
1 

 

SUPPLEMENTAL INFORMATION 
 

TITLE  
A generalizable epigenetic clock captures aging in two nonhuman primates. 
 
 
AUTHORS 
Elisabeth A. Goldman1*, Kenneth L. Chiou2,3,4,5, Marina M. Watowich2,3,6, Arianne Mercer4, 
Sierra N. Sams4, Julie E. Horvath7,8,9,10, Jordan A. Anderson10, Cayo Biobank Research Unit^, 
Jenny Tung10,11,12,13,14, James P. Higham15,16, Lauren J.N. Brent17, Melween I. Martínez18, Michael 
J. Montague19, Michael L. Platt19,20. 21, Kirstin N. Sterner1*+ & Noah Snyder-Mackler2,3,4,5,22*+ 
 

CAYO BIOBANK RESEARCH UNIT 
Susan C. Antón, Lauren J. N. Brent, James P. Higham, Melween I. Martínez, Amanda D. Melin, 
Michael J. Montague, Michael L. Platt, Jérôme Sallet, and Noah Snyder-Mackler. 
 
 

  



2 

 

SUPPLEMENTAL FIGURES 
 

 
 
Figure S1 Proportion of Shared Loci Between Site-Based and Window-Based Models 
 
The proportion of shared coverage between our rhesus training and test datasets increased from 
38% for the site-based approach (top) to 97% for the window-based approach (bottom). Numbers 
on the left of each Venn diagram show the number of features (sites or windows) unique to the 
Yerkes dataset, while numbers on the right-hand side show those unique to the Cayo Santiago 
dataset. The numbers shown where the two circles overlap refer to the count of shared features 
between the two datasets when either approach was used. 
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Figure S2 Comparison of Enrichment for Conserved Sequences Between Clock and Non-
Clock Windows 
 
Clock windows are modestly but significantly enriched for evolutionarily conserved sequences 
(two-sample Kolmogorov-Smirnov test, D = 0.09, p = 0.007). 
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Figure S3 Comparison of Sequence Conservation Between Clock and Non-Clock Windows 
 
Distribution of mean phastCon scores for clock windows (those automatically selected for 
inclusion in the model) and non-clock windows. Clock windows show a modest trend towards 
sequence conservation as compared to the windows that were not selected. Dashed line shows 
x=y. 
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METHODS SUPPLEMENT 
 
Bismark Parameter Settings 
 
When aligning the reads to the reference genome using Bismark (Krueger & Andrews, 2011), we 
made two modifications to the alignment default parameters to reduce the number of 
ambiguously mapped reads (which result in data loss because these reads are discarded). We 
relaxed the minimum alignment score to allow approximately 3 mismatches or gaps in the 
alignment of 1-2 bp each (this is the “--score_min” parameter; note that the maximum alignment 
score is zero, corresponding to perfect alignment with no mismatches or gaps). We also increased 
the number of times Bismark attempted to reseed a repetitive (low complexity) read before 
marking it as invalid, from a default of 2 to 8 times (“-R” parameter). 
 
Criteria Used to Eliminate Samples from the Site-Based Dataset 
 
Our initial dataset contained 631 genomic libraries. We removed 21 low coverage libraries 
following alignment to the reference genome. We combined data from duplicate libraries (those 
derived from samples collected from the same individual on the same day, n = 29), leaving 581 
samples. We removed eight samples after plotting the ratio of X-chromosome to chromosome 19-
mapping sites by sex and finding four samples labeled as female that clustered with the males, 
and four labeled as male that clustered with the females, suggesting they had been mislabeled. 
Finally, we removed 24 samples that were missing > 25% of their data in the final filtered 
dataset. 
 
Considerations for Training, Optimizing, and Implementing Epigenetic Clock Models 
 
We used an elastic net penalized regression algorithm that automatically selects different subsets 
of CpG sites (or 1 kb windows) that together generate the most accurate age predictions. We used 
a nested loop structure to train and optimize our penalized regression model, with a leave-one-out 
cross validation (LOOCV) outer loop to tune model hyperparameters and an inner 10-fold cross 
validation loop to fit the model to training data, which determines the model’s coefficients. 
 
In the case of DNA methylation-based epigenetic clocks, our goal is to model the relationship 
between methylation at CpG sites or windows (independent variables) and chronological age 
(dependent variable). 
 
We first fit a model to our training dataset. During the training stage, the algorithm is given both 
the methylation ratios and the chronological age of each sample. The algorithm then uses N-1 
samples to train “proto-models” by dividing the data into 10 folds and running an internal cross-
validation loop to train and validate on the inner folds. It determines which combination of 
features predict calendar age while minimizing the mean squared error. Hyperparameters are 
meta-parameters that are not learnable from the training data; examples are regularization 
parameters like lambda or the value of K in K-fold cross validation. We initially use previous 
knowledge or default settings for the hyperparameters and can subsequently optimize them by 
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using caret’s train() function and setting different hyperparameter combinations using 
preProcOptions(). Tuning alpha may only result in modest boosts in performance, but it is still 
recommended to examine results from setting different alpha values during the model 
optimization process. 
 
Enrichment Analysis for Evolutionarily Conserved Sequences 
 
To assign conservation scores to windows in rhesus macaque coordinates, we calculated 
phastCons scores directly using the “57 mammals EPO” multiple species alignment obtained 
from Ensembl (release 101). Multiple alignment format (MAF) files were processed in the 
following manner: First, ancestral species were removed, along with blocks not containing rhesus 
macaque sequences using maffilter v1.3.1 (Dutheil et al., 2014). We then removed species 
duplicates from each alignment and indexed each block to the rhesus macaque reference genome 
using mafTools (Mayakonda et al., 2018). Next, we used maf_parse from the PHAST utilities 
(Hubisz et al., 2011)  to extract blocks corresponding to the 155,347 windows in this analysis. 
After extracting each window, we performed a local realignment of each block using MAFFT 
(v7.402) (Katoh & Standley, 2013) and maffilter. Some rhesus sequences that were originally 
from the same window were split across multiple blocks or MAF files. We thus rearranged 
alignment blocks such that each MAF file contained only blocks from the same rhesus macaque 
window using a custom shell script. We then combined blocks using the Merge() function in 
maffilter with rhesus macaque set as the reference species. We calculated conservation scores 
using the phastCons program (v1.5). First, we fit a phylogenetic model using phyloFit, the REV 
nucleotide substitution model, and the phylogenetic tree provided with the dataset in the Ensembl 
release. A minority of windows were excluded (7,008, or 4.5%) from this analysis because they 
were not represented in the multiple species alignment. We ran phastCons using the arguments “-
-expected-length 45 --target-coverage 0.3 --rho 0.3", which are identical to arguments used in the 
UCSC Genome Browser pipeline for generating conservation tracks 
(e.g., http://genome.ucsc.edu/cgi-bin/hgTrackUi?g=cons100way). The resulting phastCons scores 
represent probabilities of negative selection at the per-site level. We summarized each window by 
calculating the mean phastCons score across all windows. 
 
Sample Removal in the Test Datasets 
 
For the Yerkes macaques, we removed two samples due to insufficient library size (remaining n = 
43). For the Amboseli baboons, we removed nine samples that failed three attempts at alignment 
to the bisulfite-converted rhesus genome (Mmul10), and six with low library sizes (remaining n = 
271). 
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