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Abstract: 

Capture mark recapture (CMR) models allow the estimation of various components of animal 

populations, such as survival and recapture probabilities. In recent years, incorporating the spatial 

distribution of the devices used to detect an animals’ presence has become possible. By 

incorporating spatial information, we explicitly acknowledge the fact that there will be spatial 

structuring in the ecological processes which give rise to the capture data. Individual detection 

probability is not heterogeneous for a range of different reasons, for example the location of traps 

within an individual’s home range, the environmental context around the trap or the individual 

characteristics of an animal such as its age. Spatial capture recapture models incorporate this 

heterogeneity by including the spatial coordinates of traps, data which is often already collected in 

standard CMR approaches. Here, we compared how the inclusion of spatial data changed 

estimations of survival, detection probability, and to some extent the probability of seroconversion 

to a common arenavirus, using the multimammate mouse as our model system. We used a Bayesian 

framework to develop non spatial, partially spatial and fully spatial models alongside multievent CMR 

models. First, we used simulations to test whether certain parameters were sensitive to starting 

parameters, and whether models were able to return the expected values. Then we applied the non-

spatial, partially spatial and fully spatial models to a real dataset. We found that bias and precision 

were similar for the three different model types, with simulations always returning estimates within 

the 95% credible intervals. When applying our models to the real data set, we found that the non-

spatial model predicted a lower survival of individuals exposed to Morogoro virus (MORV) compared 

to unexposed individuals, yet in the spatial model survival between exposed and non-exposed 

individuals was the same. This suggests that the non-spatial model underestimated the survival of 

seropositive individuals, most likely due to an age effect. We suggest that spatial coordinates of traps 

should always be recorded when carrying out CMR and spatially explicit methods of analysis should 

be used whenever possible, particularly as incorporating spatial variation may more easily capture 

ecological processes without the need for additional data collection that can be challenging to 

acquire with wild animals.  

INTRODUCTION: 
When attempting to monitor or manage wild animal populations, particularly elusive or difficult to 
detect animals, accurate estimations of their abundance and population dynamics are essential 
(Fuller et al. 2016). Often, this is estimated through capture-mark-recapture (CMR) modelling 
whereby data obtained from live trapping or other methods of recording the presence of known 
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animals is used to estimate population densities (Kéry and Schaub 2012). A key principle of CMR 
models is the estimation of the detection probability, which provides the link between the 
observations of animal presence and true population parameter such as the survival and recapture 
probability. In CMR studies, animals captured during the initial encounter are marked for 
identification and released back to the population, after which they are considered available for 
recapture. Marking makes it possible to collect individual specific information at multiple capture 
moment whereby numerous capture moments are required to achieve reliable parameter 
estimations (Chao and Huggins 2010).  
 
Until recently most CMR models excluded the spatial distribution of traps (Royle and Chandler 2014). 
However, capture mark recapture studies are inherently spatial: traps are laid out in space, and 
therefore there is spatial structuring in the ecological processes that give rise to the capture data 
(Royle and Chandler 2014). This is likely to invalidate the assumption of traditional CMR modelling 
that detection probabilities are assumed to be equal over all individuals (Kéry and Schaub 2012). In 
practice, the detection probability is heterogeneous due to the spatial organization of individuals 
relative to traps: the detection probability depends on the number of traps present inside the home 
range of an individual (Royle and Chandler 2014) and will vary in space as a result of both individual 
space use and the configuration of detection devices (Dupont et al. 2019a). Spatial capture recapture 
(SCR) models allow for this individual heterogeneity in detection probabilities (Ergon and Gardner 
2014), overcoming the limitations of classical CMR methods without the requirement of additional 
data, by making use of the spatial trap coordinates that have always been available but rarely 
utilized. Each individual is associated with a location in space, its activity centre, and the further the 
activity centre from a detector, the less likely it is that the animal will be detected by that detector 
(Glennie and Foster 2019). This activity centre is unobserved and therefore considered a latent 
variable that is estimated by the model, improving the accuracy of the detection model (Glennie and 
Foster 2019). This improved accuracy in the detection model allows for more accurate estimation of 
parameters such as density and survival, and therefore makes SCR modelling attractive to use over 
classical CR modelling (Royle and Chandler 2014). For example Spatially Explicit Capture Recapture 
(SECR) methods i) find density estimates of 20 – 200% lower than classical CR methods (Obbard, 
Howe, and Kyle 2010), ii) are more resistant in giving accurate estimates to poor data (Jůnek et al. 
2015) and iii) demonstrate that sex differences in survival may be due to spatial processes (Schaub 
and Royle 2014). 
 
SCR models are often implemented within a Bayesian framework  due to its flexibility and 
accessibility for building complex models, which can be more challenging in frequentist inference 
(Milleret et al. 2019; Gelman and Hill 2007; Kellner 2018; O’Hagan 2004; Wagenmakers et al. 2008). 
Additionally, when working with CMR data, traditional frequentist methods can be sensitive to i) low 
probabilities of detection and survival, ii) small sample sizes and iii) the number of sampling intervals 
(Calvert et al. 2009). However, it should be recognised that the increased flexibility comes at the 
expense of being highly computationally demanding (Glennie and Foster 2019), and, due to the 
inclusion of prior knowledge, can be criticised as being inherently biased. The Bayesian framework 
allows the user to incorporate the distribution of the data and the distribution of prior knowledge in 
a natural way (Mariucci, Ray, and Szab 2017), meaning that the posterior distribution is always the 
result of the chosen prior distribution and the information contained in the data (Kéry and Schaub 
2012). The ability to incorporate prior knowledge can result in improved posterior distributions, but if 
prior knowledge is not truthful, posterior distributions can be deceitful (Kéry and Royle 2016). 
Therefore, prior selection must be carried out with care, and sensitivity analyses can be used to 
ensure that the prior does not overwhelm the true information contained within the data. 
Additionally, diffuse priors can be used which assume no prior knowledge and allow all the 
information to come from the data.  
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Due to their increased precision and flexibility, SCR models are increasingly used for estimating 
population densities of large mammals such as tigers (Dorazio and Karanth 2017), bears (Sun et al. 
2017; Gardner et al. 2010) and jaguars (Glennie and Foster 2019), detected by camera trapping 
(Royle and Chandler 2014) and DNA sampling (Fuller et al. 2016; Royle and Chandler 2014), 
respectively. Recently, SCR models are also being used to estimate population processes such as 
within group dispersal and survival through the use of spatial multi-event capture recapture models 
(Weiser et al. 2018). Multi event capture recapture models not only estimate population densities 
but also allow for the estimation of transitions between states; for example survival or 
seroconversion (Sapsford et al. 2015; Hirschinger et al. 2021), allowing users to better understand 
the role of various aspects of behaviour in state transmission dynamics. This may provide insights 
into the mechanisms underpinning key processes such as survival and disease transmission. For 
example, spatial structure plays an important role in plague transmission as Yersinia pestes outbreaks 
are more likely to be initiated by a susceptible animal encountering an infectious carcass than by the 
transfer of infected fleas (Russell et al. 2021).  
 
Despite the important role that rodents play in ecosystem functioning (Dickman 1999), and the 
impact they can have on both food production (e.g. agricultural pest species;(Singleton et al. 2015; 
2010) and public health (Meerburg, Singleton, and Kijlstra 2009, e.g. as hosts of a range of different 
zoonotic diseases; plague: Mccauley et al. 2015; Russell et al. 2021, Lassa virus : Frame et al. 1970, 
and hantaviruses : Guo et al. 2013), there are few examples where spatially explicit capture mark 
recapture models have been used to investigate their population parameters such as survival (but 
see e.g. Dupont et al 2021, Casula et al, Romairone et al 2018). Here, we use the multimammate 
mouse (Mastomys natalensis) and Morogoro virus (MORV) as a model system to look at disease 
transmission. The multimammate mouse, widely distributed through sub-Saharan Africa, causes 
substantial agricultural damage (H Leirs 1994) and carries a number of zoonotic diseases of public 
health interest (Weir 2005; WHO 2016). The population dynamics of Mastomys natalensis are heavily 
dependent on rainfall, which is bimodal in this region with long (March-May) and short (November-
December) rains. The variation in rainfall results in strong density fluctuations between seasons, 
generally ranging from 20-300 individuals per hectare (Leirs H. 1994; Sluydts et al. 2009). MORV 
seems to be endemic in populations of this rodent and can persist even at very low densities, most 
likely due to the presence of chronically infected animals (Mariën, Borremans, Gryseels, Broecke, et 
al. 2017; Hoffmann et al. 2021).  Based on a previous survival analyses using the same CMR dataset 
that we will use here, the authors found that MORV-antibody presence was negatively correlated 
with survival probability and positively with recapture probability of M. natalensis. In these models, 
several confounding factors including, age, season, transience and trap dependence were corrected 
for. However, spatial factors were not corrected for, despite spatial data being collected. Therefore, 
this gives an opportunity to explore whether accounting for spatial effects yields similar results to 
models that also include factors such as age which can be harder to define in wild animals.  
 
The main objective of this study was to explore how incorporating space influences population 
parameters such as survival probability and transmission dynamics using a combination of real and 
simulated data. First, we used simulated data to assess how effective our models were at returning 
the true values, then we ran the models on our field data set to ascertain the extent to which 
including the spatial information altered our estimates of survival and detection for seropositive and 
seronegative individuals. This was then compared to the results from Mariën et al (2020) to ascertain 
the extent to which including spatial variables can capture similar patterns as age inclusive models. 
Spatial information is explicitly collected in many small mammal CMR studies, yet often not 
incorporated. However, doing so can often improve density estimates compared to non-spatially 
explicit approaches (Fauteux et al. 2018). However, to our knowledge this is the first time that the 
impact of including spatial variables into capture mark recapture models has been used to estimate 
the impact on state transition dynamics such as infection.  
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METHODS: 
 
Study site and data collection 
Population and infection data was collected following a standard capture mark recapture method on 
an open population of M. natalensis in Morogoro, Tanzania. A regular grid of 300 traps with traps 
placed every 10 metres was used. Animals were captured monthly between January 2010 and 
December 2012 for three consecutive nights with Sherman LFA live traps baited with a mixture of 
corn flour and peanut butter. Individuals were identified using toe clipping and the sex, mass and 
reproductive status of each animal was recorded, along with the location of the trap. Blood was 
sampled to determine the serostate of individuals by using an immunofluorescence assay (IFA) 
following (Borremans et al. 2015). 
 
The CMR dataset consisted of 6267 total captures of 2512 unique individuals. The individual 
serostate was used as an indication for current or past infection with Morogoro virus. Based on the 
results of the IFA, 1314 captured individuals (20.97%) were seropositive. Individuals for which IgG 
antibodies were not detected in their blood sample were grouped as seronegative individuals and 
individuals that did show an IgG antibody response were grouped as seropositive individuals. Animals 
who were first seronegative and seroconverted during the study (0,05% of unique individuals) were 
also grouped as seropositive individuals, because of the insensitivity of the IFA: antibodies can only 
be detected 7 days post infection (Borremans et al. 2015). So, when an individual is captured when 
actually being infected, it can be recorded as seronegative resulting in a false negative result.  
 
2.1 Bayesian statistical modelling (spatial and non-spatial)  
To evaluate the CMR data, we created non-spatial and spatial hierarchical models within a Bayesian 
framework to estimate survival and detection probabilities (ρ and φ) of both seropositive and 
seronegative individuals. Models were fitted in JAGS (Plummer 2016) using R (R Core Team 2018) and 
the R package jagsUI (Kellner 2018). Both models were applied to simulated and field data. For all 

analysis, we considered models to have reached convergence based on the �̂� value (Gelman-Rubin 
test statistic(Gelman and Rubin 1992) < 1.1 and good mixing properties of the different chains which 
can be assessed by visual inspection of trace and density plots (Gelman and Hill 2007; Kéry and 
Schaub 2012). 
 

2.1.1 General simulation set-up and procedure  
To determine whether models return parameter estimates with acceptable deviation from the truth, 
we conducted simulations with known true values. To evaluate the performance of the models, we 
determined the accuracy of the model using measures of bias and precision. Bias was calculated as 

the difference between the mean of the parameter estimate 𝐸(𝜃) and the set parameter 𝜃 which 

was used to simulate the data (Kéry and Schaub 2012). Precision was defined as the standard 
deviation of the estimated parameter (Kéry and Schaub 2012). Bias and precision were calculated by 
averaging all the posterior parameter estimations over multiple simulations of each model. All 
simulations were run with the same following Markov Chain Monte Carlo (MCMC) settings: Three 
MCMC chains were run for 5000 iterations with a burn-in period of 500 iterations and a thinning rate 
of 10.  
 

2.1.2. Non-spatial CR model simulation set-up 
Simulated data for the non-spatial CR model was created using the function simul.ms  provided in 
(Kéry and Schaub 2012). In the simulation dataset 160 individuals were present and 800 individuals 
were captured in total whereby individuals can be in three states (seropositive, seronegative and 
dead), similar to the real dataset. We simulated 6 monthly capture sessions where captures took 
place for 3 consecutive days. The survival probability (φA) was set to 0.6 for seronegative individuals 
and to 0.5 for seropositive individuals (φB).The transition from seronegative to seropositive (ψAB) was 
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set to 0.2 and the transition from seropositive to seronegative (ψBA) was constrained to be 0.005, as 
in our system transition from positive to negative is considered very unlikely and reflects insensitivity 
in the immunofluorescence assay used to detect antibodies against MORV rather than waning 
immunity (Borremans et al. 2015). In addition, the detection probability of seronegative individuals 
(ρA) was set to 0.5 while for seropositive individuals the detection probability (ρB) was set to 0.6. Data 
was simulated 1000 times to evaluate the performance of the model and average estimates and 
standard errors across all simulations were compared to the true value. Bias and precision were 
calculated for all of the parameters above except for detection. In addition, a parameter sensitivity 
test was carried out to analyse how sensitive the non-spatial non temporal model is to different 
parameter values (0.2, 0.4, 0.6, or 0.8). This test was carried out by varying the parameters of survival 
(φ) and detection (ρ) for both seronegative and seropositive individuals and the transition probability 
from seronegative to seropositive (ψBA).  
 

2.1.3 Spatial CR model simulation set up  
Simulated data for the spatial CR model was created by the simulation function simul.sCJSN 
provided in (Schaub and Royle 2014). Originally 100 individuals were present in the population at 𝑡 =
0 and 800 individuals were captured in total in a study grid of 15 by 15. Animals were captured at 7 
capture moments. The survival probability (φ) was set to be 0.6, the detection probability (ρ) was set 
to be 0.5 and the dispersal variances in both X and Y direction (𝜎𝑥

2 and 𝜎𝑦
2) were set to be  0.5. Data 

was simulated 1000 times to evaluate the performance of the model by conducting an accuracy test 
without adding the group variable to make a distinction between seropositives and seronegatives. 

Bias and precision are calculated for all parameters: φ, ρ and 𝜎𝐺
2.  

 
2.2 Non-spatial CR model  
For the purpose of the first analysis, we created a multistate non-spatial model to allow for the 
estimation of survival (φ), detection (ρ) and transition from seronegative to seropositive (ψAB). As 
previous experiments have confirmed that lifelong immunity follows infection with MORV 
(Borremans et al. 2015), the transition from seropositive to seronegative (ψBA) was constrained to be 
minimal by using a beta distributed prior with 𝛼 = 1 and 𝛽 = 50. This causes more than 99% of the 
prior distribution to fall between 0 and 0.02, rendering the probability of transitioning from 
seropositive to seronegative to effectively zero. If we fully constrain ψBA to be 0, the model gives up 
too much flexibility and fails to converge. Additionally, we cannot discount the possibility that a 
minority of animals may sero-revert over time. All priors of the other parameters were allocated a 
uniform non-informative distribution.  
 
The multistate non-dispersal model consisted of two sub-models:  
 
(a) The state model, which describes the state of an individual at time t+1, given its state at time t. 
The state model can be described by a set of state equations:   

𝑧𝑖,𝑓𝑖
= 𝑓𝑠𝑖      (1) 

𝑧𝑖,𝑡+1| 𝑧𝑖,𝑡  ~ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(Ω𝑧𝑖,𝑡,1…𝑆,𝑖,𝑡
)     (2) 

In equation 1, the true state of individual 𝑖 is described by element 𝑧𝑖,𝑓𝑖
, which indicates the true 

state of individual 𝑖 at its first encounter. We assume that an individual can only be observed in their 
actual state (absence of state assignment error), therefore, 𝑓𝑠𝑖  is identical to the observed state at 
first encounter 𝑧𝑖,𝑓𝑖

 (Kéry and Schaub 2012).  

 
We recognise three true states: alive and seronegative (state A), alive and seropositive (state B) and 
dead. Theoretically, 9 different transitions can occur, but due to the restriction of transition ψBA, this 
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is unlikely. We define all possible transitions in a four-dimensional state-transition matrix (Ω, eq. 2). 
The first dimension describes the state at time 𝑡, the second dimension the state at 𝑡 + 1, the third 
dimension the individual (𝑖) and the fourth dimension describes time (𝑡). We use a categorical 
likelihood to account for the multistate character of the model (Kéry and Schaub 2012).  
 
(b) The observation model, which links the true state to the observed state. This model is described 
by the following equation: 

𝑦𝑖,𝑡|𝑧𝑖,𝑡 ~ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(Φ𝑧𝑖,𝑡,1…𝑂,𝑖,𝑡
)     (3) 

Where the observed state 𝑦 is conditional on the true state 𝑧. Similar to the true state transition 
matrix, an observation matrix (Θ) is created. This matrix is also four-dimensional whereby the first 
dimension states the true state, the second the observed state, the third the individual 𝑖 and the 
fourth dimension describes time 𝑡. Similar to the number of true states, the number of observed 
states also equals three: seen as seronegative, seen as seropositive and not seen.  
 
2.3: Partial dispersal model: 
 
We compared a partial dispersal model (in that rodents were grouped by dispersal distances) to 
assess whether accounting for movement by simple grouping was sufficient to allow for similar 
estimates of survival as that from the fully spatial model. In this model, we were also able to estimate 
transition probabilities between states. Therefore, we compared parameter estimates of survival (φ), 
detection (ρ) and transition (ψAB) between short and long dispersing animals. Individuals were 
grouped based on the maximal dispersal distance with a cut-off of 40 metres (equ. 4). The same 
parameters as in the first analysis are of interest: φA, φB, ψAB, ρA and ρB. 

Since capture locations are recorded, it is possible to calculate dispersal distances based on X and Y 
coordinates when individuals are captured at least two times. If an individual is captured more than 
twice, the two traps that are the farthest apart are chosen to calculate the maximal individual 
dispersal distance, calculated as the Euclidean distance.  

Animals with a maximal dispersal distance shorter than 40 metres were grouped as short dispersing 
animals, whereas animals with a dispersal distance longer than 40m were grouped as long dispersing 
animals. The cut-off was chosen based on data from previous CMR and radio-tracking studies 
(Borremans et al. 2014; Herwig Leirs, Verheyen, and Verhagen 1996). In CMR studies, mean day-to-
day movement of 20 meters are observed whereby 85% of the individuals do not move more than 25 
meters (Borremans et al. 2014; Herwig Leirs, Verheyen, and Verhagen 1996). However, in radio 
tracking studies, larger day-to-day dispersal distances are observed. This is due to short excursions 
that cannot be captured in CMR studies possibly due to i) interception by traps before the excursion 
or ii) trap shyness during the excursion (Herwig Leirs, Verheyen, and Verhagen 1996). Based on 
previous CMR and radio tracking studies and to account for individual variation, we therefore 
decided on a cut-off between small and long dispersing animals at 40 metres, although we recognise 
that this is somewhat arbitrary. With a cut-off of 40 metres, 65% of the individuals in the field 
dataset were grouped as short dispersing animals and 35% as long dispersing animals.  

We used the same model structure as the multistate non dispersal model (2.2), with the addition of a 
grouping variable. We used model 1 without any fixed or random time effects for parameter 
estimates as individual grouping was based on dispersal distances over all capture moments, so it 
was therefore it is not justifiable to make parameter estimates of survival, detection or transition 
with time as a fixed or random effect.   
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The MCMC settings for both the simulated and the field data set were the same as above (2.2). To 
evaluate the performance of the multistate partial dispersal model, bias and precision were 
calculated twice for the parameters φA, φB, ψAB, ψBA, ρA and ρB for both groups of short and long 
dispersing animals. 

 
2.4 Spatial CR model 
Similar to the non-spatial CR model, the spatial Cormack – Jolly – Seber (sCJS) CR model also consists 
of two sub-models:  
 
a) The state model, which describes the state of an individual at time t+1, given its state at time t. 
The state model can be described by two different state processes. The first state process, described 
by equations 4 and 5, indicates whether an individual is alive (𝑧𝑖,𝑡 = 1) or dead (𝑧𝑖,𝑡 = 0). Individuals 

are grouped as seronegative or seropositive whereby individuals that were ever seropositive are 
considered as always seropositive. State transitions are not estimated in the spatial model due to 
parameter redundancy, however survival and dispersal are estimated separately for seropositive and 
seronegative individuals (Weiser et al. 2018). As in the non-spatial CR model, the latent state variable 
is conditional on first capture which is indicated by 𝑓𝑖. All priors in this spatial model are set to be 
non-informative and therefore a uniform distribution is assigned as a prior for all parameters. 
 
Element 𝑠𝑖,𝑡 in eq. 5 shows the true survival probability between 𝑡 and 𝑡 + 1 for individual 𝑖. We 
assume that survival is the same inside and outside the study area with no spatial variation. We also 
assume that 𝑧𝑖,𝑡 is individually independent and is conditional on the survival probability 𝑠𝑖,𝑡 (Schaub 
and Royle 2014). The likelihood of this model is based on a Bernoulli distribution instead of a 
categorical distribution in the non-spatial model, because the model only contains two states: alive 
and dead. 

𝑧𝑖𝑓𝑖 = 1       (4) 

𝑧𝑖,𝑡+1| 𝑧𝑖,𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡𝑠𝑖,𝑡)     (5) 

Equation 6 describes the second state process pertaining to the dispersal location variable 𝐺. As 
individual dispersing behaviour can change between 𝑡 and 𝑡 + 1 the location at 𝑡 + 1 is modelled 
with the normal distribution with i) estimated mean 𝐺𝑖,𝑡, which indicates the location of individual 𝑖 

at time 𝑡 and ii) a variance 𝜎𝐺
2 which indicates the dispersal variance in X and Y direction (Schaub and 

Royle 2014). 

𝐺𝑖,𝑡+1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝐺𝑖,𝑡,𝜎𝐺
2𝐼)     (6) 

(b) The observational model, which links the two state processes with the observed state. In the 
multistate models, observation 𝑦 was only conditional on the true state data 𝑧𝑖,𝑡. However, since in 
this model dispersal is included which is modelled with a normal distribution, animals are also able to 
disperse outside the study area. Individuals are only available for recapture when being alive and 
present in the study area, and therefore the observation is conditional on both. 𝑟𝑖,𝑡 indicates if the 

location 𝐺𝑖,𝑡 of individual 𝑖, who is alive, is inside or outside the study area 𝐴 at time 𝑡. 𝑟𝑖,𝑡 = 0, when 
a living animal is outside the study area at time 𝑡 and 𝑟𝑖,𝑡 = 1, when a living animal is inside the study 
area at time 𝑡 (eq. 7 and 8, (Weiser et al. 2018). Dispersal distances are not modelled directly, but 
dispersal variances in X and Y direction will be estimated. Based on the estimated variances, the 
dispersal distance can be calculated (eq. 4). 
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𝑟𝑖,𝑡 = 0, 𝑖𝑓 𝐺𝑖,𝑡 ∈ 𝐴       (7) 

𝑟𝑖,𝑡 = 1, 𝑖𝑓 𝐺𝑖,𝑡 ∉ 𝐴      (8) 

Knowing this, the observation model can be described by equation 9. The likelihood of the 
observational model is a Bernoulli distribution with the parameters 𝑧𝑖,𝑡, 𝑟𝑖,𝑡 and 𝑝𝑖,𝑡 whereby 𝑝𝑖,𝑡 is 
the detection probability of individual 𝑖 at time 𝑡. Because this model is parameter redundant, it is 
assumed that survival and recapture probabilities are similar among individuals and are constant 
over time (Schaub and Royle 2014).  

𝑦𝑖,𝑡|𝑧𝑖,𝑡𝑟𝑖,𝑡  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖,𝑡𝑟𝑖,𝑡𝑝𝑖,𝑡)     (9) 

We provide example JAGS code (Supplementary material) that was developed from published 
examples (referenced within example JAGS code). For the non spatial and partial dispersal models 
used a burn-in period of 5000 iterations and a thinning rate of 10 which consistently provided good 
mixing across three chains. We ran both models for 75,000 iterations, resulting in 7500 saved 
iterations which were then used to generate posterior distributions of parameters. For the full 
dispersal model, we used the same burn-in and thinning rates, but only needed to run the model for 
25,000 iterations to achieve convergence, as excluding state transition matrices reduces the variance 
in the model. 

RESULTS: 
3.1 Survival and transition probabilities from the non-spatial CJS model. 
Initially we investigated whether allowing for time variance in either survival, detection or 
transmission probability resulted in a better model fit, using the non-spatial CJS model (table 1). Two 
models failed to converge and were excluded from further analyses. The best fitting model assumed 
a constant probability of survival and transition from seronegative to seropositive but a fixed time 
effect on detection probability (table 1, model 2; Figure 1). We found that the survival probability of 
seronegative individuals (0.562 with CRI95%= [0.544, 0.580]) was higher compared to survival of 
seropositive individuals (0.485 with CRI95%= [0.450, 0.520], Figure 1A). The overlap between both 
survival distributions is 0.46%, suggesting that seropositivity is associated with a significantly lower 
survival probability. We estimated the transition probability from seronegative to seropositive to be 
0.077 (CRI95%= 0.065, 0.091, figure 1B). Monthly detection probabilities estimated for seronegative 
and seropositive individuals are shown in figure 1C, demonstrating no difference in detection 
probability over time between the two groups. 
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Figure 1: Posterior distributions of estimated population parameters. (A) The full distribution of the estimated survival 
probabilities for seronegative individuals (φA shown in purple) and seropositive individuals (φB shown in yellow). (B) The full 
distribution of the estimated transition probability from seronegative (state A) to seropositive (state B). (C) The estimated 
detection probabilities for both seronegative (ρA) and seropositive individuals (ρB) at each monthly capture moment. 
Estimations are shown by the points and the shaded areas present the associated CRI 

 
Table 1: Comparison of non-spatial CR models where survival, detection and transition from seronegative to seropositive 
were allowed to vary with no, fixed or random time effects. 

Model Set-up Converged DIC 

1 φ, ψ, and ρ are not time varying ✔ 9115.6 

2 Φ and ψ are not time varying, ρA and ρB are treated as a fixed time effect ✔ 8747.6 

3 Ψ and ρ are not time varying, φA and φB are treated as a fixed time effect ✔ 9463.8 

4 Φ and ρ are not time varying, ψAB is treated as a fixed time effect ✔ 9152.7 

5 φ, ψ, and ρ are all treated as fixed time effects ✔ 9308.4 

6 φ, ψ are treated as a fixed time effect, ρA and ρB as a random time effect ✔ 9514.5 

7 Ψ and ρ are treated as a fixed time effect, φA and φB  as a random time effect ✘ 15072.6 

8 Φ and ρ are treated as a fixed time effect, ψAB as a random time effect ✔ 9278.0 

9 φ, ψ, and ρ are all treated as random time effects ✘ 27417.9 

 
In order to assess the accuracy of the model, bias and precision were calculated for survival (φA and 

φB) and the transition probability (ψAB) from seronegative to seropositive (table 2) for the best fitting 
model using simulated data with known true parameter values. Because of the time-dependency of 
the detection probability, bias and precision could not be calculated for this parameter. We carried 
out a parameter sensitivity test to analyse how sensitive the model was to different parameter 
values (0.2, 0.4, 0.6, or 0.8), using the non-temporal model (model 1, table 1) in order to be able to 
compare with the partial spatial model (Figure 2). The precision of parameter estimates was greatest 
when survival and detection probabilities were high and when transition probabilities (ψAB) were low 
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(table 2). However, in all cases the true value is within the credible intervals returned by the model 
on the simulated data, giving reassurance that the model performs well and returns reliable 
estimates for the non-spatial CR model (figure 2). 
 
 

 

Table 2: Bias and precision calculated from the simulated models for survival (φ), detection (ρ) and dispersal variance (σ) for 

the non spatial, partially spatial (grouped according to maximal movement distance) and fully spatial (not grouped by 

serostate in the simulation model). No estimates for ρ for the non spatial model are available due to the inclusion of a fixed 

effect for time. 

Model Parameter Bias Precision 

Non spatial  φA -0.005 0.030 

φB 0.001 0.032 

ψAB 0.007 0.028 

ρA NA NA 

ρB NA NA 

Partially 
spatial  

φA -0.002 0.027 

φB 0.002 0.030 

ψAB 0.006 0.027 

ρA 0.008 0.043 

ρB -0.005 0.049 

Fully spatial φ -0.001 0.022 

ρ 0.002 0.032 

Figure 2 Sensitivity test of all parameters of interest of the non-spatial CR model. Every parameter of interest (transition, 
survival and detection) was set to be 0.2, 0.4, 0.6 or 0.8 in the simulated dataset which are corresponding to the four 
different graphs. Parameter estimations are made for every simulated data set whereby the true set parameter (yellow) 
can be compared to the estimated parameter (purple) 
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σ 0.210 0.029 

 
Inclusion of movement: 
We included movement parameters in two different ways; first we created a grouped model where 
we looked at survival, detection and transition probability for animals that were grouped by either 
short or long distance movements. Next, we used a fully spatial model where we assessed survival, 
detection and movement for seropositive and seronegative individuals. Due to models becoming 
over parametrised we were unable to assess transition probabilities in a spatial multistate model, 
hence our use of the two different model types.  The partial movement model gave estimates with 
the highest accuracy for survival and the lowest accuracy for detection regardless of the serostate, as 
shown in table 2. Similar to the results for the non-spatial model, we found no evidence that the 
model was sensitive to different initial true parameters; in all simulations the true value fell within 
the estimated 95% BCI. The fully spatial model gave estimates with the highest accuracy for 
detection and the lowest accuracy for survival, although bias was similarly low for both estimates. It 
should be taken into account that survival and detection are estimates of probabilities and dispersal 
is an estimate of variance. Therefore, the accuracy of dispersal cannot be compared to the accuracy 
of the other parameters. 

When movement was included in the partial dispersal model, we found that the transition 
probability for short dispersing animals (0.077 with CRI95%= [0.062, 0.094) is comparable with the 
transition probability for long dispersing animals (0.081 with CRI95%= [0.058, 0.107]; Fig 3), with an 
overlap between transition probability distributions of 64.5%. Similar to the non-spatial model, 
survival of seropositive individuals is lower than for seronegative individuals, particularly for long 
distance moving animals (Fig 3 B). For seropositive individuals, survival of individuals that moved less 
than 40m (0.628 with CRI95%= [0.585, 0.670]) is higher than individuals that moved more than 40m 
0.561 with CRI95%= [0.486, 0.635], Fig 3B). 

In contrast to the non-spatial and partially spatial CR models, the spatial CR model found no 
difference in survival of seronegative and seropositive individuals (Mean seronegative: 0.594, CRI95%= 
[0.575, 0.613] and mean seropositive: 0.584, CRI95%= [0.546, 0.621] respectively, Figure 3B, 4B). 
Similarly, detection probability for seronegative individuals was similar to that of seropositive 
individuals (Mean seronegative: 0.636 with CRI95%= [0.602, 0.670], mean seropositive: 0.675 with 
CRI95%= [0.610 0.738], Figure 3B). The dispersal variance for seronegative individuals (𝜎𝑥

2 = 
2.228;CRI95%= [2.137, 2.319] and 𝜎𝑦

2 = 1.601;CRI95%= [1.531, 1.671], Figure 3A) tended to be higher 

than the variance for seropositive individuals (𝜎𝑥
2 = 2.037;CRI95%= [1.887, 2.206] and 𝜎𝑦

2 = 1.504; 

CRI95%= [1.372, 1.654, Figure 3A]). The estimated dispersal distance for seronegative individuals is 
21.90 meters with CRI95%= [20.98, 22.81] compared to a distance of 20.20 meters with CRI95%= 
[18.612, 21.999] for seropositive individuals. In comparison to the non-spatial and partially-spatial 
models, fully incorporating movement into the model design fundamentally altered estimates of 
survival, with there no longer being any difference in survival based on serostate (Figure 5)  
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514665doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514665
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 3: Posterior distributions of estimated population parameters. (A) The estimated transition probability from 
seronegative (state A) to seropositive (state B) for short and long dispersing animals (shown in purple and yellow). (B) 

Parameter estimates are shown for survival of seronegatives (φA) and seropositives (φA) and detection of seronegatives 

(ρB) and seronegatives (ρB) for both short and long dispersing animals (SD and LD). Estimated points are shown by the 

points and the lines are representing the 95% credible intervals. 

 

 

Figure 4: Posterior distributions of estimated population parameters from the full dispersal model. (A) The estimated 
dispersal variances in X and Y direction for both seronegative and seropositive individuals. (B) Parameter estimates are 

shown for survival and detection of seronegatives (a) and seronegatives (b). Estimates are shown by the purple points and 

the lines are representing the 95% credible intervals.  

Comparing the non-spatial and spatial model estimates for survival probability for seronegative and 
seropositive individuals showed that when spatial movements are not included in the model, survival 
in seropositive individuals appeared to be far lower than in seronegative individuals. However, after 
including spatial effects, this difference was greatly reduced (Figure 5A-C).  
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Figure 5: Survival probabilities estimated by different models are compared with each other. (A) Survival probabilities for 
seronegative (φA) and seropositive (φB) individuals estimated by the multistate non-spatial model. (B) Survival probabilities 
for seronegative and seropositive individuals grouped as short (SD) or long (LD) distance movement animals estimated by 
the multistate partial spatial model. (C) Survival probabilities for seronegative (φA) and seropositive (φB) individuals 
estimated by the full dispersal model. (D) All estimated survival probabilities of the three different models plotted together 
in one graph. 

 

DISCUSSION: 
 
Capture mark recapture methods have had a profound influence on our understanding of 
demography and population processes. However, many of these advances have occurred 
independent of and unconnected to the spatial structure of the either the population or the 
landscape within which the population is situated (Royle, Fuller, and Sutherland 2018). Therefore, 
CMR methods have historically been non spatial, accounting for neither the inherent spatial nature 
of sampling or the spatial distribution of individual encounters (Royle, Fuller, and Sutherland 2018). 
The advent of spatially explicit capture mark recapture models (Chandler and Andrew Royle 2013; 
Jůnek et al. 2015; Royle and Chandler 2014; Ergon and Gardner 2014) represents an important 
advancement in our ability to quantify and explicitly study the role of spatial processes. Here, we 
demonstrate that including spatial information in standard CR models can have a significant effect on 
population parameter estimates such as survival.  Therefore, when spatial data exists, as is the case 
with the vast majority of capture mark recapture, attempts should be made to include this in model 
construction.  
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From our sensitivity analysis, we found that most of the estimated survival probabilities are 
underestimated in the non-spatial model. This is also reflected in the field data analysis: when using 
traditional non-spatial CR modelling, survival estimates are lower compared to survival estimates 
from inclusion of spatial movement information.  It is likely that parameter estimates are 
underestimated due to non-recorded movement outside of the study area (Schaub and Royle 2014) 
and the fact that capture probabilities are unequal among all traps, despite classical non-spatial CR 
models assuming the opposite (Kéry and Schaub 2012). Due to the individual specific location of 
home ranges, some traps will occur in more home ranges than other traps, therefore making the 
capture probability variable across traps (Royle and Chandler 2014). In contrast, when accounting for 
space in spatial CR models, equal detection probabilities are not assumed, rather this variation in 
detection probabilities is now modelled. Spatial capture recapture models assume that animal 
activity centres are uniformly and independently distributed over the state space and that the area 
therefore includes all the animals available for sampling (López-Bao et al. 2018). It is likely that this 
assumption is violated to some degree in our system, as environmental conditions vary across the 
study grid and intraspecific interactions may also play a role (Bischof et al. 2020). However, due to a 
lack of territoriality in M. natalensis (Borremans et al. 2014), and evidence that SCR models appear to 
be fairly robust to violations of this assumption (López-Bao et al. 2018), it is unlikely that this has 
significant bearing on our results. Finally, SCR models are sensitive to sparse data, which can lead to 
imprecise estimates. Therefore, SCR models are more appropriate for systems where multiple 
detections of the same individual occurs at different locations, in order to estimate the location of 
latent activity centres (Dupont et al. 2019).  
 
Comparing between the classical non-spatial CR model and the spatial CR model, survival of 
seropositive individuals (φB) is underestimated more than survival of seronegative individuals (φA). 
This might be explained by the difference in group size between seronegative (n=1996) and 
seropositive (n=516) individuals, whereby less information is contained within the data for 
seropositive compared to seronegative individuals. Alternatively, these differences could be due to 
an age effect. Firstly, we record seroprevalence rather than active infection, therefore older 
individuals are more likely to be positive simply because they have had more time to become 
exposed (Borremans et al. 2011). Secondly, dispersal behaviour may differ between age groups. 
Juvenile M. natalensis are more exploratory than adults (Vanden Broecke et al. 2017), and therefore 
may disperse further in order to establish their own home range away from the natal area and 
related conspecifics (Van Hooft et al. 2008). In the study of Mariën et al. (2018), age was corrected 
for by using the logarithm of body weight on the first capture, and by only retaining individuals who 
weighed less than 35g at their first capture session as these were considered to be juveniles.   A 
seasonal effect of survival was found, alongside a limited impact of exposure status (Mariën 2018). In 
our study we included animals that were presumed adult at first capture, with the assumption that 
age and seasonal effects are accounted for by movement patterns (Vanden Broecke et al. 2017). 
Therefore, we cannot separate whether  the differences we see are due to either seasonal or age 
related differences. Given that infection with MORV does not appear to impact M. natalensis body 
condition (Mariën, Borremans, Gryseels, Soropogui, et al. 2017), an impact of prior exposure to 
MORV on survival seems unlikely (Mariën et al. 2018). If, as hypothesised in Mariën et al (2017), 
exposure to MORV is associated with movement behaviour in the mice (e.g bolder mice are more 
likely to become infected and trapped; Vanden Broecke et al. 2017, or infection with MORV 
influences individual behaviour and trap happiness; Vyas 2015), this would be captured in the spatial 
CMR model and may also explain why we no longer see a difference in survival estimates given prior 
exposure to MORV. In addition, detection probabilities and dispersal differences were similar for 
both seronegative and seropositive individuals in the fully spatial model, suggesting that the impacts 
of trap affinity are captured in the spatial model and that exposure to MORV does not impact trap 
affinity and movement. 
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An alternative explanation would be that the difference in underestimation between groups is due to 
differential distribution of home ranges between the two groups, and that exposure to MORV is 
related to unknown spatial processes. For example, the home ranges of the seropositive individuals 
might be located closer to toward the edges of the study grid suggesting a relatively lower detection 
probability compared to the seronegative individuals. This lower detection probability instructs 
mortality rather than emigration. This theory is supported by the so-called edge effect, which states 
that animals will more frequently be captured in the traps close to the edge compared to the traps 
located in the centre a study grid (Stenseth and Hansson 1979). This edge effect also applies to the 
studied M. natalensis population in Morogoro in Tanzania (H Leirs 1994). In this study area, it is 
observed that at the edges at certain capture occasions, the traps are more occupied than in the 
centre, possibly as a consequence of occasional trapped individuals that are passing by the grid. The 
incidence of these passers-by is larger at the edges compared to the centre of the grid giving the 
appearance of a higher density at the edge of the grid (H Leirs 1994). When animals are more 
frequently captured at the edges of the study grid, this indirectly indicates more undetected 
movement leading to a higher underestimation of survival. Analysing the influence of this edge-effect 
on population parameter estimations might be of interest for future research. However, there is little 
evidence to suggest that spatial variation at the edge of the grid compared to the centre of the grid 
would result in differential probabilities of exposure to MORV, especially as transmission is 
considered to be predominantly from direct contact or from within nest encounters (e.g mating or as 
an outcome of breeding attempts from chronically infected animals, Hoffmann et al. 2021). In 
addition, SCR models only require that the distribution of detectors is described by the encounter 
model, rather than adhering to any particular layout, and appear to be fairly robust to mis-
specification of the encounter probability model (Fuller et al. 2016). 
 
We found no difference in transition probability when comparing between the non-spatial and partly 
spatial models, and no impact of movement on the probability of seroconversion. We were not able 
to include state transitions in the fully spatial models but these results suggest that there is little 
impact of spatial processes on seroconversion, and that seroconversion itself may be a hyperlocal 
event. Given the small dispersal distances predicted from our model, which were in line from other 
studies (Borremans et al. 2014; Herwig Leirs, Verheyen, and Verhagen 1996), this suggests that most 
exposure risk is likely to occur in the immediate area of occupancy of the individual.  
 
In this study we did not correct for the number of trapping events per individual through the use of a 
robust design. This may influence the estimated dispersal distance, since animals that are trapped 
more frequently have a higher probability of having a longer dispersal distance. However, even 
without the use of a robust design model, we find similar results from our simple non spatial CR 
model compared to the frequentist models of Mariën et al. (2018), where age, seasonal effects and 
trap dependence are accounted for within a robust design. The results of the spatial model suggest 
that accounting fully for movement may be more effective than accounting for other effects such as 
age; movement may therefore be the way in which these grouping parameters are influencing 
animal behaviour. Spatial data may also be easier to include than individual factors such as age which 
can be hard to estimate in wild animal populations. 
 
Here, we demonstrate that accounting for dispersal and movement is key when estimating 
population parameters in a capture mark recapture study and can have a dramatic impact on 
parameter estimates. While recent advances in maximum likelihood approaches to estimate density 
offer considerable improvements over Bayesian approaches in terms of processing time (Glennie and 
Foster 2019), Bayesian approaches provide a more flexible and easily interpretable framework within 
which to construct these models. We suggest that where possible, inclusion of spatial parameters 
should be preferred when using CR models to investigate survival and transmission dynamics in a 
population, and that the kind of capture mark recapture studies that are often used for rodent 
research lend themselves well to this kind of approach (Romairone et al. 2018). Future approaches 
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that allow for the characterisation of state transition dynamics while also accounting for space would 
be a valuable addition when investigating processes such as disease transmission.  
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