






Neural basis of melodic learning explains cross-cultural regularities in musical
scales

computed to assess performance and are shown in Figure Figure 1.C. Performance was significantly
higher when melodies were generated with the non-uniform scale (paired t-test, p = 0.023). Over
the course of the test phase, listeners were presented with more and more incorrect transitions
in the melodies, which could potentially alter the representation of the grammar they acquired
throughout the exposure. To account for this expected drift in performance over time, mean d′

values were averaged across listeners for evenly divided sets of trials over time (first set: trials
1-27, middle set: trials 28-55 and last set: trials 56-80, Figure 1.D). For both scales, a significant
drift in performance over time was observed (two-way repeated-measure ANOVA: F (14, 2) = 4.75,
p = 0.017).
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Figure 2: Decoding alternative versus reference melodies. (A) Decoding performance for uniform
(left) and asymmetric (right) scales. Classifiers were trained and tested separately at each time
in a 6-second time window following the onset of melodies. Cluster-corrected significance is
contoured with a dashed line. The classifier scores were significantly above chance level only for
the asymmetric scale (p < 0.05). (B) Decoding performance for the same training and testing time
points, which is equal to the diagonal scores in part A. The bold curve marks time points where
predictions were significantly above chance level (p < 0.05). The difference between the scores in
uniform and non-uniform scales was significant for the gray bar. (C) The average decoding scores
for the significant times (bold curves in part B) were correlated with the corresponding behavioral
performance, across subjects. The decoding scores and d′ values are significantly correlated only
for the non-uniform scale.
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Neural correlates of melodic learning are modulated by scale conditions

To investigate the neural basis of this behavioral effect, we sought to probe the difference in
grammar encoding for uniform and non-uniform scales using multivariate pattern analysis applied
to neurophysiological data [36; 37; 38], a method that has advanced the understanding of spatio-
temporal neural activations related to stimulus processing [39; 40; 41; 42; 43]. The idea is to train
a set of linear classifiers to classify sets of neural data collected under different conditions. This
provides insight into how the topographical maps collected with EEG sensors display a pattern of
activity can discriminate between stimulus features [36; 44; 45; 46], and also reveals how this
discrimination evolves over time [36; 47; 48; 46; 41].

Here, we trained a set of linear classifiers to discriminate between the reference melodies (i.e. those
generated with the same grammar as during the exposure phase) and the alternative melodies
(i.e. those containing syntactic violations). We first used the EEG signal collected over the entire
melody to probe the temporal dynamics of neural representation across the whole duration of the
melodies. The method consisted in training a set of independent logistic regressors to discriminate
signals using all 64 sensors as detailed in the Methods section . The classifiers were trained to
linearly separate the two melodic conditions (i.e. reference versus alternative) based on the EEG
topographic maps at different time points. In addition, we probed the time generalization dynamics
[36]: the classifiers were trained on the EEG response of 6 seconds of melodies at each time point
t and tested at time t′, where t and t′ were different time points sampled over the time-window
that spanned the entire duration of the melodies (0 to 6 seconds). In order to investigate neural
representation of reference and alternative melodies from uniform and non-uniform scales, the
analysis was conducted separately using the data-sets collected during each test phase of both
scale conditions.

Figure 2.A illustrates the time generalization dynamics of decoders’ performance for the melodies
generated from the uniform (left) and non-uniform (right) scales. The classifiers’ scores were
significantly above chance level for the non-uniform scale (pmin < 0.05) between 3 and 5 seconds
after onset of the first tone. This demonstrates that listeners could learn the unfamiliar and
artificial musical grammar from melodies generated in this scale. The pattern of the significance
region (right) suggests a temporally jittered activity due to the small variations in the emergence
of the effects across subjects [36]. Conversely, the classifiers could not discriminate between
the reference and alternative melodies when melodies were generated using the uniform scales
(pmin > 0.05). To simplify the visualization, we directly compared the diagonal scores in non-uniform
and uniform scales (i.e., the scores for which testing and training data were synchronized); we
observed a statistical difference between the classifier performances, in which the area under the
receiver operating characteristic curve (AUC) was significantly larger for the non-uniform scale at
around [3-5] seconds following the melody onsets (Figure 2.B).

To directly test whether the enhanced decoding accuracy was related to behavioral performances,
we computed the correlation between the classifier accuracy and the d′ values at the individual level.
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Figure 3: Decoding the correct versus incorrect transitions. Decoding performance for uniform
(orange) and asymmetric (blue) scales in three separate time windows. Time windows 1, 2, and
3 referred to the first, second, and third portions of the trials. Cluster-corrected significance is
marked with a bold line. The classifier scores were significantly above the chance level only for
the asymmetric scale (p < 0.05) in the the first time window. The difference between the scores in
uniform and asymmetric scales was significant for the gray bar.

For the decoding scores, we averaged over the time window in which there were scores significantly
above chance level (3-5 seconds) and found a significant correlation for the non-uniform scale
(r = 0.75, p < 0.01) as seen in Figure 2.C. These results suggest a direct link between enhanced
performance of the classifiers and behavioral performance on the task.

The Neural Encoding of correct vs incorrect note transitions within the two scale contexts

In the previous analysis, the decoding accuracy rose above chance level at about 3 seconds after
melody onsets, which is on average the time when the first non-syntactic notes from the alternative
grammar are played, as detailed in the Methods section . To investigate more directly the encoding
of note transitions in the two scale contexts, we applied a set of linear classifiers to decode the
neural data specifically collected during correct and incorrect transitions. Informed by the drift
in behavioral performance for both scales (see Figure 1.D), we divided the neural data into the
corresponding time periods prior to training classifiers. As in the earlier findings, this analysis
revealed that decoding scores were significantly above chance only for the non-uniform scale,
starting at 350 ms after the onset of the tones (p < 0.05) and only for the first set of trials, due to
the drift in performance over time. By contrast, the classifier accuracy remained near chance
levels for all the trial sets of data collected under the uniform scale condition.

Scale-dependent syntactic processing revealed by the evoked responses of musical notes

In the previous analysis, scale effects were probed by comparing differences in decoding accuracy
between reference versus alternative melodies, and by examining the topographic maps of EEG
signal collected for melodies under both scale conditions. A more direct evaluation of the neural
responses elicited by different scales is to compute the evoked responses time-locked to musical
events in the melodies. "evoked responses" refer to the average from many repetitions of the neural
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Figure 4: Temporal and topographic markers of syntactic processing. (A) Evoked responses at
channel Cz for correct and incorrect transitions. Comparison between the evoked responses due to
the correct transitions with incorrect transitions for three separate sets of trials. Time windows 1, 2,
and 3 refer to the first, second, and third portions of the trials. There were significant differences
between the correct and incorrect transitions only in time window 1 for the asymmetric scales. (B)
Topography of difference in grammar encoding. Non-uniform - Uniform r-values obtained from
the TRF of probability of notes for all melodies (reference and alternative) are first subtracted from
a null model (100 permutations).
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response elicited by a specific stimulus event. This averaging removes noise and extracts specific
negative or positive amplitude peaks directly related to stimulus processing. Here, we sought to
investigate the evoked responses that are time-locked to correct and incorrect transitions, and
hence gain insights into the type of processes at play under the two scale conditions. Because of
the relatively small number of repetitions applied in each condition, we first denoised the data
using Denoised Source Separation (DSS) [49] as detailed in the Methods section.

This algorithm consists of selecting components of the neural signals that are most repeatable
across stimulus repetitions and therefore likely to reflect stimulus processing instead of noise. The
components obtained are then projected back onto the sensor space, resulting in a clean EEG
signal for each of the 64 channels. We used the DSS-denoised signal from Cz (the electrode situated
on the mid-line sagittal plane center, as typically done for the analysis of auditory components) and
time-locked between -100-400 ms to notes in the alternative melodies with incorrect transitions,
i.e. potentially exhibiting a syntactic violation to the exposure grammar. As seen earlier, we took
into account the drift over time in performance by dividing the neural data into the corresponding
time periods. The resulting DSS-denoised evoked responses are plotted in Figure 4.A. A bootstrap
re-sampling conducted on evoked responses from correct and incorrect transitions revealed that the
two signals were significantly different only for the non-uniform scale and in the first time-window
(see Methods section for details on the statistical analysis).

The evoked response of incorrect transitions for the non-uniform scale revealed a larger negative
component between 200 and 400 ms after note onset. This late response elicited by an ungram-
matical event is strongly evocative of the well-known ERAN component associated with syntactic
processing in the context of music [50; 51; 52; 53; 54] and also referred as the "musical MMN
component" [55].

Global temporal and topographic characterization of the neural correlates of different scales

Finally, we examined the general sensor topography of grammar encoding under different scale
conditions. For that, a Temporal Response Function (TRF) analysis [56] was conducted on the
neural data collected for the uniform and non-uniform scales. The TRF is a decoding technique used
to account for the neural encoding of continuous stimulus features such as envelope, semantics,
or phoneme for speech [57; 58; 59; 60] and envelope and syntax for music [61; 62]. We used the
-log probability of note transitions between the notes estimated for each melody (i.e., the syntactic
structure) based on the reference grammar, which is very similar to the surprisal signal [63], a
computation that provides good measures for interpretation of perceptual data [64; 65]. Regressing
surprisal from neural signal using TRF has been shown to yield significant cortical tracking of
syntactic structure during melodic processing [62; 66; 67].

The TRF is essentially a kernel that describes the linear mapping of the stimulus into the neural
response using ridge regression. The kernel is fit to minimize the mean-squared error between the
actual neural response and the predicted neural response. The encoding index is then assessed
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using a cross-validated evaluation using r Pearson’s correlations between the predicted and actual
neural responses for each individual channel. Details of the TRF analysis are provided in the
Methods. section . In brief, this analysis provides an index of how well the grammatical structure
of the melodies is represented at each EEG sensor, thus revealing the general topography of the
neural processing of syntax under both scale conditions.

A TRF was computed for each data set and each condition and trained on trials in the test phase.
Then, Pearson’s correlations for only the first third of trials were averaged over participants and
plotted in Figure 4.B. The topographies reveal that for both scale conditions, the electrodes tracking
the syntactic information are situated in the central region. They also reveal a significant effect
of scale conditions (cluster-based permutation test, 2,000 iterations p < 0.01) observed on the
centro-lateral electrodes. This is consistent with earlier findings of syntactic processing in the
context of music listening that report higher correlation with surprisal in these electrode regions
[62; 66; 67], which further confirms that the main effect of scale condition is driven by differences
in the grammatical learning of the unfamiliar melodic corpus [15].

Conclusion

Music is a universal feature of human societies but displays tremendous variability in its rhythmic,
timbral, and pitch structure [4; 5; 10]. Yet converging findings from large datasets of musical
production suggest that the musical world exhibits some quasi-universal structural traits [34; 68;
10] that could reveal common underlying cognitive properties in the processing of musical signals.
In particular, musical scales with a non-uniform (asymmetric) tonal structure (i.e. note sequences
separated by intervals of varying sizes) are far more prevalent than uniform ones across musical
systems [34; 10]. This motivates the hypothesis that these differences stem from the cognitive
benefits of asymmetric scales in melodic learning [32; 33; 69].

Recent findings have further supported this hypothesis. For instance, a recent behavioral study
highlighted the benefit conveyed by non-uniform scales for the learning of unfamiliar syntactic
rules [15]. Non-uniform scales were found to enhance performance on a syntactic violation task
within the context of familiar and unfamiliar musical systems. The benefit may originate from an
enhanced internal representation of the tonal space in which relations among tones are better
delineated by a non-uniform scale [32]. This study explored the neural correlates and origins of
this preference by associating the behavioral effects of enhanced performance with simultaneous
measurements of the neural responses while subjects learned melodies generated within uniform
and non-uniform scales [15].

The behavioral and neural data were collected during a test phase in which, after only a short
exposure to reference melodies, listeners’ ability to learn an artificial musical grammar was probed
through their performance in detecting syntactic errors in alternative versus reference melodies.
The results confirmed that the superior learning for melodies generated with the non-uniform
scale—as indicated by higher d′ values—was paralleled by an enhanced neural encoding of that
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grammar. The latter findings were assessed by linear classifiers that better discriminated the
topographical maps of EEG activation when the melodies were generated from the non-uniform
scale. Finally, evoked responses for incorrect and correct transitions were also modulated by the
scale condition: in the case of non-uniform scales, a late negative component evocative of the
ERAN [55; 53; 54] was observed for incorrect transitions embedded in alternative melodies of the
non-uniform scale.

In summary, we have demonstrated that the twos type of melodies, alternative and reference, were
better represented in the neural data when they were derived from the non-uniform scale, and
that this was correlated with behavioral performance at the individual level. Further analyses of
temporal and spatial characteristics of the EEG responses confirmed that the effect of scale type
was driven by a more efficient syntactic processing in the context of the non-uniform scale.

Humans spontaneously seek musical experiences for pleasure [70; 71; 72], arguably in search of
social bonding that reinforces human survival and reproduction [73; 74; 75; 76; 77; 78; 79; 80].
This highlights the relevance of music production and learning for cultural evolutionary theory
[81]. Numerous and converging studies demonstrate that humans learn the musical regularities
of their own cultural background [18; 19; 20; 23] from a very early age [82; 83], throughout life
[26; 27; 28], and in the absence of explicit instructions, much like they learn their mother tongue
[84]. In this perspective, musical features could be selected through evolutionary processes to
enhance music learning and thus favor common pleasurable experiences and social bonding
[74; 85; 81].

This study provides evidence of the facilitating effects in learning unfamiliar music in the context
of a scale structure that is most prevalent across musical structures. This behavioral effect was
paralleled by neural findings showing better neural encoding of melodies, most likely related to
enhanced syntactic processing. Altogether, these results bring strong new evidence that cross-
cultural universals in the music domain reveal cognitive principles of auditory processing.
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Method

Participants

Sixteen adult participants with self-reported normal-hearing participated in this study, conducted
at the University of Maryland. One participant was removed from the analysis for not keeping the
earphones in place during the experimental procedure. Among the fifteen remaining participants
(9 females, mean age = 25 years, SD = 8), two had five or more years of formal musical training
and all were still engaged in daily musical practice. All participants were given course credits or
monetary compensation for their participation. The experimental procedures were approved by
the University of Maryland Institutional Review boards. Written informed consent was obtained
from each subject before the experiment.

Scale

Participants were presented with melodies generated from hexatonic scales in the two following
structure conditions: uniform and non-uniform. Each scale was composed of six tones in 12-tone
equal temperament (12-TET). The two scale conditions were obtained by positioning 12-TET tones
in a manner that conformed to the different intervallic structural properties, as illustrated in Figure
1.A. The uniform scale was composed of intervals (i.e., space in between the pitch of subsequent
tones) of equal sizes. In contrast, the non-uniform scale was composed of intervals of different
sizes so that each tone had a unique set of intervallic relations with all of the others tones when
moving from one tone to another in the same direction (clockwise/counter-clockwise or up/down)
across the octave span.

Grammar

Melodies were composed of the tones within a given scale, and their construction was determined
by a first-order Markov chain inspired by Rohrmeier et al. [86]. Since two scale types were used
(hexatonic, 12-TET), two different grammars were used as well, each including all the tones in the
scales. However, the complexity of both grammars was kept constant with respect to the transition
probabilities that were used to generate the melodies. Schematic representations of the grammar
are shown in Figure 1.B. Each node corresponds to a tone in the scale. The correspondence
between nodes and notes was randomized for each participant and for each structure condition.
Arrows connecting nodes determine the permissible transitions between notes, along with the
probability of transition. The “reference” version of the grammar was determined for each listener
prior to the exposure phase. The “alternative” version of the grammar was obtained by switching
nodes 3-4 and 5-6, which introduced 10 possible wrong transitions. Melodies generated with the
alternative grammar contained a set of three transitions between tones that were never part of the
melodies generated with the reference grammar.
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Melodies

All melodies were composed of 500 ms sine tones to which a tapered-cosine (Tukey) window was
applied. Tones were not separated by a silence interval. During the exposure phase, 100 melodies
were generated in real time using the grammar structure and the pitches of tones defined by each
scale. During the exposure phase, melodies were produced using the current structure condition
(uniform or non-uniform) and the reference version of the grammar. During the test phase, half of
the melodies were produced the same way using the reference grammar and half of the melodies
were produced the same way but using the alternative grammar. Forty reference and 40 alternative
melodies were presented in a random order during the test phase. All melodies were constrained
so that they did not exceed 15 tones and had to reach the final note, as defined by the grammar.

Procedure

The experiment was divided into two parts, each part corresponding to a structure condition
in which order of testing was randomized across participants. During each part, listeners had
to first complete an exposure phase during which they listened to 100 melodies. During this
phase, melodies were generated in real time with the designated scale and grammar. Only the
correct version of the grammar was used to generate the exposure melodies. Throughout this
phase, listeners had to simply click a mouse to play the next melody. Immediately following the
exposure phase, participants completed a test phase during which 80 melodies were generated on
the fly; half of them were generated using the reference version of the grammar and the other half
with the alternative version. After each melody, participants had to report whether this melody
sounded familiar or unfamiliar, with respect to what they just were exposed to in the previous
phase. Participants were tested individually in an EEG testing booth. Audio files of the stimuli were
encoded at 16-bit resolution and 44.1 kHz sampling rate and presented via Etymotics Research
ER-2 earphones. The stimuli were presented at a comfortable loudness level above 60 dB SPL
(A-weighted). Instructions were displayed on a computer screen and participants’ responses were
collected with a keyboard and mouse. Informal debriefing with participants indicated that both
scales were perceived as equally unfamiliar and no formal ratings of familiarity were collected after
each session.

Data Acquisition

Electroencephalogram (EEG) data were recorded using a 64-channel system (ActiCap, BrainProd-
ucts) at a sampling rate of 500 Hz with one ground electrode and re-referenced to the average. We
used a default fabric head-cap that holds the electrodes (EasyCap, Equidistant layout).

EEG Prepossessing

EEG data was first mean-centered to perform zero-order detrending. We detected bad channels
as exhibiting amplitude above 3 standard deviation from the channel average. Selected bad
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channels were then interpolated using a weighed sum of neighboring channels’ signal. To avoid
artifacts caused by low-pass filtering, we subtracted from each channel its slow varying trend by
robust-fitting a 30th-order polynomial [87]. We then applied an anti-aliasing low-pass Butterworth
(IIR) 4-order filter with a 40 Hz cut-off and down-sampled the resulting data to 100 Hz. Using
a time-shift PCA, eye-blink artifacts were isolated and projected out using data collected by the
HEoG and VEoG channels [88]. Finally, the EEG data was re-referenced again by subtracting the
robust mean (as defined in [87]) before it was epoched using the triggers sent at the beginning
of each trial. Bad epochs were selected based on an amplitude above 3 standard deviation and
discarded for the analysis.

Decoding

To evaluate the separability of neural traces elicited by melodies from the two scales, we trained
a set of logistic regression classifiers on the preprocessed EEG data (e.g. not DSS-denoised).
At each time point t we used the matrix of observations Xt ∈ RN×64, for N samples of all 64
electrodes to predict the labels yt′ ∈ {0, 1}N . Here, the labels corresponded to the two grammar
conditions (alternative vs. reference melodies) or the state of transitions (correct vs. incorrect), or
the probability of transitions (low probability vs. high probability transitions). This was repeated
for every time point t′ of each epoch. This analysis was conducted two times: on the epochs
collected from the uniform scale conditions and the non-uniform scale condition. For each subject,
we trained the decoders on EEG signals at each time points of the melodies (from onset to 6 s
after onset). Therefore, the decoder at each time point learns to predict the grammar conditions
(alternative vs. reference) using the topography of the EEG samples for this time point. Additionally,
temporal generalization analysis was conducted to capture the dynamics of topographical patterns
of EEG signal over time (for more details on that, see [36]). To achieve that, we systematically
evaluated each classifier from each time point to all other time points. Concretely, this means that
a classifier trained to separate labels at a given time point is then used to predict the labels at all
other time points.

To validate the classifier’s performance, we used 5-fold cross-validation. This means that for each
individual data set, over 5 iterations, the trained classifier was used to predict labels on a fifth
portion of unseen data. The area under the receiver operating characteristic curve (AUC) was used
to quantify the classifier’s performance. We implemented this decoding analysis using sci-kitlearn
[89] and MNE [90] libraries in python 3.6.

Temporal Response Function

To evaluate the different topographical mapping in melodic encoding between the two scale
structures, we used a brain decoding method based on Temporal Response Functions (TRF) [56].
The TRF is based on a class of linear time-invariant models that describes the linear transformation
of stimuli features to the neural signal (EEG) by its impulse response after ridge regression. Unlike
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an evoked response, the response function obtained reflects a modeled neural response to a specific
set of features (when an ERP represents the grand average to the whole stimulus). More precisely,
the TRF optimally describes the mapping between a given set of features of a sensory input s(t)

and the neural response r(t) collected from each channel n of the neural signal such as defined in
Eq. 1:

r(t, n) =
∑
τ

w(τ, n)s(t− τ) + ε(t, n) (1)

Where τ is the specific range of lags for which the response at time t is described (here, [-100 - 500]
ms) and ε(t) is the residual error at each channel n not explained by the model. The TRF w(τ, n) is
estimated by minimizing the mean-squared error between the actual neural response and the one
predicted by the convolution w(τ, n) ∗ s(t− τ). The model is optimized using ridge regression and
assuming a certain degree of regularization to prevent over-fitting. This regularization parameter
is optimized in the [10−3, 103] interval, using logarithmic steps, and for each individual data set.
To evaluate the performance of the model, a cross-validated via leave-one-out evaluation using
Pearson’s correlations between the predicted and actual neural responses is conducted. The
resulting topographical map indicates the strength of stimulus feature encoding at each EEG
channel. Prior to conducting the TRF analysis, a visual inspection of trials was done to remove noisy
portions of the data. Additionally, disparate external noise sources were removed by conducting
an ICA and removing components which topography indicated signal from an external source.

Denoised evoked responses

For the the evoked response analysis, a specific denoising algorithm called Denoised Source
Separation (DSS) was applied (for detailed explanation see [49]). In a nutshell, DSS isolates
components of signals that are mostly repeated across repetitions of trials, so as to keep the
relevant signal (e.g. one that reflects stimuli properties) and to remove signal resulting from noise.
In the present study, the Denoised Source Separation (DSS) filter’s output was the weighted sum
of the signals from the 64 EEG electrodes, in which the weights were optimized to extract the
repeated neural activities across trials. This transformation yielded to 64 uncorrelated brain
source activities (e.g., DSS components) which were ordered by a repeatability score. Since the
trials were not exactly identical between repetition, we selected only the first 5 most repeatable
DSS components and projected them back in the sensor space to obtain cleaned signals. Finally,
we used the obtained denoised Cz electrode (placed on the mid-line sagittal plane center) for the
evoked response analysis.

Statistical Analysis

Classifiers. Statistical analysis for the classifiers was performed with a one-sample t-test with
random-effect Monte-Carlo cluster statistics for multiple comparison correction using the default
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parameters of the MNE spatio_temporal_cluster_1samp_test function [91]. Error bars in all figures
represents ±SEM (standard error of the mean).

Analysis of evoked responses. To compare the averaged evoked response between conditions, we
performed bootstrap resampling in order to estimate the standard deviation (SD) of the difference
between the type of transitions (correct vs. incorrect). Significance levels were set for difference
between the two signals above 2× estimated SD. In Figure 4.A, error bars represents ±SEM
(standard error of the mean).

Topography. In order to assess the different topographies for both scale conditions, we conducted a
one-sample, cluster-based permutation test using r-values as input [92]. In this analysis, multiple
t-tests are computed for each electrode. Then, best on clusters of electrodes in which the response
significantly differs from zero are identified. These clusters are then formed over space by grouping
electrodes that have significant initial t-test values. The sum of all t-scores within each cluster
provides a cluster-level t-score (mass t-score). A permutation approach is then used to control
for Type I errors (2,000 iterations) in order to build a data-driven null hypothesis distribution.
The significance of a cluster is determined by whether it falls in the highest 5th percentile of the
corresponding distribution (α = 0.05).
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