
 

1 

Spatial cell type mapping of multiple sclerosis lesions 

Celia Lerma-Martin1#, Pau Badia-i-Mompel2#, Ricardo O. Ramirez Flores2, 

Patricia Sekol1, Annika Hofmann1, Thomas Thäwel1, Christian J. Riedl3, Florian 

Wünnemann2, Miguel A. Ibarra-Arellano2, Tim Trobisch1, Philipp Eisele1,6, Denis 

Schapiro2,4, Maximilian Haeussler5, Simon Hametner3, Julio Saez-Rodriguez2*@, 

Lucas Schirmer1,6,7*@ 

1 Division of Neuroimmunology, Department of Neurology, Medical Faculty 

Mannheim, Heidelberg University, Mannheim, Germany. 

2 Heidelberg University, Faculty of Medicine, and Heidelberg University 

Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg, 

Germany. 

3 Division of Neuropathology and Neurochemistry, Department of Neurology, 

Medical University of Vienna, Vienna, Austria 

4 Institute of Pathology, Faculty of Medicine, Heidelberg University and 

Heidelberg University Hospital, Heidelberg, Germany 

5 Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA 

6 Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, 

Heidelberg University, Mannheim, Germany. 

7 Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, 

Germany. 

# Co-first authors 

* Co-senior authors 

@ Co-corresponding authors: 

lucas.schirmer@medma.uni-heidelberg.de; pub.saez@uni-heidelberg.de  

 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.11.03.514906doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514906
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

Abstract 

Multiple sclerosis (MS) is a prototypic chronic-inflammatory disease of the 

central nervous system. After initial lesion formation during active 

demyelination, inflammation is gradually compartmentalized and restricted to 

specific tissue areas such as the lesion rim in chronic-active lesions. However, the 

cell type-specific and spatially restricted drivers of chronic tissue damage and 

lesion expansion are not well understood. Here, we investigated the properties of 

subcortical white matter lesions by creating a cell type-specific spatial map of 

gene expression across various inflammatory lesion stages in MS. An integrated 

analysis of single-nucleus and spatial transcriptomics data enabled us to uncover 

patterns of glial, immune and stromal cell subtype diversity, as well as to identify 

cell-cell communication and signaling signatures across lesion and non-lesion 

tissue areas in MS. Our results provide insights into the conversion of the tissue 

microenvironment from a ‘homeostatic’ to a pathogenic or ‘dysfunctional’ state 

underlying lesion progression in MS. We expect that this study will help identify 

spatially resolved cell type-specific biomarkers and therapeutic targets for future 

interventional trials in MS. 

Keywords: single-nucleus RNA-sequencing, spatial transcriptomics, subcortical 

lesions, neuroinflammation.  
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Introduction 

Multiple sclerosis (MS) is a prototypic and the most common inflammatory 

disease of the central nervous system, characterized by multifocal 

demyelination, axonal damage and gliosis, ultimately leading to a loss of neurons 

across various gray matter areas1–3. A major problem associated with progressive 

disease in MS is compartmentalized inflammation4. 

An important anatomical niche of compartmentalized inflammation in MS is 

formed by inflammatory aggregates in deep meningeal sulci resembling ectopic 

lymphoid follicle-like structures. It is widely accepted that sustained meningeal 

inflammation is a key factor contributing to cortical pathology and, particularly, 

resulting in neuronal injury of upper cortical layers5–7. Another important niche 

area of chronic tissue damage and sustained inflammation in MS are subcortical 

white matter lesion rims (LRs)8. Several postmortem and in vivo magnetic 

resonance imaging studies have demonstrated that these chronic active lesions 

are regularly accompanied by iron uptake at LRs, centrifugal lesion expansion 

and progressive disease9–12. A comprehensive understanding of the cellular 

composition and molecular dynamics of the lesion tissue microenvironment 

would have a critical impact on future biomarker and interventional studies in 

individuals diagnosed with MS.  

MS lesions follow a well-characterized temporal sequence of the level and spatial 

pattern of inflammation and tissue damage, thus providing information about 

the lesion age13–15. Acute MS lesions (MS-A) commence through active myelin 

breakdown with presence of myelin-phagocytosing cells including macrophages 

as well as activated microglia and astroglial subtypes16–18. After this initial stage, 

lesions may either remyelinate19 or enter a chronic active stage (MS-CA) with a 

distinct inflammatory LR and a well-demarcated completely demyelinated 

lesion core9,10. Eventually, MS-CA lesions convert into an inactive stage (MS-CI) 

without LR inflammation but low-level microglial activation and a dense 

astroglial scar meshwork throughout the lesion20,21. Nevertheless, the precise 

lesion kinetics are not well understood, and it is known that chronically inflamed 

and iron-positive LRs can persist for years in certain individuals with MS8,22. Also, 

chronic MS lesions may convert into remyelinated lesions representing myelin 
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repair in at least a subset of individuals23. Remyelination might also remain 

incomplete and is then often seen adjacent to LR areas24. Over the past decades, 

histopathological and MR imaging studies have collectively provided deep 

insights into inflammatory lesion development and temporal lesion dynamics in 

individuals diagnosed with MS25,26. However, due to a lack of spatially resolved 

molecular tools it has not been possible to discern spatially restricted areas of cell 

type-specific pathology and eventually map back these changes to defined lesion 

and non-lesion tissue niches.  

Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) paired with 

spatial RNA-seq (spatial transcriptomics, ST) to create a large-area map of gene 

expression covering lesion core and LR areas as well as normal-appearing white 

matter. Using a wide range of computational tools, we estimated the distribution 

of cell types across subcortical MS lesion areas, characterized tissue niches and 

identified spatially restricted cell-cell interaction and signaling pathway 

signatures. To facilitate the use of these results by the community, we have built 

an interactive single-cell and ST web browser to visualize MS lesion 

transcriptomics. Our spatially resolved gene expression underlying MS lesion 

development should help facilitate the development of region- and cell type-

specific biomarkers and design targeted treatments to tackle compartmentalized 

inflammation in MS. 

Results 

Transcriptomic profiling of human multiple sclerosis in WM 

To unravel the transcriptomic signatures linked to the spatial environment in MS 

pathology, we characterized 7 control (CTRL) and 21 MS tissue samples. In detail, 

we focused on subcortical white matter tissues and performed ST on 17 tissue 

blocks (4 CTRL vs 13 MS) with paired snRNA-seq on the same blocks (3 CTRL vs 

8 MS) (Methods) (Fig. 1a and Supplementary Tables 1-2). Based on the 

inflammatory lesion activity, we classified MS lesions into acute active-

demyelinating (MS-A), chronic active (MS-CA) and chronic inactive (MS-CI) 

stages (Methods) (Fig. 1b). For the paired snRNA-seq dataset, we obtained a total 

of 69,526 nuclei (n=11, average=6,321) with a mean of 2,042 detected genes per 
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nucleus after filtering out low-quality profiles and potential doublets (Extended 

Data Fig. 1a). After controlling for data quality, the ST dataset contained a total of 

52,945 spots (n=17, average = 3,114) and a mean of 1,224 genes per spot (Extended 

Data Fig. 1b, d). 

Based on snRNA-seq, we established an atlas comprising all major cell types 

present in human subcortical white matter tissues of both control and MS donors 

(Fig. 1c, d). After batch correction (Methods), we could identify five major 

subcortical cell types including astrocytes (AS), endothelial cells (EC), microglia 

(MG), oligodendrocyte progenitor cells (OPC), oligodendrocytes (OL) as well as 

six disease-enriched clusters including a new AS subtype expressing marker 

genes associated with primary cilia formation (CFAP299, CFAP43 and SPAG17) 

that we annotated as ciliated astrocytes (AS-C). Other MS-enriched cell types 

were annotated as differentiating oligodendrocytes (OL-D), B cells (BC), 

macrophages (MΦ-MS), stromal cells (SC) and T cells (TC) (Fig. 1e). To 

corroborate our cell type annotations, we compared their transcriptional profiles 

to the ones from another recent study8 on human subcortical WM MS lesions 

and observed a high overlap between them (Methods) (Extended Data Fig. 1c). 

Since ST captures multiple cells per spot, we increased its resolution by inferring 

cell type composition per spot (Methods). Using the paired snRNA-seq atlas as 

reference, we deconvoluted the ST tissue slides and found that mapped cell types 

matched the expected tissue architecture across controls and MS lesion types (Fig 

1f). 

A high abundance of AS was mapped to chronic active and inactive demyelinated 

white matter (DMWM), representing the astroglial scar tissue27. Likewise, spatial 

distribution of OL cells across different MS lesion types was mainly restricted to 

normal-appearing white matter (NAWM), as expected. Based on transcriptomic 

signatures, we could map MG and MΦ-MS cells to inflamed MS-A lesion core 

and MS-CA LR areas. Also, we could only map a few MG and barely any MΦ-MS 

profiles to control and MS-CI tissues. In MS-CA lesion areas, we additionally 

found a strong compartmentalization of both MG and AS cells restricted to 

DMWM areas. As compared to MG, MΦ-MS cells mapped to the rim of chronic 

active lesion areas with a characteristic high iron uptake28 (Fig. 1b, e). 
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Fig. 1 | Spatial and cell type profiling of subcortical control and MS tissues. a, Study design 

showing different data modalities. CTRL, control tissue. MS-A, acute MS lesion type tissue. MS-

CA, chronic-active MS lesion type tissue. MS-CI, chronic-inactive MS lesion type tissue. b, Control 

and MS tissue assessment by LFB and iron histology as well as immunohistochemistry for MOG 

(myelin), CD68 (activated myeloid cells) and CD163 (iron-metabolizing myeloid cells) marker 

proteins. Red dashed line indicates legion rim (LR) area. DMWM, demyelinated white matter. 

NAWM, normal appearing white matter. Overview images: scale bar 1 cm; zoom-in images: scale 

bar 500 µm. c, UMAP of snRNA-seq data from all samples (n = 69,526), color corresponds to 

annotated cell types. d, UMAP of snRNA-seq data, color corresponds to MS lesion type of samples. 

e, Dotplot of averaged z-transformed gene expression for marker genes. f, Characterization of ST 

data of control and MS lesion types using cell type deconvolution. 

The resulting inferred cell type compositions matched well the cell type 

proportions observed by snRNA-seq, both at the sample and cell type level 

(Extended Data Fig. 1e, f). Collectively, integration of snRNA-seq with ST enables 

us to generate a comprehensive paired dataset of subcortical WM tissues enabling 

us to investigate expression profiles and regional relationships of glial, stromal, 

and immune cell types. To explore both snRNA-seq and ST data sets in an 

interactive and user-friendly environment, we have provided all data in a web 

browser (Data and code availability). 

Spatial organization of subcortical tissue 

Next, we explored the spatial organization of the subcortical tissue 

microenvironment by leveraging the ST data. By unsupervised clustering of 

spots from all tissue sections, we identified seven clusters that could be linked to 

major cell types and specific ST tissue niches (Methods) (Fig. 2a and Extended 

Data Fig. 2a). Of note, the obtained ST niche clustering provides a 

comprehensive look into the structural transcriptomic assembly of the tissue 

blocks across controls and MS samples (Extended Data Fig. 2b). 

To further characterize ST niches, we investigated cell type enrichment within 

each tissue niche when compared to other niches (Methods) (Fig. 2b). Here, we 

found two main groups of cell type niches. The first group (0, 2, 3 and 4) appeared 

to be enriched by OL cells and was restricted to NAWM and MS LR areas 

(Extended Data Fig. 2b). The second group (1, 5 and 6) was enriched by AS and 

associated with DMWM areas. Niche 0 had increased numbers of  OL, MΦ-MS 

and MG cell types and,mapped to inflamed lesion core and LR areas in MS-A and 
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MS-CA typed tissues (see also Fig. 2i). Niche 1 was enriched by AS and cell types 

like OPC and OL-D. Niche 5 was overrepresented by AS subtypes including AS-

C cells. Finally, tissue niche 6 was characterized by cell type enrichment of AS, 

TC, BC, SC and EC subtypes and histologically mapped to areas with increased 

blood vessel density, suggesting a perivascular tissue niche associated with 

immune cell infiltration (Fig. 2b, Fig. 2i and Extended Data Fig. 1d, 2b). These 

results provide a wide description of cell type organization across all tissue slides. 

To complement the identification of specific colocalization events based on 

tissue niche analysis, we next tested correlations between compositions of cell 

types in the same spatial spots across samples and lesion stages (Methods) (Fig. 

2c). We found colocalizations between AS-C, OPC and AS, and between SC, EC, 

TC and AS cells. These colocalization events overlapped with the enrichment of 

these cell types in niches 1 and 6, respectively. A colocalization between OL, MG 

and MΦ-MS in niche 0 was also identified, suggesting potential engagement of 

myeloid cells in myelin breakdown. 

To link these structural building blocks to molecular functions in tissues, we 

further described them by inferring signaling pathway activities at spot level 

across slides and lesions (Methods) (Fig. 2d). Niches enriched by OL (0, 2, 3 and 

4) showed increased activity of androgen-related pathways (one-sided Wilcoxon 

rank-sum test, adjusted P < 0.05), independent of gender (Extended Data Fig. 2c). 

Tissue niches overrepresented by AS (1, 5 and 6) presented higher activity for 

pathways involved in tissue remodeling and maintenance including PI3K and 

TGFβ signaling (one-sided Wilcoxon rank-sum test, adjusted P < 0.05). 

Additionally, niches 5 and 6 showed enrichment for proinflammatory pathways 

such as TNFα and JAK-STAT (one-sided Wilcoxon rank-sum test, adjusted P < 

0.05), suggesting roles in compartmentalized tissue inflammation. 

We found that control samples did not show spatial tissue segregation, indicating 

a homogenous tissue niche composition with different glial cell types 

‘stochastically’ distributed throughout the tissue section (Extended Data Fig. 2a-

b). OL cells were the main cell type in control tissues and showed spatial 

enrichment for genes associated with androgen signaling such as NDRG1 and DBI 

(Fig. 2e). In lesion areas of MS-A samples, we found that MΦ-MS and MG cells 
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were associated with TNFα signaling, a classic proinflammatory pathway in 

chronic inflammation (Fig. 2e). In MS-CA lesion areas, the inflamed LR formed 

a distinct spatial niche that separated NAWM from DMWM lesion core areas (Fig. 

2e). In MS-CA typed tissues we noted that certain tissue niches appeared to be 

enriched for mesenchymal SC and EC cell types linked to WNT and TGFβ 

signaling, as seen in a previous study29. 

Overall, these results suggest that the MS tissue microenvironment is 

characterized by a dynamic cell type and tissue niche patterning driven by glial 

subtype-associated signaling pathways playing critical roles in tissue 

inflammation and remodeling.  

Structural variation of subcortical tissue 

Once we analyzed the tissue architecture across slides and conditions, we 

explored the differences between control and MS lesion type tissues. Principal 

component analysis (PCA) was computed to unbiasedly identify the main sources 

of variability based on pseudo-bulk gene expression profiles of ST tissue sections 

(Methods) (Fig. 2f and Extended Data Fig. 2d). Of note, control samples clustered 

separately from MS ones. While we could not distinguish different MS lesion 

types, we observed a change in cell proportion and their spatial distribution in 

both ST and snRNA-seq datasets (Fig. 2g, h, Extended Data 2d, e and 

Supplementary Table 3). As predicted, numbers of OL cells decreased while AS 

subtypes increased during lesion development (Wilcoxon rank-sum test, 

adjusted P < 0.1). In acute tissue samples, we noted a high density of inflammatory 

cells such as MΦ-MS, TC and BC subtypes; as well as activated MG with LR 

mapping of these cells in MS-CA tissues (Wilcoxon rank-sum test, adjusted P < 

0.1). Further, as predicted from histological assessment we found that AS cells 

localized to MS-CA and MS-CI DMWM areas. AS-C were overrepresented in all 

lesion types compared to control tissues (Wilcoxon rank-sum test, adjusted P < 

0.1), providing additional insight into this ciliated and, potentially, functionally 

distinct scar tissue AS subtype (Fig. 2g and Extended Data 2f). 

To further characterize changes in proportions across different conditions, we 

examined tissue niches as described above (Fig. 2i, Extended Data 2f, g and 

Supplementary Table 4). 
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Fig. 2 | Spatial organization of subcortical control and MS tissues. a, Cell type niches UMAP of ST 

spots based on cell-type composition. Color indicates assigned niches labels by clustering. b, Scaled 

mean cell type composition per tissue niche. Asterisks indicate increased composition of a cell type 

per niche compared with other niches (one-sided Wilcoxon rank-sum test, adjusted P < 0.05). c, 

Mean Pearson correlation between cell type composition across spatial spots including all tissue 

samples. Asterisks indicate significant mean correlations (abs(mean corr) > 0.1 and mean P < 0.1). d, 

Mean scaled pathway activities within each niche. Asterisks indicate increased activity of a pathway 

in a niche compared with other niches (one-sided Wilcoxon rank-sum test, adjusted P < 0.05). e, 

Representative samples of control and MS lesion type tissues (panels left to right): HE histology, 

compositional tissue niches, LFB histology: scale bar 1.25 mm, cell type tissue mapping (two panels), 

pathway activity tissue mapping. Red dashed line indicates LR and black dashed line indicates 

cortical gray matter areas. WM, white matter. GM, gray matter. f, PCA projection of ST profiles. 

Color indicates lesion type and shape indicates gender. g, Boxplots of deconvoluted cell type in ST 

tissue slides. Color indicates lesion type, and asterisks significant differences between groups. h, 

Examples of tissue mapping for major glial cell types in ST tissue slides. Green indicates 

oligodendrocyte lineage cells (OL, OL-D and OPC), yellow indicates myeloid cells (MΦ-MS and 

MG) and pink astrocyte subtypes (AS and AS-C). i, Boxplots of niche compositions across lesion 

types. Color indicates lesion types, and asterisks significant differences between groups. j, Boxplots 

of co-localization correlations between cell types. Color indicates lesion types and asterisks 

significance between groups k, Examples of cell-type colocalization events in ST slides. Color 

indicates cell type abundance. Wilcoxon rank-sum test, adjusted P < 0.1 (g, i, j). 

Indeed, niche 3, resembling a ‘homeostatic’ NAWM signature, was more enriched 

in control than in MS tissues (Wilcoxon rank-sum test, adjusted P < 0.1). Of note, 

niche 0 changed when comparing control to MS tissues and could resemble a 

tissue niche associated with active demyelination in early MS-A tissue due to a 

compositional abundance of MΦ-MS and activated MG (Wilcoxon rank-sum test, 

adjusted P < 0.1) (see also Fig. 2b). Tissue niches 5 and 6 were enriched in MS-CA 

relative to control tissues (Wilcoxon rank-sum test, adjusted P < 0.1), in agreement 

to their proinflammatory tissue profile. Here, we found a colocalization of TC 

and SC cell types, hence likely resembling perivascular immune cell cuffing in 

inflamed MS tissue areas as described above (Fig. 2b, j, k, Extended Data 2h and 

Supplementary Table 5). 

By performing a thorough transcriptomic tissue analysis based on paired snRNA-

seq and ST, we could identify tissue niche clusters that were linked to spatially 

restricted MS lesion tissue areas. 
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Characterization of MG subpopulations 

Next, we focused on the molecular heterogeneity of MG cells, which is central 

for lesion formation and tissue injury in both early MS-A30 and MS-CA lesions8. 

To this end, we subclustered MG nuclei based on their transcriptomic profile and 

found five distinct MG cell states (Methods) (Fig. 3a and Extended Data 3a, b). 

We then tested if the relative abundance of MG cells changed across lesion types 

(Wilcoxon rank-sum test, adjusted P < 0.1) (Methods). We observed that cell state 

0 was overrepresented in control samples, suggesting that this MG subtype would 

be related to a homeostatic subtype strongly associated with NAWM tissue 

niches. Conversely, MG cell states 1, 2 and 3 were relatively more abundant in MS 

than in control samples, suggesting that these MG subtypes were linked to 

activated MG cells localized to inflamed MS lesion areas such as the LR (Fig. 3b, 

Extended Data 3c and Supplementary Table 6). 

To better understand the obtained cell states, we next sought to identify marker 

genes per state (Methods). No specific marker genes could be obtained for MG 

cell state 0 relative to other MG clusters; however, we observed a certain 

enrichment of neuronal marker genes such as RBFOX1 and ROBO2 (Fig. 3c and 

Supplementary Table 7). Classical genes associated with homeostatic MG 

function were identified in cell state 1 (DOCK8, P2RY12 and CX3CR1). MG cell 

state 2 showed enrichment for myeloid cell activation markers such as CD163, a 

scavenger receptor for hemoglobin-haptoglobin and iron uptake, F13A1 

encoding the coagulation factor XIII A subunit, and CD74 encoding the HLA class 

II histocompatibility antigen gamma chain31. Cell state 3 was also enriched for 

genes linked to myeloid cell activation states and neuroinflammation such as 

GPNMB and, specifically, genes associated with lysosomal function and lipid 

metabolism such as CTSD, encoding cathepsin D, and APOE. In addition, MG cell 

states 2 and 3 were also characterized by upregulation of complement factor 

genes like C1QA (cell state 2) and C1QB (cell state 3)8. Further, we found that cell 

state 4 showed enrichment of OL marker genes (ST18, RNF220 and CTNNA3) 

based on our current and previous snRNA-seq data5. Of note, marker genes in 

MG cell states 1 and 4 suggests a potential phagocytic role in clearance of neuronal 

(cell state 1) and OL cell lineage (cell state 4), material in line with our previous 

report on the identification of myelin-phagocytosing cells based on snRNA-seq5.  
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Fig. 3 | Identification and spatial characterization of MG cell states. a, UMAP of MG cell states 

based on snRNA-seq. Color indicates assigned MG subtype state. b, Boxplots of cell state 

compositions based on snRNA-seq. Color indicates MS lesion type and asterisks differences 

between groups (Wilcoxon rank-sum test, adjusted P < 0.15). c,  Dotplot showing scaled mean 

expression of marker genes per MG cell state. d, Mean correlations between MG cell state scores 

and cell type composition across spots from MS-CA tissue slides. e, Mean correlation between MG 

cell state scores and pathway activities across ST spots from MS-CA tissue slides. Asterisks (d, e) 

indicate mean correlations (abs(mean corr) > 0.15 and mean P < 0.05). f, Example of colocalization 

of MΦ-MS composition with MG states 2 and 3 scores in a chronic active slide. Spots with less than 

11.11% of MG were removed. g, Specific cell-cell ligand-receptor interactions inferred from snRNA-

seq, arrow indicates direction of ligand- receptor signaling. h, smFISH of MS-CA tissue for FTL, 

APOE and TREM2. Overview images: scale bar 500 µm; zoom-in images: scale bar 40 µm. i, 

Boxplots of smFISH quantification across different tissue areas. Color indicates different lesion and 

non-lesion areas, asterisks indicate differences between groups (Wilcoxon rank-sum test, adjusted 

P < 0.05). 

When comparing the transcriptional profiles of our myeloid cell types, including 

both MΦ-MS and MG, to a previous snRNA-seq dataset by Absinta et al8 

(Methods), we confirmed overlap between our MG cell state 3 and the previously 

reported ‘foamy MΦ’ cluster. Further, our MΦ-MS cell type showed strong 

overlap with the described ‘iron MΦ’ cluster, and our MG cell state 4 showed 

overlap with the reported, however, not-annotated ‘state 4’ according to Absinta 

et al (Wilcoxon rank-sum test, adjusted P < 0.05) (Extended Data Fig. 3d). 

As myeloid subtype cells play key roles in lesion formation and, specifically, LR 

inflammation, we next focused on chronic active MS lesions. After performing 

differential gene expression analysis comparing MG cells from MS-CA with 

control samples based on snRNA-seq (Methods) (Extended Data Fig. 3e and 

Supplementary Table 8), we observed an upregulation of proinflammatory 

marker genes associated with cell-cell communication (CD84, CD14) and gene 

regulation (MAFB)32. In addition, we noted downregulation of genes associated 

with anti-inflammatory and apoptosis-related cellular responses such as 

INPP5D33. The same trend could be retrieved from inferred pathway activities 

(Methods) that confirmed upregulation of proinflammatory signaling pathways 

like TNFα, NFκB and JAK-STAT and, conversely, downregulation of 

‘homeostatic’ tissue maintenance pathways like TGFβ (Extended Data Fig. 3f). 

Transcription factor (TF) activity inference (Methods) corroborated this result 

since EGR1, one of the top regulators of TGFβ, was downregulated. Conversely, 
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we noted that SPI1, also known as PU.1, an important developmental TF in MG 

cells34, and previously reported to be a genetic risk gene associated with MS35, was 

the most upregulated TF in MG cells derived from MS-CA tissues (Extended 

Data Fig. 3g). 

Next, we mapped inferred MG states to tissue niches samples harboring MS-CA 

lesions (Methods). We found that the proinflammatory MG cell states 2 and 3 

were positively correlated with OL and MΦ-MS cell types, but negatively with 

OPC, AS, AS-C and EC (P < 0.05) (Methods) (Fig. 3d), suggesting roles in myeloid 

and OL cell interaction as expected at inflamed MS LRs with active 

demyelination. We also observed that MG cell states 2 and 3 showed overlap in 

signaling pathway activity (Methods) with upregulation of proinflammatory 

pathways (TNFα, JAK-STAT) and hypoxia-related pathways (Fig. 3e). 

Additionally, enrichment of immune related gene sets was observed in MG cell 

states 2 and 3 (Methods) (Extended Data Fig. 3h). Further, cross-lesion stage 

comparison revealed that proinflammatory MG states 2 and 3 together with MΦ-

MS cells mapped to MS-CA LR areas (Fig. 3f) and the lesion core in tissue samples 

with acute active-demyelinating lesions. This pattern could not be observed in 

control and chronic inactive lesion tissues (Extended Data Fig. 3i). 

In summary, MG subclustering, cell state-specific gene expression and signaling 

pathway analysis helped identify functionally relevant subtypes and distinguish 

homeostatic from proinflammatory and potentially phagocytosing myeloid cell 

subtypes present at distinct lesion areas as shown by spatial mapping.  

Characterization of MG and MΦ-MS ligand-receptor interactions 

Next, we investigated interactions of proinflammatory myeloid cells such as MΦ-

MS and MG subtypes 2 and 3 with neighboring OL cells as the natural target cell 

type in MS (Fig. 3g and Supplementary Table 9). We inferred ligand-receptor 

interactions and focused on pairs of genes that were most correlated in MS-CA 

ST tissue slides (Methods). We identified the APOE-TREM2 relationship as an 

enriched ligand-receptor interaction pair between myeloid cells in MS-CA types 

tissues8, suggesting enhanced MG regulatory function including myelin debris 

clearing at LRs according to previous reports36,37. Similarly, we noted enhanced 

APOE-LRP1 signaling between MΦ-MS and MG subtypes, highlighting lipid and 
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apoptotic cell clearance as key myeloid cell functions at inflamed MS LRs38. 

Further, APP-APLP2 ligand-receptor interaction was increased between OL cells 

(APP) and proinflammatory myeloid cells (APLP2) focusing on the LR, which also 

points towards regulatory functions of MΦ-MS and MG subtypes in MS39,40. 

To validate enrichment of APOE and TREM2 transcripts at MS LRs, we 

performed single molecule fluorescence in situ hybridization (smFISH) on MS-

CA tissues. As MS-CA LRs show enhanced iron uptake, we also combined FTL, 

encoding ferritin light chain, to confirm mapping to iron-rich LRs (Fig. 3h and 

Supplementary Table 10). Of note, we observed increased smFISH signals for all 

three transcripts at both LR and NAWM areas with a trend towards even stronger 

expression of TREM2 in NAWM (Methods). No increase of these marker genes 

was observed in control tissues and chronic inactive lesion areas (Wilcoxon rank-

sum test, adjusted P < 0.05) (Methods) (Fig. 3i and Supplementary Table 11). 

Collectively, ligand-receptor analysis demonstrated enrichment of key ligand-

receptor interactions such as APOE-TREM2 with their transcripts mapping to 

both LR and NAWM areas. 

Characterization of AS subpopulations 

In addition to myeloid cells, AS subtypes play critical roles in MS pathogenesis 

due to their ability to either help propagate inflammation or promote tissue 

homeostasis31,41. First, we decoded the transcriptomic heterogeneity of AS lineage 

cells and identified five different AS cell states (Methods) (Fig. 4a and Extended 

Data Fig. 3j, k). We then tested whether their relative abundances changed across 

MS lesion types (Methods) and found that AS cell states 2 and 3 had higher 

relative abundances in MS-CA relative to control tissues; further, AS cell state 2 

was enriched in MS-CI tissues (Wilcoxon rank-sum test, adjusted P < 0.1) (Fig. 4b 

and Supplementary Table 6). 

Next, we profiled AS cell states by marker gene expression per cell state 

(Methods) (Fig. 4c and Supplementary Table 12). Genes associated with tissue 

homeostasis (PRKG1, DPP10)42 were identified in cell state 0, notably, a subtype 

enriched in control white matter tissues. In cell state 1, we found an enrichment 

of mitochondrial and myelin-related genes like PLP1. Of note, AS cell state 1 was 
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associated with highly inflamed MS-A tissues characterized by ongoing myelin 

phagocytosis as described for reactive AS subtypes43. AS cell state 2 was 

characterized by enrichment of cell stress and reactive glial marker genes such as 

AQP4, CLU and FTL. Of note, increased AQP4 immunoreactivity is a key feature 

of reactive astrogliosis and seen in various neuropathological conditions, 

however, reduced in neuromyelitis optica44,45. Marker genes enriched in AS cell 

state 3 were linked to homeostatic and neuron-supporting cell functions (NLGN1 

and LRRTM4)46,47. Finally, we found that AS cell state 4 was enriched for genes 

encoding proteins involved in primary cilia formation (CFAP299, SPAG17)48, 

hence refers to the above described AS-C subtype based on snRNA-seq 

clustering. 

To further characterize AS subtypes and their various roles in MS, we focused on 

MS-CA tissue samples to distinguish homeostatic from reactive subtypes in 

NAWM and DMWM areas, respectively. After mapping of AS states in MS-CA 

tissue niches (Methods), we observed that only cell states 2 and 4 showed 

significant correlations with other cell type abundances (P < 0.05) (Fig. 4d), 

colocalizing with MΦ-MS and EC cells respectively. Inferred pathway activity 

analysis (Methods) revealed that AS cell states 2 and 4, resembling glial scar and 

ciliated AS subtypes, correlated with both proinflammatory TNFα and tissue 

regeneration pathways such as PI3K and WNT, respectively (Fig. 4e). Next, we 

performed gene set enrichment analysis (Methods) and, in particular, found that 

AS cell state 2 was associated with lipoprotein metabolism and clearance as well 

as unfolded protein response; as expected, AS cell state 4 was linked to cilium 

assembly function (Extended Data Fig. 3l). Then, we mapped AS cell states to ST 

slides and observed that AS cell state 2 was enriched at inflamed LR areas together 

with MΦ-MS myeloid cells and associated with proinflammatory TNFα activity. 

Conversely, the ciliated AS cell state 4 mapped to DMWM areas together with EC 

cells resembling hypervascularized glial scar areas associated with enhanced PI3K 

activity (Fig. 4f). 

To validate and map AS cell state marker genes to specific MS tissue niches, we 

performed smFISH for PLP1 (to identify lesion areas), CD44, a canonical white 

matter AS marker5, and TNF encoding TNFα (Methods).  
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Fig. 4 | Identification and spatial characterization of AS cell states. a, UMAP of AS cell states based 

on snRNA-seq. Color indicates assigned AS subtype state. b, Boxplots of cell state compositions 

based on snRNA-seq. Color indicates MS lesion type and asterisks differences between groups 

(Wilcoxon rank-sum test, adjusted P < 0.15). c, Dotplot showing scaled mean expression of marker 

genes per AS cell state. d, Mean correlations between AS cell state scores to cell-type compositions 

across spots from chronic active slides. Asterisks indicate significant mean correlations (abs(mean 

corr) > 0.15 and mean P < 0.05). e, Mean correlations between AS cell state scores and pathway 

activities across spots from MS-CA tissue slides. Asterisks indicate significant mean correlations 

(abs(mean corr) > 0.15 and mean P < 0.05). f, Representative MS-CA tissue showing spatial 

colocalization of AS cell state 2 with MΦ-MS cell type mapping and TNFα activity (upper panel), 

and AS cell state 3 with EC cell type composition and PI3K activity. Spots with less than 11.11% of AS 

are removed. g, smFISH of MS-CA tissue for PLP1, CD44 and TNF. Overview images: scale bar 500 

µm; zoom-in images: scale bar 40 µm. h, Boxplots of smFISH quantification across different tissue 

areas. Color indicates different lesion and non-lesion areas, asterisks indicate differences between 

groups (Wilcoxon rank-sum test, adjusted P < 0.05). 

Overall, we found that TNF expression was upregulated in MS-CA and MS-CI 

relative to controls (Wilcoxon rank-sum test, adjusted P < 0.20). In detail, we 

observed a trend that TNF transcripts gradually increased at both LR and NAWM 

areas in MS-CA and, significantly, in MS-CI tissues (Wilcoxon rank-sum test, 

adjusted P < 0.05)  (Fig. 4g-h and Supplementary Tables 10-11). 

To summarize, AS subclustering and cell state-specific gene expression as well as 

signaling pathway analysis enabled us to identify functionally relevant disease 

subtypes present at distinct lesion areas as shown by spatial RNA mapping.  

Discussion 

Previous tools used to assess and analyze MS pathology focused either on 

conventional histopathological techniques13,14,27 or, more recently, multiplex 

smFISH and snRNA-seq5,49,1,8 to understand cell type-specific gene expression 

and dysregulation. The latter tools allow for either spatial mapping of certain 

aspects of pathology (smFISH, histopathology) or allow cell type-specific 

unbiased transcriptomics (snRNA-seq). A combination of both would thus enable 

us to study spatially and functionally relevant signaling pathways associated with 

certain reactive cell types or inflamed tissue areas in the context of MS and 

beyond. Hence, we generated paired snRNA-seq and spatially resolved gene 

expression to overcome previous challenges with respect to cell type tissue 
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profiling. Computational integration of these data types enabled us to interrogate 

transcriptomic profiles from cell types and their spatial location to identify 

patterns of cell-cell interaction and cell type cluster enrichment in specific tissue 

niches. 

Specifically, we aimed at investigating tissue niche-resolved cell type diversity 

and cell-cell-communication signatures in subcortical MS tissues harboring 

lesions of various inflammatory activities (reflecting ‘temporal’ stages of lesion 

development). We generated a large-area transcriptomic map of subcortical 

white matter comprising control and MS donor tissues using snRNA-seq to 

estimate the cell type composition of tissue spots. To confirm that the 

computational analysis of gene expression reflects the underlying pathobiology, 

we compared the estimated spatial cell type maps with conventional 

histopathology and found a broad overlap with respect to lesion and non-lesion 

areas as well as myeloid cell activation and presence of iron enrichment.  

In particular, we found mapping of MG/MΦ-MS subtypes (MG cell states 2 and 

3) to inflamed MS-CA LR areas and mapping of AS cells including a novel 

subtype of ciliated AS (AS cell state 4) to demyelinated scar tissue areas (DMWM), 

respectively. Further, we found spatial colocalizations of certain cell types, such 

as SC, EC and immune cell subtypes (TC and BC) and upregulation of TGFβ 

signaling related to the MS-specific tissue niche 6, suggesting an increase in blood 

vessel density and expansion of perivascular spaces in MS. These findings would 

be compatible with aspects of chronic perivascular immune cell cuffing and 

fibrosis, indicating blood-brain impairment, and tissue inflammation4,50,29. Also, 

it is known that sustained blood-brain barrier leakage and fibrinogen deposition 

are pathological features of MS and experimental autoimmune 

encephalomyelitis51,52, which itself can trigger perivascular MG activation52. Thus, 

our analysis sheds light on perivascular spaces as a critical tissue niche in MS 

pathology. Along these lines, we demonstrate colocalization of SC and immune 

cells. This scenario confirms earlier data using qPCR identifying strong 

upregulation of genes encoding extracellular matrix proteins such as collagen 

chains that could be mapped to perivascular spaces in association with immune 

cells29. 
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Moreover, we computationally estimated signaling pathway activities associated 

with both tissue niches and specific cell types, such as enhanced TNFα signaling 

in inflamed MS-A lesion areas, characterized by MG/MΦ-MS and AS subtype 

enrichment, or WNT signaling linked to DMWM areas. Indeed, with respect to 

AS function, we observed opposing signaling pathway signatures related to their 

potential roles in either tissue remodeling (PI3K and WNT) or injury (TNFα). 

Notably, increased levels of MG-derived TNFα can trigger transformation of 

homeostatic AS into neurotoxic subtypes53, which can be facilitated by co-

presence of C1q, a critical complement factor known to be upregulated on RNA 

and protein level in MG/MΦ-MS cells in subcortical MS lesion tissues as shown 

in this study and previous work8. Indeed, we found that both AS (cell state 2) and 

MG/MΦ-MS subtypes mapped to inflamed LR areas in MS-A and MS-CA tissues, 

suggesting functional cell-cell interactions, potentially mediated by TNFα 

signaling. 

We found hypoxia to be another key pathway upregulated in MS-specific MG 

(cell states 2-4) and AS (cell state 2) subtypes. Notably, presence of hypoxia-

related signaling events has been described in MS lesion pathology but, in the 

majority, related to neuron and OL lineage dysfunction54,55,56. Also, it is known 

that glycolysis is turned on under hypoxic conditions due to impaired oxidative 

phosphorylation as previously shown in proinflammatory MG and AS 

subtypes57. Further, these events have been shown to be associated with 

proinflammatory MG function and MG iron retention in rodent models of 

Alzheimer’s disease (AD), which would be in line with our findings related to 

proinflammatory and iron-metabolizing signatures of MS-specific MG/MΦ-MS 

subtypes (MG cell states 2 and 3)58,59.  

Focusing on cell-cell communication, ligand-receptor analysis suggested that 

APOE-TREM2 signaling was highly specific to MG and MΦ-MS subtypes at 

inflamed MS-CA LR areas8. Indeed, enhanced APOE-TREM2 pathway activity 

has been implicated in other neuropathological conditions, such as AD, and 

associated with amyloid-beta uptake and a dysfunctional phenotype36,60,61. 

Indeed, these disease-associated MG cells might adopt senescent signatures in 

their ‘sustained’ attempt to clear myelin debris in MS62 similar to their role in the 

clearance of neurofibrillary tangles in tau-mediated neuropathology62,63,64. 
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Hence, these findings and predicted pathway activities illustrate how 

computational methods can be used to measure disease-specific pathway activity 

and, eventually, link these patterns to specific cell types and tissue niches in MS. 

In summary, we generated and computationally analyzed a paired single-cell and 

spatial transcriptomics data set that enabled us to deconvolute the complex tissue 

microenvironment underlying lesion progression in MS by identifying both cell 

type-specific and spatially restricted drivers of pathology. Further, these analyses 

helped us better understand the molecular organization of subcortical tissues 

across MS lesion types. Specifically, we identified inflammatory and tissue 

remodeling processes that characterize subcortical lesions relative to normal 

white matter. As our approach is highly driven by computational prediction 

models in combination with histological and in situ validation, future work will 

be necessary to functionally validate the obtained findings65. Also, other current 

and future developments such as spatial ATAC-seq or ST with (sub)cellular 

resolution will help provide additional insight into the complex disease 

microenvironment in MS and beyond. However, as our results resemble 

important aspects and concepts from previous work, we are optimistic that our 

study helps break ground for novel cell type-specific therapeutic approaches to 

resolve compartmentalized inflammation in MS. 
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Methods 

Postmortem human tissue samples  

In total we examined 21 snap-frozen tissue blocks, obtained from autopsies from 

16 individuals diagnosed with MS and 6 tissue donors without recognizable 

neuropathological changes (controls). All tissue used in this work was provided 

by the UK Multiple Sclerosis Tissue Bank at Imperial college in London, after 

ethical approval by the National Research Ethics Committee in the UK 

(08/MRE09/31). Further clinical and pathological information of the donors is 

provided in Supplementary Table 1.  

Immunohistochemistry (IHC) and histochemistry 

Snap-frozen tissue blocks were dissected into 16-µm-thick slices using a Leica 

Microsystems CM3050S cryostat, placed on VWR superfrost plus microscope 

slides and stored at -80°C. Histopathological assessment was performed using 

immunohistochemistry for CD68 and MOG as described previously5 as well as 

CD163. The following antibodies were used: mouse anti-MOG (MAB5680, 

1:1,000, Millipore Sigma), mouse anti-CD68 (MCA1815, 1:200, Bio-Rad), and 

mouse anti-CD163 (NCL-L-CD163, 1:1,000, Novocastra). 

For CD163 immunohistochemistry and histochemistry, tissue sections were 

fixated on the slides by thawing and drying, followed by immersion in 4C° 

acetone for 10 minutes. Afterwards, the slides were allowed to dry at room 

temperature. Sections were stained for myelin with Luxol fast blue (LFB) by 

incubation with 0.1 % LFB at 56 C° overnight. After washing with 96 % ethanol and 

rehydration, the slides were immersed in 0.1 % aqueous lithium-carbonate 

solution for 5 minutes. The staining was differentiated in 70 % ethanol until the 

myelin sheaths obtained an intense blue color. Subsequently, tissue slides were 

washed with distilled water, counterstained with periodic acid-Schiff (PAS) and, 

following dehydration, coverslipped with a mounting medium (03989, Merck). 

CD163 was stained with an Autostainer Link 48 by Dako. Endogenous peroxidase 

was blocked using a ready-to-use peroxidase-blocking solution (S202386-2, 

Dako). The primary antibody was diluted in antibody diluent (S080983-2, Dako) 
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and applied for 60 minutes at room temperature (RT). After a washing step, the 

slides were exposed to a mouse-specific biotinylated secondary antibody 

(GV82111-2, Dako) for 15 minutes, followed by a streptavidin-linked horseradish 

peroxidase (SM802, Dako) for 20 minutes. The staining was developed using a 

1:50 dilution of 3,3’-diaminobenzidine (DAB) chromogen in DAB+ substrate 

buffer (GV825, Dako) for 10 minutes. Sections were counterstained using 

hemalaun and coverslipped. 

To localize ferrous and ferric iron, DAB-enhanced Turnbull Blue (TBB) was 

performed as previously described in another study62. In short, the slides were 

dried and exposed to 10% ammonium sulfide solution (105442, Merck) in double-

distilled water for 90 minutes. Consecutively, slides were immersed in 10% 

potassium ferricyanide and 0.5% hydrogen chloride in an aqueous solution for 15 

minutes. This step was followed by blocking the endogenous peroxidase with 

0.01M sodium azide and 0.3% hydrogen peroxide in methanol for 60 minutes. 

The slides were washed with 0.1 M Sorensen’s phosphate buffer and the staining 

was developed with a 1:50 solution of DAB chromogen (K3468, Dako) and 0.005% 

hydrogen peroxide in Sorensen’s phosphate buffer for 20 minutes. Slides were 

counterstained with hemalaun and coverslipped. 

Brightfield microscopy and image processing  

Brightfield images of LFB, CD163 and TBB were acquired using a Leica DMi8 

microscope and a Hamamatsu NanoZoomer 2.0HT. Images were taken at a 40x 

magnification and exported as NPD files. Image processing of histological data 

was performed using GIMP-2.10 software. 

Histopathological assessment and lesion type characterization 

In our analyses, only white matter lesions were selected. Lesions were identified 

as areas with a marked loss of myelin by anti-MOG and LFB-PAS staining, and 

further classified into MS-A, MS-CA and MS-CI typed lesions using CD68 and 

CD163 immunohistochemistry for MG and MΦ-MS subtypes according to 

established protocols and criteria15. Of note, no differentiation was made between 

early and late active-demyelinating MS-A lesions. Fully remyelinated lesions, so-

called shadow plaques, were not included. 
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The lesion area was subdivided into distinct zones. The lesion center or core 

covers the middle of the demyelinated lesion towards the rim, which is the 

distinct border between demyelinated lesion center and the surrounding 

myelinated white matter, called peri-plaque white matter (PPWM). The PPWM 

covers the surrounding white matter and transitions at a distance of one 

centimeter from the lesion border into the normal-appearing white matter 

(NAWM). 

The lesion types were assigned by a trained neuropathologist. Acute lesions were 

identified by a hypercellular lesion center and a high density of CD68- and 

CD163-positive macrophages and microglia, also containing LFB- and/or MOG-

positive myelin degradation products, throughout the lesion, and an indistinct 

LR. Chronic active lesions showed a hypocellular, demyelinated lesion center but 

a distinct rim formation by CD68- and CD163-positive cells, containing LFB-

positive myelin degradation products. Some of these lesions showed 

accumulation of iron-laden microglia and macrophages at the rim. Chronic 

inactive lesions were characterized by a fully demyelinated, hypocellular lesion 

center, and a low frequency of CD68- and CD163-positive macrophages or 

microglia within the lesion, and a distinct LR without accumulation of CD68- or 

CD163-positive cells. 

Sample selection for transcriptomics 

The RNA integration number (RIN) was used as a sample selection criteria, and 

only samples with a value of  ≥ 6 were included for both transcriptomic analysis. 

We cut 70µm thick sections of tissue on a CM3050S (Leica) to obtain a final 

weight of 15mg of tissue, from which the RNA was isolated. This was done using 

TRIzol (15596026, Thermo Fisher), chloroform (1731042, Sigma Aldrich) and 

RNAeasy mini Kit (74104, QIAGEN) following manufacturer’s recommendations. 

RNA integrity was measured on an Agilent 2100 Bioanalyzer using the High 

Sensitivity ScreenTape (5067-5579, Agilent), buffer (5067-5580, Agilent) and 

ladder (5067-5581, Agilent) according to manufacturer’s instructions. 

Nuclei isolation and libraries preparation 
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Nuclei from selected samples were isolated using a sucrose-gradient 

ultracentrifugation according to established workflows5. Following isolation, 

nuclei were diluted to a final concentration of 1000 nuclei per µl and loaded to 

the 10x Genomics Chromium controller aiming for a recovery rate of 8000 

nuclei per sample. We prepared the libraries following the 10X Genomics 

protocol using the 3’ single cell v3.1 kit (PN 1000121) with single indexing. 

Samples were sequenced on a NovaSeq 6000 aiming for a sequencing depth of 

30000 reads per nuclei. Expression count matrices for each sample were 

generated using Cell Ranger Count v. 6.0.2 by performing alignment to the 

sequencing data against the GRCh38-2020-A reference transcriptome. 

snRNA-seq data quality control 

The data processing and downstream analyses for the snRNA-seq datasets was 

done using the scanpy toolkit (v1.8.2)66 in Python (v.3.9.12). Each sample was 

filtered separately to control for batch differences. Single nuclei were filtered by 

genes (200 < number of genes), mitochondrial genes (percentage of 

mitochondrial genes < 5%) and gene counts (number counts < number counts 

99th percentile). Genes were kept if they were expressed across different nuclei 

(number of expressed nuclei > 3). Dissociation scores (score_genes) were 

computed with score_genes using the top 200 genes ranked by p-value from a 

list of genes previously associated with tissue dissociation and cell death67 and 

doublet scores were computed using scrublet68. Afterward, nuclei were filtered 

by dissociation scores (dissociation score < dissociation score 99th percentile), 

and doublet scores (doublet score < 0.2). Finally, each nuclei raw expression was 

normalized by a total sum of 10,000 and log-transformed (log1p). 

snRNA-seq data integration and cell annotation 

A single AnnData object was generated by concatenating (join="outer") all the 

preprocessed nuclei coming from different samples. Feature selection was 

performed by computing high variable genes per sample and then selecting the 

top 3,000 genes that were flagged as variable in the maximum number of 

samples. Genes were then scaled across nuclei (max_value=10) and PCA was 

calculated on the selected features. Harmony-py69 was used to integrate the 
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obtained PCs, eliminating batch effects between samples. Nearest neighbors were 

generated for nuclei by estimating similarities in the PC space (n_pcs = 50). The 

obtained connectivities were used to generate a UMAP manifold. Nuclei were 

clustered using the Leiden graph-clustering method70 (resolution = 0.5) and 

annotated manually using brain gene markers58. Clusters belonging to gray 

matter cells or that showed no clear cell-specific markers were removed from 

downstream analyses. After removing cell clusters, the steps of highly variable 

gene selection, integration of nuclei and annotation of clusters were repeated 

until no more clusters had to be removed. 

Comparison with an independent atlas 

To validate our cell type annotations, we compared our generated atlas with 

another reference human snRNA-seq atlas8 at the molecular level. The counts 

matrix and annotation meta-data were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180759. Pseudo-bulk 

transcriptomic profiles were generated for both atlases at the cell type level using 

decoupler-py (v1.2.0)71 with the following hyperparameters: groups_col=None, 

min_prop=0.2; min_smpls=0. To make them comparable, we filtered the 

profiles by the intersection of genes between the two atlases and log normalized 

them with scanpy66. Finally, the Pearson correlation between the different 

profiles was performed. 

ST workflow 

10x Genomics Visium Spatial Gene Expression platform was used for the spatial 

transcriptomics experiments.  The tissue (RIN≥7) was cut into 10 µm sections 

using Leica CM3050 S cryostat and placed into a Spatial Gene Expression Slides 

(PN-1000185, 6,5 x 6,5 mm ROI) that was precooled inside the cryostat at -22°C. 

The slides were stored in a container at -80°C until further processing. The 

sections were then fixed and stained using protocol CG000160 Rev B.  The 

sections were then imaged, to do a general morphological analysis and for future 

spatial alignment of the data, using the 10x brightfield objective from the Leica 

DMi8 and processed by the Leica Application Suite X (LAS X). 
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Then they were enzymatically permeabilized for 18 min. This time was assessed 

using the 10x Visium Tissue Optimization kit (PN-1000191) and following the 

protocol CG000238 Rev D. 

The generation of the libraries was performed according to published protocols 

(10x Genomics): CG000239 Rev D, using the Gene Expression Reagent kit (PN-

1000186), the Library Construction Kit (PN-1000190) and the Dual Index Plate 

TT Set A (PN-1000215). In order to assess the correct amplification of obtained 

cDNA, QuantStudio 3 from ThermoFisher was used. For full length of cDNA and 

indexed libraries analysis, the TapeStation 4200 analyzer (Agilent) was used. The 

libraries were loaded at 300 pM and sequenced on a NovaSeq 6000 system 

(Illumina) with a sequencing depth of 250 million reads per sample.  

The demultiplexing of the data was done using SpaceRanger software (10x – 

version 1.2.2), creating FASTQ files. These files are then used by SpaceRanger 

count to perform alignment with the human reference genome GRCh38-2020, 

tissue detection, fiducial detection and barcode/UMI counting. 

ST data quality control 

First, spatial coordinates belonging to cortical gray matter areas were manually 

removed using the Loupe software (10x Genomics). Then, the following data 

processing and downstream analyses for the ST datasets were performed using 

the scanpy toolkit66. For each slide, spots were filtered by genes (200 < number 

of genes) and genes were kept if they were expressed across different spots 

(number of expressed spots > 3). 

ST cell type deconvolution 

The cell2location (v0.1)72 package was used to calculate cell type abundances for 

each spot. From the annotated snRNA-seq atlas, reference expression signatures 

of major cell types were inferred leveraging regularized negative binomial 

regressions. Then each slide was deconvoluted using hierarchical bayesian 

models with the following hyperparameters: N_cells_per_location=5 and 

detection_alpha=20. Afterwards, cell type proportions were calculated per spot 

by dividing the abundance of a given cell type by the total sum of abundances of 
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a given spot. To assess the quality of the deconvolution, we calculated the Pearson 

correlation between the mean estimated cell type proportions of each slide with 

the observed cell type proportions in its corresponding snRNA-seq dataset. 

Generation of cell type compositional niches in ST 

Cell type compositional niches were generated from the estimated cell type 

proportions in ST slides. First, cell type proportions from ST slides were forced 

to sum to one, and then they were transformed using the isometric log ratio 

transformation73 with the composition-stats python package (v2.0.0). Then, these 

features were integrated across slides using harmony-py69 correcting for 

technical effects. Afterwards, nearest neighbors (n_pcs = 50) were computed to 

generate a UMAP manifold. Finally, spots were clustered using the Leiden graph-

clustering method70 (resolution = 0.4). Clusters that were overrepresented by only 

one sample were removed. 

Characterization of ST niches 

We determined representative cell types for each ST niche by first computing 

the mean proportion of each cell type per slide, obtaining a distribution of 

correlations, and then computing the mean for each niche. Then, to compare cell 

type correlations between niches we used the Wilcoxon rank-sum test (adjusted 

P < 0.05). 

To validate these representative cell types across niches, we computed for each 

slide the pairwise Pearson correlation between cell types. To aggregate the 

results, we computed the mean correlation and p-value across slides. Interactions 

with abs(correlation) > 0.15 and P < 0.10 were considered as significant. 

We further characterized niches by inferring signaling pathway activities for 

each spot with the resource PROGENy74 and the method Univariate Linear 

Model (ULM) from decoupler-py (v1.2.0)71. We selected the top 300 most 

significant genes per pathway from PROGENy. Then we tested which pathways 

are representative for each niche by computing the mean activity of each 

pathway per niche and slide. Then, we calculated the mean of each niche across 

slides and compared them using the Wilcoxon rank-sum test (FDR < 0.05). 
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Comparison of tissue architecture across lesion types 

To identify differences between lesion types, we first compared them at the 

transcriptomic level. Global pseudo-bulk transcriptomic profiles for snRNA-seq 

samples and ST slides were generated using decoupler-py (v1.2.0)71. Next, counts 

were aggregated for each sample/slide for genes that were expressed in at least 

20% of cells/spots and a minimum of three samples/slides with the 

get_pseudobulk function (groups_col=None). Then each raw expression profile 

was normalized by a total sum of 10,000 and log-transformed (log1p). 

Afterwards, profiles were scaled by genes and PCA (PCs=50) was performed. 

Mean cell type proportions across snRNA-seq samples and ST slides were 

compared with Kruskal-Wallis tests (adjusted P < 0.075). For the significant cell 

types, pairwise comparisons were performed with the Wilcoxon rank-sum test 

(FDR < 0.1). Additionally, we performed Kruskal-Wallis tests over the 

compositions of niches (adjusted P < 0.05) and the corresponding pairwise 

comparisons using the Wilcoxon rank-sum test (FDR < 0.1). 

To identify cell types that colocalize differentially across lesion types, we 

computed the correlation between cell types per sample. Then, we compared the 

obtained distributions of correlations with the Kruskal-Wallis tests (adjusted P < 

0.1) and for the significant interactions we performed pairwise comparisons 

between lesion types using the Wilcoxon rank-sum test (adjusted P < 0.1). 

Molecular differences between chronic active and control in snRNA-seq 

To identify molecular differences between control and MS-CA tissue samples in 

snRNA-seq, we first generated log-normalized pseudo-bulk transcriptomic 

profiles for each sample and cell type using decoupler-py (v1.2.0)71 and computed 

differential genes between lesions using the t-test with BH correction for the 

obtained p-values. Afterwards, mitochondrial genes, genes with no significant 

change (abs(t-statistic) < 0.5 and P > 0.05) and genes that were significant across 

multiple cell types were removed. 

From the positively regulated differential expressed genes in chronic active, we 

inferred transcription factor and pathway activities from their t-statistics. For 

transcription factors, we leveraged DoRothEA75, a gene regulatory network 
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generated from prior knowledge, and the method multivariate linear model 

from decoupler-py (v1.2.0)71. For pathways we used the resource PROGENy74 and 

the method Univariate Linear Model (ULM) from decoupler-py (v1.2.0)71. 

Identification of cell states 

To identify cell states for MG and AS cells, we subsetted the corresponding 

annotated cells from the complete snRNA-seq atlas. For AS, we selected both AS 

and AS-C, the following described steps were performed separately for MG and 

AS. We removed genes that were not expressed in at least three nuclei and log 

normalized the read counts. We applied feature selection by computing high 

variable genes per sample and then selecting the top 3,000 genes that were 

flagged as variable in the maximum number of samples. Afterwards, genes were 

scaled across nuclei (max_value=10), PCs were calculated on the selected features 

(PCs = 50) and they were integrated using harmony-py69. Finally, nearest 

neighbors (n_pcs = 50), UMAP manifold  and clustering of nuclei with the Leiden 

graph-clustering method70 (resolution = 0.5) were performed. Clusters that were 

overrepresented by only one sample were removed. 

Identification of marker genes for cell states in snRNA-seq 

Differential expression analysis between cell states in snRNA-seq was performed 

to identify marker genes using the rank_genes_groups (method=t-

test_overestim_var) function from scanpy with the log normalized counts. 

Genes with abs(logFC) > 1 and adjusted P < 0.05 were considered marker genes 

for a given cell state. 

Cell-state spatial mapping 

To map cell states to spatial locations, we used leveraged deconvolution results 

and a set of marker genes of each cell state. For a given major cell type, we 

selected the spots which hold its proportion to at least 11.11% and inferred its cell 

state activities per spot using previously obtained marker genes as a resource 

combined with the method ULM from decoupler-py (v1.2.0)71. 
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Inference of activities for biological terms in cell-states 

For the inference of biological processes, we used gene sets extracted for the 

resource MSigDB76 with the ULM method from decoupler-py (v1.2.0)71. 

Enrichment activities were inferred per nucleus, and then the mean scaled 

activity per cell state was calculated. 

Inference of cell-cell communication events 

We inferred ligand-receptor interactions between cell states of microglia and 

other relevant cell types from snRNA-seq in chronic active samples using the 

LIANA(v0.1.6) framework77. We inferred interactions using the default cell-cell 

communication methods provided in LIANA with OmniPath78 as prior 

knowledge resource and selected the ones found to be significant after 

performing the consensus ranking between methods (P < 0.05).  Next, we checked 

whether the found interactions exist in our ST data by computing the correlation 

between the gene expression of a given ligand with a given receptor when both 

cell types are present in the same spot with a proportion > 0.11. 

Fluorescence multiplex in situ RNA hybridization 

For single-molecule fluorescence in situ hybridization (smFISH) validation, we 

used frozen human cryosections of 16µm thickness. smFISH was performed on 

a representative selection of tissue samples using ACD RNAscope 2.5 HD Red and 

Multiplex Fluorescent V2 assays (ACD Biotecne), following the protocol of a 

previous publication1. The following human RNAscope assay probes were used: 

FTL (C1), PLP1 (C1), APOE (C2), CD44 (C2), TREM2 (C3) and TNF (C3). 

Image acquisition and quantification of multiplexed fluorescent images 

Overview and quantification images were taken using a Leica DMi 8 microscope 

with a Leica DFC7000 GT camera. Focus points were set at 10x magnification for 

overview purposes and at 20x magnification at the area of interest for 

quantification. Pictures were imaged and exported as LIF files. A Leica TCS SP8 

microscope was used for taking confocal images. All fluorescent pictures are z-

stack images consisting of 10 to 20 layers with a 0.5–0.7 μm step size. Heights for 
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z-stack were identified manually by imaging DAPI on the area of interest. Each z 

plane was imaged across 4 channels.  

To detect spatial alterations in expression profiles throughout the lesion area, we 

defined four regions of interest (ROIs) that were examined in every lesion. The 

following ROIs were considered: normal white matter from controls (NWM), 

normal appearing white matter (NAWM) of MS patients in at least 1000µm 

distance from the lesion rim (LR) that was defined as the region directly 

bordering DMWM areas with a thickness of 400µm. Lesion center (LC) was 

defined as an area with a distance of 500-1000µm to the LR. 

Single-molecule FISH (smFISH) data was analyzed using RS-FISH79. Multi-

channel images were split into single-channel images using bfconvert from the 

bftools suite80. RS-FISH was run on each channel using the command-line 

implementation with the following parameters (channel 1 (FTL, PLP1): sigma = 

1.43, threshold = 0.006, channel 2 (APOE, CD44): sigma = 1.4, threshold = 0.012, 

channel 3 (TREM2, TNF): sigma = 1.46, threshold = 0.006) and ransac=1. The 

resulting spot count tables from RS-FISH were assigned to manually annotated 

mask regions of the image. Regions of interest (ROI) were drawn on images in 

Fiji and converted to multi-class labeled masks using the Mask(s) from ROI(s) 

plugin (https://imagej.net/plugins/masks-from-rois). Spot counts for each mask 

were subsequently normalized to the mask area. Pairwise comparisons of the 

normalized spots per area were performed using the Wilcoxon rank-sum test 

(adjusted P < 0.2). 
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Extended Data Fig. 1 | Subcortical snRNA-seq and ST quality metrics. a, Quality control metrics 

for snRNA-seq samples. b, Quality control metrics for ST samples. c, Comparison of subcortical 

snRNA-seq atlas with previously published subcortical MS atlas according to Absinta et al., 2019. 

Color intensity indicates Pearson correlation between cross-study snRNA-seq cell type profiles, and 

stars indicate significant interactions (P < 0.05). d, HE tissue histology and quality control metrics 

per ST spot across tissue slides. e, Pearson correlation between snRNA-seq cell type proportions 

and obtained proportions from cell type deconvolution at cell type level in log scale. f, and at the 

sample level in log scale. 
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Extended Data Fig. 2 | Subcortical cell type and tissue niche mapping metrics. a, UMAP of spatial 

cell type mapping based on ST spots and cell type tissue composition. Color indicates cell type 

composition values and MS lesion types. b, Visualization of obtained tissue niches across samples. 

Color indicates niche category. c, Comparison of pathway activities for Androgen and Estrogen 

across niches per gender, F females, M males. Color indicates AS-enriched niches (1, 5 and 6), and 

OL-enriched niches (0, 2, 3 and 4), asterisks indicate significance (Wilcoxon rank-sum test, P < 0.05). 

d, PCA projection of first two components of snRNA-seq and ST transcriptomic profiles. Color 

indicates lesion type and shape gender. e, Boxplots showing deconvoluted ST cell type composition 

per tissue type. Color indicates lesion type. f, Boxplots showing snRNA-seq cell type composition 

per tissue types. Color indicates lesion type and asterisks significant differences between groups 

(Wilcoxon rank-sum test, adjusted P < 0.1). g, Mean Pearson correlations between cell type 

composition across spots per lesion type. Asterisks indicate significant mean correlations (abs(mean 

corr) > 0.1 and mean P < 0.1). h, Boxplots of niche compositions across lesion types. Color indicates 

lesion types. i, Boxplots of colocalization correlations between cell types. Color indicates lesion 

types. 
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Extended Data Fig. 3 | Identification and spatial characterization of MG and AS cell states. a, 

UMAP of MG cell states, color corresponds to the lesion type of the samples. b, UMAP of MG cell 

states, color corresponds to the tissue sample IDs. c MG cell state 1 composition per MS lesion type. 

d, Myeloid cell subtype gene expression correlation analysis between Absinta et al and current study. 

e, Volcano plot of differentially expressed genes in all MG cells between MS-CA and control tissue 

samples (abs(logFC) > 0.5 and P < 0.05). Red color indicates positively regulated genes and blue 

color negatively regulated ones. f, MG pathway activity (most upregulated [red] vs. most 

downregulated [blue]) in MS-CA relative to control tissue samples. g, MG transcription factor 

activity (most active [red] vs. most inactive [blue]) in MS-CA relative to control tissue samples. h, 

Activities of biological terms between MG cell states. i, Representative ST samples demonstrating 

colocalization of MΦ-MS cell type with MG states 2 and 3 across MS lesion types. Spots with less 

than 11.11 % of MG were removed. j, UMAP of AS cell states, color corresponds to the lesion type of 

the samples. k, UMAP of AS cell states, color corresponds to tissue sample IDs. l, Activities of 

biological terms between AS cell states. 
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