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Abstract 11 
 12 
Somatic mutations in human have a heterogeneous genomic distribution, with increased 13 
numbers of mutations in late-replication time (RT), heterochromatic domains of chromosomes. 14 
While this regional mutation rate density (RMD) landscape is known to vary between tissues 15 
and due to deficiencies in DNA repair, we asked whether it varies between individual tumors 16 
and what would be the mechanisms underlying such variation. Here, we identified 13 RMD 17 
signatures that describe mutation redistribution across megabase-scale domains in ~4200 18 
tumors. Of those, 10 RMD signatures corresponded to groupings or subdivisions of cancerous 19 
tissues and cell types. We further identified 3 global RMD signatures of somatic mutation 20 
landscapes that transcended cancer types.  One is a known general loss of RMD variation, 21 
previously associated with DNA mismatch repair failures, and was here additionally linked with 22 
homologous recombination (HR) repair deficiencies.  Next, we identified a global RMD signature 23 
affecting facultative heterochromatin domains.  This RMD signature strongly reflects regional 24 
variation in DNA replication time and in heterochromatin across state tumor samples, and is 25 
associated with altered cell cycle control.  Finally we identified a global RMD signature 26 
associated with TP53 loss-of-function, mainly affecting the very late RT regions. The local 27 
mutation rates in 26%-75% of cancer genes are notably changed in the tumors affected by 28 
these three global RMD signatures of mutation redistribution. Our study highlights how the 29 
plasticity of chromatin states and the RT program in cancers bears upon the regional somatic 30 
mutation rate landscape, and the downstream consequences on mutation supply to disease 31 
genes. 32 
 33 
 34 

Introduction 35 
 36 
During cancer evolution, somatic cells accumulate a number of mutations, most of them non-37 
selected “passengers”. These somatic mutations are caused by different mutagenic processes, 38 
many of which generate higher mutation rates in late DNA replication time (RT), inactive, 39 
heterochromatic DNA. This is likely due to higher activity and/or accuracy of DNA repair in early-40 
replicating, active chromosomal domains 1,2.  41 
 42 
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These chromosomal segments are defined roughly at the megabase scale, and tend to 43 
correspond to topologically associating domains (TADs) and RT domains 3–5. Regional mutation 44 
density (RMD) of mutations in megabase-sized domains in the human genome correlates with 45 
domain RT, local gene expression levels, chromatin accessibility (as DNAse hypersensitive 46 
sites (DHS)), density of inactive histone marks such as H3K9me3 and inversely with density of 47 
active marks such as H3K4me3 1,6–8. The RMD signatures have been shown to be tissue-48 
specific, and can be used to predict cancer type, and potentially subtype at high accuracy 9,10. 49 
The tissue-specificity of RMD is paralleled in the tissue-specificity of active or inactive domains.  50 
For instance, the domain that switches from late-RT to early-RT, or where genes increase in 51 
expression levels, or that gets more accessible chromatin in a particular tissue, also exhibits a 52 
reduced rate of somatic mutations in that tissue 1,6; this property may help identify the cell-of-53 
origin of some cancers 11. 54 
 55 
Apart from variation in active chromatin and gene expressions between tissues, recent work 56 
suggests existence of gene expression programs that are variably active between tumors 57 
originating from the same tissue (and also between individual cells), but are recurrently seen 58 
across many different tissues 12,13.  Such programs may conceivably drive, or be driven by 59 
chromatin remodeling that activates or silences chromosomal domains. Indeed, chromatin 60 
remodeling was widely reported to occur during tumor evolution, and this can manifest as 61 
changes in RT between normal and cancerous cells, loss of DNA methylation in some 62 
chromosomal domains with cell cycling, as well as a generalized loss of heterochromatin upon 63 
transformation 14–18. These changes in RT, DNA methylation and heterochromatin occuring in 64 
cancer cells may plausibly affect chromosomal stability, given the links of various DNA damage 65 
and repair processes and chromatin organization 1,2,16,19–21. 66 
 67 
Here, we hypothesized that chromatin remodeling that occurs variably between tumors may 68 
generate inter-individual variation in regional mutation rates, beyond the tissue identity or cell-of-69 
origin identity effects on mutagenesis.  70 
 71 
We study the RMD profiles at the megabase scale of somatic mutations from tumor whole-72 
genome sequences, modeling this mutational portrait as a mixture of several underlying regional 73 
distributions, which may correspond to different mechanisms that produce or prevent mutations 74 
preferentially in some genomic domains. To disentangle these distributions, we apply an 75 
unsupervised factorization approach and extract RMD signatures from ~4200 whole genome 76 
sequenced human tumors. Some of these RMD signatures represent the expected differences 77 
between tissues/cell types, or they may represent consequences of common DNA repair 78 
failures. However others are novel and are associated with RT variation and with chromatin 79 
remodeling upon cell cycle disturbances. We characterize the differences between individuals in 80 
the usage of these different RMD distributions of mutations, suggesting that the chromatin 81 
remodeling RMD signatures are ubiquitous amongst human cancers. They reflect wide-spread 82 
mutation redistribution across domains and affect mutation supply to regions harboring cancer 83 
genes. 84 
 85 
 86 
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Results 87 
 88 
Inter-individual variability in megabase-scale regional mutation density in human tumors 89 
 90 
We hypothesize that, in addition to the variability between cancer types, the RMD patterns 91 
encompass variability between individuals that is observed across many tissues. To test this, we 92 
performed a global unsupervised analysis of diversity in one-megabase (1 Mb) RMD patterns 93 
across 4221 whole-genome sequenced tumors that had a mutation burden >3 single-nucleotide 94 
variants (SNV) per Mb. To prevent confounding by the variable SNV mutational signatures 95 
across tumors 22 we controlled for trinucleotide composition across the 1 Mb windows 96 
(Methods). We additionally normalized the RMDs at chromosome arm-level to control for 97 
possible confounding of large-scale copy-number alterations (CNA) on mutation rates. Finally 98 
we removed known mutation hotspots (e.g. CTCF binding sites, see Methods), and also exons 99 
of all protein-coding genes to reduce effects of selection.  100 
 101 
To quantify the systematic variability contained within tumor RMD landscapes, we applied a 102 
Principal Component (PC) analysis  on the RMD profiles across all tumor samples (n=4221). 103 
Expectedly, most of the 22 relevant PCs (those with a % of variance explained higher than a 104 
random baseline (Fig 1a)), separated different tissues (Fig 1b, Fig S1a). However, we found 105 
some PCs that captured variability between individuals but not between the known tissue-of-106 
origin of tumors (Fig S1a). Serving as a positive control, the PC1 separated the canonical RMD 107 
landscape with increased mutation rates in late-replicating DNA versus the known “flat” 108 
landscape of tumors with failed DNA mismatch repair (MMR) 1 (Fig 1c). Next, we observed that 109 
PC7 separates lymphoid tumors with higher somatic hypermutation (SHM) activity (Fig 1c), 110 
using the exposure of mutational signature SBS9 as a proxy for prior activity of SHM in that 111 
lymphoma sample 22. Reassuringly, we observed that the PC7 1 Mb window weights are 112 
strongest in known SHM regions containing antibody genes (Fig 1d). In summary, our RMD 113 
features were able to capture two known examples of regional redistribution of mutations: one 114 
affects specific sites (SHM regions in B-lymphocytes) and the other causes a global ‘flattening’ 115 
of mutation rate landscape along the genome in MMR-deficient samples, supporting the utility of 116 
our RMD profiling method. 117 
 118 
Next, we asked if clustering the tumor samples by their RMD feature vectors would reveal, in 119 
addition to an expected grouping by tissue, also other sources of inter-individual variability in 120 
RMD (Fig 1e). For clustering, we selected first 22 RMD PCs based on the amount of variance 121 
explained (Fig 1a), based on the PC window weights’ autocorrelation with neighboring windows 122 
(Fig S1b) indicating a nonrandom organization of the RMD pattern along the chromosomes; and 123 
based on additional criteria (Fig S1c-d). This revealed there exist 3 different types of clusters. 124 
On the one extreme, for example the RMD_cluster2 contained samples from almost all cancer 125 
types, and was very enriched with MSI (MMR-deficient) samples. On the other extreme, there 126 
were tissue-specific clusters that contained only a single cancer type (e.g. the liver 127 
RMD_cluster8) (Fig 1e). Interestingly, there was also the third, intermediate case with clusters 128 
that spanned several, apparently similar cancer types (e.g. RMD_cluster3 with various digestive 129 
tract cancers, or the squamous-like RMD_cluster11, with head-and-neck cancers, the non-130 
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melanoma skin cancers and some esophagus and lung cancers) (Fig 1e). Therefore, there is 131 
information in the RMD feature vector that can transcend the tissue-of-origin, in this case uniting 132 
similar tissues or cell types. 133 
 134 
In addition to RMDs bridging cancer types, conversely RMD profiles can be used to subdivide 135 
some cancer types such as breast cancer. Breast cancers in RMD_cluster2 have high APOBEC 136 
mutagenesis (Fig 1f), thus sharing cluster with MSI samples; APOBEC mutagenesis has been 137 
reported to change the regional mutational landscape by preferring early replicating regions 23,24. 138 
similarly as in MSI tumors 1. Furthermore, most breast cancer samples in RMD_cluster6 139 
(ovarian-like), which have visually distinct RMD profiles from the typical breast-like 140 
RMD_cluster9 (Fig 1f-g), are from the triple negative breast subtype, which was reported to be 141 
more similar to ovarian cancer by gene expression 25. Another example of how RMD profiles 142 
can be used for subtyping is the head-and-neck cancer, which is split into RMD_cluster11 143 
(squamous-like, includes non-melanoma skin cancers) and RMD_cluster13 (also contains some 144 
lung cancers) (Fig 1h).  145 
 146 
Overall, even though the RMD profiles are tissue specific, there is systematic RMD variability in 147 
certain tumor genomes observed apparently independently of the tissue. This motivated us to 148 
devise a method that is able to extract this inter-individual variability from genomic RMD profiles, 149 
while robustly accounting for the strong tissue-specific signal in RMD. 150 
 151 
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152 
 153 
Figure 1. Chromosomal domain RMD variability across tissues and individuals. a) Variance154 
explained for the first 25 PCs of a PCA on the RMD matrix (4221 samples x 2542 one-megabase155 
windows), and a baseline (by the broken stick rule). b) PC3 and 4 separate various cancer types. c) As156 
controls, the PC1 separates MSI versus MSS tumors, and PC7 separates lymphoid samples according to157 
their level of the SHM mutational signature (SBS9). d) PC7 window weights for chromosome 22 agree158 
with the known SHM region. e) Number of tumor samples from each cancer type that are assigned to159 
each RMD-based cluster (Methods). f) Cluster assignment for breast cancer samples of triple negative160 
(TN) subtype and samples with high APOBEC (>25% of mutations are in APOBEC contexts) g) Mean161 
RMD profiles for breast cancer samples in cluster 6 (n = 76) and cluster 9 (n= 211), shown for chr 1q. h)162 
Mean RMD profiles for head and neck squamous samples in cluster 11 (n = 81) and cluster 13 (n= 41),163 
for chr 1p.  164 
 165 
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A methodology to detect inter-individual variation in regional mutation density  166 
 167 
To separate the inter-individual RMD variability from the tissue-specific variability we applied a 168 
methodology analogous to that recently used for extracting trinucleotide SNV mutational 169 
signatures 22,26,27 however here applied to megabase-sized domains. In brief, non-negative 170 
matrix factorization (NMF) is repeatedly applied to bootstrapped mutational data, to find 171 
solutions (sets of factors) that are consistent across bootstrap runs. These solutions contain 172 
multiple RMD signatures (factors), each with RMD window weights (all 1 Mb windows with 173 
varying contributions) and RMD sample ‘exposures’ or activities (the weight of each tumor for 174 
that signature).  175 
 176 
To test whether our NMF method is sufficiently powered to capture RMD inter-individual 177 
variability, we simulated cancer genomes containing known, ground-truth patterns of RMD that 178 
affected a variable number of windows, being present in variable number of tumor samples, and 179 
at variable intensity (fold-increase over canonical mutation rates) (Fig S2a, see detailed 180 
description in Methods). We ran our NMF methodology for these different scenarios 181 
independently. We selected the number of factors and clusters based on a clustering quality 182 
measure, the silhouette index (SI), over multiple runs of NMF (Fig S2b) and matching the known 183 
ground-truth signatures (Methods, Fig S3). We show an example of an extracted RMD signature 184 
compared to its  matching ground-truth signature in Fig 2a.  185 
 186 
By comparing the different scenarios (Fig S4), encouragingly, we observed that even with a 187 
small fraction of samples affected (5%), the ground-truth RMD signatures can be identified 188 
reliably, as long as the contribution of the RMD signature to the total mutation burden is high 189 
(>=20%). In addition, we observed that the NMF setup is very robust to the number of windows 190 
affected and is usually able to recover RMD signatures that affect as little as 10% of all 191 
windows. Out of other characteristics that may affect power to recover RMD signatures, we 192 
identified the signature strength/exposure (fold-enrichment) as showing the highest effect, thus 193 
the signatures with subtle effects on RMD might not be recovered (Fig S4). In summary, our 194 
simulations support that our NMF-based methodology can recover the genome-wide RMD 195 
signatures in a wide variety of tested scenarios. 196 
 197 
 198 
Three prevalent patterns of megabase-scale mutation rate variation observed across 199 
most somatic tissues 200 
 201 
We applied the NMF methodology to the somatic RMD profiles of 4221 tumor WGS, here 202 
requiring a minimum of 3 mutations/Mb per sample thus restricting to tumors with less noisy 203 
RMD profile (as a limitation, we note that this may exclude samples from some cancer types 204 
preferentially). In total, we extracted a total of 13 RMD signatures based on the silhouette index 205 
that scores the reproducibility of solutions upon 100 bootstraps (Fig 2bc, Fig S5). 206 
 207 
In accordance with the above RMD clustering analysis (Fig. 1e), we observed that the RMD 208 
signatures from NMF span a continuum from very tissue specific (high Gini index, Fig 2c), to 209 
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global signatures (low Gini index). We named ten signatures according to the tissue or tissues 210 
they affect (e.g. RMD_upper-GI, RMD_liver), while the three global signatures that  affect many 211 
cancer types were named RMDglobal1, RMDglobal2 and RMDflat (Fig 2c, Fig S5) (the latter is 212 
named by the visually recognizable pattern, and also has in part known mechanisms; see 213 
below). 214 
 215 
In one extreme, there are tissue-specific signatures (e.g. RMD_skin, RMD_liver) which capture 216 
the genomic regions with an increase of mutations only in that particular cancer type (e.g. skin 217 
in RMD_skin, or liver and some biliary and some kidney cancers in RMD_liver) (Fig 2c, Fig S5). 218 
Windows in these RMD signatures could be used to improve cancer-type classification of 219 
tumors based on regional mutation density from WGS data 9. 220 
 221 
Between the two extremes, there are signatures present in several cancer types which are 222 
apparently similar (Fig 2c, Fig S5). For instance, RMD_upper-GI signature is present in most 223 
esophagus, stomach, pancreas and biliary tumor samples, and some intestine tumors. The 224 
RMD_lower-GI, in turn, contains mainly the colorectal and most of the intestinal tumors, broadly 225 
consistent with the subdivision by developmental origin into the foregut (RMD_upper-GI) and 226 
the midgut/hindgut (RMD_lower-GI; Fig 2c). The RMD_squamous signature spans some 227 
squamous lung cancers, head-and-neck cancers, some bladder cancers (consistent with reports 228 
based on gene expression data 28, also expectedly some cervical and esophageal tumors, and 229 
surprisingly some sarcomas and uterus cancers. Interestingly, one signature, provisionally 230 
named “RMD_B.O.P.S.”, spans brain (B), ovarian (O), prostate (P), sarcomas (S), and uterus 231 
cancers and so probably reflects a convergent phenotype rather than a common cell-of-origin. 232 
These examples suggest that there are commonalities in mutation rates, probably reflecting 233 
chromatin organization in the cell-of-origin of tumor types. These commonalities usually reflect 234 
anatomical subdivisions or cell type similarity, and shape the RMD profiles of those samples. 235 
Our RMD signatures support the proposed uses of RMD profiles for elucidating cell-of-origin 236 
and cancer development trajectories (e.g. metaplasia and/or invasion) 11 by matching to 237 
chromatin profiles. 238 
 239 
In the other extreme, we identified 3 global RMD signatures, which capture the inter-individual 240 
RMD variability within most cancer types (Fig 2c, Fig S5). While the profile of RMDflat captures 241 
the known “flat” RMD landscape (i.e. a low variation in mutation rates between segments) profile 242 
associated with MMR and NER failures 1,2, RMDglobal1 and RMDglobal2 profiles have an 243 
apparently complex pattern with their peaks appearing distributed throughout the chromosomes. 244 
We can rule out that RMDglobal1 and 2 are due to random noise, because (a) the silhouette 245 
index of RMDglobal1 and 2 (measuring robustness of their profile to noise that is introduced in 246 
repeated NMF runs) is comparable to the other RMD signatures, and (b) the autocorrelation of 247 
their profiles (measuring similarity in weights of consecutive 1 Mb windows) is comparable to the 248 
other, tissue-associated RMD signatures (Fig S6a-b). 249 
 250 
In addition to the pan-cancer analysis, we ran NMF for each cancer type independently, for the 251 
12 cancer types with more than 100 genomes meeting criteria (Fig S7). All three global 252 
signatures can be found also in the per-cancer-type NMF runs (Fig S8). We found signatures in 253 
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breast, lung and esophagus with a cosine similarity > 0.84 with RMDglobal1, and in colon,254 
uterus and breast with a cosine similarity > 0.89 with RMDglobal2, supporting that the global255 
RMD signatures capture inter-individual RMD variation recurrently observed in various  somatic256 
tissues. 257 
 258 

259 
Figure 2. Identifying RMD signatures by an application of a NMF-based methodology to WGS of260 
human tumors. a) Example signature from a simulation study, comparing window weights for an261 
extracted NMF signature and its matching simulated ground-truth signature along chr 1p. See262 
Supplementary Figs 2-4 for additional simulation data. b) NMF run on data from 4221 human tumors.263 
Minimum silhouette index (SI) across clusters (RMD signatures) for different numbers of NMF factors and264 
clusters. Selected case (nFactor=13, nCluster=13) is marked with a cross. c) Overview of the 13 RMD265 
signatures extracted (rows) and their distribution across different cancer types (columns). The circle size266 
and, equivalently, color corresponds to the fraction of samples from a specific cancer type exhibiting a267 
specific signature (signature exposure >= 0.177). Total number of samples per cancer type written268 
beneath table. The Gini index quantifies the distribution of the signature across different cancer types;269 
higher index means more specificity to few cancer types. 270 
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 271 
Homologous recombination-deficient tumors show lower regional mutation rate 272 
variability 273 
 274 
The RMDflat global signature we extracted from the NMF analysis captures the ‘flat’ distribution 275 
of mutations that was reported for MSI tumors, which are deficient in MMR 1. The window 276 
weights of RMDflat correlated with the average RT (Fig 3a), opposite of the  canonical RMD 277 
landscape (which has few mutations in early-replicating DNA), thus the additive combination of 278 
the two results in a flat, low-variation landscape.  279 
 280 
As expected, MSI samples showed high exposures to this RMD signature (Fig 3b), as well as 281 
bladder samples with mutations in the ERCC2 gene, participating in the NER pathway (Fig 3b), 282 
consistent with previous reports 1,29. In addition, we observed that tumor samples with high 283 
APOBEC signature mutagenesis also showed high exposures to the RMDflat signature (Fig 3b), 284 
solidifying prior reports of APOBEC mechanisms being enriched in early-replicating DNA, 285 
possibly via their association with DNA repair activity providing ssDNA substrate for APOBECs 286 
23,24,30.   287 
 288 
Based on these known associations involving MMR, NER, and APOBEC activity, we 289 
hypothesized that some of the remaining unexplained cases of RMDflat-high tumors (total 52% 290 
were explained) may be associated with deficiencies in another DNA repair pathway. In 291 
particular, we considered homologous recombination (HR) repair deficient samples, as 292 
ascertained by the CHORD method based on SNV and CNA (but not RMD) mutational 293 
signatures 31 The HR deficient samples also presented higher RMDflat exposures, both for 294 
BRCA1 and BRCA2 subtypes (Fig 3b). When HR is deficient, there is an increase in the 295 
spectrum of the trinucleotide mutational signature SBS3 22,31 may result from activity of error-296 
prone DNA polymerases 32. We observed that in HR-deficient tumor samples, the SBS3-like 297 
mutational spectrum [mutation types with high weights in SBS3, such as C>G mutations] 298 
accumulate more in early replicating DNA (i.e. opposite to canonical RMD pattern) (Fig S9), 299 
thus contributing to the “flatness” of the RMD landscape.  300 
 301 
Thus various DNA repair related mechanisms converge onto the RMDflat phenotype, with 302 
considerable variation in prevalence depending on the tissue: in colorectal tumors the main 303 
mechanism is the MMR deficiency, while in ovary and pancreas it is the HR deficiency, and 304 
APOBEC mutagenesis is the main mechanism in bladder and lung (Fig 3c).  305 
 306 
For the final 28% of RMDflat tumor samples that are unexplained, we suggest this is unlikely to 307 
be due to false negatives in the  MMR or HR deficiency tests, since these tumors had, on 308 
average, an indel spectrum (in microsatellite loci and elsewhere) not obviously different from the 309 
general indel spectrum of same cancer types (Fig S10). Thus we suggest there are other 310 
mechanism(s) involved, for instance in kidney cancer there were many unexplained RMDflat 311 
signature samples, however this cancer type very rarely has known MMR, HR deficiencies or 312 
APOBEC mutagenesis; a possible explanation is a particular mutational process in kidney 33 313 
that may evades DNA repair mechanisms operative in early-RT domains.  314 
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 315 
Mutation supply towards major cancer genes is altered by global RMD signatures 316 
 317 
Tumors with RMDflat undergo an increase in mutation rates in early replicating, euchromatic 318 
regions23,34. These regions also have a higher gene density, so we quantified how RMDflat 319 
affects the mutation supply to cancer driver genes. In particular, we tested whether there is a 320 
difference in mutation density in cancer genes (considering intronic mutations, to avoid effects 321 
of selection, and further normalizing to the mutation burden of that chromosome arm to avoid 322 
effects of gross CNA; Methods) , between tumor samples with a high RMDflat exposure (top 323 
tertile) versus low RMDflat exposure tumors (bottom tertile). 75% of the 460 tested cancer 324 
genes 35 undergo an increase in mutation supply from RMDflat-low to RMDflat-high tumors, 325 
when compared to the 95th percentile of a randomized distribution (Fig 3d). Conversely, few 326 
cancer genes decreased in mutation supply in RMDflat-high tumors (9% are below the 5th 327 
percentile of the random distribution). We considered the mutation supply density for 5 328 
examples of common driver genes, for which mutation supply is increased 1.8-2.5 fold between 329 
RMDflat-high and RMDflat-low tumors (Fig 3e). Considering for instance the ARID1A tumor 330 
suppressor gene, located in a lowly-mutated region in chromosome 1p, its mutation supply 331 
increased 1.8-fold, 2.1-fold and 2.4-fold in MSI, HRD and APOBEC tumors (all RMDflat-high), 332 
respectively, compared to the ARID1A baseline mutation supply in tumors without DNA repair 333 
deficiencies (Fig 3f). Similarly, the BRAF oncogene (where causal mutations are known to be 334 
highly enriched in MSI compared to MSS colorectal tumors 36) has considerably increased 335 
mutation supply in the RMDflat-high tumors (Fig 3f).  336 
 337 
In summary, we detected the three known mechanisms that cause RMDflat (APOBEC 338 
mutagenesis, MMR and ERCC2 deficiency) and we found an additional cause (HR deficiency) 339 
of this phenotype (Fig 3d). The consequence for tumors with RMDflat is an increase in the 340 
mutation supply for three-quarters of all cancer genes. 341 
 342 
 343 
 344 
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345 
 346 
Figure 3. Characterization of the RMDflat RMD signature, which represents a loss of mutation rate347 
heterogeneity. a) Correlation between RMDflat signature NMF window weights and the DNA replication348 
timing (RT) (Repli-Seq average across 10 cell lines). b) RMDflat signature exposures (i.e. activities) for349 
groups of tumor samples with various DNA repair failures (MSI, microsatellite instable, indiciating MMR350 
failure; HRD, deficient homologous recombination, by the BRCA1 type or BRCA2 type 31 or not otherwise351 
specified), or high levels of APOBEC mutation signatures. c) Percentage of tumor samples with ‘flat’352 
mutation rate landscapes (RMDflat exposure>0.177, a threshold that recovers 95% of MSI samples)353 
belonging to each of the DNA repair categories, stratified by cancer type. The percentage of ‘flat’ samples354 
in each cancer type is indicated in x-axis labels. d) Schematic of the mutation supply analysis in panels e-355 
g. e) Distribution of the log2 difference in the relative mutation density (intronic) for 460 cancer genes,356 
comparing between RMDflat high tumors and RMDflat low tumors, using the actual values (“RMDflat”357 
histogram) and randomized values (“RMDflat randomized” histogram).  f) Log2 relative mutation density358 
(normalized to flanking DNA in same chromosome arm, see panel d) for RMDflat-high versus RMDflat-359 
low for 5 example genes (common drivers across >=4 cancer types and with highest effect sizes in this360 
test) . Each dot is a cancer type. g) Mean RMD profile across the DNA repair groups, shown examples for361 
chr 1p and chr 7q. Vertical lines mark the position for three example genes from panel f.   362 
 363 
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RMDglobal1 signature increases mutation rate in regions with variable replication timing  365 
 366 
We were interested in the mechanism behind the RMDglobal1 signature. To elucidate this, we 367 
first tried to predict RMDglobal1 signature (the megabase window weights) from epigenomic 368 
features previously reported to associate with megabase mutation rates (reviewed in 34): 369 
replication timing (RT), density of accessible chromatin (DNAse hypersensitive sites, DHS) and 370 
ChipSeq data from a variety of histone marks (Fig 4a). We first tried to predict the chromosome-371 
wide profile of the RMDglobal1 signature using the average of each feature across many 372 
epigenomic datasets, which failed to predict (Fig 4a). Predicting RMDglobal1 from each 373 
RT/DHS/ChipSeq dataset individually fared slightly better, with moderate associations (R2 ~= 374 
0.2) for certain datasets with regional density of facultative heterochromatin (H3K27me3) and 375 
constitutive heterochromatin (H3K9me3) marks (Fig 4a), suggesting a role of heterochromatin 376 
organization in determining RMDglobal1. 377 
 378 
Remarkably, we observed that RMDglobal1 signature can be highly accurately predicted (R2 up 379 
to 0.7) from certain features most prominently RT, DHS, and the two heterochromatin marks 380 
above, however only when predicting using multiple samples jointly (but not when predicting 381 
from the averaged feature across the samples (Fig 4a)). This suggests that RMDgloblal1 382 
signature is explained by the variation between the samples for one feature, e.g. differences 383 
between the individual RT profiles. We observed the same trend using regional density of 384 
chromHMM segmentation states (Fig S11).  385 
 386 
The features that best predicted RMDglobal1 were the three RT datasets (Fig 4a): (i) a 387 
collection of RT profiles from experiments [RepliChip or RepliSeq] in multiple cell types (expRT, 388 
n = 158 samples), (ii) predicted RT in a collection of noncancerous tissues, cultured primary 389 
cells and cell lines including cancer and stem cell lines (predRT, n = 597 samples), and (iii) 390 
predicted RT in human tumors (predRT-TCGA, n = 410 samples, majority measured in technical 391 
duplicate). For the latter two RT datasets, we predicted RT from DHS 37 or ATAC-seq data 38, 392 
respectively, using the Replicon software, which predicts RT profiles from local distributions in 393 
chromatin accessibility at very high accuracy 39 (see Methods).  394 
 395 
Next, we aimed to characterize the variability in RT across individuals that predicts RMDglobal1. 396 
By calculating the difference in window-wise RT for each pair of RT samples, and correlating 397 
this difference with RMDglobal1 window weights (Fig 4b, Fig S12), we observed that often only 398 
two RT profiles can be enough to predict RMDglobal1 using either  expRT (max R=0.47), 399 
predRT (max R=0.49) and predRT-TCGA (max R=0.62). In predRT, the best correlations are 400 
obtained when the difference in RT is when contrasting a pair that consist of one RT from 401 
(noncancerous) intact tissue versus one RT from primary cultured cells (Fig 4b), This suggests 402 
that selection for proliferation-capable stem-like cells when introducing cells into culture may 403 
alter RT, and that this altered RT is reflected in mutation rates in RMDglobal1 (see below for 404 
further discussion). As an illustrative example in a classification analysis using two selected RT 405 
profiles, one from a primary cell culture (ENCFF145RIZ) and one from an intact tissue 406 
(ENCFF315RKI), we observed that while the RT profile of each sample alone does not 407 
accurately identify RMDglobal1-high windows (Fig 4c), the difference in RT of windows between 408 
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these two RT samples can classify the windows with high RMDglobal1 weights from those 409 
windows with low RMDglobal1 weights (AUC = 0.82) (Fig 4d). 410 
 411 
Cell cycling gene expression-associated changes in RT are relevant for RMDglobal1 412 
 413 
To further characterize the source of variability within RT profiles that explains RMDglobal1 414 
signature, we applied a PCA with the predRT-TCGA dataset of RT in TCGA tumors (Fig 4e), 415 
and correlated each RT-PC with the profile of RMDglobal1 signature across megabase 416 
windows. We observed that the strongest PCs, RT-PC3 and RT-PC4 are either tissue-417 
associated, separating breast from kidney and brain tumors, or represent the average RT profile 418 
(RT-PC1, RT-PC2) (Fig S13). However, the RT-PC5 does not have a strong tissue bias but 419 
correlates strongly with RMDglobal1 (R=-0.49) (Fig 4e, Fig S13c). Indeed, when we checked 420 
the RT profiles for the top RT-PC5 positive and RT-PC5 negative tumor samples, we observed 421 
RT differences in the RMDglobal1-relevant windows (Fig S14). The next best correlation was 422 
with RT-PC6 (R=0.35).  423 
 424 
These RT-PCs summarize the global variation in the RT program between tumors of the same 425 
cancer type, and also predict RMDglobal1 global variation in mutation distribution. To interpret 426 
the RT-PCs, we asked how gene expression changed between the TCGA tumor samples with 427 
high values of a RT-PC versus tumors with low values. We considered the RHP gene sets, 428 
representing gene expression programs that are variable in a coordinated manner between 429 
individual cells, and that were recurrently observed across different cancer cell lines 12. 430 
 431 
In particular, RT-PC5 correlates strongly with gene expression of cell cycle genes from the RHP 432 
gene sets 12 (there are two RHP sets of cell cycle genes, the G2/M and G1/S, and both correlate 433 
at p= 9e-40 and 1e-14, respectively) (Fig 4f, Fig S13d), while the other RHP gene sets correlate 434 
less (next strongest is p-value=5e-05) Consistently, also the RT-PC6, which has a more subtle 435 
correlation to RMDglobal1, also correlates with the cell-cycle RHP gene expression programs 436 
(Fig 4f, Fig S13d). This suggests that the RMDglobal1 regional mutability pattern reflects the RT 437 
program alterations associated with variable speed of cell cycling across different tumors. 438 
 439 
To further understand  the biology of the systematic variation in RT captured by the RT-PCs 440 
relevant to mutation rates, we projected the predRT and expRT data into the existing predRT-441 
TCGA PC coordinate system. RT-PC5 separated tissues versus cultured primary cells in 442 
predRT samples (Fig 4g). One possible interpretation is that RT-PC5 captures the effect of 443 
tissue culture conditions on RT profiles, however this is unlikely because there is a considerable 444 
spread within the cultured cells group, which span across the tissue-side of RT-PC5 on the one 445 
extreme of RT-PC5 and cell line side on the other extreme of RT-PC5 (Fig 4g). The other 446 
interpretation is that RT-PC5 captures the RT program of proliferation-capable, stem-like cells, 447 
which are normally a minority in an intact tissue, but are selected during establishment of cell 448 
culture; this is consistent with the above-mentioned cell cycling RHP gene expression program 449 
association with RT-PC5 and RT-PC6 and so we favor this interpretation. Next, the RT-PC5 450 
also separated healthy versus cancerous cells in the expRT samples (considered for blood 451 
cells, where both healthy and tumor was available (Fig 4h)). This suggests that this property 452 
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captured in RT-PC5 is more prominent in cancerous cells than in normal cells, again consistent 453 
with the property being related with cell cycling, which is often unchecked and accelerated in 454 
cancer cells.  455 
 456 
In summary, RT-PC5 separates intact tissue samples or tumors with lower cell cycle gene 457 
expression on one side, and cultured primary cells or tumors with higher cell cycle gene 458 
expression on the other side. This suggests that the windows with high RMDglobal1 weights are 459 
those that undergo changes in RT in more proliferative/stem cell-like samples compared to less 460 
proliferative/differentiated cell-like samples.  461 
 462 
Within a subset of the expRT data, changes in RT were studied previously40, reporting late-to-463 
early (LtoE) and early-to-late (EtoL) RT changes between noncancerous samples 464 
(lymphoblastoid cell lines) and cancers (leukemias and cell lines). Interestingly, their pre-465 
calculated ratio of LtoE/EtoL strongly correlate with our RT-PC6 (R=-0.72) and RT-PC5 466 
(R=0.63) (Fig 4i), adding evidence that RMDglobal1 is linked to the genome-wide changes in 467 
RT that occur during cancerous transformation.  468 
 469 
As a validation, we saw the same trends when we performed the PCA in predRT initially (i.e. 470 
using a mix of tissues and cell types, rather than only tumors in predRT-TCGA), and then 471 
projected the expRT into it (Fig S15). Of note, the expRT-PC that reflects developmental 472 
changes as reported earlier 41 does not correlate with RMDglobal1 (Fig S16), meaning that 473 
RMDglobal1 mutagenesis pattern does not relate to embryonal-characteristic  patterns of RT. 474 
 475 
 476 
 477 
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478 
 479 
Figure 4. RMDglobal1 signature is linked to regional variability in replication timing. a) Adjusted R2480 
of a regression predicting RMDglobal1 window weights from various epigenomic features (x axis) using481 
either the whole dataset jointly, or selecting the maximum R2 of each sample in the dataset individually,482 
or using the average values of the feature across the samples in the dataset. b) Correlation between483 
RMDglobal1 signature, and the difference between each pair of RT profiles (all combinations tested).484 
Panel shows 1st decile (highest positive R), 5th decile (R close to 0) and 10th decile (highest negative R)485 
deciles ordered by correlation. c) RT profiles for two selected samples, where dots are megabase486 
windows, colored by their weight in RMDglobal1 signature (top decile in blue). RT of each sample487 
individually is modestly predictive of RMDglobal1 (AUCs for discriminating top-decile windows are listed488 
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next to boxplots of RTs). d) Difference between the two RT profiles in panel c (on y axis) is predictive of 489 
the RMDglobal1 signature (see AUC for discriminating top-decile windows). e) A PCA on a matrix of 490 
predicted RT from TCGA tumor samples. RT-PC5 and RT-PC6 are shown because of their correlation 491 
with RMDglobal1 (R=0.49 and -0.35, respectively). Points are colored by the mean gene expression in 492 
the cell cycle G2/M RHP module, in each TCGA tumor sample. f) Association between RT-PC5-high (top 493 
tertile) versus RT-PC5-low (bottom tertile) with the expression of genes in various RHP programs 12, and 494 
same for RT-PC6. g) Predicted RT from ENCODE data with tissues, primary cells and cell lines (predRT-495 
ENCODE) was projected into PCs  of the tumor predRT-TCGA data. h) Projection of experimentally 496 
determined RT data for leukemias and normal blood cells into the same PCs of predRT-TCGA data. i) 497 
Correlation between the projection of expRT leukemia samples in RT-PC5 and RT-PC6, and the ratio of 498 
late-to-early and early-to-late regional RT changes reported previously 40. 499 
 500 
RMDglobal1 signature associates with RB1 loss and affects regions that undergo 501 
chromatin remodeling  502 
 503 
To identify events that may drive the changes in RT we found linked with cell cycling, we 504 
performed an analysis to detect somatic copy number alteration (CNA) events and deleterious 505 
point mutations are associated with RMDglobal1 exposure, while adjusting for cancer type and 506 
for confounding between linked CNAs (qq-plots in Fig S17; Methods for details). Here, we 507 
considered 1543 chromatin modifier genes, cell cycle genes, DNA replication and repair genes 508 
and cancer genes, compared against a background of 1000 control genes (Methods).  509 
 510 
For CNA, we found a strong positive association of RMDglobal1 with RB1 deletion 511 
(FDR=0.05%, and better p-value than all control genes)  (Fig 5a-b, Fig S18a). Because CNA 512 
often affects large segments, we also checked associations with RB1 neighbors (Fig 5c), noting 513 
that RB1 is at the CNA peak (by mean estimated copy-number across tumor samples), meaning 514 
it is the likely causal gene. RMDglobal1 association with RB1 is gene dosage dependent (Fig 515 
S18b). Consistently, we see that the effect of RB1 mutations shows a trend in the same 516 
direction as RB1 deletions, even though it is nonsignificant (RB1 mutations are rarer) (Fig 517 
S18c). As independent supporting evidence, we identified deletions in CDK6, a negative 518 
regulator upstream of RB1, negatively associated with RMDglobal1, also having a stronger p-519 
value than any of the control genes considered (Fig 5a). 520 
 521 
In addition to its effects on cell cycle regulation, RB1 has additional important roles in chromatin 522 
organization 19,42–44. In specific, RB1 deletions were reported to change heterochromatin marks 523 
H3K9me3 and H3K27me3 in regions enriched at subtelomeres, and this associates with 524 
regional propensity to DNA damage 19. These same two marks we found to be more highly 525 
correlated to RMDglobal1 than other tested marks ( Fig 4a), and interestingly we find that 526 
RMDglobal1 window weights are also strongly enriched approximately 5 Mb nearby telomeres 527 
(Fig 6h). Notably, the changes in regional H3K9me3 profile when RB1 is wild-type versus in 528 
isogenic RB1 k.o. cells 19 predicted RMDglobal1 signature (adjusted R2=0.29), and so did 529 
changes in regional H3K27me3 albeit subtly (adjR2=0.18) (Fig 5d, Fig S19ab). The genome 530 
regions with 10% highest weights in RMDglobal1 are the ones where the level of H3K9me3 531 
heterochromatin mark is more likely to be asymmetrically altered upon RB1 disruption 19 (off-532 
diagonal dots in Fig 5d). This indicates that loci where heterochromatin is remodeled upon RB1 533 
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loss-of-function 19 significantly overlap with loci where RMDglobal1 mutation rates change in534 
many tumors, further implicating RB1 in shaping the mutation rate landscape. 535 
 536 
As for CNA, we also tested associations between the presence of deleterious point mutations in537 
cancer and chromatin and DNA repair genes and the exposure to the RMDglobal1 mutagenic538 
pattern. Here, we found the KRAS mutation to strongly positively associate with RMDglobal1, at539 
FDR=0.1% (Fig 5e, Fig S19c), and this is observed consistently across individual cancer types540 
(Fig S19c) and significantly in colon, uterus and bladder (see Fig S19d-e legend for comment on541 
lung adenocarcinoma). Of note, the KRAS gene was reported to act downstream of RB1 loss-542 
of-function with RB1 in developmental and in tumor mouse phenotypes 45,46. Consistently, KRAS543 
mutation and RB1 loss (either deletion or mutation) are mutually exclusive in our tumor dataset544 
(chi-square p < 2.2e-16), supporting that the driver alterations in RB1 and KRAS may converge545 
onto the same mutation rate redistribution phenotype, RMDglobal1.  546 
 547 

548 
Figure 5. Genetic alterations associated with the activity  RMDglobal1 signature. a) Associations549 
between CNA deletions and tumors with higher RMDglobal1 exposures in a pan-cancer analysis,550 
adjusting for cancer type and for global CNA patterns (Methods). N=1543 cancer genes and chromatin-551 
related genes are shown (dots), as well as a 1000 set of randomly chosen genes (crosses). b)552 
Differences in RMDglobal1 exposures between RB1 deletion (-1 or -2 deletion) and wt for several cancer553 
types (those with the highest number of samples with RB1 deletion); remainder in Fig S18. c) Mean local554 
CN profile in groups of tumors, grouped by RMDglobal1 high and low, of the segment of chromosome 13555 
containing the gene RB1. Each dot represents one gene. d) Correlation between the H3K9me3556 
heterochromatin profiles for samples with RB1 knock-out (“KO”) versus wild-type (“WT”). Each dot557 
represents a window, colored by RMDglobal1 window weight top decile versus the rest of the windows. e)558 
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Associations between deleterious SNV and indel mutations in the same sets of genes as in panel a, and 559 
the RMDglobal1-high versus RMDglobal1-low activity of tumor samples, in a pan-cancer analysis. 560 
 561 
Motivated by these associations between RB1-caused regional heterochromatin changes 19 and 562 
the RMDglobal1 regional mutation rates, we further investigated the variation in the H3K27me3 563 
and H3K9me3 marks across datasets in ENCODE (Fig 6a). To characterize the regional 564 
heterochromatin variability, we performed a PCA on the profiles of the two marks and the 565 
predRT together. The resulting heterochomatin-PC4 (het-PC4) correlated best with RMDglobal1 566 
window weights (R=0.53). As above, the difference in the three features (H3K9me, H3K27me3, 567 
RT) separated the proliferative, putatively stem-like samples (het-PC4 positive) versus the rest 568 
of the samples (het-PC4 negative) (Fig 6b). The stem-like samples (het-PC4 positive) are later 569 
replicating (relative increase in RT [het-PC4 high vs low] = 61%) and have higher H3K27me3 570 
and H3K9me3 in RMDglobal1 top windows (relative increase of 55% and 78% respectively) (Fig 571 
6c). In summary, our analyses suggest that the chromosomal domains with highest RMDglobal1 572 
weights become later-replicating and more heterochromatic in more stem-like cells (cell 573 
lines/primary cells), associated with an increase of relative mutation rates in these domains.  574 
 575 
 576 
Gene regulation and chromatin compartments associated with the RMDglobal1 mutation 577 
rate phenotype 578 
 579 
The regional variability in RT and heterochromatin marks, as reflected in variable somatic RMD 580 
in tumors, suggests the existence of concomitant changes of regional gene expression, 581 
because early RT was reported to be broadly associated with higher gene expression 1. 582 
Therefore we asked if there are coordinated changes in gene expression levels in certain 583 
windows between the RMDg1-high and RMDg1-low cancers. Indeed, we found several windows 584 
with gene expression upregulation and downregulation between RMDg1-high and low cancers 585 
(FDR < 25%). The windows with coordinated gene expression downregulation are enriched in 586 
higher values of RMDglobal1 window weights, compared to the windows with non-coordinated 587 
gene expression changes (Wilcoxon test, greater; downregulation p-value = 0.03; there is a 588 
nonsignificant trend for coordinated upregulation) (Fig S20a). These regional changes in gene 589 
expression are consistent with chromatin remodeling affecting various chromosomal domains, 590 
which is also mirrored in regional mutation rates (Fig S20b).  591 
 592 
To additionally characterize the regions affected by the chromatin remodelling, we analyzed 593 
data from diverse types of genomic assays from various studies (Table S3) that reported some 594 
correlations with RT. We compared the regional density of these various features with our 595 
RMDglobal1 window weights (Table S3). Correlations were noted with Hi-C subcompartments 596 
(Fig 6d), inferred from long-range chromatin interactions at fine resolution (25 kb) 47. In 597 
particular, the B1 subcompartment was associated with RMDglobal1; this subcompartment 598 
replicates during middle S phase, and correlates positively with the Polycomb H3K27me3 mark 599 
(Fig S21) and negatively with H3K36me3 suggesting that it represents facultative 600 
heterochromatin 47. Next, we observed a correlation with two SPIN states (Fig 6e), derived by 601 
integrating nuclear compartment mapping assays and chromatin interaction data 48. 602 
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RMDglobal1 signature regions are enriched in the two “Interior repressed” SPIN states, marking 603 
regions that are inactive, however unlike other inactive heterochromatic regions they are located 604 
centrally in the nucleus, rather than peripherally (next to the lamina). Additionally, RMDglobal1 605 
important windows are enriched in subtelomeric regions (Fig 6f). In sum, the windows with 606 
higher weights in RMDglobal1 signature are enriched in subtelomeric regions, the B1 facultative 607 
heterochromatin subcompartment, and nuclear interior located, repressed chromatin states.  608 
 609 
Since RMDglobal1 captures a redistribution of mutation rates genome-wide, we predicted that 610 
this will affect the supply of mutations to some cancer genes. To quantify this, we performed a 611 
similar analysis as for the MSI-associated RMDflat above; for RMDglobal1 shown in (Fig 6g-i). 612 
When compared to a randomized baseline (95th percentile of the random distribution used as 613 
cutoff), 28% of the 460 cancer genes suffer a significant increase of mutation supply when 614 
comparing RMDglobal1-low (bottom tertile) and -high (top tertile) tumor samples. Regarding the 615 
effect size of increase, these genes increase mutation rates on average by 1.21-fold between 616 
the RMDglobal1-low versus high tertile tumors. The mutation rate density is shown for 5 617 
example genes with high fold-difference in Fig 6h, where for instance the median mutation rate 618 
for the ATM tumor suppressor increases by 1.18-fold, and for the KMT2C tumor suppressor by 619 
1.79-fold, in the top tertile by RMDglobal1 signature of mutation redistribution. 620 
 621 
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622 
 623 
Figure 6. RMDglobal1 mutation rate redistribution is linked with chromatin remodeling. a)624 
Heterochromatin marks correlation with RMDglobal1. Distribution of the correlations between H3K9me3625 
and H3K27me3 profiles in various ENCODE datasets of healthy tissues/primary cells/cell lines, and the626 
RMDglobal1 signature extracted from tumor mutations. This shows a wide spread of correlations, with627 
some examples of cell lines or primary cells with high correlations of heterochromatin profiles with628 
RMDglobal1.  b) A PCA was performed on the predicted RT and the heterochromatin marks from629 
ENCODE data. Left panel shows the heterochromatin PC4 (het-PC4) selected for its high correlation with630 
RMDglobal1 (R=0.52) and het-PC1 shown for highest amount of variance explained for H3K9me3. Right631 
panel shows the het-PC4 distribution across different cell types for the 3 features. c) Mean predicted RT,632 
H3K27me3 and H3K9me3 across PC4-high versus PC4-low groups in ENCODE data, split by RT bins. d)633 
RMDglobal1 signature across different Hi-C nuclear subcompartments from reference 47. e) RMDglobal1634 
signature across different SPIN nuclear compartmentalization states from 48. f) RMDglobal1 and RMDflat635 
signature window weights compared to distance to telomeres. g) Distribution for the difference in mutation636 
density (see Fig. 2d), shown for 460 cancer genes, comparing  between RMDglobal1-high and low637 
tumors, using the actual values of RMDglobal1 and as a baseline randomized of RMDglobal1. Vertical638 
lines show 5th and 95th percentile of the randomized distribution. h) Mutation density for RMDglobal1-639 
high versus low tumor samples (here, top tertile versus bottom tertile) for 5 example genes (drivers in >=4640 
cancer types and with the highest effect size); dots are cancer types. i) Mean RMD profile on641 
chromosome 3p across the RMDglobal1-high versus low tumor groups (here, top and bottom decile by642 
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RMDglobal1), for two example cancer types. Vertical lines mark the position for the BAP1 tumor 643 
suppressor gene (example gene in panel h).  644 
 645 
 646 
A TP53-associated RMDglobal2 signature reduces relative mutation rates in late 647 
replicating regions 648 
 649 
RMDglobal2 signature mutations follow a distribution similar to the canonical RMD landscape, 650 
increasing mutation density in late replication, except for a set of very late RT windows , which 651 
acquire fewer mutations than expected from RT (Fig 7ab). Mutation density increases near 652 
linearly with RT bins in tumors with high RMDglobal2, while in tumors with a low RMDglobal2 653 
exposure the RT relationship to mutation rates is better described by a quadratic fit (Fig 7c, Fig 654 
S22). Therefore, qualitatively the canonical RT-associated RMD landscape is preserved 655 
regardless of RMDglobal2 being low or high. However RMDglobal2 changes the shape of 656 
association to RT, by exaggerating (or suppressing) the more prominent peaks in regional 657 
mutation rates, but not affecting the minor peaks. 658 
 659 
We aimed to identify driver event behind this redistribution of mutations by testing for 660 
associations of RMDglobal2 high (top tertile) versus low (bottom tertile) samples, and genetic 661 
events (CNAs, deleterious mutations) in cancer driver, DNA repair and chromatin modifier 662 
genes. Strikingly, we found TP53 mutation to be uniquely strongly associated with RMDglobal2 663 
signature (effect size = 1.27, FDR = 9e-10) (Fig 7d). As supporting evidence, we found that 664 
TP53 deletions also positively associated (Fig 7e) and, independently, the known amplifications 665 
that phenocopy TP53 loss (MDM2, MDM4 and PPM1D oncogenes) are also positively 666 
associated with RMDglobal2 RMD signature exposures (Fig 7e, Fig S23). This rules out that the 667 
TP53 driver mutation is merely the consequence of RMDglobal2 redistribution, and provides 668 
evidence for a causal effect of TP53 inactivation. 669 
 670 
Since TP53 mutations were reported to be associated with increased burdens of CNA events 49, 671 
we tested whether RMDglobal2 RMD signature could be due to confounding from a multiplicity 672 
of focal CNA events (we note our method for RMD analysis does control for confounding by 673 
arm-level CNAs, Methods), which can modify apparent local mutation rates. However, there is 674 
only a weak correlation between the CNA burden and RMDglobal2 signature levels upon 675 
stratifying for TP53 status (R<=0.11), suggesting that RMDglobal2 likely does not simply reflect 676 
changes in local DNA copy number (Fig S24). 677 
 678 
RMDglobal2 signature describes variation in certain genome regions, which may affect mutation 679 
supply to genes therein. We tested whether there is a difference in mutation rate in the cancer 680 
genes for RMDglobal2-high (top tertile) versus low (bottom tertile) tumor samples (Fig 7f). When 681 
compared to randomized data (5th percentile), 26% of cancer genes exhibited decreased 682 
mutation supply; only 6% genes exhibit an increased mutation supply with high RMDglobal2 683 
(Fig 7f-g). As an example, we show the mutation density of ARID1A and GATA3, which 684 
decreased in mutation supply (as above, measured using intronic rates; the decrease implies 685 
they are below the 5th percentile of the randomized distribution) with high RMDglobal2 (Fig 7h). 686 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.24.513586doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513586
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

We hypothesized that apparent genetic interactions like this mutual exclusivity example might 687 
arise due to redistribution of mutations altering local mutation supply to genes. We thus 688 
considered 13 genes mutually exclusive with TP53 mutations 50 (note that TP53 loss is strongly 689 
associated with RMDglobal2) and found that nearly half (6/13) of these genes were below the 690 
5th percentile of the random distribution (Fig 7f-g). Upon inspection of the raw RMD profiles for 691 
RMDglobal2 high and low tumors for several cancer types we noted a difference in the region 692 
where ARID1A resides (Fig 7i). Overall, this illustrates how a global redistribution of mutation 693 
rates, here mediated by TP53 loss, can create apparent genetic interactions that may not 694 
indicate selection on functional effects of the genetic interaction. Thus, regional mutation rates, 695 
which vary extensively between tumors, should be explicitly controlled for in statistical studies of 696 
epistasis in cancer genomes. 697 
 698 
 699 
 700 
 701 
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702 
 703 
Figure 7. A TP53-associated mechanism underlies the RMDglobal2 mutation rate redistribution704 
pattern. a) A quadratic association of RMDglobal2 signature with  the average replication timing. b) Mean705 
RMD profiles in chromosome 4q for the RMDglobal2-high versus low tumor samples in esophagus706 
cancer. Latest RT windows (avRT<20) marked with black dots. c) Relative RMD mean profile across 10707 
RT bins for tumors that are RMDglobal2-high (RMDglobal2 exposures > 0.17) versus RMDglobal2-low708 
(RMDglobal2 exposures < 0.01), showing a linearization of the link between RT and mutation rates in709 
RMDglobal2-high. d) Associations between deleterious mutations in known cancer genes and chromatin-710 
related genes (dots) and a control set of randomly chosen genes (hollow circles), and RMDglobal2711 
exposures in samples (p-values from Z-test on regression coefficient). e) RMDglobal2 signature712 
exposures of tumor samples stratified by: wild-type for TP53 (wt), TP53 with 1 mutation (TP53_mut),713 
TP53 with 1 deletion (TP53_del), TP53 loss phenocopy via a amplification in MDM2, MDM4 or PPM1D714 
(TP53_pheno), or TP53 with any two hits of the previously mentioned alteration (TP53_2hit). f)715 
Distribution of the log2 difference in the relative mutation density (intronic) for 460 cancer genes,716 
comparing between RMDglobal2 high tumors and RMDglobal2 low tumors, using the actual values717 
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(“RMDglobal2” histogram) and randomized values (“RMDglobal2 randomized” histogram). Position of the 718 
genes mutually exclusive with TP53 marked with crosses. g)  Percentage of genes above 95 percentile of 719 
a random distribution for the random distribution, cancer genes and TP53 mutually exclusive genes. h) 720 
Log2 relative mutation density (normalized to flanking DNA in same chromosome arm, see Fig 3d) for 721 
RMDglobal2-high versus RMDglobal2-low for 2 example genes (TP53 mutually exclusive genes above 722 
the 95 percentile). Each dot is a cancer type. i) Mean RMD profile across theRMDglobal2-high versus low 723 
groups in a region of chr 1p. Vertical lines mark the position for the ARID1A gene.   724 
 725 
 726 
Discussion 727 

Even though there clearly exists a common, canonical regional mutation rate landscape shared 728 
across human cells, there are RMD patterns superimposed that are tissue-specific. This is 729 
consistent with the fact that tissues have different RT programs and chromatin landscapes. 730 
Here we systematically characterized patterns of regional redistribution of somatic mutations 731 
independent of tissue, identifying two new global RMD patterns and possible underlying 732 
mechanisms.  733 
 734 
We demonstrate how an NMF-based approach can deconvolute the RMD mutational patterns 735 
that compose the final regional mutagenesis ‘portrait’ of each individual tumor. The method is 736 
related for those applied to trinucleotide mutational signatures, however it also rigorously 737 
adjusts for the confounding by these trinucleotide signatures. Of 13 RMD signatures, expectedly 738 
the majority were tissue-associated. 739 
 740 
Some of the tissue-related RMD signatures may bridge various cancer types, usually reflecting 741 
known biology, however the surprising RMD signature (“B.O.P.S.”) has high activity in many 742 
brain samples but also in ovary, uterus, prostate and sarcoma cancers. Since these 4 cancer 743 
types do not have their own specific tissue-RMD signature this can indicate that RMD “B.O.P.S.” 744 
is a residual RMD signature that collects diverse RMD patterns that current NMF methodology 745 
does not resolve well, possibly due to lack of power. However, this RMD B.O.P.S. pattern was 746 
similarly robust (by autocorrelation across windows) as the other tissue-specific patterns (Fig 747 
S6) and so this RMD may reflect some commonalities in chromatin organization and gene 748 
regulation connecting those cancer types. For instance, an analysis of transcriptome-based cell 749 
states across tumor types, based on single-cell gene expression data 13 suggested a module of 750 
cilium/cytoskeleton-related genes common to some ovarian cancers, glioblastoma, uterine 751 
cancer and lung adenocarcinoma, thus the tissue spectrum corresponds to B.O.P.S. (we do 752 
note the lung tissue is separate in our RMD analysis). We acknowledge that, as has recently 753 
occurred with the trinucleotide mutational signatures 51, some of the initially proposed signatures 754 
such as RMD_B.O.P.S. may, with arrival of more data, be able to be ‘split’ into component RMD 755 
signatures that more precisely match tissue identity. Overall, the RMD features provide an 756 
important tool for understanding the relatedness of cancer types and the chromatin organization 757 
in the cell-of-origin of cancers 11,52.  758 
 759 
Here, we identified 3 robust ‘global’ (i.e. largely independent of tissue) RMD signatures of 760 
redistribution of mutation rates occurring in human cancer. As expected, we recovered the 761 
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redistribution of mutations towards a flatter mutational landscape (“RMDflat”) that was 762 
previously described for DNA MMR failures in tumors, cell lines and xenografts 1,53,54, validating 763 
our methodology. A simulation study further supports the broad adequacy of the NMF method, 764 
with the number of mutations generated by a RMD signature being a limiting element in 765 
identifying the signature. With a higher number of tumor samples, additional RMD patterns may 766 
become sufficiently represented to be recognized by NMF, and our RMD catalog will likely be 767 
extended with rarer RMD patterns, as was the case for trinucleotide mutational signatures 27,51. 768 
A limitation of the current implementation of our method is that low mutation burden tumors are 769 
not analyzed; increasing WGS sequencing depth and so power to detect subclonal variants may 770 
alleviate this constraint.  771 
 772 
Of the widespread global RMD signatures, RMDglobal1 causes a genome-wide redistribution of 773 
mutations predominantly in inactive regions enriched in Polycomb facultative heterochromatin 774 
mark (H3K27me3), and centrally located in the nucleus (i.e. not lamina associated 775 
heterochromatin). These regions showed variable RT programs and variable heterochromatin 776 
state, comparing a more proliferative/stem-like group of samples versus a less stem-like group 777 
of samples. Consistently, the corresponding RMDglobal1 mutational pattern was associated 778 
with genetic alterations implicated in cell cycle disturbances. Of note, RB1 is involved in cell 779 
cycle but also has important roles in chromatin organization 19 and so may affect this RMD 780 
pattern in multiple ways. Together, our analyses converge onto a model where due to more 781 
rapid cycling in tumor cells (e.g. caused by oncogenic drivers) and/or loss of cell cycle control 782 
(e.g. caused by RB1 loss-of-function), chromatin is remodeled in facultative heterochromatin 783 
locations and RT program changed, and as a consequence the mutation rates in those regions 784 
are altered.  785 
 786 
One question that arises is why those specific regions undergo the chromatin remodeling and 787 
RT change. We found these RMDglobal1 regions to be enriched in the B1 Hi-C 788 
subcompartment, which is the most dynamic (less conserved) subcompartment across cell lines 789 
55. Additionally, chromatin remodelling and increase of risk to DNA damage was reported to 790 
affect subtelomeric regions upon RB1 disruption 19. Collectively, this suggests that chromatin 791 
state in those facultative heterochromatin regions are likely more malleable and prone to 792 
change upon different processes, either developmental or cancerous in nature. 793 
 794 
The second global change in the mutational patterns we identified (RMDglobal2) occurs 795 
independently of the above and can be described as a sharp relative reduction of mutations in 796 
latest RT regions, associated with loss of TP53 activity via mutation, CNA or  phenocopying 797 
events. Since TP53 mutations are very common in tumors, the impact of this redistribution of 798 
mutations to many other cancer genes may be widespread.  This study provides examples of 799 
how an alteration in one gene -- here, deletions in RB1 or mutations in TP53 -- can affect future 800 
evolutionary scenarios: by ‘redirecting’ the regional mutation supply away from one set of genes 801 
and towards another. 802 
 803 
In conclusion, our large-scale analysis recovered the known differences in mutation density 804 
between tissues and identified three robust global RMD signatures of mutation rate variability 805 
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across chromosomal domains. The global redistribution of mutations can have an important 806 
impact in mutation supply on cancer genes at their affected regions, increasing their likelihood 807 
to acquire a deleterious mutation. 808 
 809 
 810 

Methods 811 

WGS mutation data collection and processing 812 

We collected whole genome sequencing (WGS) somatic mutations from 6 different cohorts 813 
(Table S1). First, we downloaded 1950 WGS somatic single-nucleotide variants (SNVs) from 814 
the Pan-cancer Analysis of Whole Genomes (PCAWG) study at the International Cancer 815 
Genome Consortium 56 Data portal (https://dcc.icgc.org/pcawg). Second, we obtained 4823 816 
WGS somatic SNVs from the Hartwig Medical Foundation (HMF) project 57 817 
(https://www.hartwigmedicalfoundation.nl/en/). Third, we downloaded 570 WGS somatic SNVs 818 
from the Personal Oncogenomics (POG) project 58 from BC Cancer  819 
(https://www.bcgsc.ca/downloads/POG570/). Fourth, we obtained 724 WGS somatic SNVs from 820 
The Cancer Genome Atlas (TCGA) study as in 9; we used QSS_NT>=12 mutation calling 821 
threshold in this study. 822 

Finally, we downloaded bam files for 781 WGS samples from the Clinical Proteomic Tumor 823 
Analysis Consortium (CPTAC) project 59,60 and bam files for 758 tumor samples from the MMRF 824 
COMMPASS project 61 from the GDC data portal (https://portal.gdc.cancer.gov/). Somatic 825 
variants were called using Illumina’s Strelka2 caller 62, using the variant calling threshold 826 
SomaticEVS >=6. Additionally, for these samples we performed a liftOver from GRCh38 to the 827 
hg19 reference genome. 828 

We collected the samples’ metadata (MSI status, purity, ploidy, smoking history, gender) from 829 
data portals and/or from the supplementary data of the corresponding publications. Additionally, 830 
we harmonized the cancer type labels across cohorts. Here, since lung tumors in HMF data are 831 
not divided into lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) types, 832 
we used a CNA-based classifier to tentatively annotate them in the HMF data. We downloaded 833 
copy number alteration data from HMF and TCGA for lung tumor samples and adjusted for 834 
batch effects between cohorts using ComBat as described in our previous work 63. We trained a 835 
Ridge regression model with TCGA data to discriminate between LUSC and LUAD and applied 836 
the model to predict LUSC/LUAD in the HMF lung samples. We did not assign a label to 837 
samples with an ambiguous prediction score between 0.4 and 0.6. 838 

Similarly, since POG breast cancer (BRCA) samples are not divided into subtypes (luminal A, 839 
luminal B, HER2+ and triple-negative) we used a gene expression classifier to annotate them. 840 
We downloaded gene expression data for TCGA and POG breast tumors and adjusted  the data 841 
for batch effect using ComBat as previously described 63. We trained a Ridge regression model 842 
with TCGA data to discriminate between the breast cancer subtypes  (one-versus-rest) and 843 
applied the model to the POG breast samples to assign them to a subtype. We did not assign 844 
23 samples that are predicted as two subtypes and 8 that are not predicted as any subtype. 845 
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Defining windows and filtered regions 846 

We divided the hg19 assembly of the human genome into 1 Mb-sized windows. These divisions 847 
are performed on each chromosome arm separately. To minimize errors due to misalignment of 848 
short reads, we masked out all regions in the genome defined in the ‘CRG Alignability 75’ track 849 
64 with alignability <1.0. In addition, we removed the regions that are unstable when converting 850 
between GRCh37 and GRCh38 65 and the ENCODE blacklist of problematic regions of the 851 
genome 66.  852 

Additionally, to minimize the effect of known sources of mutation rates variability at the sub-853 
gene scale we removed CTCF binding site regions (downloaded from the Table Browser), ETS 854 
binding regions (downloaded from http://funseq2.gersteinlab.org/data/2.1.0) and APOBEC 855 
mutagenized hairpins downloaded from 67. Finally, we removed all coding exon regions (+-2nts, 856 
downloaded from the Table Browser) to minimize the effect of selection on mutation rates.  857 

Matching trinucleotide composition across megabase windows 858 

To minimize the variability in mutational spectra confounding the analyses,  we accounted for 859 
the trinucleotide composition of each window. For this, we removed trinucleotide positions from 860 
the genome in an iterative manner to reduce the difference in trinucleotide composition across 861 
windows. We selected 800,000 iterations that reach a tolerance >0.0005 (difference in relative 862 
frequency of trinucleotides between the windows). After the matching, we removed all windows 863 
that end up with less than 500,000 usable bps. The final number of analyzed windows is 2,540. 864 

Calculating the Regional Mutation Density (RMD) of each window 865 

For our WGS tumor sample set (n=9,606 WGS) we counted the number of mutations in the 866 
above-defined windows. We required a minimum number of mutations per sample of 5,876, 867 
which corresponds tos 3 muts/Mb (total genome = 1,958,707,652 bp). In total, 4221 tumor 868 
samples remain, which we use for the downstream analyses. 869 

To calculate the RMD, we normalized the counts of each window by: (i) the nt-at-risk available 870 
for analysis in each window and (ii) the sum of mutation densities in each chromosome arm. To 871 
control for whole arm copy number alterations. 872 

To calculate the RMD applied to NMF analysis, we first subsample mutations from the few 873 
hyper-mutator tumors, to prevent undue influence on overall analysis. We allow a maximum of 874 
20 muts/Mb that is 39,174 muts. If the tumor mutation burden is higher we subsample the 875 
mutations to reduce it to that maximum value. Then, as above, we normalized the RMD by: (i) 876 
the nt-at-risk in each window [ RMD = counts * average_nt_risk / nt_at_risk ] and (ii) the sum of 877 
mutation density in each chromosome arm [ RMD * row_mean_WG / rowMeans by chr arm ]. 878 
We multiply by the average nucleotides at risk and the mean whole genome to maintain the 879 
values range of each sample for the bootstrapping.  880 

Applying NMF to extract RMD signatures 881 
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We applied bootstrap resampling (R function UPmultinomial from package sampling) to the 882 
RMD scores that we calculated for NMF as above. The result for each tumor sample is a vector 883 
of counts with a tumor mutation burden close to the original one but normalized by the 884 
nucleotides at risk by window and for the possible chromosome arm copy number alterations 885 
(CNA). Then, we applied NMF (R function: nmf) to the bootstrapped RMD matrices, testing 886 
different values of the rank parameter (1 to 20), herein referred to as nFact. 887 
 888 
We repeated the bootstrapping and NMF 100 times for each nFact. We pooled all the results by 889 
nFact and performed a k-medoids clustering (R function pam), with different number-of-clusters  890 
k values (1 to 20). We calculated the silhouette index value, a clustering quality score (which 891 
here measures, effectively, how reproducible are the NMF solutions across runs), for each 892 
clustering to select the best nFact and k values. 893 
 894 
Additionally, we also applied the same NMF methodology to each cancer type separately (n = 895 
12 cancer types that had  >100 samples available). 896 
 897 
Simulated data with ground-truth RMD signatures 898 

For each cancer type, we calculated a vector of RMD values (i.e. regional mutation density 899 
mean of all samples from that cancer type) based on observed data, and super-imposed 900 
simulated ground-truth signatures onto these cancer type-derived canonical RMD patterns. We 901 
generated 9 simulated ground-truth RMD signatures with different characteristics, varying the 902 
number of windows affected by the signature (10, 20 or 50% of 2540 windows total) and the 903 
fold-enrichment of mutations in those windows (x2, x3 or x5) over the RMD window value in the 904 
canonical RMD pattern for that tissue. 905 
 906 
In particular, we tested 9 different scenarios, varying the signature contribution to the total 907 
mutation burden (10, 20 or 40%) and the number of tumor samples affected by the signature (5, 908 
10 or 20%). We randomly assigned the ground-truth signatures to be super-imposed onto each 909 
tumor sample (e.g. sample A will be affected by RMD signature 1 and 3 while sample B will be 910 
affected by signature 4). In total, we have simulated genomes for 9 different scenarios (different 911 
RMD signature contributions and number of tumor samples affected), each of them containing 912 
the 9 simulated ground-truth RMD signatures. 913 
We applied the NMF methodology for the 9 different scenarios independently and obtained NMF 914 
signatures. For each case, we selected an NMF nFact and k-medoids clustering k, based on the 915 
minimum cluster silhouette index (SI) quality score. To assess the method, we compared the 916 
extracted NMF signatures with the ground-truth simulated signatures. In particular, we 917 
considered that an extracted NMF signature matches the ground-truth simulated signatures 918 
when the cosine similarity is >=0.75 only for that ground-truth simulated signature and < 0.75 for 919 
the rest. 920 
 921 
Analysis of differential mutation supply towards cancer genes. 922 

For 460 cancer genes from the MutPanning list 35 (http://www.cancer-genes.org/), we tested if 923 
they are enriched in intronic mutations in tumor samples with high RMDflat, RMDglobal1 or 924 
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RMDglobal2. An enrichment will mean that there is a higher supply of mutations in the intron 925 
regions of those genes when the RMDsignature is high. For this, we considered the counts of 926 
mutations in the intronic regions of the gene, normalized to the number of mutations in the 927 
whole chromosome arm, comparing pooled tumor samples with RMD signatures high or low, by 928 
tissue. Note that the possibly different number of eligible nucleotides-at-risk in the central 929 
window, nor the length of the flanking chromosome arm are relevant in this analysis, because 930 
they cancel out when comparing one group of tumor samples (split by the RMD signature) to 931 
another group of tumor samples. We binarized the tumor samples by RMDflat, RMDglobal1 and 932 
RMDglobal2 by dividing each of them into tertiles, and keeping 1st tertile versus 3rd tertile for 933 
further analysis. We applied a Poisson regression with the following formula: 934 

Count_gene_intron ~ offset(count_chr_arm) + RMDflat + RMDglobal1 + RMDglobal2 + tissue 935 

where “count” refers to mutation counts. By including the tissue as a variable in the regression, 936 
we controlled for possible confounding by cancer type. The log fold-difference in mutation 937 
supply between RMD signature high versus low tumor samples is estimated by the regression 938 
coefficients for RMDflat, RMDglobal1 and RMDglobal2 variables. As a control, we repeated the 939 
exact same analysis but randomizing the tertile assignment for the three RMD signatures prior 940 
to the regression. 941 
 942 
Association analysis of gene mutations with RMD global signatures. 943 

We created a subset of 1543 relevant genes: cancer genes from the MutPanning list 35 and 944 
Cancer Gene Census list 68, and furthermore we included genes associated with chromatin and 945 
DNA damage 69. As control, we used a subset of 1000 random genes selected as in 69. 946 
 947 
We applied the analysis for two different features: copy number alterations (CNA) and 948 
deleterious point mutations. For CNA, we use the CN values by gene, using a score of -2, -1, 0, 949 
1 or 2 for each gene. We considered a gene to be amplified if CNA value was +1 or +2 and 950 
deleted if the CNA value was -1 or -2. For deleterious mutations, we selected mutations 951 
predicted as moderate or high impact in the Hartwig (HMF) variant calls, 952 
(https://github.com/hartwigmedical/hmftools). We binarized the feature into 1 if the sample has 953 
the feature (CNA, or deleterious mutations present) or 0 if it has not. We considered CNA 954 
deletions and amplifications as two independent features. We binarized RMDflat, RMDglobal1 955 
and RMDglobal2 by dividing each of them in tertiles and comparing tumor samples in 1st tertile 956 
versus 3rd tertile, by tissue.  957 
 958 
We fit a linear model to test whether the binary genetic feature (amplification CNA, deletion CNA 959 
or deleterious mutation in a particular gene) can be explained by the RMD signatures activity 960 
being high versus low (i.e. upper tertile versus lower tertile). We controlled for tissue by 961 
including it as covariate. The regression formula was: 962 

genetic_feature ~ RMDflat + RMDglobal1 + RMDglobal2 + tissue 963 

We used the regression coefficients, and p-values (according to the R function “summary”) from 964 
the variables RMDflat, RMDglobal1 and RMDglobal2 to identify genetic events associated with 965 
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high levels of each RMD global signatures, suggesting possible RMD signature generating 966 
events. In the case of CNAs, to adjust for the linkage between CNA resulting in confounding, we 967 
added to the regression the PCs from a PCA on the CNA landscape across all genes. We 968 
calculated the lambda (inflation factor) for the p-value distribution of associations, while 969 
including PCs from 1 to 100 to decide the best number of PCs to include so as to minimize 970 
lambda. We included the first 55 PCs for the deletion CNA and the first 63 PCs for the 971 
amplification CNA association study. 972 

Epigenomic and related data sources 973 

ENCODE data. We downloaded from ENCODE (https://www.encodeproject.org/) all data 974 
available for Homo sapiens in the genome assembly hg19 for DHS, H3F3A, H3K27me3, 975 
H3K4me1, H3K4me3, H3K9ac, H3K9me3, HiC, DNA methylation (WGBS), H2AFZ, H3K27ac, 976 
H3K36me3, H3K4me2, H3K79me2, H3K9me2 and H4K20me1 marks. Data is described in 977 
Table S2. For each of these features, we downloaded the narrow peaks, calculated their 978 
weighted density for each 1Mb window as the width of the peak multiplied by the peak value. 979 
 980 
ChromHMM chromatin states. We downloaded the 25 ChromHMM states segmented files 981 
(“imputed12marks_segments”) for the 129 cell types available from Roadmap epigenomics 982 
70(http://compbio.mit.edu/ChromHMM/). We calculated the density of each state for each  1Mb 983 
window as the fraction of the window covered by the chromatin state. 984 
 985 
Other epigenomic data. We downloaded RT variability genomic data describing RT 986 
heterogeneity 71, Constitutive and Developmental RT domains 72, RT changes upon 987 
overexpression of the oncogene KDM4A 73, RT signatures of replication stress 74, RT signatures 988 
of tissues 41, RT states 75, changes in RT upon RIF1 knock-out 76 and RT changes due to RT 989 
QTLs 77. In addition, we downloaded data for variability in DNA methylation 15,78, HMD and PMD 990 
regions 16, CpG density, gene density, lamina associated domains (LADs), asynchronous 991 
replication domains 79, early replicating fragile sites 80, SPIN states 48, A/B subcompartments 47, 992 
DHS signatures 81 and H3K27me3 and H3K9me profiles for RB1 wild-type and knock-out 19. 993 
Data described in Table S3. We calculated the density for each feature for each 1 Mb window, 994 
and correlated this with the RMDglobal1 signature windows weights.  995 
 996 
Replication timing data sources and generation 997 

We downloaded experimental RT data, from RepliChip or RepliSeq assays, from the Replication 998 
Domain database (https://www2.replicationdomain.com/index.php) 72 in multiple human cell 999 
types (n = 158 samples). In addition, we predicted RT using the Replicon software 39 from two 1000 
type datasets: (i) in noncancerous tissues, cultured primary cells and cell lines including cancer 1001 
and stem cells (n = 597 samples) using the DHS chromatin accessibility data downloaded from 1002 
ENCODE; and (ii) in human tumors (n = 410 samples, most of them with technical replicates) 1003 
using ATAC-seq data of TCGA tumors downloaded from 38. We used Replicon tool with the 1004 
default settings.  1005 
 1006 
Analysis of coordinated gene expression changes  1007 
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For the genomes from the HMF data set, we downloaded gene expression data (as adjusted 1008 
TPM values) from Hartwig 57, available for a subset of samples for which we derived the RMD 1009 
signatures. In total, we had gene expression data for 1534 samples and 18889 protein coding 1010 
genes. We tested whether the gene expression values of the genes within one window show an 1011 
increase or decrease compared to their flanking windows in RMDglobal1 high (exposure >= 1012 
0.13) versus RMDglobal1 low (exposure < 0.06) tumor samples using a linear regression model: 1013 
gene_expression (adjTPM) ~ is_RMDglobal1 + is_window + is_RMDglobal1:is_window +  tissue 1014 
 1015 
In this analysis, we removed from the datasets samples with high RMDflat or with high 1016 
RMDglobal2 value (exposure > 0.15). We used samples from breast, colorectum, lung, ovary 1017 
and skin because they had >=5 samples in both categories (RMDglobal1 high and low). To 1018 
analyze the coordinated changes in gene expression we checked the coefficient and p-values of 1019 
the interaction term is_RMDglobal1:is_window. 1020 

For the genomes from the TCGA data set, we downloaded gene expression data (as TPM 1021 
values) from the Genomic Data Commons data portal (https://dcc.icgc.org/pcawg) for the same 1022 
TCGA samples for which we predicted RT. In total, we have gene expression data for 399 1023 
overlapping samples and 20092 genes. We compared the gene expression between RT-PC5 1024 
(and RT-PC6) high and low for a group of pathways which has been reported to be related with 1025 
recurrent heterogeneity across cell types 12 using a regression model. We binarized RT-PC5 1026 
(and RT-PC6) by dividing each  into tertiles and keeping the samples in the 1st tertile to be 1027 
compared versus the samples in the 3rd tertile. We applied a regression for all the genes in 1028 
each RHP gene set separately. We controlled for tissue by including it as covariate. The 1029 
regression formula is: 1030 

gene_expression (TPM) ~ is_RT-PC5 + tissue 1031 

We considered the regression coefficient and its p-value  of the variable is_RT-PC5. We applied 1032 
the same analysis for RT-PC6. 1033 

Clustering of RMD profiles 1034 
For RMD profiles we applied a PCA to the centered data, where rows were tumor samples and 1035 
the columns were megabase windows. Next, we applied a clustering on the PC1 to PC21 using 1036 
the R function tclust for robust clustering. We tested different numbers of clusters and alpha 1037 
value (number of outliers removed). In addition, we tested the clustering using all PCs (PC1 to 1038 
PC21) and without PC1 (PC2 to PC21), selecting the clustering for k=18 and alpha = 0.02 1039 
without PC1 based on the log likelihood measurement. 1040 
 1041 
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