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Materials and methods

Data

To test how accounting for the presence of both hierarchical and correlative

non-independence (Figure S1) impacts inference, we compiled 10 datasets that describe

population abundances through time. These datasets represent some of the most influential

within ecology and conservation biology, forming a basis for policy-shaping reports like the

Living Planet (1) and IPBES (2), as well as a series of high-profile and highly-cited

publications - see Table S1 for a full list. For each dataset, we extracted the population

abundance estimates, the accompanying time-stamps, the species scientific names, the

name of the site (location) where the population was sampled, and any site coordinates

(where possible). Whilst these datasets are vital within biodiversity science, many of the

dataset are prone to biases e.g. lacking tropical representation, and contain few plant and

invertebrate species.

https://www.zotero.org/google-docs/?NAF0ma
https://www.zotero.org/google-docs/?WOroCr


Figure S1. Conceptual infographic depicting how both hierarchical and correlative non-independence could occur

and be accounted for in large abundance datasets.

Table S1. Dataset name and description for each of our 10 datasets. Descriptions include temporal, taxonomic

and spatial summaries.

Dataset Description

A: European

insects (3)

Population abundance time series for European insects. Covering 79 abundance time series,

derived from 2,819 abundance observations. These time series represent 7 unique sites and

61 species.

Temporal extent: 1974 - 2018

Latitude extent: 48.7 – 65.0

Longitude extent: -0.9 - 24.6

Notes: We extracted relative abundance/density estimates from across 51 datasets used by

Pilotto et al (2020). We excluded a further 31 datasets utilised by Pilotto et al (2020) as the

data lacked clear metadata, or data were not resolved to the species level, or data represented

species presence/absences instead of abundances.

B: Riverine

fishes(4)

Population abundance time series for riverine fishes. Covering 679 abundance time series,

derived from 17,435 abundance observations. These time series represent 120 unique sites

and 83 species.

Temporal extent: 1975 - 2018

Latitude extent: 48.7 – 65.0

Longitude extent: -0.9 - 24.6

C: Living Planet

(5)

Global population abundance time series for vertebrates. Covering 709 abundance time series,

derived from 27,689 abundance observations. These time series represent 348 unique sites

and 487 species.

Temporal extent: 1950 - 2014

Latitude extent: -77.8 - 74.8

Longitude extent: -176.0 - 173.5

Notes: Used a 2016 batch release so abundance data from recent years are excluded

D: UK insects

(6)

Population abundance time series for UK insects. Covering 146 abundance time series,

derived from 2,710 abundance observations. These time series represent 1 unique site and

146 species.

Temporal extent: 1992-2009

Notes: Available data lack spatial information

https://www.zotero.org/google-docs/?FTHYYK
https://www.zotero.org/google-docs/?PWLUx9
https://www.zotero.org/google-docs/?kWnmSv
https://www.zotero.org/google-docs/?D5Kje9


E: UK

freshwater

fishes (7)

Population abundance time series for UK freshwater fishes. Covering 491 abundance time

series, derived from 4,036 abundance observations. These time series represent 208 unique

sites and 21 species.

Temporal extent: 1981-2020

Latitude extent: 50.9 - 55.1

Longitude extent: -3.6 - 1.6

F: North

American

Breeding Birds

(8)

Population abundance time series from the North American breeding bird survey. Covering

4,059 abundance time series, derived from 211,116 abundance observations. These time

series represent 29 unique sites and 260 species.

Temporal extent: 1966-2017

Latitude extent: 28.6 - 46.8

Longitude extent: -90.0 - -63.4

Notes: Available data are summarised at the state/province level for the US and Canada

G: German

insects (9)

Population abundance time series for German insects. Covering 160 abundance time series,

derived from 1,531 abundance observations. These time series represent 1 unique site and 43

species.

Temporal extent: 2008-2016

Notes: Available data lack spatial information. Data that were not resolved to the species level

were excluded.

H: BioTIME (10) Population abundance time series from the BioTIME dataset - representing all core taxa and

realms. Covering 6,511 abundance time series, derived from 194,451 abundance observations.

These time series represent 291 unique sites and 316 species.

Temporal extent: 1953-2015

Latitude extent: 26.3 - 66.0

Longitude extent: -123.6 - 16.3

I: Marine fishes

(11)

Population abundance time series for marine fishes in the North Sea. Covering 620 abundance

time series, derived from 21,765 abundance observations. These time series represent 123

unique sites and 25 species.

Temporal extent: 1983-2017

Latitude extent: 51.1 - 61.2

Longitude extent: 0.4 - 12.3

J: Large

carnivores (12)

Population abundance time series for large carnivores. Covering 76 abundance time series,

derived from 1,427 abundance observations. These time series represent 76 unique sites and

https://www.zotero.org/google-docs/?SiX952
https://www.zotero.org/google-docs/?v03Enj
https://www.zotero.org/google-docs/?EqAjC2
https://www.zotero.org/google-docs/?2Revok
https://www.zotero.org/google-docs/?EBO07K
https://www.zotero.org/google-docs/?w7bInK


17 species.

Temporal extent: 1953 - 2019

Latitude extent: -28 - 67

Longitude extent: -143 - 39

Using the species scientific names, we searched and extracted a synthetic tree from the

open tree of life (13, 14). The open tree of life is a database resulting from the collective

effort of pooling existing phylogenetic trees and taxonomies into a shared topology. In recent

years, it has been used to explore host-symbiont interactions (15), drivers behind fish growth

(16), and the impacts of climate change on plants and herbivores (17). This topology lacks

branch lengths (the evolutionary distance between nodes), which we estimated using

Grafen’s approach (18) from the compute.brlen function in the R package ape (19). The lack

of branch lengths and the unknown accuracy of the open tree of life presents a risk of

introducing error into phylogenetic models, as our ability to observe phylogenetic signal is

partially dependent on the quality of a phylogeny. For studies aiming to use open tree of life

topologies to account for correlative non-independence in the development of new finalised

estimates of abundance change, this may be problematic and careful sensitivity analyses

should be undertaken considering the open tree of life data as well as already established

high quality phylogenies. However, our work is not focussed on deriving policy-shaping

estimates of abundance change. Instead, we are solely focussed on showcasing the

potential risk of ignoring correlative non-independence, in which case the greatest potential

issue with using the lower quality open tree of life topologies is that our estimates of the

phylogenetic signal, and in turn the variability around the average abundance trend, may be

underestimated. Future work should explore the impact of phylogeny quality on inference in

the abundance datasets, as a phylogeny is not available for most species, and so using

topologies or taxonomies may be the only alternative.

We were only able to source a topology for 80% (N = 35,000) of species from the open tree

of life; all other species were removed from the analysis. For studies with the overall aim of

assessing biodiversity change, removing species could be problematic, as the overall trend

would not be representative of all species. However, in our case, where the aim is to assess

estimates gained from using different modelling approaches, trimming the data to species

with an accompanying phylogeny has no impact on our conclusions. We then further

trimmed the data to only include higher-quality time series, removing the following: time

series that contained zeros (which we considered extreme cases of extinctions or

recolonisations) and time series with missing abundance values for a given year throughout

https://www.zotero.org/google-docs/?F7lxcr
https://www.zotero.org/google-docs/?XAux0D
https://www.zotero.org/google-docs/?TmaqMy
https://www.zotero.org/google-docs/?DjqQqN
https://www.zotero.org/google-docs/?1uUxRX
https://www.zotero.org/google-docs/?g2MteW


the sampling duration (i.e., we required consecutive abundance estimates.) We then further

trimmed each dataset to only include time series which had greater than or equal to the

median number of abundance observations i.e., including the longest 50% of time series in

each dataset. These time series are characterised in Table S1. With our trimmed dataset, we

derived a mean abundance in each year (in cases where there were more than one

observation per year) for each time series, and then normalised each time series by dividing

the maximum abundance in each time series by all other abundance values, thus

constraining populations to a maximum of 1. After all of the above steps, we were left with 10

datasets, covering over 1,000 species (multiple time series per species) and 2,000 unique

sites (multiple time series per unique coordinates), describing the trend in 26,000

populations (specific abundance time series) derived from more than 725,000 abundance

estimates.

Modelling

Prior to designing our models, we first explored what models have been used in the literature

to explore abundance change patterns. In this work, we focussed on studies trying to

characterise the average change in abundances over time, rather than studies attempting to

assess how many species are declining or increasing, as this avoids discretizing a numeric

value i.e. by assessing the average change, we avoid having to define what change is

necessary to be classified as a ‘decline’. Using a non-systematic and non-random search of

the literature, we identified 18 studies/reports looking at abundance change, and we

characterised each studies modelling approach (Table S2). Across the 18 approaches, there

was no clear ‘standard’ approach utilised by all studies, and instead, there was a general

pattern of each study adapting and utilising one of two broad methods:

1) Log-linear modelling - where the natural log of abundance is modelled against time, whilst

controlling for some site/location level variance through either fixed or random effects. In this

approach, an important decision appears to be whether the study allows abundance trends

to vary across sites and species (e.g., random slopes) or holds them static so all species

and sites have the same abundance trend but with differing mean abundances (e.g., random

intercepts). This log-linear modelling approach, sometimes utilising poisson generalised

linear models with count data, was present in 16 of the 18 studies.

2) Decomposition - where abundance time series were broken down into time series of rate

changes (e.g., time series of lambdas), which are then aggregated at different spatial and

taxonomic scales. This approach was less common, occurring in 2 of the 18 approaches.



Table S2. Description of different abundance change models used in the literature, and how this model matches

to the models we test. Our descriptions purely represent an approximate summary of each model’s core

structure, and so some of our model descriptions may be incomplete. As such, we do draw any direct comparison

between any model in this table and our newly developed correlated effect model.

Approach Model Model match

1 For each species, a poisson generalised linear model is run where

abundance is predicted by two categorical fixed effects of site and

year. This assumes all sites have the same linear trend but varying

intercept, and that abundance observations at neighbouring points

in time are independent.

To produce national averages, the mean predicted abundance

estimates (average across all sites) for each species are derived,

and then abundance estimates across species are smoothed i.e.,

not acknowledging the variable trends in species, and simply

following the general pattern in abundances

Reference: (20)

Notes: Used on the UK Breeding Bird Survey and Common Bird

Survey

Random intercept/ Random
slope: Model assumes all

sites for any given species

have the same trend (like

model 1),), or that species

have different trends (model

2). The trend-aggregation is

unlike any of the models we

use, as it ignores variable

rates of change in species,

and instead focuses on the

average abundance across

species in each year.

2 For each species, a poisson generalised additive model is run

where abundance is predicted by a categorical fixed effects of site

and a smoothing effect of year. This assumes all sites have the

same smoothed (likely non-linear) trend.

To produce national averages, the mean predicted abundance

estimates (average across all sites) for each species are derived,

and then abundance estimates across species are smoothed i.e.,

not acknowledging the variable trends in species, and simply

following the general pattern in abundances

Reference: (21)

Notes: Used on the UK Breeding Bird Survey and Common Bird

Survey

Random intercept/ Random
slope: As above

3 For each species, a poisson generalised additive model is run

where abundance is predicted by a random slope of site interacting

with a smoothing effect of year. This allows sites to have varying

smoothed (likely non-linear) trends.

Random slope but with
temporal non-linearity of
Correlated effect model:
Species and sites are allowed

to have varying trends. Site

https://www.zotero.org/google-docs/?801iPI
https://www.zotero.org/google-docs/?a1XY9v


Focus is on the species level trends. Approach to aggregate trends

is not described

Reference: (22)

Notes: Used on the North American Breeding Bird Survey

level trends are smooth, not

linear. No trend aggregation

described

4 For each species, a poisson generalised additive model is run

where abundance is predicted by a random slope of site interacting

with a smoothing effect of year. Unlike the above model, this also

includes an additional random term to account for site-level

random deviations from the smooth. This allows sites to have

varying smoothed (likely non-linear) trends.

Focus is on the species level trends. Approach to aggregate trends

is not described

Reference: (22)

Notes: Used on the North American Breeding Bird Survey

Random slope but with
temporal non-linearity of
Correlated effect model:
As above

5 For each species, a poisson generalised linear model is run where

abundance is predicted by a random slope of site interacting with a

linear effect of year. This model also includes an additional random

term c to account for site-level random intercepts. This allows sites

to have varying log-linear trends.

Focus is on the species level trends. Approach to aggregate trends

is not described

Reference: (8)

Notes: Used on the North American Breeding Bird Survey

Random slope:

Species and sites are allowed

to have varying trends. Site

level trends are linear. No

trend aggregation described.

6 Study calculates yearly lambdas (Nt/Nt+1) for each pair of

abundance observations in every population time series, and then

averages lambdas across all populations in each year to report the

estimated mean lambda/year.

Study also uses a second method, calculating the proportion of

populations increasing vs decreasing with kendall tau correlation

between abundance and time

No explicit accounting for autocorrelation

Random slope: Only a

tentative match - this

approach completely ignores

hierarchical structure in the

data.

https://www.zotero.org/google-docs/?uZ4s33
https://www.zotero.org/google-docs/?fIRnCZ
https://www.zotero.org/google-docs/?gEPFEM


Reference: (23)

7 Study derives mean rate of change (lambda) per population time

series by regressing the natural logarithm of abundance against

the continuous variable year.

Trends (rates of change) are then averaged to aggregate

species/site level estimates

Reference: (24)

Random slope: Similar to the

random slope approach, but

derives population level

slopes in a pre-modelling

step, instead of within the

model

8 The natural log of abundance (biomass) is regressed against year,

with a random intercept term for each population. Model also

captures temporal autocorrelation with an auto-regressive 1

process to indicate correlation between abundance neighbouring

observations

References: (25)

Random intercept but with
the temporal term from the
Correlated effect model: Is
similar in structure to the

random intercept model, but

without the taxonomic and

site-level random effects.

9 For each species, a poisson generalised linear model is run, with

abundance as the response, regressed against year (treated

continuously) and site (as a factor). This assumes abundance-time

trends are the same across all sites, but acknowledges that

species will have varying trends.

There is no information on how trends are aggregated at the

national/global-level

Reference: (26)

Random intercept/Random
slope: The assumption of all

a species sites having the

same trend matches the

random intercept model. But

varying species trends

matches the random slope

10 A poisson generalised linear model is run, with abundance as the

response, regressed against year (treated continuously), with site

and region as nested random intercepts. This assumes

abundance-time trends are the same across all sites, but further,

as all species are included in the one model, each site-level

intercept represents multiple species. Species trends are ignored

Reference: (9)

Notes: Used on the German insects data set (9)

Random intercept:
All sites are assumed to have

the same trend. Not an exact

match to the random intercept

model as species are not

treated as a distinct unit

(random intercept)

11 A poisson generalised linear model is run, with abundance as the

response, regressed against year (treated continuously), with site

and region as nested random intercepts. There is also an

Random intercept: As above

https://www.zotero.org/google-docs/?Ma4eol
https://www.zotero.org/google-docs/?jfwV19
https://www.zotero.org/google-docs/?2Qy6uI
https://www.zotero.org/google-docs/?RX8W6F
https://www.zotero.org/google-docs/?pLDvL4
https://www.zotero.org/google-docs/?HIMRCr


additional random intercept of year, so year as treated as both a

fixed and random effect. This model assumes abundance-time

trends are the same across all sites, but further, as all species are

included in the one model, each site-level intercept represents

multiple species. Species trends are ignored

Reference: (27)

Notes: Used on the German insects data set (27)

12 A poisson generalised linear model is run, with abundance as the

response, regressed against year (treated continuously). The

model includes correlated random slopes of abundance varying by

year differently in sites and regions. This model assumes

abundance-time trends differ across sites. Further, as all species

are included in the one model, each site-level intercept and slope

represents multiple species. Species trends are ignored

Reference: (27)

Notes: Used on the German insects data set (9)

Random slope:

Sites are assumed to have

varying trends. Not an exact

match to the random slope

model as species are not

treated as a distinct units

(random slopes)

13 Study derives mean rate of change (lambda) per population time

series by regressing the natural logarithm of abundance against

the continuous variable year.

Trends (rates of change) are then aggregatesaggregated to

species/site level estimates in a further mixed model

Reference: (28)

Notes: Used on the BioTIME dataset (10)

Random slope: Most closely

resembles the random slope

model, but instead of

calculating rates of change

within the model (as in our

random slope model), rates of

change are estimated in a

preliminary step.

14 Each abundance time series is smoothed with a generalised

additive model, to produce predicted values of abundance. Yearly

pairwise-lambdas are then derived from these predicted values of

abundance, essentially decomposing abundance time series into

rate change (lambda) time series.

Lambdas are averaged each year at the species-level. Species

level lambdas are then averaged to produce a global level

estimate.

Reference: (29)

Decomposition model

https://www.zotero.org/google-docs/?vXIKFH
https://www.zotero.org/google-docs/?62vCVO
https://www.zotero.org/google-docs/?XYMpmM
https://www.zotero.org/google-docs/?LQYue7
https://www.zotero.org/google-docs/?A5suB4
https://www.zotero.org/google-docs/?36sXBp
https://www.zotero.org/google-docs/?Utn1b3


Notes: Used on a sample of the Living Planet Data (5)

15 The natural log of abundance is regressed against an

autoregressive-1 temporal term, grouped at the population level,

which allows non-linear abundance change to occur over time.

Random intercepts and slopes and used to handle the hierarchical

structure in the data, and notably allows different sites and

datasets to have different abundance trends. However, species

level information is not used in the model, and so even at the finest

resolution, each intercept/slope represents multiple species.

Reference: (30)

Random slope with a
temporal autocorrelation
term: Most closely resembles

the random slope model, but

handles and accounts for

temporal autocorrelation

between neighbouring

abundance observations.

16 Study derives estimated rate of change per population time series

from a mann-kendall correlation between abundance and time

Trends (rates of change) are then aggregates to species/site level

estimates in a further meta regression

Reference: (3)

Notes: Used on the European insects dataset (3)

Random slope: Most closely

resembles the random slope

model, but instead of

calculating rates of change

within the model (as in our

random slope model), rates of

change are estimated in a

preliminary step.

17 For each species, a poisson generalised linear model is run where

abundance is predicted by two categorical fixed effects of site and

year. This assumes all sites have the same linear trend but varying

intercept, and that abundance observations at neighbouring points

in time are independent.

Site-level estimates of abundance are combined to produce total

counts for each species in each year. Approach for aggregating to

national-level and global-level is unclear.

Reference: (31)

Notes: Used on the PECBMS dataset (32)

Random intercept/ Random
slope whilst handling
temporal autocorrelation:

Model assumes all sites for

any given species have the

same trend (like model 1), but

allows species to have

different trends (model 2). The

trend-aggregation is unlike

any of the models we use, as

it ignores variable rates of

change in species, and

instead focuses on the

average abundance across

species in each year.

18 Each abundance time series is smoothed with a generalised

additive model, to produce predicted values of abundance. Yearly

pairwise-lambdas are then derived from these predicted values of

Decomposition model

https://www.zotero.org/google-docs/?xmM5x7
https://www.zotero.org/google-docs/?k9r8lc
https://www.zotero.org/google-docs/?z59bU3
https://www.zotero.org/google-docs/?VYIsNo
https://www.zotero.org/google-docs/?8cQJfC
https://www.zotero.org/google-docs/?VTFm8h


abundance, essentially decomposing abundance time series into

rate change (lambda) time series.

Lambdas are averaged each year at the species-level. Species

level lambdas are then averaged to produce a global level

estimate.

Reference: (33)

Notes: Used on a sample of the Living Planet Data (5)

Given the decomposition modelling approach was comparably rare, we instead focus solely

on the log-linear mixed modelling approaches, and develop the three models:

Model 1. Random intercept

In model 1, we fit a linear mixed effect model between the natural logarithm of

normalised-abundance and year, with five random intercepts: population (the unique time

series), site (unique locations), region (broader spatial category to nest sites; measured as

the continent or ocean the site occurs in), species (unique species), and genus (broader

taxonomic category to nest species; measured as the parent node to the species tip). Within

the model, we do not specify any nesting between the site and species random intercepts as

the hierarchical structure of the data is poorly defined e.g., whilst populations always occur

within a species and site, some species are nested in sites, and some sites are nested in

species, creating a crossed random effect design. Model 1 assumes all populations, sites,

regions, species, and genera have the same trend in abundance.

uijklm = + + + +𝑢
𝑖
𝑆 𝑢

𝑗
𝐿 𝑢

𝑘
𝑃 𝑢

𝑙
𝐺 𝑢

𝑚
𝑅

uS ~ N(0, SI)σ²

uL ~ N(0, LI)σ²

uP ~ N(0, PI)σ²

uG ~ N(0, GI)σ²

uR ~ N(0, RI)σ²

ȳijklmt = ɑ + [ ]xijklmt   + + uijklmβ

yijklm N(ȳijklmt, EI)σ²

https://www.zotero.org/google-docs/?i0f7w7
https://www.zotero.org/google-docs/?Gzr8jx


Where u represents the independent random intercept terms for species (S, index i),

locations (L, index j), populations (P, index k), genera (G, index l) and regions (R, index m),

all following a gaussian normal-distribution, with each varying according to their respective

sigma hyperprior. These random intercepts vary around the overall model intercept (ɑ), with

a slope coefficient of describing abundance change over years (x). This formula describesβ

expected abundances (ȳ) for each intercept grouping, at time point t (indexing of each

abundance observation). y represents a vector of normalised abundances for each

population (index k), drawn from a gaussian normal-distribution with a mean ȳ and a residual

error of E. I describes the identity matrix of the error terms.σ²

Model 2. Random slope

In model 2, we develop a linear mixed effect model, where we regress the natural logarithm

of normalised-abundance against year, including population, site, region, species, and genus

all as random slopes. This allows abundance-year slope coefficients to vary for each

category in each random slope term (e.g., each species can have a different slope) - not

simply differing intercepts as in model 1. To reduce model parameters, we centre the year

and normalised abundances of each population time series at zero e.g. subtracting each

year by the mean year in each population, and subtracting the log of each abundance value

by the mean log abundance value in each population. This centering fixes the y and x

intercepts at zero for each slope.

uijklm = + + + +𝑢
𝑖
𝑆 𝑢

𝑗
𝐿 𝑢

𝑘
𝑃 𝑢

𝑙
𝐺 𝑢

𝑚
𝑅

uS ~ N(0, SI)σ²

uL ~ N(0, LI)σ²

uP ~ N(0, PI)σ²

uG ~ N(0, GI)σ²

uR ~ N(0, RI)σ²

ȳijklmt = ɑ + [ + uijklm]xijklmtβ

yijklm N(ȳijklmt, EI)σ²

Where u represents the independent random slope terms for species (S, index i), locations

(L, index j), populations (P, index k), genera (G, index l) and regions (R, index m), all



following a gaussian normal-distribution, with each varying according to their respective

sigma hyperprior. These independent random slopes vary around the overall slope

coefficient of describing abundance change over years (x) - meaning the abundance-timeβ

slope coefficient is allowed to vary in each species, location, population, genera, and region.

ɑ describes the overall model intercept, which is included to support model convergence, but

has a value of c.0 given the centering of the abundance and year values described above.

This formula describes expected abundances (ȳ) for each slope grouping term, at time point t

(indexing of each abundance observation). y represents a vector of normalised abundances

for each population (index k), drawn from a gaussian normal-distribution with a mean ȳ and a

residual error of E. I describes the identity matrix of the error terms.σ²

Model 3. Correlated effect

Model 3 is structurally similar to model 2, but accounts for correlative non-independence

structures. For temporal non-independence, we model the population level time series with a

discrete autoregressive-1 temporal process, which assumes neighbouring abundance

observations within a time series will be more similar. To capture the spatial and

phylogenetic correlative non-independence, we focus on non-independence across time

series trends (instead of abundance observations), assuming trends in population

abundances through time will be more similar in neighbouring sites and more closely related

species. In model 1 and 2, we try to capture this non-independence with grouping categories

(genus and region). However, in the correlated effect model, we more explicitly describe

shared correlations between every species and site by specifying the covariance structure of

our site and species random slopes. The site covariance matrix was derived by developing a

matrix that describes the Euclidean distance between each site. We normalised this matrix

between 0 and 1, with values close to 1 indicating neighbouring sites, whilst values

approaching 0 indicate distant sites. We then converted this correlation matrix into a

variance-covariance matrix. The species covariance matrix was derived by extracting the

variance-covariance matrix directly from the species’ phylogeny.

uijklm = + + + +𝑢
𝑖
𝑆 𝑢

𝑗
𝐿 𝑢

𝑘
𝑃 𝑢

𝑙
𝐺 𝑢

𝑚
𝑅

uS ~ N(0, SI)σ²

uL ~ N(0, LI)σ²

uP ~ N(0, PI)σ²

uG ~ N(0, GI)σ²

uR ~ N(0, RI)σ²



vij = +𝑣
𝑖
𝑆 𝑣

𝑗
𝐿

vS ~ N(0, SΩ)σ²

vL ~ N(0, LΔ)σ²

ȳijkt = ɑ + [ + uijklm +  vij]xijktβ

yijk N(ȳijkt, EI + A𝛳)σ² σ²

Where u represents the independent random slope terms for species (S, index i), locations

(L, index j), populations (P, index k), genera (G, index l) and regions (R, index m), whilst v

represents the correlated random slope terms for species (S, index i) and locations (L, index

j). All random slopes, independent and correlated, follow a gaussian normal-distribution, with

each varying according to their respective sigma hyperprior. However, the independent and

correlated slopes differ, as u varies according to the identity matrix I, whilst v varies

according to variance-covariances Ω and Δ which specify that covariance is present in

neighbouring sites and more closely related species. These independent and correlated

random slopes vary around the overall slope coefficient of describing abundance changeβ

over years (x) - meaning the abundance-time slope coefficient is allowed to vary in each

species, location, and population. ɑ describes the overall model intercept. This formula

describes expected abundances (ȳ) for each slope grouping term, at time point t (indexing of

each abundance observation). y represents a vector of normalised abundances for each

population (index k), drawn from a gaussian normal-distribution with a mean of ȳ. However,

unlike model 2, the error term of this distribution has two components, the residual error of σ²

E as in model 2, and a new error term A𝛳 which captures temporal non-independence byσ²

parameterising the correlation between neighbouring abundance values (𝛳, often called rho)

and the left-over error from this process ( A).σ²

Priors

Across all three models, we set vague normal priors on the fixed effects ( 0 - 1), centered atβ β

zero, with a high standard deviation of 100. All random intercepts and slopes were assigned

a normal prior, centered at zero, with an improper uniform hyperprior determining the

standard deviation of normal priors. We used a uniform hyperprior following established

recommendations (34). All models were run in INLA (35)

https://www.zotero.org/google-docs/?mFjx8L
https://www.zotero.org/google-docs/?YHgjaI


Outputs

We compare our three models across 3 key outputs:

Measuring non-independence

In our Correlated effect model we measure the presence of total non-independence as the

proportion of variance captured by the combination of independent and correlative terms (i.e.

random effects) for each component (e.g., temporal components), divided by the sum of the

variance for all terms. Next, we assess if correlative terms are the larger contributor to this

total non-independence, by dividing the proportion of variance captured by the correlated

slopes, by the combination of the variance captured by the correlated and independent

slopes (h). This was done separately for the spatial and phylogenetic terms. As the spatial

and phylogenetic components each contains three terms (an independence species/location

slope, an independent genera/region slope, and a correlated species slope), a h-value of

0.33 would indicate that the correlative slope captures an equal proportion of variance

compared to the two independent slopes. A h greater than 0.33 indicates that correlative

slopes account for more variation than independent random slopes. We measure temporal

non-independence as the degree of correlation between neighbouring abundances (rho).

Differing inference between the models

Using the mean and 50% credible intervals of the global trend (overall abundance-time

coefficients), we display abundance projections for each model in each dataset. These

projections are based on an arbitrary baseline abundance of 100, set at the first year of

available data in each dataset, and this abundance would change according to the overall

coefficients and credible intervals. For instance, with a 1% annual rate of change, an

abundance in year zero of 100, would become 101 in year 1, and 164 in year 50. The

purpose of these projections is to showcase varying abundance trajectories under different

model complexities.

Next, we note the number of the datasets where inference reverses (e.g., the global trend

reverses direction from positive to negative, or remains consistent), and where uncertainty

increases (the variance around the global trend is greater or smaller), comparing the random

intercept and random slope models to the correlated effect model. To support these

comparisons, we also report the absolute difference between the global trend of the

correlated effect model, relative to the random intercept and random slope models. We

modelled these differences in a linear model, with absolute difference as the response on the



natural log scale, and model comparison as a factor (correlated effect versus random

intercept, and correlated effect versus random slope). Further, we modelled the fold change

in the standard deviation of the correlated effect model, relative to the other models, with fold

change as the response on the natural log scale, and model comparison as a factor - see

Figure S2 for marginal effects.

Predictive performance

We assess the predictive performance of the different models by determining their ability to

predict final observations in time series’, and their ability to predict population trends of a

given species in a given location, both using the BioTIME dataset (10) as a case study. To

test the predictive accuracy for the final observation in the time series, we removed the final

observation half of the time-series (N = 3520) and predicted the missing values using each

of the three models. We then compared the predicted value with the observed abundance

value, recording the absolute error (the absolute difference between the predicted and

observed value), and relationship (β) between the true (response) and predicted values from

a linear model. To test the accuracy of the population prediction, we removed 10% (N = 704)

of the populations from the dataset, and used the random slope and correlated effect model

to estimate these missing population’s trend coefficients, relative to population trend

coefficients from the correlated effect model with no missing data (observed values). We

measured performance using the same approaches as above, recording the absolute error

and relationship (β) between the predicted and observed values. In the random slope model,

the population trend coefficients were derived by adding the species, location, genus and

region coefficients together, meaning missing population values can still be informed by

other hierarchical information. For the correlated effect model, the species coefficient is

informed by the phylogenetic variance-covariance matrix, as well as all hierarchical

information in the random slope model.

Phylogenetic and spatial distribution of abundance change

To plot abundance change across a phylogeny, we extracted and plotted species rate of

change coefficients from the correlated effect model and plotted these on the phylogeny

associated with the BioTIME dataset. These species rate of change coefficients solely

describe the genetic species terms (correlated slopes for species from the

variance-covariance matrix) and not the phenotypic terms (independent slopes as in the

random slope model). We solely show the genetic term as there was a high phylogenetic

signal in BioTIME (h = 0.88).

https://www.zotero.org/google-docs/?MS1shV


To plot abundance change over space, we expanded the BioTIME spatial Euclidean distance

matrix (describing distances between each time series) by supplementing it with a regularly

gridded extent covering North America. This new grid had a latitudinal range of 15 to 70 and

1 degree spacing (e.g. 15, 16, etc.), and longitudinal range of -140 to -50 with 1 degree

spacing. This new matrix allows us to estimate expected covariance (similarity) in

abundance trends for any pair of 1 degree cells across North America. We then re-ran the

BioTIME model with the new distance matrix and extracted the annual rate of change (%) in

abundance from every cell across the extent. We only showcase the abundance trends

across North America where abundance patterns were particularly stark. WithinWithin this

North America region, we down-scaled the resolution from 1 degree to 0.1 degree using

exponential interpolation.



Supplementary results

Figure S2. Absolute difference in the mean abundance-time coefficient (left) and fold-change in the standard

deviation around said coefficient (right), comparing the correlated effect model to the random intercepts (dark

green) and random slopes (light green) model. The x-axis on the fold-change figure is log-10 scaled, where a

value of 1 would indicate the compared models have similar standard deviations. Values to the right of the line

would indicate the standard deviation is X times greater in the correlated effect model.

Figure S3. Impact of phylogenetic and spatial signal on inference. Left) Absolute difference in the

abundance-time coefficient between the correlated effect and random slopes model, plotted against the mean

signal (the mean of the phylogenetic and spatial signal). Right) Fold change in the standard deviation of the

abundance-time coefficient between the correlated effect and random slopes model, plotted against the mean

signal. Mean signal is calculated by finding the mean of the phylogenetic signal (variance captured by the



phylogeny divided by the sum of the phylogenetic and non-phylogenetic variance) and spatial signal (as in the

phylogeny). Each data point represents a dataset. Shading represents 95% confidence intervals from a linear

model.

Figure S4. Ability of the three models to predict the missing-final abundance observation from half of the

BioTIME time series, with the observed (the value we have removed) and predicted abundance value on the y

and x axes, respectively. Points more closely following the diagonal dashed line exhibit a better fit. For each

model we describe the R2 of the observed regressed against the predicted values, the beta slope coefficient from

this model, and the median absolute error between the observed and predicted values (MAE).



Figure S5. Ability of the random slope and correlated effect models to predict the 10% subset of population

trends we removed from the BioTIME dataset, with the observed (the value we have removed) and predicted

trend value on the y and x axes, respectively. Points more closely following the diagonal dashed line exhibit a

better fit. For each model we describe the R2 of the observed regressed against the predicted values, the beta

slope coefficient from this model, and the median absolute error between the observed and predicted values

(MAE). We do not assess the ability of the random intercept model which assumes all populations have the same

trend.
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