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The physiology of biological cells evolved under physical and
chemical constraints such as mass conservation, nonlinear re-
action kinetics, and limits on cell density. For unicellular or-
ganisms, the fitness that governs this evolution is mainly deter-
mined by the balanced cellular growth rate. We previously in-
troduced Growth Balance Analysis (GBA) as a general frame-
work to model such nonlinear systems, and we presented ana-
lytical conditions for optimal balanced growth in the special case
that the active reactions are known. Here, we develop Growth
Mechanics (GM) as a more general, succinct, and powerful an-
alytical description of the growth optimization of GBA models,
which we formulate in terms of a minimal number of dimen-
sionless variables. GM uses Karush-Kuhn-Tucker (KKT) con-
ditions in a Lagrangian formalism. It identifies fundamental
principles of optimal resource allocation in GBA models of any
size and complexity, including the analytical conditions that de-
termine the set of active reactions at optimal growth. We iden-
tify from first principles the economic values of biochemical re-
actions, expressed as marginal changes in cellular growth rate;
these economic values can be related to the costs and benefits of
proteome allocation into the reactions’ catalysts. Our formula-
tion also generalizes the concepts of Metabolic Control Analysis
to models of growing cells. GM unifies and extends previous
approaches of cellular modeling and analysis, putting forward
a program to analyze cellular growth through the stationarity
conditions of a Lagrangian function. GM thereby provides a
general theoretical toolbox for the study of fundamental mathe-
matical properties of balanced cellular growth.
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Introduction
A core feature of microbial cells is self-replication – their
ability to build a complete, identical cell exclusively out of
the chemical compounds found in the environment. If a pop-
ulation of asynchronously replicating microbial cells grows
exponentially in a constant environment, its self-replication
can often be assumed to result from balanced growth, a non-
equilibrium steady state in which every cellular component
accumulates at the same rate in proportion to its total amount
(1). For non-interacting microbes in a constant environment,
the balanced growth rate is equivalent to fitness (2).
The cellular composition is thus often interpreted as an ap-
proximate solution to a problem of optimal allocation, driven
by natural selection. Accordingly, theoretical methods esti-
mating the optimal allocation are used as a reference to un-
derstand cellular composition in vivo (3–8).
At the whole-cell level, a mechanistic understanding of the

quantitative principles that shape cellular balanced growth
has been approached predominantly through methods collec-
tively classified as constraint-based modeling (CBM). CBM
approaches define a solution space of feasible cellular states
(usually defined by reaction fluxes) based on simple, mech-
anistic constraints. The predominant constraint in CBMs is
flux balance, encoded through a linear system of equations
that constrain the space of allowed reactions fluxes v (9, 10),

Sv = 0. (1)

Here, v is a vector of reaction fluxes, i.e., reaction rates in
units of [moles][time]−1[volume]−1. Each row of the sto-
ichiometric matrix S corresponds to one metabolite, while
each column corresponds to a metabolic reaction, with entries
listing the corresponding stoichiometric coefficients of sub-
strates (negative integers) and products (positive integers).
Thermodynamics and physiological limits – such as a lim-
ited nutrient uptake capacity – are typically approximated
through fixed upper and/or lower bounds on the modeled
fluxes v (11). The most widely used CBM approach, flux bal-
ance analysis (FBA) (11, 12), obtains plausible physiological
states by optimizing some objective function over the feasi-
ble flux vectors. Frequently, the objective function is the flux
through a hypothetical biomass reaction vbio, which mimics
the accumulation of precursors for macromolecules and the
consumption of energy for their assembly during growth.
Resource balance analysis (RBA) and metabolism and ex-
pression models (ME-models) go beyond FBA by aiming to
model metabolism in its most general sense, with the ultimate
goal of representing all chemical reactions that occur in a liv-
ing organism (8, 13). In contrast to FBA, these methods take
into account the burden of producing the macromolecules re-
quired for catalyzing each flux. They approximate the corre-
sponding kinetic rate laws as linear relations between fluxes
and the concentration of their catalysts, ignoring the depen-
dence on reactant concentrations (except for dependencies on
extracellular concentrations, which serve as model parame-
ters).
All widely used CBMs (8, 11, 13, 14) are formulated as linear
optimization problems, which can be solved efficiently even
for genome-scale models with thousands of reactions. Ac-
cordingly, they are currently the most powerful tools to pre-
dict and understand realistic cellular models. However, by
construction, these linear methods cannot capture the poten-
tially complex nonlinear relationship between biochemical
reaction fluxes – and hence cellular growth –– and the con-
centrations of reactants involved as substrates and products.
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Instead of accounting for nonlinear kinetics, these methods
rely on linear, phenomenological assumptions.
Nonlinear CBMs (6, 15–19) account for constraints such
as nonlinear kinetic rate laws, linking the concentration of
metabolites to reaction fluxes. This link means that the
metabolite concentrations are now an output of the model
instead of an input. Molenaar et al. (6) introduced “self-
replicator” models that maximize the cellular growth rate,
with reaction fluxes that are limited by fundamental physi-
ological constraints including mass conservation, nonlinear
rate laws, and limited protein density. Importantly, these
models are completely self-contained, in the sense that in
order to grow and self-replicate, all of a model’s individual
components have to be produced explicitly by the model it-
self. Instead of using a phenomenological “biomass reac-
tion”, the constrained optimization of growth predicts the de-
tailed cell composition, and all possible trade-offs in resource
allocation can be accounted for from first principles.
Similar to RBA and ME models, self-replicator models in-
clude a “ribosome” reaction that produces the necessary
proteins. The proteins can be classified into three cate-
gories: transport proteins in the cell surface, which exchange
mass with the environment; enzymes, which catalyze internal
metabolic reactions; and the ribosome itself, which catalyzes
the internal protein production, and which for simplicity is
assumed to be composed only of proteins. The study of mod-
els of this type relies on the numerical solution of nonlinear
optimizations: while it in principle accommodates models
with any number of reactions, actual presented models have
small, highly simplified reaction networks (6, 15–19).
We have previously formalized a general framework for non-
linear CBM and provided solutions for important special
cases, an approach we termed growth balance analysis (GBA)
(4) (Fig. 1). GBA models are based on the self-replicator
scheme. Instead of a fixed protein concentration, they con-
sider a fixed combined mass density of their components.
Optimal cellular resource allocation, as predicted by GBA
models, emerges exclusively from quantitative biochemical
and physical principles, including the intrinsic nonlinear na-
ture of the underlying reaction kinetics. In general, the opti-
mization of nonlinear models is a non-convex problem, fre-
quently hampered by the existence of multiple local optima
(20). Several studies have explored ad-hoc analytical solu-
tions to convex, minimal nonlinear cell models consisting of
up to three cellular reactions. Despite their simplicity, sim-
ulations with these schematic models are qualitatively con-
sistent with the experimentally observed behaviour of actual
cells (6, 15–19).
Together with the GBA model framework, we introduced an
analytical theory to study GBA models of any size in the spe-
cial case that there are no redundant reactions, in the sense
that the function of any reaction in the model cannot be
copied by any combination of other reactions (i.e., the re-
action matrix has full column rank). For this special case,
we derived the necessary analytical conditions for optimal
growth. Optimal states of arbitrarily complex models also
have to satisfy these conditions, as they must always use non-

Fig. 1. Constraints in a GBA model. A) In a GBA model, a cell exchanges exter-
nal reactants (red circles) via transporters (blue squares at the cell surface); con-
verts internal reactants (green circles) via enzymatic reactions (blue squares inside
the metabolic network); and produces all proteins catalyzing the reactions (blue
rectangle “a”) via a ribosome reaction “r”. The ribosome reaction consumes and
returns metabolites to the metabolic network. In its strict sense, the metabolic net-
work comprises the conversion of small molecules into energy and precursors for
macromolecules. A model may also describe metabolism in its more general sense,
including other enzymatic reactions such as those for DNA replication and transcrip-
tion. B) All reactions in the model must conserve mass, a concept that comprises (i)
mass balance within reactions: one unit of mass consumed (-1) results in one unit
of mass produced (+1); and (ii) flux balance of reactant production and consump-
tion, including the dilution by growth of all components (dashed arrow). C) Each
reaction flux is catalyzed by a specific protein with turnover time τ (or equivalently,
turnover rate k = 1/τ ). τ is determined by kinetic rate laws and depends on the
concentrations of reactants involved in the reaction; k = 1/τ has a maximal value
kcat. D) Two basic density constraints govern the cellular interior: (i) the density of
proteins “a”, and (ii) the total density ρ, which is the sum of all protein and metabo-
lite concentrations.

redundant sets of active reactions (4, 21, 22). The necessary
conditions provide a tool to understand important properties
of cellular resource allocation at optimality, e.g., the protein
allocation into ribosomes at different growth rates (4). On the
other hand, the conditions cannot explain themselves why a
particular set of non-redundant reactions is used at optimal-
ity. In the previously published GBA treatment, this choice
has to be an input of the model. This is a major restriction, as
real cells activate different sets of reactions depending on the
growth conditions, and realistic mathematical models should
be able to predict these sets.
Below, we analyze the growth optimization of arbitrary GBA
models that may include redundant reactions, generalizing
the results in Ref. (4). We provide the necessary analytical
conditions for the optimality of each reaction flux, includ-
ing the criteria for whether a reaction is active at optimality.
We interpret these analytical conditions in terms of marginal
costs and benefits of reactions with respect to their influence
on growth, and quantify how changes in the model parame-
ters and external conditions control the optimal growth rate.

Results
We first present the notation and mathematical definition
for growth optimization, including an objective function and
constraints. We then reformulate the problem in terms of flux
fractions as the only free variables, which greatly simplifies
the subsequent analytical study. Finally, we explore the con-
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sequences that emerge from the necessary optimality condi-
tions in terms of economics and control theory, and discuss
their biological significance. Table 1 lists all symbols used
below.

Table 1. Symbols used.

Symbol Description (units)

A growth adaptation coefficient
b biomass fraction vector
c reactant concentration vector ([mass][volume]−1)
C control coefficient matrix
f flux fraction vector
E indirect sensitivity matrix ([time])
K set of kinetic parameters (various units)
L Lagrangian ([time]−1)
M mass fraction matrix
p protein concentration vector ([mass][volume]−1)
S stoichiometric matrix ([mol])
v flux vector ([mass][volume]−1[time]−1)
x external concentration vector ([mass][volume]−1)
γ vector with column sums of M
Γ growth control coefficient ([time]−1)
ε direct sensitivity matrix ([time])
ϕ proteome mass fraction vector
λj KKT multiplier for the protein constraint ([time]−2)
λm KKT multiplier for the metabolite constraint ([time]−1)
λρ KKT multiplier for the density constraint ([time]−1)
µ growth rate ([time]−1)
π parameter vector (various units)
ρ mass density ([mass][volume]−1)
τ turnover time vector ([time])

Index Description

a all proteins
e enzymatic reactions
i internal reactants (including m and a)
j reactions (including s,e,r)
l reactions (including s,e,r)
m metabolites
r ribosome reaction
s surface reactions (i.e., transport reactions)

Growth Modeling. We define a GBA model as the triple
(M,τ ,ρ). The matrix M describes the mass fractions of in-
ternal reactants consumed and produced by each reaction; τ
is a vector of catalytic turnover times for each reaction; and
ρ is the combined mass concentration of all internal compo-
nents. In the following paragraphs, we provide more detailed
descriptions of the model constituents M, τ , and ρ. Here and
below, we use the term “reaction” to also encompass trans-
port processes across the cell surface, which are “catalyzed”
by transporter proteins or protein complexes.
M was first introduced in (4). It is constructed from the stoi-
chiometric matrix S for the total, closed system, i.e., includ-
ing rows for external reactants. We add a column “r” for
the production of protein from precursors by the ribosome,
as well as a row “a” corresponding to the total concentration
of all proteins, following the procedure introduced by Mole-
naar et al. (6). We now first convert all entries to masses,

by multiplying each row with the corresponding molecular
mass. Because of mass balance, each column must then sum
to 0. We next normalize each column such that the sum of
negative entries equals −1 and the sum of positive entries
equals +1. Now the entries correspond to the mass frac-
tions of each reactant (rows) going into and out of each re-
action (columns), as illustrated for the example in Fig. 1B.
Finally, we reduce the normalized matrix to a matrix for an
open system, by dropping all rows for reactants external to
the modeled cell. For the remaining internal reactants, we
will assume a quasi-steady state and thus enforce mass con-
servation.
As illustrated in Fig. 2, to simplify the notation for the fol-
lowing theoretical development, we partition the columns of
M (indexed together by j) into index sets for reaction types:
s for transport processes across the cell surface; e for internal
enzymatic reactions; and r for the ribosome reaction, which
is the only one that produces protein. We partition the rows of
internal reactants (indexed together by i) into indices m for
metabolites and a for total protein. We use the term “metabo-
lites” in its more general sense, referring to any molecule in
the cell that is not a protein. We distinguish vectors by us-
ing boldface, and vector components by using italics with the
appropriate index, e.g., c is the column vector of all internal
reactant concentrations, ci are its components, and we use a
lower index to indicate the components ci of the row vector
c⊤.

Fig. 2. Schematic overview of the mass conservation constraint Mv = µc,
determined by the mass fraction matrix M, the column vector of mass fluxes v, the
growth rate µ, and the column vector of internal reactants mass concentrations c.
The indices indicate partitions according to the type of reaction (columns of M, v)
or reactant (rows of M, c). The index i = (m,a) correspond to rows for internal
reactants, comprising rows m for metabolites, and a row “a” for the total mass
concentration of all proteins. The indices j = (s,e,r) correspond, respectively,
to transport proteins, enzymes, and the ribosome. We also use the index l for all
reactions when necessary. Note the row “a” of M has only one nonzero entry Ma

r ,
corresponding to the mass fraction of protein produced by the ribosome reaction r.
Different colors indicate three different types of reactions: red (transporters), blue
(enzymes), green (ribosome); and two types of reactants: light gray (metabolites),
dark gray (total protein), resulting in six partitions of M.

The ribosome reaction represents the last step in protein syn-
thesis, and is assumed to be catalyzed by a “ribosome” con-
sisting entirely of protein. We here ignore the RNA compo-
nents of the ribosome for simplicity, but it is possible to ex-
tend the modeled ribosome to a more realistic RNA-protein
complex. In addition, the enzymatic reactions (e) could be
extended so that they include details of protein translation
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that occur before the last, “ribosome” step (r) (5). Note that
nonlinear genome-scale GBA models can be created from ex-
isting linear genome-scale models, by extending their stoi-
chiometric matrix S with the addition of a ribosome reaction,
normalizing it to M with the molecular masses, and adding
the kinetic rate laws τ and density ρ (see below).
We assume that every reaction represented by a column j in
M is catalyzed by a protein or protein complex with concen-
tration pj – specifically, a transporter (s), an enzyme (e), or
the ribosome (r). The corresponding flux vj is assumed to
be proportional to pj , expressed as vj = pj/τ j(c,x). Thus,
τ j is defined as the inverse of the usual metabolite-dependent
factor in kinetic rate laws; SI text “Rate laws and kinetic pa-
rameters” provides a basic discussion of rate laws and the
necessary kinetic parameters. c = (cm, ca)⊤ is the vector
of internal reactant concentrations, comprising all metabolite
concentrations cm as well as ca, the combined mass concen-
tration of all proteins. Hence, each τ j may depend not only
on the concentrations of the substrates and products of the
corresponding reaction, but also on inhibitors and regulatory
metabolites not involved in the turnover itself. The transport
processes s are the only reactions whose rate laws may de-
pend on the external concentrations x.
Note that in accordance with the normalization of M, all con-
centrations of proteins pj and reactants ci throughout this
work are in units of [mass× volume−1]. Fluxes ([mass×
volume−1× time−1]) and the kinetic parameters must then
also be expressed in mass units, e.g., Michaelis constants Km
in [mass× volume−1] and turnover numbers kcat in product
mass per protein mass per time, resulting in [time−1].
ρ, the final constituent of GBA models, is the sum of all in-
ternal concentrations. We assume ρ to be constant, which is
consistent with experimental data on E. coli across growth
conditions and even across the cell cycle (23–25). The mass
balances exploited for the normalization of M mean that all
reactants involved in reactions must be accounted for in the
model and hence be included in the value of ρ; e.g., in a re-
alistic model water is a reactant in many reactions, so ρ cor-
responds in this case to the total cellular density (or buoyant
density). Simplified models may instead include only dry
mass components, so that both M and ρ consider only these.
The equations below will be simplified by adopting the Ein-
stein summation convention: a repeated lower and upper in-
dex denotes a summation over this index (often indicating a
matrix multiplication), e.g., M i

j vj :=
∑

j Mijvj = [Mv]i.
We also denote element-wise multiplication with repeated
upper (or repeated lower) indices.
Mass conservation implies that in the mass fraction matrix
M, each column sum γj :=

∑
i M i

j is zero if it involves only
the consumption and production of internal reactants (indices
e, r). In contrast, transport reactions (with indices s), which
bring mass into and out of the modeled system, do not con-
serve mass, resulting in the equations

γr = 0
γe = 0
γs ̸= 0 .

(2)

The property (2) guarantees mass conservation within reac-
tions, an information that is not always fully encoded in the
stoichiometric matrix S (see SI text “Mass balance and the
stoichiometric matrix S”). While external reactants have no
corresponding rows in M, their concentrations x may influ-
ence the turnover times τs of transporters. We present exam-
ples of GBA models and R code for their numerical optimiza-
tion in Dataset S1 (see SI text “Examples of GBA models and
R code for numerical optimization”).
We are interested in the cellular physiology, defined through
the concentration vectors c,p and the vector of reaction
fluxes v, at balanced growth. For a given model specified
by (M,τ ,ρ) and a given environment specified by x, bal-
anced growth at the instantaneous rate µ is specified by the
following constraints:

M i
j vj = µci (mass conserv. in bal. growth) (3)

vj = pj/τ j(c,x) (reaction kinetics) (4)∑
j

pj = ca (protein density) (5)

∑
i

ci = ρ (cellular density) (6)

cm ≥ 0 (non-negative met. conc.) (7)

pj ≥ 0 (non-negative protein conc.) (8)

The model’s balanced growth property is captured by the
right hand side of Eq. 3. We assume that the growth rate is al-
ways positive, µ > 0. Thus, for internal nodes with non-zero
concentration (ci ̸= 0), there is a necessary mass flow to off-
set the dilution through the associated volume growth at rate
µ. Note that the total protein concentration ca in Eq. 5 is not
fixed, but is constrained by a row “a” in Eq. 3 that specifies
mass conservation in balanced growth.
Below, we will be interested in optimal balanced growth,
defined as growth at the maximal possible rate µ given the
above constraints. From Eq. 3-5, we see that the variables
(c,p,v) are highly interdependent. The above formulation
does not lend itself to expressing µ as an explicit function of
these variables, which makes it not ideal for numerical or an-
alytical studies. If one can find a mathematically equivalent
formulation based on fewer, independent variables, then this
would facilitate the use of the KKT conditions, analogous to
how generalized coordinates facilitate the solution of prob-
lems in Lagrangian mechanics (26). Thus, we next focus on
a corresponding reformulation of the optimization problem.
This formulation will apply to all balanced growth states, and
only later we will use it to examine optimal balanced growth
states.

A Reformulation in Terms of Flux Fractions f . Our guid-
ing thought below is that there can be a correspondence be-
tween cell states at different growth rates, which can be ex-
pressed in the form of scaling relations. These scaling re-
lations extend the mass fraction scaling of M to fluxes and
concentrations. Specifically, we define biomass fractions

b := c
ρ

(adimensional) (9)
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(equivalent to c = ρb, since ρ > 0), which express concentra-
tions as fractions of the total cellular density; and we define
flux fractions

f := v
µρ

(adimensional) (10)

(equivalent to v = µρ f , since we assume µρ > 0), which ex-
press fluxes as fractions of the net mass uptake – i.e., the net
growth – of the cell, µρ. Thus, each flux fraction f j describes
the activity of reaction j relative to the total cellular mass pro-
duction. Importantly, Eq. 3 describing mass conservation in
balanced growth does not depend explicitly on µ anymore
when written in terms of f and b:

Mf = b . (11)

This equation also implies that the mass fractions b are
uniquely determined by the flux fractions f , independently
of µ. Conveniently, this unique dependence also means that
we can express the turnover times as functions of only f and
the fixed parameters ρ, M, and x:

τ = τ (c,x) = τ (ρMf ,x) . (12)

In the following discussion, we mostly focus on the depen-
dence of τ on f , and for simplicity of notation we do not
state the dependence of τ on the fixed parameters (ρ,M,x)
explicitly. Importantly, τ does not depend explicitly on µ,
which otherwise would cause a recursion problem when fur-
ther expressing the growth rate µ in terms of only f and τ (f),
as we will see below. The resulting dimensionality reduc-
tion of the solution space not only simplifies the analytical
considerations below, but also potentially facilitate numeri-
cal optimizations (27).
From Eqs. 4 and 10, we obtain the expression for protein
concentrations in terms of f , µ, and ρ,

pj = µρf j τ j(f) . (13)

The combined mass fraction of all proteins in the cell, ba, is
the sum of all pj in the last equation, divided by ρ:

ba = µfj τ j(f) , (14)

where we indicate summation by combining the lower index
in fj with the upper index in τ j . Thus, we can calculate
the total protein mass fraction during balanced growth from
µ and f , based only on reaction kinetics. However, through
Eq. 11, the same total protein mass fraction is also related to
f through the corresponding row “a” in M:

ba = Ma
j f j = Ma

r f r , (15)

where the second equality reflects our assumption that the
“ribosome” reaction r is the only one producing proteins, so
that Ma

j = 0 for j ̸= r. Equating the right hand sides of the
previous two equations and solving for µ (with ba ̸= 0 ⇒
fj τ j(f) ̸= 0), we get the growth function

µ(f) = Ma
r f r

fj τ j(f) . (16)

Thus, the growth rate becomes an explicit function of only
the flux fractions f . µ still depends on the fixed parameters
ρ, M, and x through the functions τ = τ (ρMf ,x). Note
that if fluxes v were used instead of the flux fractions f , then
τ (c,x) = τ (Mv/µ,x), which would cause a recursion is-
sue when defining the growth rate as a function of v and τ
following the same procedure. In that case, one is forced
to account for c as separate variables, thereby increasing the
dimensionality of the problem. The same recursion issue oc-
curs when formulating the problem in terms of protein con-
centrations.
From now on, we will consider b (Eq. 11) and τ (Eq. 12) as
functions of f , and treat f as the only free variables. After
writing the growth rate µ as a function of f , we now do the
same thing for our remaining constraints, so now we have
much fewer variables and constraints.
In the scaled variables, the density constraint (Eq. 6) is re-
duced to ∑

i

bi = 1 . (17)

Using the balanced growth Eq. 11, we can rewrite this con-
straint in terms of flux fractions f . We see that in balanced
growth, the density constraint (Eq. 17) is equivalent to a flux
balance on the cell surface,

1 = γj f j = γs fs . (18)

The second equality comes from Eq. 2: only the columns s
sum up to non-zero values γs, so only transport fluxes fs are
limited by this constraint. The nature of this constraint as
a global mass balance becomes more evident if we multiply
the whole expression by µρ: the net mass uptake γs vs go-
ing through the cell surface must equal the rate of biomass
production µρ.
Any solution to the growth function (Eq. 16) automatically
respects internal mass conservation, protein density and the
kinetic constraints: for any given vector f , µ(f) returns the
unique growth rate satisfying these constraints (which also
depend on ρ through τ = τ (ρMf)). The flux balance at the
cell surface is enforced separately by Eq. 18 on transporters,
making these fundamentally different from enzymatic and ri-
bosome reactions. In particular, for a model with only one
transporter s, Eq. 18 already determines the scaled uptake
rate fs = (γs)−1. With two transport fluxes, one flux is
uniquely determined by the other; a simple example would
be a model that only has transporters for glucose uptake and
CO2 excretion (see example model “C” in SI text “Examples
of GBA models and R code for numerical optimization”).
More generally, Eq. 18 can be used to uniquely determine
one transport flux fraction in terms of the others, reducing
the number of variables by one. For clarity of presentation,
however, we will keep Eq. 18 as a separate constraint and
not eliminate any variable, until the introduction of growth
control coefficients in the corresponding section.
Finally, writing the non-negativity constraints on proteins and
metabolite concentrations in terms of f results in

f j τ j(f) = pj

µρ
≥ 0 , (19)
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Mm
j f j = bm = cm

ρ
≥ 0 . (20)

The non-negativity of the total protein concentration does not
have to be imposed explicitly, as it already follows from the
non-negativity of individual proteins. We are now in the po-
sition to provide a concise formulation of growth rate opti-
mization in terms of flux fractions f . Combining Eqs. 16, 18,
19, 20, the optimal growth problem for a given environment
x becomes

maximize
f

µ(f) = Ma
r f r

fj τ j(f)
subject to:

γs fs = 1
f j τ j(f)≥ 0
Mm

j f j ≥ 0 ,

(21)

where the turnover times τ j are functions that depend on f
and on the parameters ρ,M,x, τ j = τ j(ρMf ,x). If the rate
laws have a general functional form, these functions will be
parameterised by the set kinetic parameters K. After solv-
ing this optimization problem, all original cellular variables
(unscaled fluxes as well as unscaled metabolite and protein
concentrations) can be easily reconstructed from f . In the
following, we will refer to π as the vector of parameters that
define the optimization problem, which includes M, ρ, and x,
as well as the elements of K. The parameters in π are consid-
ered fixed until the section “Growth Control and Adaptation”,
where we study the sensitivity of optimal growth to marginal
changes in the components of π.

Growth Analysis. Next, we utilize the problem reformula-
tion to derive general necessary conditions of cellular sys-
tems at optimal balanced growth, independent of model
specifics. First, for each reaction, we will derive explicit ex-
pressions for shadow prices in the optimal state. We then
derive equations for the state variables f themselves, which
must hold in any optimal state. This development constitutes
a generalization of our previous analytical approach to GBA
(4), which was restricted to models with matrices M of full
column rank. The latter condition is not generally satisfied by
realistic cellular models, as many cellular biochemical reac-
tions are structurally redundant, i.e., their columns in M are
linearly dependent on other columns. Optimal growth states
always have non-redundant active reactions (i.e., the active
M has full column rank) (4, 21, 22), but this optimal set of
active reactions is generally not known a priori. In contrast,
the following analysis in terms of flux fractions is valid for
any M of arbitrary size and rank.
For the following, we emphasize that the state of our system
is completely determined by scaled fluxes f j , which serve
as independent variables. All other variables are fully de-
pendent on them: the unscaled fluxes v, the scaled and un-
scaled concentrations b, c, and p, the reaction times τ , and
the growth rate µ.
All following analyses benefit from knowing the system’s
sensitivity to small changes of each of the independent vari-
ables f j . The partial derivatives of the system’s properties

c(f),v(f),b(f),τ (f),p(f), and µ(f) with respect to each f j

provide explicit expressions for sensitivity coefficients simi-
lar to the ones introduced in Metabolic Value Theory (28, 29),
based on the original concepts of Metabolic Control Analy-
sis (MCA) (9, 10). A unique feature of the present treatment
arises from the system of equations in Eq. 11, which deter-
mines the linear dependence of biomass fractions b on f , so
that the partial derivative of bi with respect to f j is given
simply as

∂bi

∂f j
= M i

j . (22)

Via the chain rule of differentiation, this expression also
determines the partial derivatives with respect to f j for
any functions of bi. A case of particular interest in the
following discussions is the vector of turnover times τ =
τ (c,x) = τ (ρb,x) = τ (ρMf ,x). We first define the (di-
rect) time elasticities (elasticities in short), the sensitivity of
each turnover time τ l(c,x) = τ l(ρb,x) with respect to each
biomass fraction bi, as

εl
i := ∂τ l

∂bi
= ∂τ l

∂ci

∂ci

∂bi
= ∂τ l

∂ci
ρ , (23)

where we used the chain rule of differentiation in the first
equality and Eq. 9 in the second. We then use the direct elas-
ticities εl

i to express the sensitivity of τ l to a change in a flux
fraction f j , defined as the indirect time elasticity matrix E
(or indirect elasticity in short), with entries

El
j := ∂τ l

∂f j
= ∂τ l

∂ci

∂ci

∂bi

∂bi

∂f j
= εl

i M i
j , (24)

where we sum over i and used Eq. 22 in the last equality. In
the following discussion, we assume that the kinetic rate laws
do not depend on the total protein concentration ca, meaning
εl

a = ∂τ l/∂ca = 0 for all reactions l. That would be different
if, for example, one accounts for the macromolecular crowd-
ing effects via kinetic rate laws (30). The indirect elasticities
E and direct elasticities ε share some resemblance with the
Jacobian and elasticity matrices defined in Metabolic Value
Theory and MCA, although we do not intend to explore the
exact relationships in this work. For an example of direct
and indirect elasticities, where τ follows a simple Michaelis-
Menten rate law, see SI text “Rate laws and kinetic parame-
ters”.
In the remainder of this paper, we will explore three com-
plementary types of analyses of GBA systems. First, in the
growth optimality section we will state the analytical condi-
tions necessary for an optimal state f∗. Second, in the growth
economy section we will calculate the sensitivity of a (not
necessarily optimal) growth rate µ to small changes in each
f , which we interpret in economic terms as marginal values
of reactions. Third, in the growth control and adaptation sec-
tion we will estimate the sensitivity of the optimal growth rate
µ∗ to small changes in the previously fixed parameters π. In
each of these analyses, the sensitivity measures captured by
E will appear naturally in the results.
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Growth Optimality. We next calculate the necessary analyt-
ical conditions for the optimal growth state. This calcula-
tion extends our previous analytical approach, which was re-
stricted to GBA models with matrices M of full column rank
(4), to general GBA models with arbitrary matrices M, fa-
cilitated by the reformulation of the GBA problem in terms
of flux fractions f . We approach this problem by studying
the Karush-Kuhn-Tucker (KKT) conditions (31, 32), which
generalize the method of Lagrange multipliers by also ac-
counting for inequality constraints, here present due to the
non-negativity of concentrations. To simplify the presenta-
tion in this section, we here account explicitly only for the
non-negativity of protein concentrations, but not for the non-
negativity of metabolite concentrations. Under the reason-
able assumption that metabolites with zero concentration do
not participate in any active reactions, the resulting necessary
conditions are also necessary when accounting for this latter
constraint; the full calculations can be found in the Materials
and Methods section.
We define the Lagrangian L(f ,λ) for a given GBA model
(M,τ ,ρ) and external concentrations x as

L(f ,λ) := µ(f)+λρ (γs fs−1)+λl f l τ l(f) , (25)

where we sum over l in the last term. The KKT multipli-
ers λ are auxiliary variables used to find the optimal state,
but also encode important economic and control information
about the system at optimality, as we will see later. λρ relates
to the density constraint connected to f via the flux balance
at the surface (Eq. 18); the λl relate to the non-negativity
of proteins (Eq. 19). The necessary KKT conditions include
the primal feasibility conditions given by these two equations
and

∂jL= 0 (stationarity) (26)
λj fj τj = 0 (complementary slackness) , (27)

where ∂j := ∂/∂f j indicates the partial derivative with re-
spect to f j .
The stationarity conditions can be solved for the correspond-
ing optimal multipliers λj , resulting in

λj =−(∂jµ+λργj)/τj , (28)

where λρ is the optimal value for the density multiplier. After
an element-wise multiplication of both sides of Eq. 28 with
fjτj , we can use the complementary slackness (λjτjfj = 0)
to get

(∂jµ)fj +λργj fj = 0 . (29)

Now summing the last equation over all j and using the pri-
mal feasibility (Eq. 18) results in

λρ =−(∂jµ)f j , (30)

where we have a summation over j.
From Eq. 16, the partial derivative of µ with respect to f j is

∂jµ = µ

ba

(
Ma

j −µτj−µfl El
j

)
, (31)

where we used the identity ba = Ma
r f r from Eq. 15. Substi-

tuting these derivatives into Eq. 30) results in an expression
for the optimal value of the density constraint multiplier λρ

in terms of f only,

λρ = µ2

ba fl El
j f j (32)

(see Materials and Methods for the detailed calculations).
Note that in the last equation, j and l do not refer to spe-
cific reactions but instead indicate summations. When we
further consider that only transporters have a nonzero column
sum (Eq. 2), we get an equivalent expression that highlights
the particular dependence of λρ on the reactions directly con-
nected to the transport reactions (see SI text “The dependence
of λρ on transporters”).
Combining Eq. 28, 31, 32, we can now express each multi-
plier λj explicitly in terms of the flux fractions f at optimal-
ity, resulting in slightly different expressions for ribosomal,
enzymatic, and transport reactions:

λr =− µ

ba
1
τr

(
Ma

r −µτr−µfl El
r

)
(33)

λe = µ

ba
1
τe

(
µτe +µfl El

e

)
(34)

λs = µ

ba
1
τs

(
µτs +µfl El

s−µfl El
j f jγs

)
. (35)

By inserting these expressions into the complementary slack-
ness conditions (Eq. 27), we can now solve for f , which re-
sults in the three balance equations for ribosomal, enzymatic,
and transport reactions:(

Ma
r −µτr−µfl El

r

)
fr = 0 (36)

(
µτe +µfl El

e

)
fe = 0 (37)

(
µτs +µfl El

s−µfl El
j f jγs

)
fs = 0 , (38)

where we simplified the expressions by exploiting that
µ,ba, τj ̸= 0. The balance equations are necessary equality
conditions for the optimal growth state f∗ of the optimization
in Eq. 21, and generalize Eq. 10 in (4). Note that in all cases,
a reaction with nonzero flux f j requires that the correspond-
ing term in parentheses (i.e., the corresponding λj) is equal
to zero. Conversely, if the term in parentheses is different
from zero (λj ̸= 0), then the reaction cannot carry flux at op-
timality (f j = 0). In particular, the ribosome evidently needs
to be active for balanced cellular growth, so λr = 0 must al-
ways hold in optimal states. The KKT multipliers λj can be
understood as shadow prices of the scaled protein concen-
trations τ jf j = pj/(µρ) (protein concentration per biomass
production µρ). These shadow prices must be zero for ac-
tive reactions at optimality, as otherwise growth rate could be
increased by changing the corresponding protein concentra-
tion.
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We may also express the balance equation for each reaction
j in the usual, unscaled variables p (protein concentrations),
v (fluxes), and c (reactant concentrations, including metabo-
lites and total protein), by using Eqs. 4,9,10,11 (see Materials
and Methods)

Ma
j vj−µpj−

pl

τl

∂τ l

∂ci
M i

j vj + pl

τl

∂τ l

∂ci

ci

ρ
γj vj = 0 , (39)

where we sum over indices l and i. We now continue our
analysis in terms of the flux fractions f , since these are the
variables of the optimization problem (Eq. 21). However, we
keep in mind that the same change of variables to p,v,c is
possible in all the following equations, as done for Eq. 39.

Growth Economy. As growth rate is closely related to fitness
(2), it makes sense to view growth rate as the primary value of
the cellular economy. In this subsection, we will thus explore
the economy of balanced cellular growth, by asking how a
small change in the state variables f j affects the growth rate
µ of any optimal or non-optimal state. Below, we will see
that the necessary conditions of optimal growth specify that
the marginal costs and benefits of each flux must be perfectly
balanced.
We define the marginal value of flux j as the partial derivative
∂jµ, which quantifies the marginal gain in growth rate result-
ing from a small increase in f j . From Eq. 31, we see that the
marginal value can be expressed naturally as a multiple of the
growth rate per mass fraction of protein in biomass, µ/ba. As
we will see next, the corresponding adimensional factor ––
the term in parentheses in Eq. 31 – quantifies different types
of costs (when negative) and benefits (when positive) of re-
action j in terms of its influence on protein allocation,

ba

µ
∂jµ = Ma

j −µτj−µfl El
j . (40)

The first summand quantifies how a marginal increase in f j

increases the total protein fraction in the cell density ba =
ca/ρ (see Eq. 5),

Ma
j = ∂ba

∂f j
. (41)

We name this contribution to the normalized marginal value
the marginal protein production. As we assume that the ribo-
some reaction is the only reaction that consumes or produces
protein, this reaction (j = r) is the only one with a nonzero
(and positive) marginal production benefit.
To interpret the remaining summands, we remember that an
individual protein’s mass fraction in the cellular density can
be expressed as pl/ρ = τ lvl/ρ = µτ lf l. The last two terms
in Eq. 40 quantify the combined decrease of individual pro-
tein fractions in cellular density (pl/ρ) caused by a marginal
increase in f j at fixed µ,

−µτj−µfl El
j =−

(
∂(µfl τ l)

∂f j

)
µ

=−
∑

l

(
∂(pl/ρ)

∂f j

)
µ

.

(42)
Here, the first summand quantifies the change in pl/ρ at
fixed turnover times, which is evidently non-zero only for

the enzyme catalyzing the perturbed flux j itself. We name
this term, −µτj , the marginal (protein) investment into j.
The final summand quantifies the local change of the indi-
vidual protein concentrations that must occur to compensate
the changes in the turnover times (quantified by the indirect
elasticity E), themselves caused by changes in metabolite
concentrations forced due to flux balance. We name it the
marginal (protein) opportunity of j, as it is related to oppor-
tunity costs and benefits in economics. For the typical case
of reactions running in the forward direction (f j > 0), τ j is
positive, and thus the marginal investment into j is negative,
representing a cost. If all fluxes are non-negative, beneficial
decreases in turnover times correspond to negative E, result-
ing in positive marginal opportunity (i.e., marginal opportu-
nity benefit).
We can now summarize our insights about cellular economy,
in particular about changes in the growth rate µ in response to
changes in a flux f j . The first and second terms in Eq. 40 are
simple, direct consequences of the flux change: the marginal
production benefit, an increase in protein production if f j

is the ribosome flux; and the marginal investment, an in-
crease in the protein concentration required to sustain an in-
creased f j . The third term in Eq. 40, the marginal opportu-
nity, is more interesting, though equally easy to understand.
As a simple consequence of mass conservation (Eq. 11), a
change in f j while keeping all other fluxes fixed must result
in changes in the concentrations of all reactants consumed
or produced in the corresponding reaction. These concentra-
tion changes modify the turnover times τl(c) of all reactions
l whose kinetics depend on them, either because they are di-
rectly connected to those reactants or because they act as in-
hibitors or activators; see Fig. 3 for an example. Keeping the
corresponding fluxes f l constant requires matching changes
in the concentrations pl of the catalyzing proteins (Eq. 4).
This total amount of “protein saved” due to a change in fj is
quantified by −µfl El

j .

1 2
f1 f2 f3

b1 b2

f4

Fig. 3. The dependence of marginal opportunity on the reaction neighbor-
hood. The figure shows a simple example of a reaction (j = 2, red) that is di-
rectly connected to two metabolites (m = 1,2) and thereby to two other reactions
j = 1,3. Reaction j = 2 is also connected indirectly to reaction j = 4 by inhibiting
it through metabolite m = 2 (indicated by the blunt arrow ⊺). The marginal op-

portunity of j = 2 is −µfl El
2, where El

2 = ∂τl

∂bi Mi
2 = ∂τl

∂b1 M1
2 + ∂τl

∂b2 M2
2 is

determined by a marginal change in f2 while keeping all other f l fixed, causing
(i) an inevitable change in b1, b2 due to the flux balance (Eq. 11); which by conse-
quence causes (ii) an inevitable change in τ1, τ2, τ3, τ4, as these are functions
of b1, b2; which finally causes (iii) an inevitable change in p1,p2,p3,p4 due to the
kinetic constraints (Eq. 4) at fixed v1,v2,v3,v4 (determined by the fixed flux frac-
tions and growth rate (Eq. 10)). The example also shows how the information about
mass conservation and reaction kinetics is completely built into the definition of the
growth function (Eq. 16).
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The above results confirm the often postulated central role of
proteins in the cellular economy (33–35). While the measure
of cellular economic value may be the growth rate itself, pro-
tein concentrations constitute the general currency in which
we can express the contributions of cellular subsystems. We
can highlight this central economic role of proteins further
by relating the marginal values ∂jµ – changes in growth rate
in response to flux changes – to changes in the allocation of
proteome fractions ϕl := pl/ca :

∂jµ = µ

ba

(
Ma

j −µτj−µfl El
j

)
=−µ

∑
l

(
∂ϕl

∂f j

)
µ

.

(43)
The second equality follows directly from taking the deriva-
tive of

∑
l ϕl = µρτl f l/ρMa

l f l with respect to f j at con-
stant µ.
We can now look at the balance equations at optimal growth
from an economic perspective. For the ribosome and ac-
tive enzymatic reactions, a zero marginal value ∂jµ = 0 also
means a zero shadow price, λj = 0 (Eqs. 33, 34) – so the reac-
tion is optimal, and growth cannot be accelerated by increas-
ing or decreasing f j by a small amount. This insight pro-
vides an intuitive interpretation for the balance equations for
the ribosome (Eq. 36) and for all active, internal enzymatic
reactions (Eq. 37). An exception are only the transporters. In
contrast to all other flux fractions, their shadow price (Eq. 35)
depends both on their marginal value and on their marginal
biomass production, µfl El

j f jγs (a cost when negative and
a benefit when positive).
For active enzymes with zero marginal value – and thus for
all active enzymes at optimality (Eq. 37) – Eq. 31 simplifies
to

τe +fl El
e = 0 . (44)

This simple relationship shows that at optimality, the
marginal investment into e should perfectly balance its
marginal opportunity. As the last equation involves only
the neighborhood of e (defined as all reactions l such that
El

e ̸= 0), we can study such relationships at optimality lo-
cally, without full knowledge about the entire reaction net-
work. We thus do not need the entire matrix M or complete
knowledge of parameterized turnover time functions in the
vector τ .
In the preceding subsection, we studied how any optimal or
non-optimal growth rate µ is sensitive to marginal changes
in one of the flux fractions, resulting in an economic under-
standing of marginal flux values in terms of their relationship
with protein allocation. We next reinterpret some of these
results from the perspective of control theory, and turn to a
complementary problem that focuses on the sensitivity of the
optimal growth rate to changes in the model parameters and
external concentrations.

Growth Control and Adaptation. We are first interested in the
total control that each f j has on the (optimal or non-optimal)
growth rate µ, accounting also for the density constraint lim-
itation. In order to do that, we choose one active transport

reaction s′ and express its corresponding fs′ ̸= 0 as a func-
tion of the other fluxes via the density constraint (Eq. 18),

fs′ = 1
γs′

(
1−γl f l

)
, (45)

where l ̸= s′ sums over all other reactions. Thus,

∂fs′

∂f j
=− γj

γs′
, (46)

which is non-zero only if j is also a transport reaction (so
γj ̸= 0). We now define the Growth Control Coefficients Γj

as
Γj := ∂jµ−∂s′µ

γj

γs′
, (47)

where the first term quantifies the growth change caused by
f j itself, and the second term quantifies the growth change
caused by a change in fs′

, itself changed due to the changed
f j and the density constraint. Note that for the ribosome and
enzymatic reactions, their growth control coefficient is sim-
ply their marginal value, since γr = γe = 0. For models with
only one transport reaction s, Γs = 0, since fs = (γs)−1 is
fixed by the density constraint and cannot be changed. Con-
veniently, this is also captured by Eq. 47. If s′ is optimal,
λs′ = 0, and Eq. 28 determines ∂s′µ = −λργs′ , so in that
case

Γj = ∂jµ+λρ γj , (48)

and Eqs. 36, 37, 38 are thus equivalent to

Γj fj = 0 . (49)

We may also see the optimal condition for enzymes (Eq. 44)
in terms of protein concentrations, by multiplying it element-
wise with ve (so it is also valid now for inactive enzymes),

pe = plC
l
e , (50)

where we defined

Cl
e := fe

vl

(
∂vl

∂fe

)
pl

= fe

vl

(
∂(pl/τ l)

∂fe

)
pl

=−fe

τ l

∂τ l

∂fe
,

(51)
via Eq. 4 and using partial derivatives at fixed pl. Cl

e can
been seen as (scaled) control coefficients (CC), analogous to
(scaled) control coefficients in MCA (9, 10). This result is
analogous to how enzyme concentrations and their respec-
tive CC relate at optimal fluxes constrained by a fixed to-
tal enzyme concentration (36) (see SI text “Optimal enzyme
concentrations and control coefficients” for a detailed discus-
sion). For an example of control coefficients where τ follows
a simple Michaelis-Menten rate law, see SI text “Rate laws
and kinetic parameters”.
We now explore the sensitivity of the optimal growth rate to
changes in one parameter π in the vector π. The growth prob-
lem (Eq. 21) is constrained by the parameters π, including
the arguments necessary to determine the turnover times τ at
given f . This means that any marginal change in one of the
parameters π would lead to changes in the solution f∗ of the
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optimization (Eq. 21). In this sense, the parameters π can be
understood as control variables, while the corresponding op-
timal state f∗, and its functions µ∗ = µ(f∗),v∗ = v(f∗),p∗ =
p(f∗), and c∗ = c(f∗) are the response variables. Figure 4
summarizes these relationships.

π f∗ p∗,c∗,v∗,µ∗optimization (21) Eqs. 4,9,10,16

Fig. 4. The parameters π and their control on the optimal cellular state f ∗.

Because growth rate is closely related to fitness, we are also
particularly interested in how marginal changes in one of the
previously fixed parameters π affect the optimal growth rate
µ∗ (37). We can estimate this effect directly via the en-
velope theorem (4, 38), by effectively considering the opti-
mal state f∗ as fixed and treating the parameters π as the
new independent variables, making it unnecessary to calcu-
late the new optimal state after the parameter change. To do
that, we first simplify the problem by assuming that these
marginal changes have no effect on which reactions are ac-
tive, so we simplify the Lagrangian (Eq. 25) by ignoring
the inequality constraints; note that in this case only the ob-
jective function µ can be influenced by parameter changes,
since the density constraint only depends on M, whose en-
tries cannot be changed continuously. Second, we can think
about the optimal growth rate µ∗ as a function of the param-
eters µ∗(π) := L(f∗(π),λ∗(π),π), so the the total change
dµ∗/dπ induced by a marginal change in a parameter π can
be calculated via the chain rule

dµ∗

dπ
= ∂L

∂fj

df∗
j

dπ
+ ∂L

∂λρ

dλ∗
ρ

dπ
+ ∂L

∂π
= ∂L

∂π
, (52)

where the last equality comes from ∂L/∂f j = ∂L/∂λρ = 0
according to the stationarity (Eq. 26) and primal feasibility
(Eq. 18) at an optimal state.
We now define growth adaptation coefficients A as the rel-
ative change in the optimal growth rate µ∗ in response to a
small, relative change in one control variable π

Aπ := π

µ∗
dµ∗

dπ
= π

µ(f)
∂L
∂π

, (53)

where here and in the rest of this section f is to be understood
as the optimal state before the change in the parameter π.
Note that in the following discussion, the parameters π of
interest only influence L via the objective function µ, so the
partial derivatives ∂L/∂π are simply evaluated as ∂µ/∂π at
fixed f .
For direct changes in the turnover times τ j (e.g., through
changing the corresponding 1/kj

cat), the growth adaptation
coefficient is calculated by evaluating the growth function µ
and its partial derivative at fixed f ,

Aτj := τj

µ∗
dµ∗

dτ j
= τj

µ

∂µ

∂τ j
=−µρfj τj

ca
=−ϕj , (54)

where we effectively treated τ j as a variable in the growth
Eq. 16, and ϕj = pj/ca is the optimal proteome fraction al-
located to reaction j before the change in τ j . This result is

consistent with the observation that drugs targeting the most
highly expressed catalysts, such as the ribosome, have the
strongest effects on cellular growth rates (5, 39).
For changes in some external parameter such as a concentra-
tion x, the growth adaptation coefficient is again calculated
by evaluating the growth function µ and its partial derivative
at fixed f , and using the chain rule of differentiation we ob-
tain

Ax := x

µ∗
dµ∗

dx
= x

µ

∂µ

∂τs

∂τs

∂x
=−ϕs

x

τs

∂τs

∂x
, (55)

where we have a summation over s (only transporters s have
kinetic rate laws depending on external concentrations). Ac-
cording to Eq. 55, the growth adaptation coefficient of an
external concentration x is simply the sum over the “scaled

elasticities”
x

τs

∂τs

∂x
of the transporters of x, weighted by the

optimal proteome fractions ϕs allocated to each s before the
change in x. This result gives an explicit quantitative esti-
mation on which external concentrations should be changed
in order to cause the most change in the optimal growth rate.
This equation may hence provide a useful tool for improving
the growth media environment for industrial cell cultures, and
for quantifying the effect of drugs aimed at decreasing the
growth of pathogens and cancer cells. If the turnover times
τ depend explicitly on other external parameters, such as pH
and temperature, growth adaptation coefficients can be cal-
culated and interpreted exactly as in Eq. 55.
The growth adaptation coefficient with respect to the mass
density ρ, assuming it affects turnover times τ only through
reactant concentrations c, reads

Aρ := ρ

µ∗
dµ∗

dρ
= ρ

µ

∂µ

∂τ l

∂τ l

∂ci

∂ci

∂ρ
=− ρ

µ

(
µ2

ba fl
∂τ l

∂ci
M i

jf j

)
=− µ

ba fl El
j f j , (56)

where ∂ci/∂ρ = bi = M i
jf j according to Eqs. 9,11, and the

last equality comes from the definition of the indirect elastic-
ity (Eq. 24). From this expression and λρ in Eq. 32, we see
that −λρ = µAρ; at optimality, the negative Lagrange multi-
plier for the density constraint, −λρ, quantifies the absolute
increase in growth rate caused by a marginal increase in ρ,
given by µ itself times the proportional change, Aρ. Thus,
the extra term in the shadow price of transporters (compare
λs in Eq. 35 to λr and λe) quantifies the growth rate bene-
fit gained by allowing the violation of the density constraint
(Eq. 18) caused by a small increase in fs.
Just as the economy of growth is deeply connected to protein
allocation, so is growth control. For Aj and Ax, this connec-
tion is clear from Eqs. 54, 55, respectively. For Aρ, we first
note that it relates to optimal marginal values via Eq. 30,

µAρ =−λρ = (∂jµ)f j = (∂sµ)fs . (57)

At optimality, the summands on the RHS are zero for the ri-
bosome and for enzymatic reactions (∂jµfj = 0 for j = r,e),
and the summation over j can thus be restricted to only trans-
porters s. Thus, at optimality, the absolute change in opti-
mal growth rate caused by increasing ρ, µAρ, is equal to the
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summed marginal effects of transport fluxes on the growth
rate, ∂sµ, weighted by the flux fractions fs themselves. To
see the full connection between Aρ and protein allocation,
we insert Eq. 43 into Eq. 57 to obtain

Aρ =−
∑

l

(
∂ϕl

∂fs

)
µ

fs , (58)

where we sum over s. This equation shows that the propor-
tional effect on the optimal growth rate that is exerted by a
marginal increase in ρ, Aρ, equals the combined marginal ef-
fects of transport fluxes fs on proteome allocation fractions,
weighted by the transport fluxes themselves.

Discussion
Modeling frameworks that are essentially linear, such as FBA
and RBA, are typically analyzed numerically, as the effi-
ciency of linear programming facilitates fast solutions even
for genome-scale models (7, 8, 11). In contrast, the construc-
tion and solution of genome-scale non-linear models faces
two major obstacles, both intimately linked to the kinetic rate
laws. First, experimental estimates for the required kinetic
parameters – kcat and Km values in the simplest case of
generalized Michaelis-Menten kinetics – are lacking for most
reactions (40). This problem can be alleviated by using pa-
rameter estimates from artificial intelligence approaches (41–
43). Second, the non-linearity of enzymatic rate laws makes
numerical optimizations much more difficult than for linear
systems, explaining why existing studies have been limited
to models with only a handful of reactions (6, 15–19). Nu-
merical optimization is particularly problematic for models
with redundant pathways, where the optimization problem is
non-convex (20).
The succinct mathematical formulation for modeling bal-
anced cellular growth developed in this paper helps to address
both problems. On the one hand, the reduction of the problem
description to a minimal number of independent variables –
the flux fractions – reduces the dimensionality of the search
space, and can thus accelerate numerical approaches to find
optimal states. On the other hand, this formulation allowed us
to identify necessary conditions for states of maximal growth
rate. These conditions are local for each reaction, i.e., they do
not require complete knowledge of the cellular reaction net-
work and its kinetics. In particular, these local balance equa-
tions provide a necessary condition for the activity of each
individual reaction at optimality: for the corresponding flux
to be nonzero, the terms in parentheses in Eqs. 36-38 have
to be zero. Our analytical approach thus provides a tool for a
deeper understanding of the general principles shaping opti-
mal cellular resource allocation, even when specific optimal
states are not explicitly known.
The concise formulation also helped in the interpretation of
the optimality conditions from the perspectives of economy
and control theory. The marginal change in growth rate in-
duced by each flux change is seen as the flux’s marginal eco-
nomic value, while the growth adaptation coefficient of each
model parameter or external concentration is the change in

the optimal growth rate induced by a marginal change in this
parameter. The close correspondence between the mathemat-
ical expressions obtained in both perspectives helps to clarify
the mathematical and conceptual links between these usually
separate fields of study, including the extension of previous
results of metabolic control analysis (MCA), developed for
ad-hoc objectives in static sub-networks, to the holistic prob-
lem of cellular growth in GBA models. In MCA, one typ-
ically treats enzyme concentrations as control variables and
studies how small changes to them affect reactant concen-
trations and fluxes. Here, all these variables are not only
connected, but are uniquely determined by the flux fraction
vector f . Moreover, the growth rate µ itself is explicitly con-
nected to f through the growth function (Eq. 16). Through
these connections, we can quantify the sensitivity of the cel-
lular growth rate, and hence approximately of organismal fit-
ness, to changes in the control variables π, something not
possible in the usual MCA framework (9, 10). The growth
adaptation coefficients provide explicit expressions for the ef-
fects on growth rate caused by small changes in control vari-
ables at optimality. Due to the close relationship between
growth rate and fitness, these estimates could be used to in-
terpret and predict evolutionary changes in these variables.

A closely related nonlinear cellular modeling approach ac-
counts for the different amino acid compositions of individ-
ual proteins by including “personalized” ribosome reactions
for each protein (44–46). In contrast to GBA, this type of
model cannot be simplified using flux fractions f , as it re-
quires a mathematical formulation that includes explicit vari-
ables for metabolite concentrations. Experimental data for E.
coli (47) indicates that the 20 amino acid content into its total
proteome changes very little over 22 highly distinct growth
environments (mean coefficient of variation = 2.46%, max-
imal CV = 7.55%, see Table S1), suggesting that – at least
globally – different protein compositions are likely not a ma-
jor factor driving significant changes in the optimal cellu-
lar state. Thus, a unique ribosome reaction with fixed col-
umn Mr is a realistic assumption over all these growth con-
ditions. Further study is necessary to identify whether the
different compositions of individual proteins may cause sig-
nificant changes in their allocation across environments.

All analytical results in this study were derived exclusively
from the growth constraints assumed in GBA models: mass
conservation in balanced growth, reaction kinetics, cellular
density, and non-negative concentrations. For the analysis
of optimal growth, we encoded all corresponding informa-
tion into a single Lagrangian function, parameterized in terms
of the constraints. We formulated the problem with the flux
fractions f as the only free variables, and used KKT condi-
tions to obtain the necessary conditions for optimal growth
states. Through these conditions, the marginal protein allo-
cation emerges as the natural underlying currency in the cell
economy; this relationship has frequently been asserted (33–
35), but is derived here entirely from first principles.

The KKT framework provides a straight-forward way to in-
corporate new constraints, analogous to how physical theo-
ries using the Lagrangian formalism account for additional
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forces by adding corresponding functions and Lagrange mul-
tipliers into the Lagrangian. A re-derivation of the KKT con-
ditions will then result in an extended set of balance equa-
tions. Among the potential extra physiological constraints,
one might consider also phenomenological constraints such
as the recently reported relationship between the cellular sur-
face/volume ratio and the growth rate (48).

One fundamental physiological limitation that could be in-
cluded in this way but is not considered explicitly here is the
diffusion limit of molecules within cellular compartments.
This limit links density and kinetic constraints. A higher
dry mass density increases the “crowding effect” within cells
(25), which entails a lower diffusion rate and by consequence
a longer time for reactants to find their catalysts; this effect
can be modeled directly by including a corresponding depen-
dence in the Michaelis constants Km. A study on the crowd-
ing effects of all cellular concentrations – including those of
small molecules – found that the observed E. coli dry mass
density is in the range expected if evolution had optimized the
cellular density for maximal growth rate (30). In this sense, a
fixed density constraint on all molecules, as considered here,
may be seen as a simplifying approximation, justified by the
observed constancy of cellular buoyant and dry mass densi-
ties across different growth conditions (24, 48), with the ex-
ception only of large changes in environmental osmolarities
(25).

The Lagrangian formalism described here also allows a di-
rect generalization of the theory to other objective functions,
i.e., other measures of fitness at balanced growth. This can
be done by incorporating a new objective function F (f) and
adding a new constraint for the growth rate via λµ(µ−µ0),
where µ is determined by the growth function, λµ is the cor-
responding KKT multiplier, and µ0 is the constrained growth
rate given now as an input.

An important step toward a more general theory of cellular
growth would be to extend the GM theory to changing en-
vironments, and to derive similar analytical conditions for
time-dependent optimal cellular states f(t). In this situation,
fitness is determined by the total growth in a given period of
time, so the objective function becomes the integral of the
specific growth rate (17, 49), under the same constraints as
discussed here. This dynamical extension of the theory might
also consider the biologically important scenario of cyclical
environments, such as feast-famine cycles of the gut micro-
biome (50) or day-night cycles of photosynthetic microbes
(19).

In sum, the concise mathematical formulation of the growth
optimization problem developed here provides a powerful
toolbox for the analysis and solution of mechanistic descrip-
tions of optimal cellular physiology and growth. It thereby
opens a path toward a fundamental understanding of orga-
nizing principles of biological cells. While biological sys-
tems will never be fully optimal, optimal states provide an
extremely useful null model for the action of natural selec-
tion.

Methods
Let us consider a Lagrangian including inequality constraints
on metabolite concentrations,

L(f ,λ) = µ(f)+λρ (γs fs−1)+λl f l τ l(f)+λm Mm
l f l .

(59)
The necessary KKT conditions are the same as in the main
text, plus extra conditions for the constraints on metabolite
concentrations, including

Mm
j f j ≥ 0 (primal feasibility) (60)

λmMm
j f j = 0 (complementary slackness) (61)

The last equation corresponds to λmbm = 0, but since cells
in optimal states will only express those proteins that are ac-
tually needed to catalyze reactions, we can be even more re-
strictive and require a stronger version of the last equation:

λmMm
j fj = 0 . (62)

This equation encodes the following: if λm ̸= 0, the metabo-
lite m is inactive (cm = 0), and then all of the reactions j
connected to it (j such that Mm

j ̸= 0) must also be inactive
(fj = 0). We also note that because the turnover times τ
differ from zero, the complementary slackness of reaction j
(Eq. 27) is equivalent to

λjfj = 0 . (63)

Now we solve the necessary equality conditions, first consid-
ering the stationarity

∂jL= ∂jµ+λργj +λl f l Ej
j +λj τj +λm Mm

j = 0 . (64)

By considering the stronger version of the complementary
slackness for reactions (Eq. 63), we cancel the sum on λl,
resulting in

∂jµ+λργj +λj τj +λm Mm
j = 0 . (65)

Now we multiply (element-wise) by fj

(∂jµ)fj +λργj fj +λj τj fj +λm Mm
j fj = 0 (66)

and consider the stronger version of the complementary
slackness (Eq. 62) on metabolites, and the complementary
slackness on reactions (Eq. 27), resulting in Eq. 29. Sum-
ming over all j and using the density constraint (Eq. 18) re-
sults in Eq. 30. Now the complete expression for λρ in terms
of f is given by substituting the expression for the growth rate
derivatives (Eq. 31),

λρ =− µ

ba

(
Ma

j f j−µτj f j−µfl El
j f j

)
. (67)

The first term in parentheses equals ba according to Eq. 15,
and the third equals −ba according to Eq. 14, so that both
terms cancel each other. This results exactly in Eq. 32.
Finally, combining Eqs. 29, 32, we obtain a general form for
the balance equations,(

∂jµ− µ2

ba fl El
h fhγj

)
fj = 0 , (68)

12 | bioRχiv Dourado et al. | Growth Mechanics

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 28, 2022. ; https://doi.org/10.1101/2022.10.27.514082doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.27.514082
http://creativecommons.org/licenses/by-nc/4.0/


where both indices l and h are used to indicate summation
over all reactions. Using Eq. 31 for the derivative, we have(

Ma
j −µτj− µfl El

j +µfl El
h fhγj

)
fj = 0 . (69)

We use Eqs. 9,10,11 to express this in terms of v, c,(
Ma

j −µτj−vl
∂τ l

∂ci
M i

j +vl
∂τ l

∂ci

ci

ρ
γj

)
vj = 0 , (70)

Using vl = pl/τl from Eq. 4, we obtain(
Ma

j −µτj−
pl

τl

∂τ l

∂ci
M i

j + pl

τl

∂τ l

∂ci

ci

ρ
γj

)
vj = 0 . (71)

By multiplying out vj , we get Eq. 39.
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Supplementary texts
Rate laws and kinetic parameters. For simplicity, it may be convenient to assume that each component τ j in the vector of
turnover times τ has a general functional form that depends only on a set K of kinetic parameters relating reactions j with
metabolites m and external reactants n. The simplest general rate law would be the irreversible Michaelis-Menten kinetics,
which for a reaction l determines

τ l(c,x) = 1
kl(c,x)

= 1
kl

cat

∏
m

(
1+ Kl

m

cm

)∏
n

(
1+ Kl

n

xn

)
, (72)

where the kinetic parameters are the corresponding turnover number kl
cat, and Michaelis constants Kl

m for metabolites m, and
Kl

n for external reactants n. We may consider that all metabolites m and external reactants n that are not substrates in reaction l
have corresponding Michaelis constants equal to zero, so the above equation doesn’t depend on their respective concentrations.
Note only transport reactions s depend on external concentrations x, so Ke

n = 0 for all e,n, and Kr
n = 0 for all n.

In that case of all reactions following the irreversible Michaelis-Menten kinetics (72), the (direct) elasticity εl
m with respect to

a metabolite m is

εl
m = ∂τ l

∂bm
= ρ

∂τ l

∂cm
=−

∏
m′ ̸=m

(
1+

Kl
m′

cm′

)∏
n

(
1+ Kl

n

xn

)
ρKl

m

kl
cat(cm)2 , (73)

where m′ are metabolites different than m. The corresponding indirect elasticity El
j with respect to a reaction j is

El
j = ∂τ l

∂f j
= εl

mMm
j =−

∏
m′ ̸=m

(
1+

Kl
m′

cm′

)∏
n

(
1+ Kl

n

xn

)
ρKl

m

kl
cat(cm)2 Mm

j . (74)

where we note εl
i M i

j = εl
m Mm

j since here εl
a = 0 (the Michaelis-Menten kinetics (72) doesn’t depend on the total protein con-

centration ca). When j = e is an enzymatic reaction, the scaling of El
e by the respective−fe and τ l provides the corresponding

control coefficient (Eq. 50)

Cl
e =−fe

τ l

∂τ l

∂fe
=−fe kl

cat

(
1+ Kl

m

cm

)−1
ρKl

m

kl
cat(cm)2 Mm

e =−fe
ρKl

m

cm(cm +Kl
m)

Mm
e . (75)

Note that in this case the control coefficients don’t depend on the turnover numbers kcat, only on Michaelis constants of
metabolites Km.
A more realistic example would be some generalized kinetics such as the “convenience kinetics” proposed in Ref. (51), which
may also depend on other parameters such as Hill coefficients, inhibitor constants, and stoichiometric coefficients, so these may
also be necessary to determine the set of kinetic parameters K, and by consequence, the model uniquely. With known rate laws,
a model is also uniquely determined by the corresponding triple (M,K,ρ).

Mass balance and the stoichiometric matrix S. For a stoichiometric matrix S including all reactions and reactants (internal
and external ones), and the corresponding vector w of molecular masses (also known as molecular weights) of reactants, mass
conservation within reactions implies

w⊤S = 0⊤ . (76)

Note that, therefore, the vector of molecular masses must be in the left-null space of S.
If we restrict the stoichiometric matrix to internal reactants i, then the internal product of w⊤ with the columns of this new
matrix with entries Si

j is nonzero only for transporters

wi Si
s ̸= 0

wi Si
e = 0

wi Si
r = 0 .

(77)

Given that M is a mass-scaled version of S, these relations are equivalent to Eqs. 2 in the main text; only transporters are
capable of increasing or decreasing mass within the model.
We note that our considerations about mass conservation presuppose that all reactants also appear explicitly in the model
(i.e. they have a corresponding row in S). If some reactants (e.g. water or protons) are omitted from the model for convenience,
mass balance is not satisfied. In fact, many models in the literature do ignore some reactants, in particular water; this needs
attention in realistic models where water is not only a medium but also a reactant in many biochemical reactions.
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Examples of GBA models and R code for numerical optimization. We present here 4 simple examples of GBA models.
We assume for all models a simple irreversible Michaelis-Menten kinetics (72), so in each model turnover times τ are uniquely
defined by a matrix K of Michaelis constants and a vector kcat of turnover numbers for each reaction. Each row of K
corresponds to a reactant, and each column to a reaction, matching the order in the matrix M (the entries for external reactants
are separated by a horizontal line). See the corresponding “.ods” files for a more detailed description of the models, including
labels for reactions and reactants and different growth conditions (i.e. external concentrations) for testing the model. Numerical
simulations are done by running the R code in the file “GBA.R”, with the variable “modelname” set to the desired model (e.g.
modelname← “A”). Here K and ρ are in units of g/L, and kcat in units of h−1 (resulting from product mass per protein mass
per h). The code exports the results as a corresponding pdf file with relevant plots for visualization, and a csv file with the
numerical values for the optimal cell state at different growth conditions.
Figure (5) presents the schematics and the corresponding parameters (M,K,kcat,ρ) of each model. Metabolites are indicated
with circles, and total protein with a rounded square. The numbers labeling reactants and reactions match the corresponding
order of rows and columns in M, with the last row corresponding to total protein and last column the ribosome reaction by
default. All parameters are arbitrary, with the exception of the ribosome reaction where we use kr

cat = 4.55 and Kr
m = 8.3 for

its main substrate, based on the estimations for E. coli in Ref.(4), and ρ = 340 based on the measured E. coli dry mass density
(52).
Models A and B have the simplest model structures (a linear pathway) for two and three reactions, respectively. Model C has
a second transport reaction excreting metabolite “2”. Model “D” has two redundant reactions (“3” and “4”), of which only one
is active at optimal growth (see optimization results).
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A

1 2v1 v2

µc1 µc2

M =
[

1 −1
0 1

]
, K =

 1 0
0 8.3
0 0

 , kcat =
[

10
4.55

]
, ρ = 340

B

1 2 3v1 v2 v3

µc1 µc2 µc3

M =

 1 −1 0
0 1 −1
0 0 1

 , K =


10 0 0
0 10 0
0 0 8.3
0 0 0

 , kcat =

 10
8

4.55

 , ρ = 340

C

1 3

2

4v1 v3

v2

v4

µc1 µc3

µc2

µc3

M =


1 0 −1 0
0 −1 0.2 0
0 0 0.8 −1
0 0 0 1

 , K =


10 0 0 0
0 0 0 0
0 0 10 0
0 10 0 0
0 0 0 8.3
0 0 0 0

 , kcat =


10
100
8

4.55

 , ρ = 340

D

2

1

3 4

v1

v2
v3

v4

v5µc1

µc2

µc3 µc4

M =


1 0 −0.7 −0.8 0
0 1 −0.3 −0.2 −0.2
0 0 1 1 −0.8
0 0 0 0 1

 , K =


1 0 0 0 0
0 1 0 0 0
0 0 10 5 0
0 0 10 5 10
0 0 0 0 8.3
0 0 0 0 0

 , kcat =


15
10
10
9

4.55

 ,

ρ = 340

Fig. 5. Schematics and parameters defining each model. For more details see the corresponding ods files in Dataset S1.
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The dependence of λρ on transporters. Equation 29 involves the sums γj =
∑

i M i
j of each column j in M, which differ

from zero only for transporters (Eq. 2). This means Eq. 29 can be separated into distinct equations for j = r,e,s

(∂rµ)fr = 0 , (78)

(∂eµ)fe = 0 , (79)

(∂sµ)fs +λργs fs = 0 . (80)

From equations (78,79), we see that, at optimality, the summation in Eq. 30 can be simplified to a summation over s only

λρ =−(∂sµ)fs . (81)

Substituting now the partial derivative given by Eq. 31, we obtain

λρ =− µ

ba

(
Ma

s fs−µτs fs−µfl El
s fs

)
. (82)

The first summand in the parenthesis equals to zero, since transporters do not produce protein (Ma
s = 0), and the second

summand can be expressed in terms of protein fractions ϕs = ps/ca = µτs fs/ba, resulting in

λρ = µ

(∑
s

ϕs + µ

ba fl El
s fs

)
. (83)

Optimal enzyme concentrations and control coefficients. Equation 50 shares a striking analogy with an optimality con-
dition for metabolic systems, established in (36): in an optimal metabolic state, maximizing a pathway flux at a limited total
enzyme amount, the enzyme levels must be proportional to the flux control coefficients. This previous result reflects the as-
sumption that the cell trades a cost (the sum of enzyme levels) against a benefit (the pathway flux), and that in an optimal state,
the marginal cost and benefit, for any small change of enzyme levels, must be the same. Equation 50, for optimal growth states,
has a similar interpretation, but without an explicit benefit function for fluxes. Here, instead, if an enzyme level in reaction
A has an indirect effect on a flux in reaction B and makes reaction B proceed more efficiently, then catalyzing enzyme for
reaction B can be saved (and resources be redistributed to increase growth). Hence, we now have a trade-off between a cost (of
investing enzyme in A) and an “opportunity benefit” (enzyme saved in reaction B). In the equation, an enzyme of interest (in
reaction A) is described by pe, its effect on all fluxes in the network (reactions B) is described by the control coefficients Cl

e,
and the catalysts of these reactions are represented by pl. By summing all marginal “opportunity benefits” plC

l
e, we obtain the

equivalent to the marginal flux benefit in (36).
From the similar Eq. 44 in the main text, we can infer that at optimality, no two active enzymes can realistically catalyze the
exact same reaction (i.e., have identical columns in M). If this were the case, then both turnover times τe would have to be
exactly the same, since the marginal opportunity would be identical for both enzymes (see Eq. 24). This condition is highly
unlikely to hold in realistic models, since real enzymes will always have different physical properties and therefore different
kinetics. Thus, if several isoenzymes catalyze a particular reaction in a model, only one of these reactions will be active at
optimality. The previous argument can be generalized to any two linear combinations of reactions in the model, and as a
consequence, the submatrix resulting from restricting M to active reactions must have full column rank at optimal growth (see
Refs. (4, 21, 22)). Note that in reality enzymes with very similar marginal values may still be expressed together due to the
little selection pressure towards one of them. See model “D” on SI text “Examples of GBA models and R code for numerical
optimization” for an example of a model with redundant reactions.

Amino acid composition of the E. coli proteome. Table S1 presents the amino acid frequency in the E. coli proteome,
calculated from protein sequence (retrieved from genome annotation of E. coli NC_000913.3 from RefSeq (53)) and weighted
by protein abundance measured in Schmidt et al. (47) under various growth conditions.
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SI_files.zip. Zip file containing files for numerical optimization, as described in the SI text “Examples of GBA models and R
code for numerical optimization”.
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