Predicting species distributions with environmental time series data and deep learning

Austin M. Smith¹*, César Capinha²,³, Andrew M. Kramer¹

¹Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave SCA 110 Tampa, FL 33620.
²Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal
³Associated Laboratory Terra, Portugal.

*Corresponding author email: amsmith11@usf.edu

Author contributions: AMS: Conceptualization, Data Curation, Methodology, Software, Writing – original draft, Writing – review and editing, Visualization. CC: Conceptualization, Methodology, Software, Writing – review and editing. AMK: Conceptualization, Methodology, Writing – review and editing, Visualization, Supervision.
Abstract

Species distribution models (SDMs) are widely used to gain ecological understanding and guide conservation decisions. These models are developed with a wide variety of algorithms - from statistic-based approaches to more recent machine learning algorithms - but one property they all have in common is the use of predictors that strongly simplify the temporal variability of driving factors. On the other hand, recent architectures of deep learning neural networks allow dealing with fully explicit spatiotemporal dynamics and thus fitting SDMs without the need to simplify the temporal and spatial dimension of predictor data. We present a deep learning-based SDM approach that uses time series of spatial data as predictors, and compare it with conventional modelling approaches, using five well known invasive species. Deep learning approaches provided consistently high performing models while also avoiding the use of pre-processed predictor sets, that can obscure relevant aspects of environmental variation.

Keywords: Environmental niche model; WorldClim; Spatiotemporal dynamics; Convolutional neural networks; Residual networks; Inception time; Long short-term memory recurrent neural networks; AutoML
Introduction

Species distribution models (SDMs) have become indispensable tools for predicting the current and future distribution of species. Correlative-based SDMs measure the association between environmental predictors and species observation records in order to determine the probability of occurrence of species or the environmental suitability in new areas (Guisan & Zimmermann 2000; Elith & Leathwick 2009; Peterson et al. 2011; Araújo et al. 2019). These models can be built with statistic-based approaches and more recently, machine learning algorithms that have the ability to detect patterns in the data for which they were not explicitly programmed to look for (LeCun et al. 2015; Zhang & Li 2017; Christin et al. 2019). The flexibility and high performance of these latter approaches have made them the standard technique for several types of SDM-related biogeographical studies including estimating habitat suitability, species range expansion or contraction, invasion risk, and species co-occurrences (Pearson & Dawson 2003; Elith et al. 2006; Elith & Leathwick 2009; Peterson et al. 2011; Norberg et al. 2019).

Since their inception, the methods used in SDMs have improved considerably (Araújo et al. 2019), with many new techniques being proposed (e.g., Phillips et al. 2006; Renner et al. 2015; Norberg et al. 2019), modelling workflows and reporting protocols being refined and standardized (Thuiller et al. 2009; Araújo et al. 2019; Feng et al. 2019; Zurell et al. 2020), and thorough inter-model comparisons of predictive accuracy being performed (Elith et al. 2006; Norberg et al. 2019). Thus, through this collective research effort and resulting improvements in model performance it is unclear whether there is room for substantial advancement in the performance or implementation of correlative SDMs. In fact, there is an extensive literature pertaining to their methodological limitations (e.g., Pearson & Dawson 2003; Hijmans 2012; Norberg et al. 2019; Milanesi et al. 2020). Undoubtedly, analytical pitfalls are present even with optimized modeling architectures;
however, model quality will always depend on the availability and use of comprehensive
distribution data and ecologically informative predictor variables (Pearson & Dawson 2003).

A common aim of SDMs is to identify the set of environmental combinations under which
a species can occur and thrive (e.g., Guisan & Zimmermann 2000; Pearson et al. 2002; Pearson &
Dawson 2003; Booth et al. 2014) and SDMs are typically built with temporally invariant
summaries of multi-decadal long environmental variation by means of one or a few descriptive
statistics, such as the mean and standard deviation (Elith & Leathwick 2009; Thuiller et al. 2009;
Norberg et al. 2019). However, there are several reasons to believe that these pre-processed
features of environmental variation, formulated based on expert opinion, are often not optimal
from a predictive perspective. For example, although studies have shown that extreme climatic
conditions are highly informative for predicting species distributions, these extremes are often not
included in readily available datasets of bioclimatic variables and in SDMs (Zimmermann et al.
2009; Reside et al. 2010; Morán-Ordóñez et al. 2018; Stewart et al. 2021).

It must also be acknowledged that most, if not all, factors driving species distributions (e.g.,
climate, land-use) are temporally dynamic. That is, their state varies along time, a property that is
often poorly represented, or entirely missing from SDMs. For example, while the distribution of
species is often dependent on both the short- and long-term climatological conditions (Pearson &
Dawson 2003; Peterson et al. 2011; Stewart et al. 2021), SDMs rarely account explicitly for
temporal variation in these factors. Similarly, predictors representing recent patterns of land use
can neglect the legacy of past land use patterns in shaping the observed species distributions
(Polaina et al. 2019; Chen & Leites 2020). A more subtle common omission in predictors used in
SDMs concerns the order in which events take place (Kriticos et al. 2012; Tyberghein et al. 2012;
Assis et al. 2018; Title & Bemmels 2018). For example, areas with similar averaged annual
precipitation could have substantially different seasonality in the occurrence and magnitude of this factor (Figure 1), likely resulting in relevant differences in environmental suitability for species. In summary, the high dimensionality of spatial time-series data contains properties that are relevant for species distributions, but that human expertise may be unable to identify and thus represent in temporally invariant predictor sets.

One way to robustly address these limitations is by calibrating SDMs that consider the full representation of spatial and temporal variability in predictors sets. While this has been largely inaccessible owing to most predictive algorithms requiring tabular-type data, a structure inefficient in representing multidimensional data (Pebesma 2012), more recent deep learning-based models (Botella et al. 2018; Christin et al. 2019; Deneu et al. 2019; Alshahrani et al. 2021; Anand et al. 2021; Borowiec et al. 2021; Huang & Basanta 2021) allow to express this high dimensionality with so called ‘tensor-type’ data structures. In simple terms, deep learning – a subfield of machine learning – is mainly concerned with the development of models that can automatically process raw, complex, high-dimensional predictor data, and extract useful attributes from it (the so called ‘features’) without user intervention (LeCun et al. 2015; Bengio et al. 2021). Recently, Capinha et al. (2021) demonstrated that some deep learning architectures allow using spatial time series data directly as predictors of ecological phenomena, hence overcoming the need of using temporally unvarying, pre-assembled, predictors sets. In addition, SDM practitioners have been also turning to deep learning (Anand et al. 2021), but as an alternative algorithms to use in conventional workflows with static predictors (e.g., Botella et al. 2018; Benkendorf & Hawkins 2020; Rew et al. 2021).

While time-series-based deep learning networks thence have apparent practical and conceptual advantages over conventional approaches in the development of SDMs, to our
knowledge there is no robust comparison of the predictive performance of the two approaches. Hence, we here perform this assessment. Specifically, we use data from a range of taxa and geographical regions and measure the accuracy of predictions of species distributions obtained from deep learning algorithms using spatial time series as predictor variables and from conventional machine learning algorithms using ‘standard’ predictor variables. We compared and evaluated the results from both approaches to determine whether the theoretical advantages of deep learning with time-series data lead to practical benefits.

Materials and methods

Species data

Our analyses used data for five globally introduced, invasive species: *Cacyreus marshall* (geranium bronze butterfly; Federica *et al.* 2019), *Harmonia axyridis* (Asian harlequin ladybird; Bidinger *et al.* 2012), *Myiopsitta monachus* (monk parakeet; Bohl *et al.* 2019), *Pueraria montana* (kudzu; Callen & Miller 2015), and *Sus scrofa* (wild boar; Sales *et al.* 2017).

Using data for invasive species matches a common use of SDMs (e.g., Elith & Graham 2009; Gallien *et al.* 2012; Mainali *et al.* 2015; Barbet-Massin *et al.* 2018; Liu *et al.* 2020), while also including common issues of non-stationarity and distribution data quality that may be absent from designed surveys. The number of occurrences and the extent of distribution ranges vary for each species and can be observed in Figure S1.

Ideally, SDMs are built using both presence and absence records; however, most commonly species absences are not recorded. A reasonable alternative is to use pseudo-absences, which are data points pulled from areas lacking recorded occurrences and assumed to represent
unsuitable conditions (Phillips et al. 2006; Elith & Leathwick 2009; Hijmans et al. 2017; Valavi et al. 2022). Because SDM results can be sensitive to the spatial extent used for pseudo-absence extraction (VanDerWal et al. 2009; Barbet-Massin et al. 2012), we performed this extraction from two sampling areas, each representing a distinct assumption. First, as invasive species are often transported widely across the globe (Liu et al. 2020), we randomly sampled 10,000 pseudo-absence points worldwide, except in locations where the species is recorded. Alternatively, and considering that the former procedure may overestimate the actual spread of the species (i.e., their absence may be due to dispersal limitations and not to unsuitable conditions), we delimited a second sampling area by creating a 1000-kilometer buffer around each species occurrence point and merging the obtained polygons. By sampling closer to where the species has been recorded, we expect the pseudo-absences to more closely represent areas made available to the species. From these areas we sampled a second set of 10,000 pseudo-absence points, also excluding locations having species records. Importantly, it is common practice to have a significantly larger number of pseudo-absences than presence records; however, having an imbalanced data set can produce inflated statistical scores (Jiménez-Valverde et al. 2009; Lunardon et al. 2014; Menardi & Torelli 2014). Thus, for each species, we used the R package ‘ROSE’ (Random Over-Sampling Examples; Lunardon et al. 2014) to generated a bootstrap-sample of occurrences in each partition to match the number of pseudo-absence points to create a balanced data frame.

Bioclimatic variables

We used the WorldClim (https://www.worldclim.org) database, a collection of high-resolution terrestrial climate and weather data, to build our SDMs. WorldClim (Fick & Hijmans 2017) provides both monthly weather maps (i.e., spatiotemporal time-series) spanning several decades, as well as set of 19 static spatial variables summarizing distinct aspects of the long-term climate conditions.
meteorological variation (the so-called 'bioclimatic' variables). These latter variables are derived
from a 30-year spatial time series of monthly values of minimum, maximum temperature and
precipitation recorded from 1970 to 2000 and are a widely used example of temporally static
predictor data being used in conventional SDM approaches (e.g., Pearson & Dawson 2003; Elith
et al. 2006; Phillips et al. 2006; Thuiller et al. 2009; Peterson et al. 2011; Booth et al. 2014;
Hijmans et al. 2017; Morán-Ordóñez et al. 2018; Liu et al. 2020). Using this data source allows
us to evaluate time-series deep learning networks on an equal footing with conventional methods
by using the 30-year spatial time series (i.e., a 360-time step spatial series for each factor) as
predictors in the deep-learning models and the 19 static bioclimatic summary variables in
conventional algorithms. In addition, previous studies have shown that the inclusion of elevation
data provides more accurate predictions (Hof et al. 2012; Oke & Thompson 2015; Kiser et al.
2022); thus, we also used this data, as provided by WorldClim, in both sets of models. All predictor
variables were extracted from 2.5 arc-minute spatial scale raster and polygon layers.

Time series deep learning

Currently, there are several existing deep learning architectures able to deal with temporal
variability in predictor data (Box 1.) However, it is generally difficult to know a priori which type
of architecture will work best for each task (He et al. 2021). As an alternative, ‘Mcfly’ (Van
Kuppevelt et al. 2020), a TensorFlow (https://www.tensorflow.org) wrapper package incorporates
automatized model assembly and learning procedures (i.e., AutoML; He et al. 2021); this
assembles a collection of candidate models of different architectures with randomly defined
hyperparameters, which are then trained, tuned, and tested to determine the most suitable model
architecture and parametrization for the data being modeled. Mcfly offers four deep learning
architectures able to use time series as predictor variables: convolutional neural networks (CNN);
Residual networks, (ResNet); Inception Time (IT); and long short-term memory recurrent neural networks (LSTM) (Box 1.). We use the AutoML feature of this package to generate five randomly assembled candidate models of each architecture (i.e., 20 total candidate models) and applied them to each species and buffer combination.

A standard way to evaluate the predictive accuracy of SDMs is to measure its ability to predict part of the distribution data left aside from model calibration (Guisan & Zimmermann 2000; Norberg et al. 2019). As such, we partitioned our data into three sets; training data used for learning or calibrating a model; validation data for evaluating a model’s performance during training or hyperparameter tuning; and a test set to evaluate the final model. Training, validation, and testing sets were 70%, 15%, 15% of the total dataset respectively. To reduce the computational costs in candidate model selection phase, we trained each candidate model using a random subset of ~50% of the training data during four calibration epochs, allowing an initial tuning of hyperparameters. Each model was then evaluated using classification accuracy on the validation data. The candidate model (out of the initial 20) with the highest accuracy score, was then trained a model with the full training set during 50 epochs. The predictive accuracy of the model in each epoch was evaluated using the validation data and measured with the area under the receiver operating curve (AUC). The AUC is a favored metric in SDM studies since it is independent of class prevalence (McPherson et al. 2004) and is threshold independent as opposed to metrics based on a single, often, arbitrary threshold (Brotons et al. 2004; Shabani et al. 2018). Finally, for each species and type of pseudo-absence data, we retained the epoch model with best AUC as our final model and evaluated it with the test data.

All deep learning models were built in Python Ver. 3.7.1 with the Keras Ver. 2.2.4 (https://keras.io) and TensorFlow Version 2.5 (https://www.tensorflow.org) deep learning suites,
and the Mcfly Ver. 3.1.0 (Van Kuppevelt et al. 2020). For further review, model code and data can be found at Zenodo.org (DOI: 10.5281/zenodo.7255395), which should also allow non-experts to easily implement these methods.

Conventional machine learning

We used several geospatial packages for conventional ‘static’ species distribution modeling in R (Ver. 4.0.3), most notably ‘dismo’ (Hijmans et al. 2017). The 19 bioclimatic predictors were used for training and testing these models and are extracted from the raw time series data used in the deep learning models. We used three popular and typically well performing machine learning algorithms: Gradient Boosting Machines (GBM; e.g., Friedman 2001); Maximum Entropy (MaxEnt; Phillips et al. 2006; Elith et al. 2011); and Random Forest (RF; Breiman 2001; Cutler et al. 2007).

We used the same training and testing samples as for the deep learning models to build and test the static models. Note that, unlike the deep leaning networks, the conventional algorithms use internal validation metrics, and thus it is not necessary to manually define validation datasets. For both deep learning and conventional models, we created global prediction maps. These maps are ranked gradient plots that represent variance and spatial uncertainty (Guisan & Zimmermann 2000), which is often more important in studies pertaining to invasive species (Bidinger et al. 2012; Sales et al. 2017; Barbet-Massin et al. 2018; Liu et al. 2020). We compared the deep learning predictions to the conventional predictions to measure model dissimilarity (Figure 2) by subtracting the raster pixel values of the conventional methods from those in deep learning rasters. Value of 0 indicated model agreement, positive values as areas where deep learning showed stronger suitability prediction, and negative values as areas where the conventional algorithm favored.
Results

There were no clear patterns regarding which candidate deep learning architectures were selected for each species and pseudo-absence extraction strategy (Table 1). LSTMs were selected the most frequently (4), followed by CNN (3), IT (2), and ResNet (1). LSTM were selected for two of five species, with CNN, IT, and ResNet being selected once for models using pseudo-absences extracted from 1000km buffers. Both LSTM and CNN were selected twice, and IT selected once for models using pseudo-absences extracted at the global scale. Myiopsitta monachus was the only species where both models were built using the same architecture, LSTM.

The time-series deep learning models using pseudo-absences extracted at the global scale scored an average AUC of 0.977 across all five species, with the lowest AUC measured for the wild boar model (0.925) and highest being the kudzu model (0.994) (Figure 3A; Table 1). The performances of these models were consistently equal to or second to the best conventional method, with a small average deviance from the top scoring model of 0.002. For the conventional models, RF scored the best for three species (Cacyreus marshall; Pueraria montana; and Sus scrofa) and MaxEnt for the other two species. GBM scored the lowest for all five species but only saw an average deviance of 0.014 and all species-model combinations scored an AUC above 0.9. When using pseudo-absences extracted from 1000km buffers, all algorithms achieved lower, but still very good AUC values (average AUC across all models = 0.932; Figure 3B). The deep learning models scored AUC values above 0.9 for all five species, with only RF doing the same. Deep learning models scored the best for Cacyreus marshall, Harmonia axyridis, and Sus scrofa while RF and Maxent scored the best for Pueraria montana and Myiopsitta monachus respectively, though DL placed second in both cases. GBM consistently placed the lowest among the algorithms for all five species with an average deviance of 0.032 from the best scoring algorithm.
Each model produced a global prediction raster which ranked location suitability from 0 - 1 (Figures S2:S11). Deep learning models predicted higher suitability scores (0.8 -1) around occurrence points and a smoother gradient between them. MaxEnt and RF models most frequently showed higher suitability scores at more isolated locations, generally near the recorded occurrences. GBM models were the most inconsistent as they showed some degree of suitability on all parts of the globe. For all five species, models built with global background points showed more conservative ranges where models using background points pulled from a 1000km buffer showed a more expanded potential range.

For both sets of models, deep learning ranked suitable locations higher than MaxEnt or RF even when model predictions agreed, while deep learning and GBM models showed a high degree of dissimilarity (Figures S12:S21). When comparing the results using point from different spatial extents, deep learning models showed the most agreement between predictions, while conventional methods were more variable (Figure S22:S26).

Discussion

To our knowledge, this is the first study comparing SDMs built from spatial time series based deep-learning models to conventional machine learning algorithms. Deep learning can address several conceptual concerns seen in conventional modeling methods, especially potential human-mediated omissions, or bias in selection of features to represent in the predictor dataset. These methods also allow the model to account for temporal environmental variation, something known to be biologically relevant and not well-represented in pre-assembled sets of bioclimatic variables (Morán-Ordóñez et al., 2018, Reside et al., 2010, Stewart et al., 2021, Zimmermann et al., 2009). Here we show the performance of randomly generated deep learning models was
similar to or exceeded conventional static methods. Our results extend the findings from previous studies (Botella et al. 2018; Benkendorf & Hawkins 2020; Anand et al. 2021; Capinha et al. 2021; Rew et al. 2021) showing that deep learning is an extremely powerful approach, and suggest that these models should be increasingly considered for species distribution modeling, especially with the use of spatial time series data.

Each of the four deep learning architectures were selected for at least one species and pseudo-absence combination, with LSTM and CNN being the most commonly selected. Considering that we use a relatively small sample of candidate models (n = 20) for each species and type of pseudo-absence extraction strategy, there are likely to be significant gains in performance by understanding the strengths of different architectures and their components and doing more intensive optimization of hyper-parameters. Like conventional ANNs, the convergence of training and validation AUCs and model accuracy are dependent on the number of training epochs performed (Fawaz et al. 2019; Benkendorf & Hawkins 2020; Capinha et al. 2021). While our models ran 50 epochs, further analysis is recommended on the effect this has on time series DL-SDMs.

We used a simple random subset of the data to select among candidate architectures of deep learning models and to determine the maximum number of epochs that the models should train for (i.e., the number of times the full set of training data passes through the network, adjusting model weights). This approach still prevails in the field (Araújo et al., 2019) and here has produced robust final models (e.g., when comparing its predictive performance to most of the conventional models); however, it might also be worth exploring data splitting strategies that more carefully consider the non-independence of data points, as caused for instance by spatial autocorrelation (Araújo et al., 2019; Ploton et al., 2020), including the spatial cross-validation method (Elith &

Thus, one challenge that deserves particular attention is that of model overfitting. Given the high
number of trainable parameters found in deep learning models, particular care should be taken to
prevent overfitting (Li et al. 2019; Benkendorf & Hawkins 2020). Under these circumstances, the
data splitting strategies used to inform the model about ‘the reality it should search for’ takes on
significant relevance.

Measuring the differences in spatial predictions between suitability maps resulting from
different algorithms trained on the same data is one way to assess predictive uncertainty (Kearney
et al. 2010; Beale & Lennon 2012; Iturbide et al. 2018). In this study, we compared prediction by
calculating the difference between time series deep learning maps to the conventional algorithms,
and by comparing the predictions across two different spatial extents. Our results show that time
series deep learning models generally predicted an area of relatively high suitability intermediate
to the range of some conventional algorithms. Also, deep learning models were the most similar
across both spatial extents, which can be a common problem in conventional workflows.

However, we note that determining which model is not a trivial process but requires extensive
validation assessment to remove uncertainty (Huang et al. 2018; Iturbide et al. 2018; Norberg et
al. 2019; Grimmett et al. 2020). Converting to binary maps can simplify the decision process, but
only when an appropriate threshold is implemented, which is equally difficult to evaluate (Liu et
al. 2005; Jiménez-Valverde & Lobo 2007; Liu et al. 2009). Thus, further review of these methods
should be explored, including whether it makes sense to make ensemble models between
conventional and deep learning predictions, or between deep learning architectures.

Despite the results obtained, it is unlikely that time-series models will always outperform
conventional approaches. For example, in cases where deep learning models performed best, the
difference was generally small to the best performing conventional model. This is likely to be the common case for large-scale distribution patterns, that respond strongly to general, long-term patterns of climate (Pearson & Dawson 2003), which tend to be well represented in the existing repositories of pre-processed climatic features. Instead, we argue that the capacity of time-series deep learning models for considering a higher dimensionality of possibly relevant features makes them better equipped to make accurate predictions under a wider diversity of settings, spanning from distributions shaped by the simpler patterns of climate to those resulting from an intricate web of relationships involving complex spatial and temporal dynamics of multiple factors.

In addition, although time-series deep learning models could bring substantial benefits to SDMs, there are also several other limitations worth addressing, though most of these are also faced by conventional approaches. These include spatial autocorrelation (F. Dormann et al. 2007), extrapolation errors (Liu et al. 2020), data imbalance (Jiménez-Valverde et al. 2009), or sampling bias (Fithian et al. 2015). This assumes particular significance if the predictions are aimed for new regions or time periods, i.e., are to be ‘transferred’ (e.g., Yates et al. 2018; Liu et al. 2020; Taheri et al. 2021). The challenges imposed by these issues are inherent to the early stage of using these models for species distribution modelling. Hence, we expect that, as these issues become increasingly explored, the hurdles they cause will become resolved to some extent – in a similar manner to what occurred for conventional models. However, it is important not to underestimate the potential complexity of these tasks, particularly given the higher dimensionality of the predictor data that are now involved (for example, our conventional static machine learning models were given ~380,000 measurements to process i.e., 19 BIO variables × ~20,000 instances, where the time-series DL models were fed ~28,800,000 i.e., 4 time series × ~20,000 instances × 360 time steps.
Conclusion

We have described and demonstrated conceptual and practical benefits of deep learning models for predicting species distributions. The capacity of these models to automatically identify relevant features from, high-dimensional, temporal data reduces reliance on human supervision in the definition of relevant environmental features to include in the models. This can advance the field by providing robust predictions even when a priori knowledge about the features that are most influential in shaping species distributions is limited, while matching the performance of existing methods in well understood systems. However, several challenges still need to be addressed before the full potential of these models becomes realized. We hope to facilitate and encourage ecological modellers to explore, test and help overcome the limitations of deep learning models to advance understanding of species distributions, much in the way that conventional models were explored and improved over the last twenty years.
References

distribution modelling package, its early applications and relevance to most current

Borowiec, M.L., Dikow, R.B., Frandsen, P.B., McKeeken, A., Valentini, G. & White, A.E.
Evolution*.

species distribution modelling. In: *Multimedia Tools and Applications for Environmental

presence-only modelling methods for predicting bird habitat suitability. *Ecography*, 27,
437-448.

Chen, X. & Leites, L. (2020). The importance of land-use legacies for modeling present-day

Models Using Environment and Co-occurrences. Springer International Publishing
Cham, pp. 213-225.

methods improve prediction of species’ distributions from occurrence data. *Ecography*,
29, 129-151.

TABLE 1 Summary of deep learning model selection and performance statistics.

<table>
<thead>
<tr>
<th>Species</th>
<th>Architecture</th>
<th>Accuracy</th>
<th>Best epoch</th>
<th>Validation AUC</th>
<th>Test AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacyreus marshall</td>
<td>CNN</td>
<td>0.968</td>
<td>14</td>
<td>0.988</td>
<td>0.986</td>
</tr>
<tr>
<td>Harmonia axyridis</td>
<td>LSTM</td>
<td>0.933</td>
<td>2</td>
<td>0.989</td>
<td>0.988</td>
</tr>
<tr>
<td>Myiopsitta monachus</td>
<td>LSTM</td>
<td>0.963</td>
<td>38</td>
<td>0.997</td>
<td>0.991</td>
</tr>
<tr>
<td>Pueraria montana</td>
<td>CNN</td>
<td>0.979</td>
<td>3</td>
<td>0.995</td>
<td>0.994</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>IT</td>
<td>0.786</td>
<td>6</td>
<td>0.92</td>
<td>0.925</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Architecture</th>
<th>Accuracy</th>
<th>Best epoch</th>
<th>Validation AUC</th>
<th>Test AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cacyreus marshall</td>
<td>LSTM</td>
<td>0.843</td>
<td>46</td>
<td>0.923</td>
<td>0.924</td>
</tr>
<tr>
<td>Harmonia axyridis</td>
<td>LSTM</td>
<td>0.863</td>
<td>14</td>
<td>0.943</td>
<td>0.952</td>
</tr>
<tr>
<td>Myiopsitta monachus</td>
<td>CNN</td>
<td>0.889</td>
<td>50</td>
<td>0.966</td>
<td>0.962</td>
</tr>
<tr>
<td>Pueraria montana</td>
<td>IT</td>
<td>0.908</td>
<td>2</td>
<td>0.971</td>
<td>0.971</td>
</tr>
<tr>
<td>Sus scrofa</td>
<td>ResNet</td>
<td>0.731</td>
<td>26</td>
<td>0.901</td>
<td>0.908</td>
</tr>
</tbody>
</table>
FIGURE 1 A.) Precipitation data from the 1990 - 2000 for three locations that fall along the same lines of latitude. The locations include Tampa, FL, US (green line), Nainapur, Uttar Pradesh, India (black line), and Songtao Miao Autonomous County, Tongren, Guizhou, China (red line). These points were extracted from WorldClim BIO12, which measured averaged annual precipitation. All three points have roughly the same pixel value of 1260 mm. B.) precipitation for the year 1990 and C.) 1991. Note, precipitation not only differs spatial, but also temporally.
FIGURE 2 Visual example of global predictions for global *Sus scrofa* models, with both A.) Deep Learning and B.) Random Forest, the best scoring conventional method. C.) Difference measure of the two models, which is produced by subtracting the pixel values of Random Forest from Deep Learning. Value of 0 indicates model agreement, where positive values (blue scale) are areas where Deep Learning has a stronger suitability prediction, negative value (red scale) are areas where Random Forest favor. D.) The raw occurrence data used in the modeling process.
FIGURE 3 A comparison of time series deep learning (TSDL) to gradient boosting machine (GBM), maximum entropy (MaxEnt), and random forest (RF) built using static bioclimatic variables. Models were built from both A.) a global spatial extent and B.) a reduced, 1000-kilometer extent. Gray bars represent the average AUC across all species and include standard error bars.
Deep learning is a complex network of processing levels known as artificial neural networks (ANNs) meant to replicate the functions of the human brain. ANNs are characterized by several stacked layers of information processing units or ‘neurons’, which are capable of transforming input data into simpler features. Traditional ANNs, like most modern algorithms, are constructed from pre-selected features and follow a feed-forward process; each iteration or epoch of the learning processes all the input data first, recalibrates internal hyperparameters, and then attempts to optimize until statistical convergence (Bishop 1995). Deep learning neural networks, on the other hand, often consists of multiple layers of ANNs processing at each internal layer.

Convolutional neural networks (CNNs) are one of two dominant categories of deep learning architectures. As the name implies, CNNs refer to convolutional layers; in essence, internal filter functions of varying length convolve with patches of the time series data to measure how much these represent features of presumed relevance. The filtered features are then processed in rectification and pooling layers, which transform data and reduce feature dimensionality for further analysis. The procedure can be replicated along stacked layers, resulting in a hierarchy of increasingly complex features. The final processing layer is a fully connected network that resembles a conventional ANN and is where classification outputs are generated. To optimize the learning objectives, different layers are added to the standard CNN protocol. For example, Residual networks (ResNets) are CNNs with additional process known as Residual Blocks which allow networks to perform both a feed-forward process and data processed in layers several steps ahead simultaneously. Likewise, Inception Time networks are a

BOX 1 Summary of deep learning architectures.
sort of hybrid with standard CNNs and ResNet such that they use components of CNN

convolutions and ResNet Residual Blocks, but in parallel.

The second category of architectures is recurrent neural networks (RNN), which were specifically designed to analyze sequential data (Fawaz et al. 2019). These models incorporate feedback loops, which allow models to learn from their own predictions, as well as the general trends in each layer. Standard RNNs tend to prioritize short-term signals over long-term trends (Chung et al. 2014). Therefore, the inclusion of “gated-units”, or algorithmic protocols that determine if networks should remember or forget information, were incorporated, thus forming the basis of LSTM models.