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Abstract 
 

Characteristic spatial differences of cellular resting potential across tissues have been 
shown to act as instructive bioelectric prepatterns regulating embryonic and regenerative 
morphogenesis, as well as cancer suppression. Indeed, modulation of bioelectric patterns via 
specific ion channel-targeting drugs, channel misexpression, or optogenetics has been used to 
control growth and form in vitro, showing promise in regenerative medicine and synthetic 
bioengineering. Repair of defects, injury, and transformation requires quantitative understanding 
of bioelectric dynamics within tissues so that these can be modulated toward desired outcomes 
in organ patterning or the creation of entirely novel synthetic constructs. The major gap in the 
discovery of interventions for rational control of organ-level outcomes is the inability to predict 
large-scale bioelectric patterns - their emergence from symmetry breaking (given a set of 
channels expressed on the tissue) and their change as a function of time under specific 
bioelectrical interventions. It is thus essential to develop machine learning and other 
computational tools to help human scientists identify bioelectric states with desirable properties. 
Here, we tested the ability of a heuristic search algorithm to explore the parameter space of bio-
electrical circuits by adjusting the parameters of simulated cells. We show that while 
bioelectrical space is not easy to search, it does contain parameter sets that encode rich and 
interesting patterning behaviors. We demonstrate proof of principle of using a computational 
search platform to identify circuits with desired properties, as a first step toward the design of 
machine learning tools for improved bioelectric control of growth and form.   
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Introduction 
 Morphogenesis, or the emergence of complex anatomical shapes from groups of cells, is 
a critically important process for three reasons. First, it is fundamental to understanding 
evolution, as it implements the mapping between the genome (target of mutations) and 
functional body phenotypes (the subject of selection forces). Second, it is central to almost all of 
biomedicine: being able to control what cells build is the roadmap to definitive solutions to birth 
defects, traumatic injury (via regeneration), and cancer (via tissue reprogramming).1 Finally, it is 
an essential aspect of synthetic bioengineering – the efforts to build biological robots and other 
living constructs made to arbitrary specifications for a myriad of applications2, 3 Thus, it is 
essential to understand and quantitatively model the patterning dynamics that occur in cellular 
collectives. 
 Morphogenetic prepatterns occur via biochemical,4 biomechanical,5 and bioelectrical6 
modalities. The latter is particularly interesting because, as in the brain,7 bioelectricity forms a 
kind of computational medium within which large-scale anatomical decisions are made by 
collective cell behavior.8, 9 Bioelectric signaling10, 11 includes spatial distributions of cellular 
transmembrane resting potentials (Vmem) across fields of tissue (Figure 1 A), produced by the 
actions of ion channels and electrical synapses known as gap junctions. Such voltage gradients 
have now been shown to encode information about organ size, axial polarity, and various cell 
behaviors,12-15 while disorders in bioelectric signaling induced by drugs16 or mutation (so-called 
channelopathies) can trigger cancer17-19 and birth defects.20, 21 Importantly, modulation of 
bioelectric signaling via drugs, channel misexpression, or optogenetics has been shown to be 
able to induce whole organ (e.g., eye22) formation, regeneration of appendages under normally 
non-regenerative conditions,23 and even the formation of head structures belonging to other 
species.24 It is clear that bioelectric computations within cell groups are an important and 
increasingly-tractable interface through which to control large-scale growth and form.25 
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Figure 1. Fundamentals of developmental bioelectricity and its modeling in BETSE 

(A)  Sample bioelectric patterns, as revealed by voltage reporter dye technique26 of the cleavage-stage frog 
embryo, the planarian flatworm, and the developing frog face (left-to-right). Reproduced by permission from 25. Image 
of frog embryos produced by Dany S. Adams; image of planarian produced by Taisaku Nogi. 

(B) The fundamental “electrical circuit” implemented in BETSE, shown on a simplified geometry of two 
triangular cells (1 and 2) surrounded by their respective extracellular spaces (3–7). Note that in BETSE, and in 
contrast to the simplified image shown, cells are defined from a Voronoi diagram and are polygonal with four or more 
membranes, and that a larger network of 10–1000 cells is considered in simulations. Each cell–extracellular junction 
has a capacitive component (membrane capacitance Cm), a “resistive” component (cell membrane diffusion 
coefficients, Dm), and a variable current source (representing the action of pumps, ip). Transfer between two cells 
occurs via GJs, which are represented by a “resistive” component (Dgj). Transfer between extracellular spaces and to 
the environment is handled using “resistive” components (Do). Boundary conditions at the global environmental 
boundary are represented by grounded voltage (V = 0) and fixed concentrations representing an open boundary with 
Dirichlet conditions. Self-capacitances for each cell and extracellular space are not shown. Image reproduced by 
permission from 27. 

(C) Electro Diffusive mass transport in a GJ networked cell cluster is assumed to follow three pathways.  
(D) Close-up view of the cell membranes. (1) transmembrane – between intra- and extracellular spaces 

across the plasma membrane; (2) inter-cellular – between cellular spaces via GJ; and (3) environmental – between 
extracellular spaces and in the global environment. Image reproduced by permission from 27. 
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 One example of this kind of approach is the repair of brain defects in an amphibian 
model. Recent work has shown that profound defects of the brain induced by alcohol and 
nicotine, as well as by mutation of the critical neurogenesis gene Notch, could all be rescued by 
reinforcing the normal bioelectric prepattern that controls brain morphogenesis.28-31 Not only did 
animals regain normal brain anatomy and gene expression, but their behavioral intelligence was 
also returned to normal. This was accomplished by computationally modeling the ion channel 
circuit responsible for the bioelectric prepattern of the nascent brain, and then using that model 
to search for an intervention (in this case, activating the HCN2 channel) that would return the 
pattern back to normal. This forms a proof-of-concept for a roadmap in which bioelectric 
modeling is a central part of a platform that predicts electroceutical drugs for a range of 
biomedical indications. Importantly, the same treatment was also seen to rescue defects of the 
heart, face, and gut, even though bioelectric prepattern data for those organs are not yet 
available, reinforcing the fact that control principles may be highly conserved: cracking the 
bioelectric code in one context may provide actional information for interventions in others. 
 Thus, it becomes essential to be able to model bioelectric dynamics and to leverage 
those models to identify specific bioelectric perturbations (ion channel modifications using drugs 
or other methods). Bioelectric dynamics have been modeled using an equivalent circuit 
approach,32-34 as well as a more bio-realistic simulation using a tool known as Bioelectric Tissue 
Simulation Engine (BETSE).27, 35  BETSE is a sophisticated physiological simulator which takes 
as input information about tissue geometry and the presence of various ion channels and gap 
junctions, and reveals what the bioelectric patterns will be in that tissue as a function of time. 
Thus, it has the potential to reveal aspects of self-organization and symmetry-breaking,36, 37 
which are essential to understand how complex patterns in development arise from one egg 
cell. It can also reveal various computations in non-neural tissue that can be exploited in the 
contexts of bioengineering and unconventional computing, among others.38, 39 
 However, bioelectric circuit function is complex, because voltage-gating of channels and 
gap junctions results in feedback loops and propagating dynamics within tissues. Even though 
every cell in a tissue can have the exact same channels (i.e., they all appear identical from a 
proteomic perspective), the channels open and close dynamically forming rich behaviors that 
generate order and spatial fluctuations. Thus, it is not possible to readily intuit the kinds of initial 
conditions or perturbations that will result in a specific outcome pattern: computational tools are 
needed to help scientists solve the inverse problem of predicting which kinds of ion channel 
properties in a field of cells will give rise to a desired Vmem pattern. 
 There are major gaps in the current ability to predict bioelectric patterns and their 
temporal evolution in tissue. Moreover, it is not known what kinds of patterns typical bioelectric 
circuits can form – what are the possible behaviors to be found in the space of all possible 
bioelectric circuits? While chemical reaction-diffusion systems have been studied extensively, it 
is not clear what the computational and functional capabilities of bioelectric circuits are. To 
address these questions, here we undertake two main aims. First, we begin the development of 
tools for the bioinformatics of form,40, 41 using techniques from machine learning to help discover 
conditions for bioengineering/biomedical settings. Second, we start mapping out the phenotypic 
bioelectrical space  to construct an ontology of the kinds of patterns that bioelectric circuits can 
establish, facilitating the study of the emergence of complex bioelectric behaviors from a 
homogenous initial state. 
 
Approach 
        Specifically, we seek to solve the inverse problem: given a (disease, or initial) state with 
bioelectric pattern P’, and a known correct bioelectric pattern P, which native ion channel 
proteins should be opened and closed in order to convert P’ into P?  Once this is known, 
existing ion channel modulation techniques can be selected that would perform the needed 
manipulation of the ion channels. Using BETSE, any bioelectric circuit can be simulated through 
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time.27, 35, 42 However, it is very computationally intensive, and thus is not suited for exhaustive 
search. We produced a heuristic search algorithm tool to test one specific hypothesis - that 
distinct BETSE circuits exist, and can be found via the proposed ML approach, and that those 
circuits have several desirable properties: (1) self-organization, (2) robustness against transient 
(external) induced bioelectric perturbations, and (3) memory of this pattern that can be reset 
(permanently altered) to a different robust pattern by a specific bioelectric input stimulus. Such 
circuits would be important as testable models for building novel synthetic biological constructs 
such as biobots,43 and as targets for design of novel synthetic bioelectrically-controlled 
tissues.44-46 
 Within BETSE, cells are represented as shown in Figure 1 B, and simulations can be 
done of multicellular tissues that express specific complements of ion channels and pumps, with 
specific properties. Moreover, BETSE allow us to use external or internal  interventions 
(mimicking drug or optogenetic stimuli) that interact with the ion channels, extra cellular 
substances, voltage interventions or gap junction of the cells in the simulated tissue (see Figure 
1 C).   
 

 
Methods 

The work done in this paper uses two different programs: the tissue simulation program 
and the heuristic search program. BETSE (BioElectric Tissue Simulation Engine, 
https://github.com/betsee/betse) is an open-source cross-platform discrete exterior calculus 
simulator for 2D computational Multiphysics problems in life sciences (developed by Alexis 
Pietak at the Allen Discovery Center at Tufts). BETSE simulates the interaction of cells in a 
tissue and takes into account the electro-diffusion, electro-osmosis, galvanotaxis, voltage-gated 
ion channels, gene regulatory networks, and biochemical reaction networks (e.g., metabolism). 
Our heuristic search uses our own flavor of genetic algorithms that are tuned specifically to run 
efficiently on High-Performance-Computer (HPC) clusters (see Figure 2 A and B) to find the 
relevant parameter for our tasks. 
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Figure 2: Schematic of the heuristic search algorithm.   

(A) On initiation, the main algorithm creates the gene pool by choosing a random set of parameters and then 
spawns the agents.  

(B) Each agent is an independent process that performs an endless loop of selecting a new gene, running 
BETSE, and evaluating the fitness score of the result and starting over.  

(C) Each agent generates a new offspring by following this diagram. The agent selects the candidates from 
the gene pool, performing either Mutation or Crossover and then Mutation on the new offspring.  
 (D) The Selection operation, select the candidates from the gene pool using a weighted randomness base 
on the normalized population fitness score. 

(E) The Crossover operation uses parts from the candidates' chromosomes from the last step to create a 
new chromosome. In this example, we randomly choose a pivot location and combine the first candidate 
chromosome from the left side of the pivot and the chromosome from the second candidate right side of the pivot to 
create the new offspring.  

(F) The Mutation operation gets from the last step (Selection or Mutation) one chromosome and determines 
how many mutations to execute on the given chromosome, along with the strength of the mutation (mutation rate). In 
this example, the Mutation operation executes two mutations that change two genes from the offspring chromosome.  

(G) The fitness function can use a mask file for evaluating the tissue pattern. This mask file is an image file 
that contains black and white pixels. The fitness function uses this mask as a set of coordinates of the black/white 
pixels to pinpoint the exact cells in the tissue to evaluate. For example, the fitness function averages the cells Vmem  
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located under the black pixels and compares it to the average Vmem  of the cells in the white areas. The bigger the 
difference the higher the fitness score. 
 

A genetic algorithm is a heuristic stochastic exploration method that uses partial 
information to optimize a desired fitness function. The algorithm takes inspiration from the 
Darwinian natural selection process and uses similar operators – such as Selection, Mutation, 
and Crossover - to explore a large space of possibilities. Here, the genes in the genetic 
algorithm serve as the parameters for the experimental configuration test of the BETSE 
simulator. The genetic algorithm performs parameter tuning of the gene based on our fitness 
function, which we set for each task below. The genetic algorithm is composed of multiple 
agents that share a gene pool, run simultaneously, and tune asynchronously.  

The genetic algorithm works as follows: its main program starts by creating the gene 
pool by choosing a random set of parameters, and then spawns the agents. Each agent is an 
independent process that performs an endless loop: selecting a new gene, running BETSE, and 
evaluating the result. Each looping agent process starts by selecting sets of genes from the 
gene pool, performing Crossover and/or Mutation, and thereby creating a new set of genes 
(offspring). Then the agent evaluates the offspring by running BETSE, and then runs the fitness 
function against the BETSE results. Each agent evaluates whether its resulting gene fitness 
score is better than any other gene in the population. Depending on the fitness score, if any one 
of the genes in the population ranks lower than the agent’s fitness score, the agent replaces the 
lowest fitness score with its own, thus improving the fitness score of the general population. 

 
Genes and Population 

The population (gene pool, see Figure 2 D) contains all the genes in the population and 
their fitness score. The gene pool is shared between all agents and is used by the selection 
process in each running agent. Each genome in the population contains a set of 33 genes 
corresponding to the parameters of our task. Each one of the 33 genes specifies a number 
between 0 to 1, and the metadata on each gene is stored separately. The metadata of the 
genes is the effective range of each parameter, as well as some other properties relevant to the 
parameter (e.g., “round 19” means that genes that are represented by a 64-bit floating point 
number will be rounded to 19 digits). The genetic search algorithm tries to explore this 33-
dimensional space to maximize the fitness score of the given task. 

  
Genetic Algorithm Steps: 

The genetic algorithm uses genes to represent the parameters in the system. To operate 
on those genes the algorithm employs operators similar to those found in Darwinian natural 
selection. In natural selection, the population represents the most successful candidates of the 
previous generation, and the next generation is created from the candidates with the preferred 
traits.  The genetic algorithm (see Figure 2 C) operates as follows: To create the new offspring, 
it first needs to select a couple of gene strains from the gene pool. Depending on the diversity of 
the gene pool, the algorithm selects either the Crossover operation or the Mutation operation.If 
the diversity of the gene pool is low, the chances of choosing Crossover are reduced, since 
crossover between similar genes does not contribute much to the guided search.  In any case, if 
Crossover has been selected, there is still a 50% chance that mutation can occur on the gene 
that results from the Crossover operation. 

 
Selection 

The first step of the agent is to select parents to create offspring. The agent can choose 
one, two, three, or four candidates to serve as a baseline from which to create the offspring. The 
Selection process uses weighted random selection to choose suitable candidates from the 
population (see Figure 2 D) based on their fitness scores. This method tends to increase the 
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percentage of “better-fit” genes in the gene pool. The weighted random formula uses a 
normalized population fitness score according to the following pseudo-code: 
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The weighted score of the population is used as a discrete probability distribution for the 

random function that chooses the candidates for the next operation (Crossover or Mutation).  
 
Crossover 

Given the parents’ gene vectors from the Selection process, the Crossover process 
merges random parts of each parent to create the offspring vector. Crossover starts by 
randomly selecting (via uniform distribution) a set of pivot points where the vector merge starts 
(see Figure 2 E). The Crossover operation can use two or more candidates in order to create 
offspring. The number of pivot points that can be chosen by the Crossover operation can vary 
from 1 to gene length – 1, and will depend on the mutation rate, a variable set by the user. The 
result of this operation is a strain of gene that shares many parts with its parents, each parent 
having contributed different gene strains with their own unique features.  
 
Mutation 

The input for the Mutation operation can come from the Selection operation or the 
Crossover operation. In either case, depending on the mutation rate, the Mutation algorithm 
chooses one or more genes to be mutated. Each chosen location is added or subtracted from a 
random number between 0 to 1 and multiplied by the mutation rate variable (Figure 2F). 

 
BETSE parameters and initialization  

The total parameter space of our heuristic search was 33 parameters; 18 parameters 
relate to the cell's properties and 15 parameters relate to the initiation of the environment of the 
tissue (for the list of the parameters see the Supplementary Materials at 
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/U1QRS8). Of the 18 
parameters for cell properties, 11 are common to all permutations, and 7 are related only to 
voltage dependent ion-channels. In the first iteration of the BETSE simulation, all the cells have 
the same starting point, meaning they all have the same Vmem; therefore, no diffusion can occur 
since there is no voltage gradient present in the tissue. To address this issue, we introduce only 
in the first step of the simulation a symmetry break that introduces gradients in the tissue, and 
that then disappears right after the first step. This allows the diffusion reaction between the cells 
to begin. In our results presented here, 15 of the 33 parameters relate to the BETSE initializing 
the environment, and those are used for symmetry breaking at the beginning of the BETSE run. 
Each symmetry breaking point is a circular intervention that uses three parameters: one for the 
coordinate, one related to the radius, and one related to the strength of the intervention. In total, 
we use five symmetry breaking points that correspond to those 15 genes. 

  
Fitness function 

As part of the heuristic search algorithm, the result of each BETSE simulation needs to 
be evaluated to see how well it fits a desired profile. The evaluation process returns a score that 
represents whether our current result is closer to or farther from our desired pattern. For 
example, searching for a cell tissue that shows a specific Vmem pattern resembling a “smile” 
image, we first provided an image with the desired pattern (Figure 2 G). The fitness function 
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compares the Vmem of the cells that are located in the marked (black) pixels , and the Vmem  of 
the cells that are located in the unmarked (white) pixels of the mask. Thus, the fitness algorithm 
counts how many cells located in the desired smiley image (marked black in the fitness mask) 
have a higher value compared to cells that are outside of the mark. The fitness score counts the 
number of cells that are located in the white pixels and divides them by the total of cells in the 
unmasked image. The total fitness score that is returned to the genetic algorithm always ranges 
from 0 to 1. 
 
 
Results 

To use BETSE, one needs to set many parameters; these are related to cell morphology 
(cell properties such as cell membranes and ion-channels), and to environmental properties 
(such as chemicals that exist in the bath, temperature of the environment, etc.).Some of the 
parameters are easy to manipulate and control in the real world, and some are not. We fixed the 
non-negotiable parameters (e.g., materials properties of the ions that affect diffusion etc.), and 
let the heuristic search algorithm search the space of those parameters that experimentalists 
can readily control.  

All BETSE simulations start in a homogenous state where all cells in the tissue have the 
same values. In this situation, diffusion cannot drive the system from this hard stationary point; 
therefore, we included physiological noise (stochastic perturbations during the initialization 
phase of the model) to enable spontaneous self-organization. We chose nine specific tasks of 
biological relevance, in which to examine the capabilities of the heuristic search algorithm to find 
the right parameters in the multidimensional bioelectrical space. The goal of the heuristic 
algorithm was to propose a bioelectric circuit that fits our desired task. The tasks given to the 
heuristic search ranged in complexity from finding a simple bio-electrical circuit to finding 
complex bio-electrical circuitry. The results presented here use different shapes of tissues: tasks 
1-4 were made on a square tissue, while task 5 used a circular tissue, task 6 used many 
different shapes of tissue, and tasks 7-10 used an oval tissue resembling a planarian flatworm. 
Moreover, to better understand the interplay between transcriptional and bioelectric 
mechanisms, we also used two different gene-regulatory network (GRN) mechanisms for our 
configurations for tasks 1 and 5 (as described in the Supplemental BETSE config files). The 
different GRN mechanisms added some complexity to the Vmem patterns, but the search for the 
other parameters was the same as in the prior simulations. All the configuration details used in 
this paper can be found in the Supplementary Materials. The results below are representative 
examples from the heuristic search; the results for tasks 1-9 are the best fit for our fitness 
function. Examples in Supplemental Figures 1-23 show a sampling of interesting patterns 
employed in the process of finding the best fit for task 5. 

 
Task 1: Tissue with as little Vmem changes as possible over time, and cells maintain 
homogenous Vmem 
 We first sought to find a set of initial conditions that create a stable homogenous field – 
corresponding to an ion channel configuration that can support a stable, adult tissue region 
which is meant to be isopotential and remain constant for a long period of time. Thus, we 
searched parameter space for Vmem  outcomes with a very slow, almost zero activity. Moreover, 
the cells’ activity is characterized by slow change throughout all cells, meaning the variance 
between cells will be close to zero.  The heuristic search explored the parameter space for a set 
of parameters that return the highest score. The fitness function was set to reward a tissue that 
has the lower Vmem  variance between the cells. Each run of the heuristic searches for the 
genetic algorithm homing in on one solution that maximizes the fitness score. We found many 
such solutions, with the same voltage pattern and temporal characteristics but with different 
parameters. The example presented in Figure 3 is one of the examples we found, using the 
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parameters from the configuration files in Supplement 1 (file directory Task 1). We conclude that 
bioelectric parameter space readily produces circuits with stable, homogenous bioelectric 
prepatterns. 

 
Figure 3: Results of Task 1, A tissue that has as little Vmem  change as possible over time, and the cells maintain 
homogeneous Vmem . Here is a temporal snapshot of a configuration that creates a cells’ tissue from initiation (A1) to 
the stable point (A3) 48 seconds from initiation to the (A6) end of our simulation at 3.3 minutes. (B1) is a timeline of 
average Vmem  of cells throughout running of the simulation. The tissue starts with an average of -80mV and stabilizes 
at about 50 seconds to a Vmem  that stays constant throughout the experiment. Throughout the experiment the 
variance between cells was negligible. (B2) shows the delta between cells over time. 
 
Task 2: Tissues that have as little change as possible through time, but with high variance 
between cells 
 We next searched for a circuit that would set up some rich spatial prepattern (regardless 
of what it might be) and maintained it stably over time. This case corresponds to a 
developmental scenario in which a patterned regionalization needs to be established (e.g., 
organ compartments such as in the bioelectric face prepattern) and then maintained for 
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significant time. The heuristic search found many configurations that could fit this description. 
One of these is shown in Figure 4, where the tissue immediately stabilizes on a certain pattern 
and does not change that pattern throughout the experiment running time. This example uses 
the parameters from the configuration files in Supplement 1 (directory Task 2). 

 
Figure 4. Task 2: Tissues that have as little change as possible through time, but with high variance between cells. 
 Temporal snapshots of configuration of cells tissue from (A1) initiation depicting a tissue with a pattern that 
shows high variance at the immediate (A2) stabilization point and continuing to the end (A11) of the experiment. (B1) 
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is a timeline of the average of cells Vmem  throughout running of the simulation. The tissue starts with an average of 
about -117mV and stabilizes at about 15 second to a Vmem  that then stays constant throughout the experiment. 
Throughout the experiment the variance between cells was ignored. (B2) shows the change in Vmem  level between 
consecutive frames over time. It is seen that there was high change in the beginning of the run, but zero change for 
the remainder of the run.   
 
Task 3: Fits a specific Vmem  

We next simulated a scenario where, in the context of regenerative medicine or 
bioengineering, one wants a circuit that stabilizes at a particular Vmem  value , in order to (for 
example) normalize a depolarized tumor or kickstart regenerative response by depolarizing 
mature tissue. In this example, we set the fitness function to give the maximum score to a tissue 
where the Vmem  of all the cells in the tissue was stable at -35mV, with no variance among the 
cells. The heuristic algorithm found many configurations that fit our description, one of which is 
shown in Figure 5 A. 
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Figure 5. Task 3, Tissue that fits a specific Vmem .  

Temporal snapshots of the cells tissue from initiation (A1) to the stable point (A24) at 0.5 seconds. (B1) The 
tissue starts with an average of -50 mV and overshoots and undershoots the desired Vmem  until stabilization at about 
0.5 seconds. (B2) For easier viewing, we enlarged the stabilization process that occurred in the start of the run. 
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We then investigated how the tissue we found would behave under perturbation, and 
whether it would then be able to recover its desired Vmem ; we need to understand the 
robustness of such circuits, because in application it is important to know if target cells will 
bounce back from desired interventions or environmental noise. Thus, we implemented an 
external stimulation that was intended to shift the Vmem  away from our desired stable Vmem . The 
external stimulation temporarily changed membrane permeability to Na+ in all the cells’ tissue, 
corresponding to a transient opening of sodium channels. We found a range of responses to the 
stimulation. 1. In some of the tissues found by the heuristic search, stimulation caused the 
tissue to destabilize away from the desired Vmem. 2. In some tests, the tissues just ignored the 
stimulation and maintained the desired Vmem. 3. In some tests the tissues almost immediately 
stabilized on the desired Vmem. 4. In some tests  (see Figure 5B) the results were similar to the 
behavior of a PID controller,47 where the tissue actively tried to stabilize on our desired Vmem  
despite the stimulation. The tissue that behaved similarly to PID controllers showed a strong 
stable point in stabilization on the desired target, and the simulated cells quickly converged to 
the desired Vmem  despite the stimulation.  From the many examples we got from the heuristic 
search, we chose to show here one interesting example of the tissue that had homeostatic 
behavior at the cellular level, using parameters from the configuration files in Supplement 1 
(directory Task 3). Such behavior is not only useful for understanding resistance of cells to 
bioelectrical modulation (e.g., cancer cells during normalization attempts), but it is also a 
desirable property for synthetic biology constructs exploiting bioelectricity.  

Note that we did not need to have the fitness function specifically reward for stability: the 
homeostatic property was an emergent feature akin to a “free lunch” (in the physics sense) in 
some of these circuits. This could have interesting implications for the evolution of patterning 
mechanisms that involve bioelectric dynamics.48 
 
Task 4. Tissues with rich spatial structure that also change through time 
 We next pursued a variant of task 2, using parameters that produced a tissue that was 
not only spatially regionalized, but was also changing actively as a function of time. This 
enabled us to ask whether it was possible to establish very small spatial domains (i.e., cells 
close to each other that had very different voltage levels), and also to create highly active 
tissues where the bioelectric pattern did not have the stable character we observed in prior 
tasks: could the temporal and spatial domains of the bioelectric prepattern be similarly active?  
We set the fitness function to return a maximum score for a tissue that showed high variance 
between Vmem  of the neighboring cells, and to return a high score for high variance in its own 
Vmem  value throughout time. With this setup, the genetic algorithm found a set of cell 
parameters that produced much variance between cells. Moreover, the variance between cells 
was high not only spatially, but also temporally. In Figure 6 it is seen that the variance of the cell 
throughout time is high and fluctuates; the delta between frames is high; and the variance of 
frames is also high (see parameters from the configuration files in Supplement 1 (directory Task 
4)). We concluded that the space of possible circuits contains those with dynamic spatial 
evolution, as well as the stable ones shown in prior tasks. 
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Figure 6. Task 4: A tissue that has high variance of Vmem  between cells, in both spatial and temporal domain  

Temporal snapshots of tissue activity show high variance between neighboring cells and across time. The 
timeline starts with subfigure (A1) and ends with (A12). (B1) shows the delta between consecutive frames over time. 
(B2) shows the average of all the cells Vmem  throughout time, and standard deviation of the cells Vmem  throughout 
time. Marked change occured between cells (B1) and between cells in time (B2) throughout the experiment.   
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Task 5: Tissue that is stable on a specific pattern 
One of the key features of embryonic development and regenerative repair is its robust 

ability to reach a species-specific pattern. Likewise, bioengineers will want to be able to express 
channel complements in target cells that will enable them to autonomously establish an 
arbitrary, pre-defined pattern. Thus, we next explored the parameter space for a pattern that 
features concentric bands of Vmem  – a “bullseye”. The fitness function gave a high score to 
tissue that exhibited features similar to those in the desired pattern shown in Figure 7 A1. The 
fitness function scores high when the Vmem  between different areas in the tissue behave 
similarly to the Figure 7 (A1), but not focusing on the exact Vmem  values rather on the delta 
between different areas (in line with the observation that bioelectric patterns are interpreted by 
tissue as differences, not absolute values 29). Thus, the desired values of the cell Vmem  should 
be highest in the yellow circle, and gradually lower in the outer circle. The heuristic search found 
a proximity to the desired pattern, although not exactly a perfect match (Figure 7 B1 to B6). This 
example uses the parameters from the configuration files in supplement 1 (directory Task 5 - 
bullseye). 
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Figure 7. Task 5: Tissue that is stable on A specific pattern.  

A1) An example for a specific pattern – the bullseye. The fitness function gives a high score for tissue that shows 
a similar Vmem  pattern to the bullseye image. The number in the rings of the bullseye represents the percentages of 
the Vmem  value. The highest Vmem  value of the tissue is in the center (yellow) and the lowest is in the outer ring 
(white). (B1- B6) A snapshot of the cell tissue activity shows the similarity to the bullseye throughout time  (C1-C21) 
Temporal snapshots of the tissue Vmem activity that progresses in time toward the Smiley target. The tissue started 
with the symmetry breaking (C1) and progressed toward the desired pattern that appears in (C14), the smiley pattern 
maintains until the end of the simulation (C21). 
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We then searched parameter space for a circuit that would establish a Vmem  pattern 
matching the “Smiley face” pattern shown in Figure 2 G, because this was structurally similar to 
the bioelectric face prepattern shown in Figure 1 A. The search found a configuration of tissue 
that started with Vmem  patterns as result of our symmetry breaking (Figure 7 C1) and slowly 
morphed toward the desired Smiley face (Figure 7 C14) near the end of our simulation (for the 
full timeline see Figure 7 (C1-21)). This example uses the parameters from the configuration files in 
Supplement 1 (directory Task 5 Smiley). We conclude that it is possible to search for specific patterns; but 
using computational constraints, it is not easy to find a channel configuration for precisely the desired pattern.  
 

Task 6: Patterns with insensitivity to shape or size of tissue 
An important aspect of some applications, especially in vivo, is the case where the cell 

field does not have a simple desired shape – for example, because morphogenesis alters the 
tissue geometry, or because a wound bed may have complex and variable shape. Thus, we 
asked how much the patterns we see depend on the shape of the tissue in which they were 
originally discovered. We took two of the interesting configurations we got from the heuristic 
search in prior experiments and checked whether the pattern found can be maintained with 
different tissue shapes. We tested two different ion channel complements; one configuration 
features continuous (spontaneous) waves of Vmem  excitation, and the other configuration 
features stable high and low Vmem  patterns. We tested whether the patterns observed in the 
original shape would also arise if we changed the shapes of the tissue in way that was not 
present during the search process. We also examined stability with respect to cell number, as 
one of the key remarkable features of developmental biology is the ability to produce the same 
morphological pattern using radically different numbers of cells .49, 50 

In the next set of experiments, we simulated tissues in the shapes of a circle, snake, 
star, heart, flatworm, and ellipse, with 0.5X, 2X, and 3X the original number of cells. The results 
shown in Figure 8 reveal that the main features of the tissue activity are maintained regardless 
of the tissue shape and cell count. Figure 8 (C1-C6) shows our finding that the tissue with the 
slowly-changing pattern maintained its ability to generate a similar pattern with the same 
characteristic of low and high Vmem. The exact voltage image was not maintained, but the overall 
pattern was very similar across shapes. Similarly, in Figure 8 (A1-A4, B1, B4) the tissue with 
high activity of excitation maintained the excitation feature and had similar refractory periods; 
however, different shapes and cell counts altered the frequency of the excitation waves by a 
small amount as a result of feedback from the cells in the , the time it took for one wave to reach 
the end of the tissue, and the interference between waves as a result of tissue size.  Our 
conclusion is that some characteristics – such as frequency of activity, high and low distributions 
and duty cycles of the Vmem  – are sensitive to the size and shape of the tissue. However, the 
main characteristic of the tissue, such as stripes, variance between cells, and ability to have 
action potential, all are maintained regardless of tissue size and shape.  
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Figure 8. Task 6: Patterns with insensitivity to shape or size of tissue  

Similar excitation patterns appear in different sizes or shapes of a tissue. Here we show the mean and 
variance of the cells for Circular tissue (A1, B1), Worm-shaped tissue (A2, B2), Elliptical tissue with 530 cells (A3, 
B3), and Elliptical tissue with 130 cells (A4, B4). The bio-electrical configuration file shows the same Vmem  features in 
different tissue shapes and cell count: circle (C1), ellipse (C2), heart (C3), snake (C4), star (C5), and worm (C6). The 
tissue maintains the same characteristic of activity regardless of shape or number of cells.  
 
Task 7: Tissue that self-heals after receiving a stimulus 

Regeneration and regulative development are common in biological systems;51 likewise, 
it is a goal of biorobotics research to make living machines that self-repair. To help understand 
and re-create bioelectric patterns that can heal after injury, we searched for a circuit that could 
heal its stable pattern after a perturbation.52, 53  In this experiment, the fitness function checked 
whether the Vmem  of the tissue returned to its resting state after intervention. The virtual 
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flatworm tissue in Figure 9 A was divided into several regions, plotting the average Vmem  of each 
region. We found a tissue that started by stabilizing on its resting voltage, but then when the 
external stimulation started, it temporarily changed the membrane permeability of all its cells. 
The fitness function scored a tissue that shows any reaction to the stimulation; the highest 
scores was given to tissue that returned to the resting state when the stimulation was over. The 
genetic algorithm found a configuration that created a cell tissue that self-healed its bioelectric 
pattern after intervention (see Figure 9 B). This example used the parameters from the 
configuration files in Supplement 1 (directory Task 7), and showed that it is possible to identify 
homeostatic multicellular bioelectric patterns. 
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Figure 9.  Tissue stimulations in tasks 7,8 and 9,  

A) Worm-shaped tissue was divided into Front, Middle and Back regions. Because those three parts did not 
include all the cells in the worm, we designated a fourth section, called Leftover, that contained all cells not included 
in the first three. We used those regions in the following tasks. The stimulus in Tasks 7, 8, and 9 stimulated only the 
Front part of the worm.  

B) Task 7: Tissue that self-heals after receiving a stimulus. We found a bioelectrical configuration that 
created a tissue that self-healed after external stimulation. The stimulus started about 5 seconds from the initiation of 
the experiment, and the Vmem  of the Front part of the tissue reacted to the stimulus. When the stimulus stopped at 
about 17 seconds, the Vmem  of the Front tissue returned to its starting voltage. Other parts of the tissue (Middle and 
Back) showed no sign of influence from the stimulation.  

C) Task 8: Tissue that retains Vmem  (shows memory) after stimulation. We found a bioelectrical configuration 
that created a tissue that had a memory effect. The tissue received a stimulation about 5 seconds from the initiation 
of the experiment, and all parts of the tissue reacted to the stimulation. When the stimulus stopped at about 17 
seconds, the cells in all parts of the tissue maintained a Vmem  similar to the one reached during the stimulation.  

D) and E) are two experiments of Task 9: Finding a tissue that showed a different Vmem  value for the second 
stimulus. Both D) and E) stimulated the Front part of the tissue, and all parts of the tissue reacted to the stimulus. D) 
showed one Vmem  value for the first stimulation (at about 2 seconds) and a different Vmem  value for the second 
stimulus (at about 60 seconds). The Front, Back and Middle regions reacted differently to the stimulations.  

E) was the same experiment as D), but with different stimulation time and duration of the experiment, to 
show resilience to different stimulation conditions.  
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Task 8: Tissue that retains Vmem  (memory) after stimulation 
 The complementary task to a self-healing pattern is one that works as a re-writable 
memory: once the voltage is changed, can a circuit hold the new pattern? This could potentially 
be useful not only for synthetic constructs with memory properties, but also to explain 
phenomena such as two-headed planaria resulting from Vmem modulation, which continue to 
generate two-headed offspring in perpetuity (because their axial polarity pattern memory is 
permanently re-written to a different pattern by transient stimulation).52, 53  

We explored the parameter space for a set of parameters that enabled tissue to have 
long-term memory of a change induced by stimulation. The fitness function gave a higher score 
to a tissue that stabilized to a resting voltage level, reacted to stimulation, and maintained its 
new Vmem  state for the duration of the simulation even after the stimulation had ended, . 
Because of the relevance to work on planarian regeneration, we used a planarian tissue shape 
for this task. We found a circuit that started by stabilizing on its resting voltage; then when the 
external stimulation began, all the cells in the tissue reacted. When the stimulation period was 
over, all the cells in the tissue maintained their membrane voltage for the rest of the simulation 
(Figure 9 C). This example used the parameters from the configuration files in Supplement 1 
(directory Task 8). We conclude that bioelectric circuit models can explain the re-writability of 
stable Vmem patterns by transient stimuli. 
 
Task 9: Temporal memory – a tissue that responds differently to first and second stimuli 
 Finally, we were interested in the ability of bioelectric circuits to perform simple 
computations and exhibit a kind of temporal memory, by reacting differently to a second 
stimulation than it reacted to a first instance of stimulation. Numerous examples in biology show 
this, from preconditioning54, 55 to history-dependent regeneration responses in axolotl limbs.56 
We performed a heuristic search using a fitness function that gave a high score to a tissue that 
stabilized to a resting voltage and reacted to stimulations. The highest score would be achieved 
by a tissue in which the average cell Vmem  during the first round of stimulation was different from 
that which occurred during the second round of stimulation. 

We found a tissue that started by stabilizing on its resting voltage; then when the 
external stimulation began in the Front part of the tissue, all cells in the tissue reacted. At the 
end of the first stimulation all cells of the tissue decayed back to the resting potential. When the 
second stimulation began, the voltage of all the cells reacted to the second stimulation 
differently. Each tissue part attained a different average voltage from that observed during the 
first stimulation (Figure 9 D,E). This example used the parameters from the configuration files in 
Supplement 1 (directory Task 9). These data showed that the cells maintained a sort of memory 
that caused to the cell to react differently to the second stimulus, maintained in the form of 
numerical values and the dynamic of the diffusion reaction of the cells. Since the cells did not 
return to the same conditions they had at the start of the experiment, the history of the activity is 
still present in the cell dynamics and in the interaction between cells. Thus, the cells exhibited a 
typical dynamic process that cannot be reversed; so any point in the process is a unique point 
that contains some clues to the history of the system. We conclude that spatial bioelectric 
circuits can exhibit memory that distinguishes first and second instances of a specific input. 
 
Discussion 
 Bioelectric patterns in tissue are critical determinants of growth and form.6, 10, 25 For this 
reason, efforts to understand the evolution of bodyplans,57 to repair anatomy in regenerative 
medicine contexts,58 and to engineer novel biorobotic constructs39, 58, 59  will all require control of 
emergent voltage potential profiles. Biorealistic simulators are now coming on-line for the 
quantitative modeling of circuit behaviors in silico,27 which can be part of a workflow60 that 
solves the inverse problem: what set of ion channels and gap junctions, if expressed in cells, 
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lead to the emergence of specific bioelectric prepatterns?  Here, we report an initial effort 
toward applying machine learning tools to the discovery of initial conditions (ion channel 
parameters) that form a circuit with desired spatio-temporal properties. 
 We focused largely on spatial patterns, because developmental bioelectric signaling 
requires slowly changing geometric prepatterns. However, many examples of more neural-like 
behavior (spontaneous firing, propagating waves, etc.) were also observed and can be modeled 
using this method. One major knowledge gap that we sought to address was exploration of the 
space of possible bioelectric circuits. As published work in the field characterizes endogenous 
bioelectric circuits and their resulting patterns, it is important (for evolutionary and synthetic 
bioengineering purposes) to also understand the latent space around these specific parameters. 
What can bioelectric circuits do – what general behaviors can possibly be found, and what 
search methods are promising approaches for identifying them? 

We chose genetic algorithms for heuristic search, among other reasons, because these 
algorithms approximate the natural process that led to the emergence of multicellular 
anatomies. We searched the space of ion channel parameters, which in biology are set by the 
genes encoding each ion channel and gap junction protein. The dynamics we observe shed 
light on the kinds of dynamics that are achievable by an evolutionary process operating over the 
space of ion channel-encoding genes and the resulting multicellular voltage patterns. 
 
Limitations 

From our experience with the tasks above and from prior work,61, 62 there are at least 
three major obstacles to the effort of identifying desired bioelectric circuit parameters. First, 
heuristic searches in general, and genetic algorithms in particular, assume that the parameter 
space can be understood and interpreted as gradually changing toward the best possible 
solution. The bioelectric phenotype space has not yet been mapped in detail, and it was unclear 
how rugged or amenable to hill-climbing search it would be. Second, the heuristic search also 
assumes that the fitness function can guide the search to the target by following the highest 
fitness score. If the space of the fitness score is a nonuniform distribution of scores, then the 
heuristic search can drive the search in unexpected directions. Furthermore, if the fitness space 
does not have a clear gradient, the expectation is that the fitness function should know to 
handle the distorted fitness score space and provide a gradual path toward the target, 
regardless of the terrain. Third, defining the desired target is also a challenge. For example, in 
task 5, we wanted to search for a tissue that has the same Vmem  features as found in the 
bullseye image. We designed a fitness function that gives a score to a tissue that shows a 
significant gradient from the center of the tissue to the outer border of the tissue. This 
experiment did not find precisely what we were looking for; however, one of the patterns found 
(see Supplementary images) shows an image similar to one of the possible images of a 
bullseye. That reveals that similar to the alignment problem in machine learning 63, designing a 
fitness function even for a simple pattern like a bullseye can be a non-trivial task, because many 
other possibilities may resemble the desired target, and it’s difficult to formalize a function that 
captures all the features that a human observer intuitively recognizes as correct (i.e., shifted, 
scaled, and slightly distorted versions of the ideal pattern).  
 
Next steps: the future of bioelectric circuit design and discovery 

Our findings suggest that the bioelectric parameter space contains many different 
patterns, where each one of the patterns resides within different sizes of islands that contain 
some variation of the same pattern. Some of the islands have the potential to be candidates for 
a given target and others are not. This is difficult to illustrate, because the search involves 33 
dimensions, while other studies that use a simpler model like a Hodgkin-Huxley neuron use 
fewer parameters (e.g., like those found in 62, 64, which show how a typical parameter space can 
be visualized). We also explored only a small proportion of the parameter space, since 33 
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dimensions constitute quite a large space to experiment and can easily rival the number of 
atoms in the universe. Each configuration file has 33 different parameters that the heuristic 
search can manipulate. For simplicity, let's assume that each parameter has only 100 possible 
values; that would give us 10033 = 1.e+66 possible parameters to explore. Running BETSE 
takes about 50 minutes on a strong computer, which makes for a very time-consuming task 
overall.  We expect that with improvements in high-performance computing, much more high-
resolution searches can become tractable. 

There are several different paths to explore for more effective searches in the future. 
Using the result of our current exploration, we hope to devise a machine learning method that 
can speed up the heuristic search by leveraging the experience of past explorations to improve 
the gene selection process and the fitness function. Machine learning can steer the search to 
areas where there is more chance to find the desired pattern.  Another option is to add some 
intelligence to each cell, maybe using embedded Gene Regulatory Network elements inside 
each cell to shift part of patterning formation and cell intelligence to the cell and begin to 
implement a more life-like multi-scale competency architecture.65, 66 Finally, it may be possible to 
add a translation layer between the parameters exposed to the heuristic search and the cell 
parameters (ion channels, conductance level, etc.) – in effect, enriching the physiological 
information-processing. This additional layer will translate the heuristic search parameter tuning 
to a non-polynomial change of the underline cell parameters. A change in one of the heuristic 
search parameters could transform this translation layer into a series of ion channel 
manipulations in a non-polynomial way. Thus, the translation layer will try to correct the 
deformities in the rugged fitness space, by shifting part of the work to the cell and its interaction 
between other cells. A final future direction is to design a fitness function that interacts with the 
environment, similar to the interaction between actor-critic artificial neural networks.67  
 Regardless of the details, it is very likely that the incredibly rapid pace of advances in 
parallel computing and machine learning will impact this field positively over the near future. We 
envision sophisticated artificial intelligence systems that will work together with human scientists 
to enable a new generation of bioinformatics, complementing the current focus on biochemical 
and transcriptional circuits with the extremely powerful machinery of bioelectrics. This will have 
enormous implications for understanding and rational control of voltage-based signaling in 
health, disease, and synthetic bioengineering applications. 
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