abundance threshold of the \(k \)-mers in \(R \), further underlining the flexibility of our string-centric view.

\begin{definition} \textbf{(Canonical maximal unitigs).} Given a set \(R \) of strings and integers \(k \geq 2 \) and \(a \geq 1 \), we say a set \(U \) of strings is the set of canonical maximal unitigs of \(R \) with \(k \)-mer size \(k \) and abundance threshold \(a \) if the following conditions hold:
\end{definition}

\begin{enumerate}
\item \(\forall q \in \Sigma^k \quad \text{occ}_{rc}(q,R) \geq a \iff \text{occ}_{rc}(q,U) \geq 1 \) (same canonical \(k \)-mer spectrum, with abundances);
\item \(\forall q \in \Sigma^{k-1}, \quad \text{if occ}_{rc}(q,U) > 1 \text{ then } q \text{ appears only as prefix or suffix of strings in } U \) (unitigs do not span over branching \((k-1)\)-mers, and are not repeated);
\end{enumerate}
3. \(\forall q \in \text{ends}_{k-1}(U), \sum_{c \in \Sigma} \text{apprc}(q \cdot c, U) \neq 1 \) or \(\sum_{c \in \Sigma} \text{apprc}(c \cdot q, U) \neq 1 \) (maximality).

In our algorithm, we build unitigs incrementally, starting from individual \(k \)-mers (i.e., individual edges of the de Bruijn graph, which are unitigs), and extending them in both directions, as long as the resulting string remains a unitig (by checking at each step the satisfaction of condition 3 in Definition 1 i.e. that the \((k-1)\)-mers inside the unitig do not branch). Even though this is a simple strategy, behind also other tools such as [7], it is non-trivial how to implement this efficiently, both in terms of running time, memory consumption, disk usage, and parallelization.

Given an integer \(m \leq k \), and a rolling hash function \(\text{hash} : \Sigma^m \rightarrow \mathbb{Z} \), the minimizer of a \(k \)-mer \(x \) is

\[
\min(x) = \min_{y \in \Sigma^m} \text{hash}(y).
\]

Note that in this definition the minimizer is only a hash value, and does not keep track of the particular position of the \(m \)-mer that has that minimum hash value.

Throughout the algorithm, we will refer to buckets or groups as a partition of the data that is stored as a single blob, for example when stored on disk each bucket corresponds to a file. Multiple buckets are used to partition data in a way that is optimized for parallelization, allowing parallel and independent processing of each bucket. They are also used to reduce the memory consumption of the algorithm, since only the buckets that are currently being processed occupy main memory, while the other ones use only disk space.

In the rest of this section we present the algorithm for maximal unitigs without reverse complements, and then in Section 2.5 explain the changes for canonical maximal unitigs.

2.2 Read splitting

Each read \(R_j \) is split into substrings \(S_1, \ldots, S_{\ell_j} \) that overlap on \(k-2 \) characters, such that all \((k-1)\)-mers of \(S_i \) have the same minimizer, for all \(i \in \{1, \ldots, \ell_j\} \). For the minimizer hash function \(\text{hash} \) we use the \text{ntHash} [21] function, because it can give fast computation while ensuring a good randomness in its value. Note that we can have multiple minimizer locations in the same substring \(S_i \) as long as they have the same hash value. We can compute \(S_1, \ldots, S_{\ell_j} \) in linear time in the size of \(R_j \) as follows. First, for every \(m \)-mer \(x \) of \(R_j \), we compute \(\text{hash}(x) \) in a rolling manner. Then, in a sliding window manner, we compute the minimum of each window of \(k-m \) consecutive \(m \)-mers (which correspond to a \((k-1)\)-mer). Finally, we group consecutive \((k-1)\)-mers that share the same minimum in their corresponding window. For efficiency, we perform these three steps in a single pass over \(R_j \).

For every \(S_i \) obtained in this manner, let \(a \) and \(b \) be the characters of \(R_j \) immediately preceding and succeeding \(S_i \) in \(R_j \), respectively, or \(\$ \) if they do not exist. We call such \(a \) and \(b \) linking characters. Consider the string \(S'_i := a \cdot S_i \cdot b \) and observe that \(S'_{i-1} \) and \(S'_i \) have a suffix-prefix overlap of \(k \) characters, since \(S_{i-1} \) and \(S_i \) have a suffix-prefix overlap of \(k-2 \) characters and we added \(b \) at the end of \(S_{i-1} \) and \(a \) at the beginning of \(S_i \). Recall that all \((k-1)\)-mers of \(S_i \) have the same minimizer, say \(h \); we assign each extended string \(S'_i \) to a group \(G_h \) associated to such unique minimizers. We say that a \(k \)-mer \(x \) appears in a group \(G_h \) if \(x \) is a substring of some \(S'_i \) in \(G_h \). See Figure 1 for an illustration.

Note that above grouping strategy is similar to the one in [15] (applied to \(k \)-mers instead of \((k-1)\)-mers), with the exception that when we group we add the linking characters. The following simple properties are key to ensuring the correctness of our approach.

Lemma 1. Let \(x \) be a \(k \)-mer appearing in the reads, and in a group \(G_h \). The following properties hold:

(a) There is at most one other group in which \(x \) appears, and moreover, \(x \) appears in two distinct groups if and only if \(\text{min}(\text{pre}_{k-1}(x)) \neq \text{min}(\text{suf}_{k-1}(x)) \).

(b) \(\text{occ}(x, G_h) = \text{occ}(x, R) \);

(c) If \(\text{min}(x) = h \) (i.e., \(x \) does not contain a linking character), and it has a \((k-1)\)-suffix-prefix overlap with some \(k \)-mer \(y \) (in either order), then also \(y \) appears in group \(G_h \).

4
Proof. (a) Any k-mer has only two $(k-1)$-mers, which in the worst case have different minimizers h_1 and h_2, and as such x can appear in at most two groups G_{h_1} and G_{h_2}, and these are different if $h_1 \neq h_2$.

(b) This follows by construction of the group, since all the k-mer occurrences that have the same minimizer are put in the same group.

(c) If also the minimizer of y is h (i.e., it does not contain a linking character), then also y appears in G_h. If not, recall that we added an extra character at the beginning and end of every string assigned to G_h, thus y is a k-mer containing a linking character and thus appears in G_h. \hfill \Box

Since we want to write the groups to disk, and their number is the number of distinct minimizers, we merge the groups into a smaller number of buckets, that are written to disk.

2.3 Construction of intermediate unitigs

Lemma 2 ensures that extending any k-mer x can be correctly performed just by querying the group of x. For each group, we perform:

1. A k-mer counting step of the strings in the group, using a hashmap, while also keeping track if a k-mer contains a linking character. More precisely, we scan each string in a group, and for each k-mer that we encounter we increase by one its abundance in the hashmap, and add a flag if it contains a linking character.

2. From the hashmap, we create a link of unique k-mers of the group, that have the required abundance. This abundance check is correct thanks to Lemma 2(b).

3. We traverse the list of k-mers, and for each non-used k-mer x, we initialize a string $z := x$, which will be extended right and left as long as it is a unitig (see Figure 3). We try to extend z to the right by querying the hashmap for $\text{suf}_{k-1}(z) \cdot c$, for all $c \in \{A, C, G, T\}$. If there is a unique such extension y such that $\text{suf}_{k-1}(z) = \text{pre}_{k-1}(y)$, for all $c \in \{A, C, G, T\}$. If exactly one match is found (i.e., $\text{suf}_k(z)$), then we replace z with $z \odot^k y$, and we mark k-mer y as used in the hashmap. If y is not marked in the hashmap as having a linking character, then we repeat this right extension with the new string z. The queries to the hashmap are correct thanks to Lemma 2(c). When we stop the right extension, we perform a symmetric left-extension of z. After both extensions are completed, the resulting unitig z is given a unique index id_z. If the extension of z was stopped because of a linking character in the first or last k-mer y of z, we add (y, id_z) to a list L.

Notice that, after all groups have been processed, for any (y, id_z) in L, there exist exactly one other $(y, id_{z'})$ in L, added from a different group, by Lemma 2(a). These two tuples indicate unitigs that have to be iteratively merged to obtain the maximal unitigs.
Figure 2: The extension step of the intermediate unitig construction happens inside each group. For each k-mer (top) it looks for a possible extension by checking all the 4 possible neighbor k-mers in both directions, and extends the k-mer only if there is exactly one match both forwards and backwards (in green). Then it repeats the same process until no more extensions can be performed.

Figure 3: The result of the intermediate unitig construction. Each intermediate unitig that has a possible extension shares an ending with another intermediate unitig.

2.4 Unitig merging

The tuples \((y, id_z)\) in \(L\) are sorted by \(y\), such that the two entries \((y, id_z)\) and \((y, id_{z'})\) appear consecutively. Moreover, for any unitig \(z\), there are at most two entries \((x, id_z)\) and \((y, id_z)\) in \(L\) (corresponding to its two endpoints). From these, we construct a list \((id_z, id_{z'})\) that is put in another list \(P\) of pairs of unitigs that must be merged into maximal unitigs. This is one of the hardest steps to parallelize, since no partitioning can be done ahead of time that puts all the unitigs that are contained in a maximal unitig in the same partition. In other tools, e.g., BCALM2 [7], this step is done using an union-find data structure, that can be difficult to be used with concurrency. Our solution uses a randomized approach (i.e., with guaranteed correctness and only expected running time) to put in the same partition the unitigs that should be merged, repeating the process until all the unitigs are merged into the final maximal unitigs (see Figure 4).

We allocate a fixed number of buckets. Initially, for each list in \(P\), we mark both its ends as unsealed. We repeat the following procedure until \(P\) is empty:

1. For each list in \(P\), we choose at random one of its unsealed ends. W.l.o.g., let this end be \(l\). We put the list in the bucket corresponding to \(l\), while in the bucket corresponding to the other ending \(r\) we put a placeholder.

2. Inside each bucket, we sort the lists by the ending that caused the list to be placed in the bucket. Then, we merge all the endings that are equal to produce longer lists. If an ending in a bucket is not merged, and it has no corresponding placeholder (of another list) in the bucket, then it is marked as sealed.

3. Finally, we remove from \(P\) each list having both ends sealed.
Figure 4: The unitig merging step on the unitigs from Figure 3. Each pair (ending, unitig index) is sorted by ending, and indexes of unitigs that share the same ending are joined in a tuple. Each such tuple is assigned to a bucket corresponding to one of its unsealed endpoint indices chosen at random (solid arrows in the figure). For the other endpoint index of the tuple (dashed arrow), we put a placeholder in its corresponding bucket (in gray). Then, inside each bucket, pairs sharing the same unitig index are joined to form larger tuples. If an ending cannot be joined and does not have a corresponding placeholder, then is marked as sealed and is not selected anymore for bucket assignment. For example, in the first step, in B_{id_1} the pair (id_1, id_2) is sealed at id_1, because there is no placeholder for id_1; however, in B_{id_2} the pair (id_2, id_3) is not sealed at id_2 because id_2 has a placeholder. The steps are repeated until no more tuples can be joined.

In the above process, given two lists in P that must be merged, there is at least a probability of at least $1/4$ that they are assigned to the same bucket to be merged (in the worst case, both ends are unsealed).

Both L and P are also stored in buckets, to allow a better concurrency while processing them.

2.5 Construction correctness

We start by proving the correctness of the algorithm (without reverse complements).

Theorem 1. Given a set R of strings, the strings U obtained at the end of our algorithm are the maximal unitigs of R.

Proof. We prove that U satisfied the three conditions of Definition 1 (for non-canonical unitigs).

For condition 1, observe that the algorithm does not introduce any k-mer that is not also in R, and does not exclude any k-mer from R, thus $\forall q \in \Sigma^k \quad \text{occ}(q, R) \geq 1$ iff $\text{occ}(q, U) \geq 1$ holds. By Lemma 4(b) guarantees that $\text{occ}(q, R)$ the number of occurrence of k-mer q is the same as the number of occurrences in its group, and thus the operation from Section 2.3 performed inside its group respect its abundance in R. Thus, $\forall q \in \Sigma^k \quad \text{occ}(q, R) \geq a$ iff $\text{occ}(q, U) \geq 1$.

Next, we prove conditions 3 and 2. Given an intermediary unitig z, we check for the eight k-mers that contain $\text{suf}_{k-1}(z)$; we extend z iff only two k-mers appear (one out-going from, and one in-coming to $\text{suf}_{k-1}(z)$), thus condition 3 is satisfied.

After merging z with this out-going k-mer, there are no other k-mers (and thus no other unitigs in U, since each k-mer appears exactly once in U, because in Section 2.3 we mark the used k-mers) that contain $\text{suf}_{k-1}(z)$ so condition 2 holds for single groups. This condition is still not satisfied globally, due to the repetition of all the k-mers containing a linking character.

4For the non-canonical case, we can merge the pairs if one extremity is at the end and the other one at the beginning of the pairs. For canonical k-mers, we also have to keep track of the direction of the k-mer before joining them, see Section 2.5 for more details.
We now prove condition 2 after the unitig merging step. Note that the unitigs fed to the unitig merging step are the ones that start or end with a linking character, so they always overlap on \(k \) characters. After merging all the repeated \(k \)-mers, we satisfy 2 globally.

All the steps described so far can be easily adapted to work with canonical \(k \)-mers, to obtain canonical maximal unitigs (Definition 1). This can be done by changing two steps. First, the hash functions are replaced by their 'canonical' version, such that the hash of a \(k \)-mer is always equal to the one of its reverse complement. Second, in the unitig merging steps, relative orientations of the unitigs are tracked, to allow joining unitigs that can be present in opposite orientations in the input dataset, by reverse-complementing one of them.

2.6 Coloring

Computing the colors for each \(k \)-mer of a de Bruijn graph has two main challenges: (i) tracking all colors that belong to each \(k \)-mer, and (ii) storing the colors in a storage- and time-efficient manner.

To solve these two challenges, we propose a method partially inspired by the way BiFrost handles the colors, but with numerous improvements that allow for a smaller representation and a faster computation. The main novel idea is to merge color information for \(k \)-mers that share the same set of colors, while avoiding costly comparisons of the entire sets for each \(k \)-mer. To do that, for each \(k \)-mer, a normalized list \(C \) of colors is obtained, by tracking the source of each \(k \)-mer, saving all the colors in a possible redundant way (for example if the \(k \)-mer appears multiple times in a reference sequence), and then sorting and deduplicating them. From \(C \), a 128-bit strong hash \(h \) is generated, and is checked against a global hashmap that maps \(h \) to a color subset index. If a match is not found, then the list \(L \) is written to the colormap, and a new incremental subset index for \(L \) is generated. Otherwise, it means that the color set already appeared in a previously processed \(k \)-mer, so the subset index of that color set is returned. Finally, the \(k \)-mer in the graph is labeled with its corresponding subset index, which, as discussed above, uniquely identifies a color subset. Overall, this allows a better compression, since each subset is encoded only once and not for every \(k \)-mer that belongs to it.

To optimize the disk space of the color map, this is encoded using a run-length compression scheme on the differences of the sorted colors of the subset, then it is divided into chunks for faster access and compressed, again with a run of the lz4 algorithm.

2.7 Sequence querying

Similarly to BiFrost [11], GGCAT also supports querying the produced colored graph against input sequence queries. More precisely, for every query sequence, in the uncolored case we need to return the number (equivalently, percentage) of \(k \)-mers of the sequence that also appear in the entire target graph. In the colored case, for every color \(c \), we need to return the number of \(k \)-mers of the query sequence matching \(k \)-mers of the graph that are colored with \(c \). In practice, we need to query many input sequences at the same time (e.g., a fasta file).

We perform this by dividing unitigs of the input graph and the queries in buckets, using an approach similar to the reads splitting step of the build algorithm. Then, independently for each bucket, a \(k \)-mer counting is done to find the number of \(k \)-mers that match for each query. Finally all the counters from different buckets are summed up to find for each query the number of \(k \)-mers that are present in the input graph. This allows also the partial matching of queries, since the output is the exact number of \(k \)-mer matches for each input sequence, and a percentage of required matching \(k \)-mers can be put as threshold to report a query as present. Similarly to BiFrost, for the uncolored case, we return in output a .csv file with a line for each input query, containing the number and percentage of matched \(k \)-mers. For the colored case, we opted instead for a .jsonl file with a line for each query, containing the number (if positive) of \(k \)-mer matches for each color \(c \) of the graph.
Table 1: Uncolored construction, wall clock time and memory usage (12 threads on the small server).

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>Cuttlefish 2</th>
<th>GGCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>27</td>
<td>1h:15m (3.95GB)</td>
<td>1h:16m (4.54GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>2h:07m (4.23GB)</td>
<td>1h:03m (7.11GB)</td>
</tr>
<tr>
<td>Gut microbiome</td>
<td>27</td>
<td>0h:30m (3.35GB)</td>
<td>0h:22m (6.09GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>1h:08m (3.86GB)</td>
<td>0h:19m (5.42GB)</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>1h:04m (3.13GB)</td>
<td>0h:12m (5.33GB)</td>
</tr>
<tr>
<td>Salmonella archive (309K)</td>
<td>27</td>
<td>6h:59m (4.38GB)</td>
<td>3h:38m (3.46GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>12h:02m (3.88GB)</td>
<td>3h:31m (3.96GB)</td>
</tr>
<tr>
<td></td>
<td>119</td>
<td>17h:07m (3.95GB)</td>
<td>3h:39m (4.12GB)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>77h:58m (4.82GB)</td>
<td>3h:44m (4.33GB)</td>
</tr>
</tbody>
</table>

3 Experiments

Datasets and hardware. For the uncolored case, we use the following datasets: Illumina WGS 2X250bp sequencing reads of a human genome, from the GIAB project (accession number HG004)5; Human gut microbiome reads from project PRJEB3309820; 309K salmonella genome sequences downloaded from the EnteroBase database35, gzipped6. For the colored case, we used only 100K Salmonella sequences from the above dataset to save computational resources. We also used 100 Human genomes generated by23 using data from the 1000 Genomes Project32. For the first two datasets (read) we use an abundance threshold of 2, and for the last two (references) we use an abundance threshold of 1.

We ran the experiments on three servers of increasing power: a small server with an AMD Ryzen 5 3600 (6 cores, 12 threads), 64GB DDR4 RAM and a RAID 0 7200RPM HDD; a medium server with an AMD Ryzen Threadripper PRO 3975WX (32 cores, 64 threads), 512GB DDR4 RAM and a RAID 5 7200RPM HDD; a large server with two AMD EPYC 7H12 64-Core Processor (128 cores, 256 threads), 2TB RAM (3200MT/s) and a SATA SSD.

Tools. To compute compacted de Bruijn graphs, we chose to compare only against Cuttlefish 2, since the article introducing it13 showed that it significantly outperforms popular tools such as BCALM27 and BiFrost11 (in its non-colored variant). To compute colored de Bruijn graphs, we chose to compare only against BiFrost, since the article introducing it11 showed that it significantly outperforms popular tools such as VARI-merge22. We decided to not compare against Cuttlefish 114 for colored graphs because it adopts a different convention for colors (each unitig can have only one subset of colors) and does not support querying the resulting graph. We run all tools in their default settings (see Appendix3 for the commands used). For a sanity check, we checked that for GGCAT the maximal canonical unitigs are exactly equivalent to the ones produced by BCALM2, for the uncolored graphs produced using 1K Salmonella genomes, and using the Human read dataset.

For $k \leq 64$ GGCAT represents k-mers exactly. To support also values larger than 64, GGCAT uses a non-bijective 128-bit Rabin-Karp hash function to represent each k-mer (where each of of the four bases is represented by different prime number), to avoid storing it in full length. In extremely rare cases, it can lead to some collisions in hash values, that can cause unwanted joining of some unitigs or extra splittings of a maximal unitig. The tool can detect (but not correct) most of the collisions, warning the user if some errors can be expected in the graph. In all the tested datasets with $k > 64$, we found no occurrence of a hash collision.

5https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/sequence.index.AJtrio_\textline
6Downloaded by us in February 2022.
Table 2: Colored construction, wall clock time and memory usage, using 16 threads. The Human benchmark was executed on the large server and the Salmonella benchmark on the medium server.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>k</th>
<th>BiFrost colored</th>
<th>GGCAT colored</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Human genomes</td>
<td>27</td>
<td>6h:39m (30.68GB)</td>
<td>1h:17m (8.29GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>5h:16m (38.65GB)</td>
<td>1h:08m (8.80GB)</td>
</tr>
<tr>
<td>Salmonella archive (100K)</td>
<td>27</td>
<td>47h:21m (81.29GB)</td>
<td>3h:46m (6.76GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>> 2 days</td>
<td>1h:59m (6.65GB)</td>
</tr>
</tbody>
</table>

Table 3: Querying in the colored graph of 100 Human genomes, wall clock time and memory usage, using 16 threads.

<table>
<thead>
<tr>
<th>Query</th>
<th>k</th>
<th>BiFrost</th>
<th>GGCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 million reads</td>
<td>27</td>
<td>33h:14m (30.72GB)</td>
<td>4m:05s (17.48GB)</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>5h:26m (35.21GB)</td>
<td>3m:54s (11.10GB)</td>
</tr>
</tbody>
</table>

Construction. For the uncolored case, for the Human dataset, we run two realistic values of k, 27 and 63. On the other two larger datasets, we can test the behavior for larger k values, where the graphs still remain complex: for the gut microbiome dataset, $k = 119$, and for the Salmonella archive, $k \in \{119, 255\}$. We show the results in Table 1.

For Human and $k = 27$, GGCAT has a similar performance as Cuttlefish 2. However, for larger k values, and on the other two larger datasets, GGCAT outperforms Cuttlefish 2 in terms of speed by up to $3.4\times$, for $k \leq 63$. The main speed improvements come from our read splitting strategy, which proves most useful for larger k values. For larger k values (119 and 255), GGCAT is faster than Cuttlefish 2 by up to $20.8\times$. (Notice also that, as opposed to GGCAT, Cuttlefish 2 does not support k larger than 255.) Despite this, in all cases GGCAT has an overall memory usage in the same order of magnitude as Cuttlefish 2.

We also tested the scalability of GGCAT by computing the uncolored graph of an increasing number of Salmonella genomes. This shows a linear relation between the number of genomes and running time (Appendix A).

The colored construction results are in Table 2. Compared to BiFrost, in the first dataset GGCAT is 5.1 times faster for $k = 27$ and 4.6 times faster for $k = 63$. For the Salmonella genomes, for $k = 27$, GGCAT is 12.6 times faster than BiFrost, and for $k = 63$ GGCAT completed in under 2 hours, while BiFrost required more than 2 days. The memory used by GGCAT in the colored construction tests is from 3.7 to 12 times less than BiFrost, but this is not directly comparable since GGCAT uses disk intermediate storage, while BiFrost uses a full in-memory algorithm.

Colored querying. To test querying, we used the 100 Human colored graphs for $k \in \{27, 63\}$ produced in the previous test, and queried them using 4 million 250bp sequencing reads from the first Human dataset of raw reads. Results (in Table 3) show that GGCAT outperformed BiFrost by 83.6 times for $k = 63$, while for $k = 27$ GGCAT was more than 480 times faster than BiFrost. This significant improvement is due to the fact that we implement querying as a natural extension of the unitig construction step, benefiting thus from all its optimizations.

4 Conclusion

GGCAT offers a highly optimized implementation for de Bruijn graph construction, based on a new approach of merging k-mer counting with unitig construction, a new strategy of joining partial unitig across buckets (avoiding e.g. a union-find data structure), and storing k-mer colors as color set indices in a table of compressed color sets. Batch sequence querying can be naturally implemented as an extension of the construction step, and thus benefit from its highly optimized architecture. Overall, this leads to a several
times improvement over Cuttlefish 2 (and even bigger for larger k values), and a two orders of magnitude improvement over BiFrost for colored construction and querying.

References

A Supplementary results

Figure 5: GGCAT running time with an increasing amount of Salmonella genomes, $k = 63$, using 12 threads, on the small server.

B Commands used

Here we list all the command templates used to benchmark the tools.

B.1 Uncolored building

Cuttlefish 2 for sequencing reads
./cuttlefish build --read -l <INPUT_FILES_LIST> -k <KVALUE> -c <MULTIPLICITY> -t <THREADS> -o <OUTPUT_FILE> -w <TEMP_DIR>

Cuttlefish 2 for reference genomes
./cuttlefish build --ref -l <INPUT_FILES_LIST> -k <KVALUE> -c <MULTIPLICITY> -t <THREADS> -o <OUTPUT_FILE> -w <TEMP_DIR>

GGCAT for both reads and reference genomes
./ggcat build -k <KVALUE> -j <THREADS> -s <MULTIPLICITY> -l <INPUT_FILES_LIST> -t <TEMP_DIR> -o <OUTPUT_FILE>

B.2 Colored building

Bifrost
./Bifrost build -k <KVALUE> -t <THREADS> <INPUT_FILES_LIST> -o <OUTPUT_FILE> --verbose -c

GGCAT
./ggcat build -k <KVALUE> -j <THREADS> -s <MULTIPLICITY> -l <INPUT_FILES_LIST> -t <TEMP_DIR> -o <OUTPUT_FILE> --colors

B.3 Colored querying

Bifrost
./Bifrost query -k <KVALUE> -t <THREADS> -g <INPUT_GRAPH> -q <INPUT_QUERY> -o <OUTPUT_FILE> --verbose

GGCAT
./ggcat query -k <KVALUE> -j <THREADS> <INPUT_GRAPH> <INPUT_QUERY> -t <TEMP_DIR> -o <OUTPUT_FILE> --colors