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Abstract 12 

The capacity for autonomous behaviour is key to human intelligence, and fundamental to 13 

modern social life. However, experimental investigations of the cognitive bases of human 14 

autonomy are challenging, because experimental paradigms typically constrain behaviour 15 

using controlled contexts, and elicit behaviour by external triggers. In contrast, the sources of 16 

human autonomy and freedom are assumed to be endogenous. Here we propose a new 17 

theoretical construct of adaptive autonomy, meaning the capacity to make behavioural choices 18 

that are free from constraints of both immediate triggers and habitual responding. Participants 19 

played a competitive game in which they had to choose the right time to act, in the face of an 20 

opponent who punished (in separate blocks) either choice biases, habitual sequences of action 21 

timing across trials, or habitual responses to the effects of reinforcement. Adaptive autonomy 22 

with respect to each habit was measured by the ability to maintain performance against the 23 

opponent even when the corresponding habit was punished. We found that participants were 24 

able, under pressure from their opponent, to become free from habitual choices of when to act, 25 

but were not able to free themselves from win-stay, lose-shift patterns of reinforcement, even 26 

when these resulted in punishment.  These results propose a new testing ground of 27 

autonomous behaviour as a flexible adaptation of more or less habitual behaviours that co-28 

exist with different classes of external constraint.  29 

 30 

 31 
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Introduction  32 

Animal behaviour depends upon both exogenous, environmental factors and endogenous 33 

factors. The endogenous factors can be conceptualized as a dimension extending from 34 

stereotypical behavioural patterns like habits, and flexible, intelligent actions. The latter are 35 

thought to play a special role in human autonomy and volition. Adaptability and variation of 36 

behavioural choices allows humans to adapt to environmental challenges and find novel 37 

solutions. The capacity of human autonomy has been extensively examined in experimental 38 

tasks which encourage participants to act freely (Brass & Haggard, 2007; Fleming et al., 2009; 39 

Jahanshahi et al., 1995; Libet et al., 1983) or to act randomly (Baddeley et al., 1998; Baddeley, 40 

1966; Jahanshahi et al., 2000) by explicitly telling them to do so. Such instructions in voluntary-41 

action studies invite participants to behave in a way that reflects their understanding of volition 42 

and freedom (Haggard, 2008). Outside the laboratory, in contrast, people readily switch 43 

between more stereotyped and more autonomous behaviours without explicit instruction, as a 44 

function of multiple situational and internal factors.  45 

 As such, it remains unclear the extent to which people can express their behavioural 46 

autonomy through volitional actions. Competitive games might be a good testing ground for 47 

this question, for two reasons. First, many competitive games require people to initiate an 48 

action endogenously, rather than in response to an external stimulus. For example, in the ‘rock, 49 

paper, scissors’ game, each participant selects an action without first seeing the action of their 50 

opponent. This stimulus-independence is considered a necessary condition for volition 51 

(Jenkins et al., 2000). Second, volitional actions are often contrasted with habitual, or routine 52 

actions (Haggard, 2019).  Competitive games offer a convenient way to manipulate the extent 53 

to which any individual action is or is not habitual.  For example, if a player behaves habitually 54 

in a competitive game, their opponent will be able to predict their upcoming choice, and adjust 55 

their strategy accordingly. Therefore, an agent playing a competitive game should avoid 56 

habitual or exploitative behaviours, and must innovate in order to avoid being predicted. Non-57 

human primates indeed respond to competitive pressure by initiating exploratory behaviour 58 

(Barraclough et al., 2004; Lee et al., 2004; Lee et al., 2005).  59 

The present study therefore investigates human volition and autonomy in a competitive 60 

game task in which participants could not react to their competitor’s current move (stimulus 61 

independence), and additionally could receive reward only when they avoided the competitor’s 62 

prediction (habit independence). Further, we used several virtual competitor algorithms, each 63 

one designed to punish a particular kind of habit.  Whereas psychologists have often thought of 64 
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habits as personality traits, we reasoned that a person may stop behaving habitually when a 65 

competitor begins to predict, exploit and punish their habitual beahviour. Thus, the change in 66 

habitual behaviour under competitive pressure offers a quantitative measure of individual 67 

autonomy with respect to habits.  68 

 We conceptualised three distinct “habitual families”1. The first was automatic response 69 

selection (Dolan & Dayan, 2013; Du et al., 2022; Robbins & Costa, 2017). We will refer to this 70 

as standard choice habits. Consider the simple task of generating one of three digits in each 71 

turn (see Figure 1A). Agent X may prefer to choose “1”, for whatever reason, while agent Y 72 

may be less biased. The statistical similarity between an individual’s observed choice pattern 73 

and a random pattern can be measured (depicted by the right arrow in Figure 1A). Suppose 74 

now that a competitor punishes X for repeating one choice within a game scenario. If X can 75 

break her habit, she should now choose the two other digits more often (shared area in Figure 76 

1A). Agent Y may be less adaptive and stick to his original choice pattern. This adaptive 77 

capacity may reflect the autonomy each agent has over their choice habits (left arrow in Figure 78 

1A). We call this quantity adaptive autonomy.  79 

 The second habit family we considered is transition habits. This refers to action chains 80 

or routines (Lashley, 1951; Robbins & Costa, 2017; Rosenbaum et al., 2007). In our example, 81 

integer counting (“1, 2, 3”) is such a habit (agent X in Figure 1B). The only way to completely 82 

avoid such habits is to generate each choice independently from the previous trial. Yet studies 83 

of random number generation show people find this difficult (Baddeley et al., 1998; Baddeley, 84 

1966; Bar-Hillel & Wagenaar, 1991). The shaded area and left arrow in Figure 1B illustrate 85 

potential behavioural adaptation to punishing transition habits. 86 

Lastly, we address how people respond to action successes and failures, by 87 

___________ 
1 The concept of a habit has been discussed over centuries by philosophers (Barandiaran & Di Paolo, 
2014). Its theoretical framework has been formalised by psychologists and neuroscientists’ works, but it is 
still controversial (Dolan & Dayan, 2013; Du et al., 2022; Robbins & Costa, 2017). A psychologist's view of 
a habit is that it reflects the formation of stimulus-response associations (Wood & Runger, 2016). A 
traditional testing ground for habits is a reward devaluation paradigm. Here a reward previously assigned 
to a stimulus-response association is devalued (Robbins & Costa, 2017). If the response is still 
automatically evoked by the stimulus, its behaviour is said to be a habit rather than goal-directed. In the 
present study, we do not aim to examine whether or how habits are formed. Rather, we investigate how 
people become liberated from their endogenous habitual patterns. The three habit families we 
conceptualised are considered different expressions of habits. From the perspective of a stimulus-
response association, standard choice habits are any obvious responses in any task. Rule habits are 
those responses evoked by the last response. While reinforcement habits are the responses elicited by 
the last outcome/feedback. The precise mechanism by which each habit forms is unimportant. Rather, the 
concept of three habit families refers to statistical patterns that are not random nor independent (see 
below) and that may be continually shaped by ongoing experience. Thus, volition in our paradigm requires 
the regulation of salient/habitual patterns and the exploration of new behavioural patterns.  
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considering reinforcement habits. In Figure 1C, agent X show typical win-stay lose-shift 88 

behaviour in a digit generation task. In contrast, a habit-free agent generates each choice 89 

independently from whether the previous outcome was rewarded or not. The vast majority of 90 

studies in reinforcement learning assume that a ‘win-stay lose-shift’ strategy is natural, or even 91 

unavoidable (Worthy et al., 2013). Here we test whether people can unlearn this familiar 92 

reinforcement habit when it is punished by a competitor. Adaptive autonomy would mean that 93 

an agent would be able to break the association between their next action and the previous 94 

outcome (see the potential change in Fig. 1C).  95 

In this experiment, we designed a structured series of competitors in a game scenario, 96 

in order to selectively punish these specific habits, and measure individuals’ capacity for 97 

adaptive autonomy, as the change in behaviour when a specific habit family was punished. 98 

Using this framework, we tested the capacities or limits of human autonomy for three “habitual 99 

families” of choice, transition and reinforcement. To explore whether adaptive autonomy 100 

reflects a general capacity, or rather is specific to a particular habit family, we explored 101 

correlations across individuals in our adaptive autonomy measures for each habit. Finally, we 102 

modelled the learning process by which people generated a new action in order to avoid the 103 

competitor.   104 

 105 

Figure 1. Three habitual families in a hypothetical experiment. An agent is asked to generate 106 

one digit from three in each turn. A sequence of generated digits is shown in a square bracket 107 

from left to right. The precise task is not important. A. Agent X habitually selects the digit “1” 108 

while agent Y occasionally selects the other two digits. A habit-free agent should select each of 109 

the 3 digits randomly. A right arrow indicates a pattern similarity from the habit-free agent to 110 
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agent X or Y. B. Agent X has a trait rule-based transition habit, in which they count up from the 111 

last digit. The habit-free agent selects the digit independently from the previous digit. C. In 112 

certain situations where an agent is rewarded, the pattern that is dependent on the reward 113 

assigned captures a trait reinforcement habit. In all habitual families, we measure the extent to 114 

which selection patterns change when agents are punished for habitual action. Shaded areas 115 

represent digits changed after the punishment and hypothetical agents move their location 116 

closer to the habit-free agent. A left arrow illustrates adaptive autonomy, a change in 117 

behavioural patterns with respect to habits.  118 

 119 

Results 120 

Experimental task 121 

Participants were asked to decide when to press a key that caused some food to be delivered 122 

to a storage location. They were competing with a virtual competitor, represented as a flock of 123 

birds (Fig. 2A). The birds tried to catch the food during the delivery process, by deciding when 124 

to fly out of a tree and across the field. The participant’s task was to deliver the food without it 125 

being caught by the birds. We programmed the birds to predict the time of the participant’s next 126 

action based on the history of their reaction times. Based on this prediction, the birds made a 127 

choice of when to fly on each trial. They flew at a time that was designed to intercept the food 128 

thrown by a participant within one of three intervals: 1) early throw (0–1.5 sec), 2) middle throw 129 

(1.5–3.0 sec) or 3) late throw (3.0–4.5 sec). The participants could win a trial by pressing the 130 

key during one of two intervals that the birds did not select. The intervals were not explicitly 131 

demarcated for the participant, who experienced a continuum of potential action times in each 132 

trial. There was no time for participants to perform the task reactively because the birds could 133 

travel much faster than the food. If the participants simply waited for a moment when no birds 134 

flew and then threw, the birds could suddenly appear and intercept the food. Therefore, the 135 

participants were asked to predict when the birds would appear and avoid them. This feature 136 

means that our participant’s actions were stimulus-independent. 137 

There were 4 blocks in total. In each block, the participants competed with a class of 138 

competitor that pressurised a specific habit (Fig. 2B). In the baseline block, Competitor 0 was 139 

programmed to punish the participants for being impatient: the birds consistently punished a 140 

participant who threw in the early interval, so the participant was incentivized to wait to avoid 141 

being intercepted. In block 1, Competitor 1 punished standard choice habits, if a participant 142 

selected one interval more often than the other two. In block 2, Competitor 2 predicted 143 
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transition habits, and punished any association between the time of the participant’s current 144 

throw and the time of the preceding throw. Finally, in block 3, Competitor 3 punished 145 

reinforcement habits by seeking out whether the time of the current throw was associated with 146 

both the time of the preceding throw and the preceding outcome. Thus, the participants played 147 

against competitors who had increasingly sophisticated predictive power in each block. The 148 

participants required progressive degrees of autonomy across blocks: they needed to act in a 149 

way that was even more unconstrained than required by the competitors they had played 150 

previously.  151 

Participants did not receive any explicit instruction or explanation about what habits 152 

they should avoid. The participants were never told when they should act on any given trial. 153 

Instead, they could only monitor the success/failure of avoiding the birds on each trial, and 154 

adapt their behaviour accordingly to try to avoid the birds on future trials. Thus, successful 155 

performance under different punishment regimes would depend on implicit mechanisms of 156 

adaptation rather than explicit understanding.  157 

We first examined whether the predictive power of our protocol increased by checking 158 

the percentage of successful bird-avoiding trials. The participants achieved near perfect 159 

success rates against Competitor 0 who punished impatience (Fig. 2C; Median [Mdn] = 96.6%). 160 

The participants avoided an immediate response and initiated the throw 1.5 seconds after the 161 

trial starts on almost all trials (Fig. 2D upper panel). In block 1, the success rate dropped to 162 

66.6%, as would be expected from purely stochastic choices (Fig. 2C; Mdn = 64.3%, p < .001, 163 

z = 10.69 for blocks 0 versus 1, Wilcoxon sign rank). The success rate further decreased in 164 

block 2 (Fig. 2C; Mdn = 59.0%, p < .001, z = 5.74 for blocks 1 versus 2, Wilcoxon sign rank) 165 

and even further in block 3 (Fig. 2C; Mdn = 56.9%, p = .015, z = 2.44 for blocks 2 versus 3, 166 

Wilcoxon sign rank). Therefore, our progressive series of punishments increasingly stressed 167 

the participants’ cognitive demands for avoiding the competitor.  168 

 169 
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 170 

Figure 2. Virtual competitive environments for penalising habitual actions. A. A trial sequence. 171 

A participant decides when to throw food within a 4.5 second time window. The food is 172 

delivered at the top-centre of the screen 1.5 sec after a key press. A virtual competitor (i.e., a 173 

flock of birds) attempts to intercept the food by adjusting the time at which it flies out of a tree. 174 

Participants win a trial if they avoid being caught by the birds. B. Experimental (game) design. 175 

The virtual competitor predicted which time interval participants would initiate the delivery 176 

based on their past behaviour. On each trial, the competitor punished one of three intervals, 1) 177 

early throw (0–1.5 sec), middle throw (1.5–3.0 sec) or late throw (3.0–4.5 sec). An example 178 

sequence of action intervals is shown. In the baseline block, the early interval, associated with 179 

impatience, was punished. In block 1, standard choice habits that favoured one interval over all 180 

others were punished (e.g., the middle interval). In block 2, transition habits (i.e., sequential 181 

pattern) were punished. For example, if the participant went early, middle, late, early, middle 182 

and late, the last early action would likely prime the next middle interval. In block 3, 183 

reinforcement habits (i.e., outcome dependence) were punished. In the example, the repetition 184 

of the same interval likely follows from a reward while a change in interval likely follows from no 185 

reward. The rewarded last late action would prime the next late interval. C. Success rate of 186 

avoiding the birds against each class of competitor. A dashed line denotes the chance level. 187 

For each box, the central mark represents the median, the edges of the box are the 25th and 188 
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75th percentiles and the whiskers are the 2.5th and 97.5th percentiles. * p < significant level 189 

after Bonferroni correction, Wilcoxon signed rank. N = 152. D. Response times before the 190 

punishment of choice habits in the baseline block (upper panel) and during the punishment in 191 

block 1 (lower panel). Each small dot represents a reaction time in each trial. The response 192 

time data for each participant are aligned in each column.  193 

 194 

Do people adapt to punishments of habitual actions?  195 

We next examined the extent to which people could adapt to punishment of different 196 

habits. We therefore developed a measure that reflects an individual’s tendency towards a trait 197 

habit in each habit family. We measured the statistical distance (Kullback-Leibler [K-L] 198 

divergence) between the observed probabilities of selecting the early, middle and late intervals, 199 

and the probabilities that a habit-free agent would exhibit (right arrow in Figure 3A-C). A lower 200 

statistical distance means that the individual is close to the habit-free agent in terms of his 201 

choice profile. We call this quantity a decision bias. A decision bias score before the 202 

punishment of a specific habit reflects an individual’s trait habit regarding when to act. We then 203 

looked at the change in bias score when a given habitual behaviour was punished. We 204 

quantified the decision bias score for standard choice habits, transition habits and 205 

reinforcement habits, respectively (Figure 3A-C). A greater change in bias score would indicate 206 

stronger adaptive autonomy, or ability to modulate the trait habit. See Data analysis for 207 

detailsData analysis.  208 

Looking at response times, the participants began to distribute action times 209 

appropriately when Competitor 1 started punishing choice habits (Fig. 2D). Accordingly, their 210 

choice bias—a statistical distance of the observed choice probabilities from probabilities 0.33 211 

(Fig. 3A)—reduced after punishment (a dashed rectangle in Fig. 3D; Mdn = 1.37 for the 212 

punishment of impatience versus Mdn = 0.06 for the punishment of choice habits, p < .001, z = 213 

10.69, Wilcoxon sign rank). Competitor 1 did not seek transition patterns from one action to the 214 

next and allowed participants to still use transition habits. We quantified the sequential bias by 215 

considering the extent to which probabilities given the previous action are explained by one’s 216 

choice probabilities (Fig. 3B). We found that the sequential bias decreased after the competitor 217 

pressurised transition habits (a dashed rectangle in Fig. 3E; Mdn = 0.13 for the punishment of 218 

choice habits versus Mdn = 0.09 for the punishment of transition habits, p < .001, z = 3.82, 219 

Wilcoxon sign rank). Against Competitor 3, the participants were asked to act even more freely 220 

to avoid reinforcement habits. We evaluated the reinforcement bias by considering the extent 221 
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to which probabilities given the previous action and the previous outcome are explained by 222 

probabilities given the previous action solely (Fig. 3C). The reinforcement bias did not show a 223 

significant improvement (a dashed rectangle in Fig. 3F; Mdn = 0.11 for the punishment of 224 

transition habits versus Mdn = 0.11 for the punishment of reinforcement habits, p = .79, z = 225 

0.27, Wilcoxon sign rank).  226 

We further tested the possibility that the participants adapted differently to the influence 227 

of positive and negative reinforcements since the neural process after a positive outcome 228 

stimulus is different from that after a negative outcome stimulus (Gehring & Willoughby, 2002; 229 

Hajcak et al., 2006; Vickery et al., 2011), leading to a stereotypical win-stay lose-shift strategy 230 

(Wang et al., 2014). We quantified the positive reinforcement bias and the negative 231 

reinforcement bias separately (Suppl. Fig. 1). Nevertheless, we did not find significant 232 

improvements in the positive reinforcement bias (a dashed rectangle in Fig. 3G; Mdn = 0.29 for 233 

the punishment of transition habits versus Mdn = 0.34 for the punishment of reinforcement 234 

habits, p = .21, z = -1.26, Wilcoxon sign rank) nor in the negative reinforcement bias (a dashed 235 

rectangle  in Fig. 3G; Mdn = 0.43 for the punishment of transition habits versus Mdn = 0.41 for 236 

the punishment of reinforcement habits, p = .19, z = 1.30, Wilcoxon sign rank). These results 237 

suggest that people are able to become more autonomous from standard habitual choices and 238 

habitual action transitions but cannot break away from outcome dependencies. That is, people 239 

display habits of being guided by reinforced, such as win-stay lose-shift, even when they are 240 

discouraged from doing so.   241 

  242 
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243 
  244 

Figure 3. Measuring trait habits and adoptive autonomies in each habit family. In the raster plot, 245 

potential actions for the early, middle and late intervals are shown. The numerical values 246 

underneath the plot are the probabilities for choosing these three actions. A right arrow 247 

illustrates the statistical distance (i.e., pattern similarity) between a habit-free agent and a 248 

hypothetical agent X given their choice probabilities. This distance (or decision bias score) is a 249 
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proxy for an individual’s trait habit. The lower the distance, the smaller the bias. A. Choice bias 250 

(a proxy for standard choice habits). A habit-free agent would select each interval equally often 251 

while a fully biased agent would select one interval on every trial. The profile of a participant’s 252 

choices should be somewhere in-between. B. Sequential bias (a proxy for transition habits). A 253 

habit-free agent is underneath agent X in the panel (A) to have the identical choice 254 

probabilities to him. The choice probabilities might be larger than the random probabilities 0.33. 255 

However, the agent who is free from transition habits would choose their next interval 256 

independently of their previous interval: whether the previous interval was early, middle or late 257 

does not affect the probabilities of the next interval. Any deviations from such independent 258 

choice patterns are considered residual transitions from which participants cannot break 259 

(depicted by a right arrow). C. Reinforcement bias (a proxy of reinforcement habits). A habit-260 

free agent is underneath agent X in the panel (B) to have the identical conditional probabilities 261 

to him. The agent who is free of reinforcement habits would choose their next interval 262 

independently of the previous outcome: whether the previous outcome was success or failure 263 

does not affect the probabilities of the next interval. Any such independent choice patterns are 264 

considered residual outcome dependencies that participants cannot break (depicted by a right 265 

arrow). D-G. A dashed rectangle highlights adaptive autonomy as the theoretical difference 266 

between a pre-punishment and a post-punishment. * p < significant level after Bonferroni 267 

correction, Wilcoxon signed rank. On each box, the central mark represents the median, the 268 

edges of the box are the 25th and 75th percentiles and the whiskers are the 2.5th and 97.5th 269 

percentiles.  270 

 271 

Is there a common factor underlying adaptive autonomies?  272 

A change in decision bias scores between the pre-punishment and the post-273 

punishment phase provides a measure of adaptive autonomy for each habit family (dashed 274 

rectangle areas in Fig. 3D-G). We considered the domain-general mechanism of cognitive 275 

control, which proposes that proactive, strategic cognitive control shares its control mode 276 

across tasks that recruit different cognitive elements (Braver, 2012; Braver et al., 2007; Tang et 277 

al., 2022). If adaptive ability to become free of a specific habit (e.g., standard choice habits) 278 

generalises to adaptive ability to become free of another habit (transition habits or 279 

reinforcement habits), for example because both depend on a common, domain-general 280 

mechanism, then we would find a correlation between measures of adaptive autonomy elicited 281 

by different types of punishments. Looking at the correlation structure, we did not find strong or 282 
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even moderate correlations among them, in our sample of 152 participants (Figure 4A). This 283 

suggests that the ability to voluntarily regulate one habit is not associated with the ability to 284 

regulate another habit. This also suggests that our measurements are separable and evaluate 285 

three distinct forms of autonomy conceptualised above, rather than a single common form of 286 

autonomy. We also checked the correlation structure between the adaptive autonomy of 287 

positive reinforcement bias and that of negative reinforcement bias. There was no strong 288 

correlation (Figure 4B). This suggests that the ability to adapt away from a win-stay type 289 

behaviour is not associated with the ability to adapt away from a lose-shift type behaviour 290 

across participants. To summarise, people seem to recruit distinct cognitive capacities for 291 

autonomy when unlearning standard choice habits, transition habits and reinforcement habits.  292 

 293 

 294 

 295 

Figure 4. Correlation structure underlying measures of adaptive autonomy. A. A measure of 296 

adaptive autonomy for each habit family (choice, transition and reinforcement) is quantified as 297 

a change in decision bias scores between the pre-punishment and the post-punishment phase 298 

(dashed rectangle areas in Fig. 3D-F). In a sample of 152 participants, there is no strong 299 

correlation among three measure of adaptive autonomy, suggesting an adaptation is specific to 300 

a particular habit family. B. A measure of adaptive autonomy for a positive reinforcement bias 301 
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is plotted against that for a negative reinforcement bias, quantified as a change in decision bias 302 

scores (dashed rectangle areas in Fig. 3G).  303 

 304 

A learning process that accounts for behavioural autonomy  305 

 What mechanisms could explain how participants adapted to these pressures? How 306 

did they learn actions that successfully avoided their competitor? In competitive games, two 307 

strategies can be taken to sustain performance. One strategy is stochastic selection by tossing 308 

a coin. This mixed strategy helps with unpredictability but does so without interacting with the 309 

environment or competitor. An alternative strategy attempts to predict the opponent’s next 310 

action based on a history of their prior actions (Hampton et al., 2008; Zhu et al., 2012). This 311 

strategy is called belief learning (Camerer, 2003) – broadly speaking, the strategy adopted by 312 

the virtual competitor is considered belief learning. Belief learners employ an element of 313 

mentalizing because they engage in a representation of the actions and intentions of their 314 

opponent (Amodio & Frith, 2006; Hampton et al., 2008). Because our task is designed to 315 

produce stimulus independence, a BL strategy is a predictive way of achieving stimulus 316 

independence (i.e., predict when the birds would fly and avoid them). Thus, we can reason 317 

that, as a learning pathway, the participants might learn 1) a feedback-independent stochastic 318 

selection strategy, or 2) a feedback-based belief leaning strategy.  319 

 We simulated play to test whether the BL strategy is effective at avoiding competitor’s 320 

predictions. We calculated the reward obtained from simulated choices that BL agents made 321 

(see Simulated play). We also computed the simulated success rate of a simpler strategy, 322 

reinforcement learning, which selects the action that was the most rewarded (Sutton & Barto, 323 

2018). In principle, an RL agent knows whether their choice was rewarded or not and repeats 324 

the most rewarded action until it is punished. In contrast, a BL agent knows which option a 325 

competitor chose and which options they did not. For instance, if the birds intercepted the early 326 

throw, a BL agent reduces the value of the early throw. At the same time, a BL agent can also 327 

increase the values of the middle and late throws because the birds did not choose to 328 

intercept. An RL agent can only update the value of the throw based on whether it was 329 

successful or not. This difference in the internal processes allows a BL agent to update the 330 

values of the options quickly, thereby prompting a frequent update of the best option. In the 331 

simulated play, both RL and BL strategies achieved sufficient success rates under the 332 

punishment of impatience (Fig. 5A; Mdn = 96.7% for RL versus Mdn = 98.3% for BL). 333 

However, the BL strategy sustained a higher chance of winning than the RL strategy under the 334 
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punishment of choice habits (Fig. 5A; Mdn = 60% for RL versus Mdn = 66.6% for BL) and 335 

under the punishment of transition habits (Fig. 5A; Mdn = 51.6% for RL versus Mdn = 63.3% 336 

for BL). The use of belief learning might account for participants’ adaptions to explore new 337 

actions.  338 

 To address which of the above strategies (stochastic selection, RL and BL) captured 339 

our participants’ behaviour, we fitted each model to their choice data (see Computational 340 

models). We also fitted a hybrid learning rule (Camerer & Ho, 1999; Hampton et al., 2008; Zhu 341 

et al., 2012) which combines reinforcement learning and belief learning. The stochastic 342 

selection model had parameters that captured a participant’s choice preference and 343 

uncertainty, while the RL and BL models added a learning rate from feedback information. In 344 

this nested structure, a better model index relative to the stochastic model would indicate the 345 

presence of a feedback process. Across four blocks, we found a clear transition in the best-346 

fitting model (Fig. 5B). According to the summed AICc across participants, the RL model 347 

outperformed the stochastic model and BL model under the punishment of impatience. 348 

However, the BL outperformed when the competitor started punishing choice habits. The BL 349 

model still outperformed when the competitor punished transition habits and reinforcement 350 

habits (Fig. 5B). For each model we calculated the number of participants best fit by the model 351 

(Fig. 5C) and the protected exceedance probability from the group-level Bayesian model 352 

selection (Rigoux et al., 2014; Stephan et al., 2009), which is an omnibus measure of the 353 

probability that the model is the best model among tested models. The protected exceedance 354 

probability for the RL model to outperform the stochastic model and BL model was close to 355 

100% under the punishment of impatience. The protected exceedance probability for the BL 356 

model was close to 100% under the punishment of choice habits and transition habits, and this 357 

was 97% under reinforcement habits (Fig. 5C).  358 

As such, the hybrid learning rule fitted the data relatively well in all blocks (Fig. 5B). We 359 

recovered the estimates of a relative contribution of belief learning over reinforcement learning 360 

from the model fit for the hybrid rule (see Computational models). We first checked the 361 

robustness of our estimates of the hybrid model by correlating the estimated relative weight 362 

parameter to the difference in the AICcs between the RL only model and BL only model. We 363 

found a strong positive correlation: the larger the weight placed on BL in the hybrid model, the 364 

better the BL only model is (Fig. 5D). We then checked the estimates of the weight parameters 365 

across blocks. The weight increased from punishment of impatience to punishment of choice 366 

habits (Fig. 5E; Mdn = 0.00 for the punishment of impatience versus Mdn = 0.63 for the 367 
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punishment of choice habits, p < .001, z = 8.32, Wilcoxon sign rank). That is, belief learning 368 

made an important contribution to participants’ choices when they were punished for choice 369 

habits (Fig. 5E; Mdn = 0.63), transition habits (Mdn = 0.81; versus choice habits, p = .10, z = 370 

1.65) and reinforcement habits (Mdn = 0.74; versus transition habits, p = .96, z = 0.04), 371 

respectively. These findings suggest a shift in learning strategies that followed the demands of 372 

the competition: participants first used reward-guided behaviour when it sustained the success 373 

rate. Then, once the competitor started predicting habit patterns, participants switched to 374 

learning successful actions from the opponent’s prior actions.  375 

 376 

 377 

Figure 5. A shift in the strategy to belief learning as competitive demand increases. A. Real 378 

success rate (white bars) in the actual experiment and fictive success rate (green or blue bars) 379 

in simulated play. Agents using the reinforcement learning strategy and agents using the belief 380 

learning strategy competed against each class of competitor. B. Summed AICc across 381 

participants. Lower values of AICc are better. Stochastic: stochastic selection model. RL: 382 

reinforcement learning model. BL: belief learning model. Hybrid: hybrid learning rule. C. The 383 

number of participants best fit by the model. The Pexc inserted in the bar denotes the protected 384 
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exceedance probability that supports the corresponding model. D. Relative weight placed on 385 

belief learning over reinforcement learning captured by the hybrid model versus the AICc 386 

difference between the RL model and BL model. As the weight parameter increases, the model 387 

fit of belief learning improves relative to that of reinforcement learning. E. A transition in the 388 

relative weight placed on belief learning. * p < significant level after Bonferroni correction, 389 

Wilcoxon signed rank. A&E. On each box, the central mark represents the median, the edges 390 

of the box are the 25th and 75th percentiles and the whiskers are the 2.5th and 97.5th 391 

percentiles. 392 

 393 

A shift in learning strategies enhances behavioural autonomy  394 

Because belief learning is a faster learning process than reinforcement learning, our 395 

simulated play shows that belief learning indeed induces a smaller choice bias than simple 396 

reinforcement learning (Suppl. Fig. 2), leading to better performance (Fig. 5A). We therefore 397 

examined whether the shift in learning processes accounts for achieving a smaller choice bias 398 

in the participants’ data. To this end, we used a bivariate latent change score (LCS) model 399 

(Carpenter et al., 2019; Kievit et al., 2018; Kievit et al., 2017; McArdle, 2009). LCS models 400 

conceptualize the change in score between one time point (before punishment) and the next 401 

time point (under punishment) as a latent change factor (see Latent change score model). 402 

Under a bivariate LCS model, two factors influence the change score. The first is the extent to 403 

which the reduction in bias is explained by the initial bias before punishment, which is termed 404 

auto-regression in LCS models. We might expect to see a negative auto-regressive effect as a 405 

consequence of a scale attenuation: individuals who started off with a larger bias score could 406 

potentially have a greater reduction in the bias. While individuals those who started off with a 407 

smaller bias score could have a smaller reduction in the bias because of the lower limit of the 408 

scale. The second is the extent to which the reduction in bias is explained by the initial weight 409 

on belief learning, which is termed cross-coupling. A bivariate LCS model would reveal a 410 

negative cross-coupling effect if individuals who attempted to mind-read the competitor’s 411 

strategy (i.e., having a large BL weight before punishment) gained a greater reduction in the 412 

bias. Moreover, by having two latent change factors, a bivariate LCS model estimates 413 

correlated change: the degree to which the reduction in bias co-occurs with the change in 414 

weight (i.e., a shift in learning strategies). If participants adapted their behaviour to gain a 415 

smaller bias score by simply behaving randomly, the reduction in bias would not co-occur with 416 

the change in weight. If, on the other hand, participants achieved a smaller bias score by 417 
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initiating the prediction of the competitor’s strategy, these two changes would co-occur, and 418 

then the bivariate LCS model would reveal a negative correlated change: gaining a greater 419 

weight is associated with gaining a smaller bias.  420 

We investigated this inter-relationship by fitting the bivariate LCS model. Our observed 421 

variables were the choice bias score and the belief learning weight estimated under the hybrid 422 

learning rule. To estimate the latent change factors, we used these scores on the punishment 423 

of impatience in the baseline and the punishment of standard choice habits in block 1, because 424 

the participants were asked to change their choice habits between these two conditions.  425 

Figure 6A illustrates fitted paths (significant paths are shown as thicker lines) from the pre-426 

punishment phase (T0: punishment of impatience) to the post-punishment phase (T1: 427 

punishment of standard choice habits). This model, with fixed intercepts, shows a fit close to 428 

the saturated (i.e., perfect) model (χ2(4) = 0.00; RMSEA < 0.001, 90% confidence interval = 429 

[0.000, 0.000]; CFI = 1.00; SRMR = 0.00; AIC = -325.1). We found auto-regressive effects in 430 

both the choice bias score and BL weight score possibly because of a scale attenuation: 431 

greater reductions in the choice bias were found in individuals who started off with a large bias, 432 

and greater gains in the BL weight were found in individuals who started off with a low weight. 433 

There were no significant cross-coupling effects: greater reductions in the choice bias were not 434 

associated with individuals who attempted to mind-read the competitor’s strategy before 435 

punishment.  436 

However, we found a medium negative correlated change between the change in the 437 

choice bias and the change in the BL weight. This suggests that individuals who gained a 438 

greater shift from reinforcement learning to belief learning exhibited a greater adaptation in 439 

choice habits (Fig. 6B; standardised coefficient = -0.347, 95% confidence interval = [-0.480, -440 

0.199]). When we removed the cross-coupling paths from the model in Figure 6A, the model 441 

still fitted the data well (χ2(6) = 2.37; RMSEA < 0.001, 90% CI = [0.000, 0.053]; CFI = 1.00; 442 

SRMR = 0.03; AIC = -326.8). However, removing the cross-coupling paths as well as the path 443 

for the correlated change produced a bad model fit (χ2(7) = 23.80; RMSEA = 0.126, 90% CI = 444 

[0.071, 0.185]; CFI = 0.68; SRMR = 0.10; AIC = -309.0). To summarise, the computational 445 

model suggests that people start forming their beliefs about when the competitor is going to act 446 

and when they should act, after the competitor start responding to their own actions and 447 

punishing their own choice habits. Together with structural equation modelling, the results 448 

suggest that forming beliefs about the competitor’s strategy helps to enhance adaptive 449 

autonomy in avoiding choice habits.    450 
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We validated this finding in the following analysis. First, we used the choice bias score 451 

and the difference in AICcs between the RL only model and BL only model as our observed 452 

variables. We used these scores on the punishment of impatience in the baseline and the 453 

punishment of standard choice habits in block 1. We still found that the reduction in the choice 454 

bias co-occurs with a shift in strategies toward belief learning (Suppl. Fig. 3A). This result 455 

validates that the correlated change in Figure 6 is unlikely to be due to the boundaries of the 456 

parameter estimates under the hybrid learning rule.  457 

Second, to validate whether the competitor’s action indeed affected the participant’s 458 

action, we randomised the competitor’s action in the sample we fitted the hybrid rule. This 459 

permutation operation indeed disrupted the estimates of the BL weight (Suppl. Fig. 4A). In the 460 

permutation sample, we did not find evidence that the reduction in the choice bias co-occurs 461 

with a shift in strategies toward belief learning (Suppl. Fig. 4B&C). This result validates that the 462 

competitor’s action likely affected the participant’s action, and that the shifting to the BL 463 

strategy was likely associated with changing a pattern of choice.  464 

Lastly, we checked the possibility that the reduction in the sequential bias or the 465 

reinforcement bias co-occurs a shift in strategies. We did not find evidence that the reduction in 466 

the sequential bias co-occurs with a shift in strategies toward belief learning, when the 467 

transition habits were punished in block 2 (Suppl. Fig. 3B). Nor did we find that the reduction in 468 

the reinforcement bias co-occurs with a shift in strategies toward belief learning, when the 469 

reinforcement habits were punished in block 3 (Suppl. Fig. 3C). These follow-up analyses 470 

confirm that our finding is not simply explained by the fact that the participant’s data was used 471 

to estimate both a measure of decision bias and parameters of the hybrid model.  472 

 473 

 474 
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 475 

Figure 6. The bivariate latent change score model of adaptive autonomy and strategic 476 

learning. A. Estimated parameters. The change score in the choice bias was modelled as a 477 

latent factor between the score before the punishment of choice habits and under the 478 

punishment. The change score in the belief learning weight recovered from the hybrid leaning 479 

rule was modelled similarly. Values in bold are standardised parameter estimates, and values 480 

in italic are un-standardised parameter estimates (with standard errors in parentheses). Solid 481 

lines indicate that the parameter is significant at p < .05. B. Scatter plot of correlated change. A 482 

greater adaptation in avoiding standard choice habits is correlated with a greater shift in the 483 

learning process from reinforcement learning to belief learning.  484 

  485 
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Discussion 486 

The human capacity for autonomous behaviour is widely asserted, and is fundamental to many 487 

modern societies, but its cognitive basis is not well understood. We developed an experimental 488 

paradigm that implicitly elicits autonomous behaviour, and we measured the extent to which 489 

people could express autonomy by adapting their behaviour to free themselves from different 490 

types of habits. We found that people can become autonomous of standard choice habits and 491 

transition habits, but are limited in their ability to become free of reinforcement habits. We 492 

further showed, in a large sample, that adaptive autonomy with respect to choice habits is 493 

uncorrelated with adaptive autonomy with respect to transition habits and that to reinforcement 494 

habits. This suggests distinct cognitive modules for these three forms of autonomy, rather than 495 

a common module or a single form.  We further demonstrated the link between adaptive 496 

autonomy and understanding the state of the environment: building beliefs about the 497 

environmental, in our case, about a competitor’s strategy, can enhance adaptive autonomy.  498 

 499 

Measures of autonomy 500 

Traditional experimental psychology struggles to investigate autonomy because 501 

traditional experiments in the studies of volition involve instructing people what they should do 502 

(Baddeley, 1966; Brass & Haggard, 2007; Fleming et al., 2009; Jahanshahi et al., 1995; Libet 503 

et al., 1983). The few studies that have examined human autonomous behaviour typically 504 

involve competitive contexts (Forder & Dyson, 2016; Wang et al., 2014; Wong et al., 2021), 505 

and have not considered subtypes of autonomy. We conceptualized three forms of autonomy, 506 

as freedom from three cognitively distinct types of habit: standard choice habits, transition 507 

habits and reinforcement habits. We attempted to evoke autonomous behaviour of each of 508 

these three kinds using a common game-like context, and varying the competitor’s strategy to 509 

punish a lack of each type of autonomy. Using a statistical distance measure derived from 510 

information geometry, we developed quantities that approximate a person’s trait for each habit. 511 

We quantified the extent to which people could break a specific habit when punished. A 512 

covariance matrix underlying three adaptive autonomy measures showed no strong 513 

correlations. This supported the idea that people express three distinct forms of behavioural 514 

autonomy. In tasks where participants react to external stimuli quickly, it has been suggested 515 

that a domain-general top-down control is used to solve different cognitive tasks (Braver, 2012; 516 

Braver et al., 2007; Tang et al., 2022). However, in free, stimulus-independent action, our 517 

results suggest that a domain-specific top-down control independently regulates each 518 
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particular form of autonomy: there are multiple ways to act freely, and it is important to consider 519 

from what an agent is free. We studied choice biases, sequential biases and reinforcement 520 

biases, but other biases to free action doubtless also exist. We showed that, for example, an 521 

agent who becomes increasingly free from choice bias may be unable to free themselves from 522 

the biasing effects of reinforcement. 523 

 524 

Relevance to classical neuropsychological tasks  525 

Our task takes a neuropsychological perspective on volitional behaviour and evokes 526 

phenomena that neuropsychologists have traditionally studied using arbitrary, open-choice 527 

tasks. For instance, our measure of choice bias is related to the capacity to inhibit a prepotent, 528 

impulsive action (Mischel et al., 1972). People usually place costs on waiting, preferring earlier 529 

rewards; a form of temporal discounting (Story et al., 2014). The sequential bias we measured 530 

reflects executive control and working memory which are assessed using random number 531 

generation tasks (Baddeley et al., 1998; Jahanshahi et al., 2000). In these tasks, people 532 

cannot sufficiently randomise numbers and tend to seek simple rules such as repeating a digit 533 

(e.g., 1,1,1), counting a digit in a natural sequence (e.g., 1,2,3) or larger with smaller inter-digit 534 

gaps (e.g., 1,9,2) (Baddeley, 1966; Bar-Hillel & Wagenaar, 1991). In contrast, the capacity to 535 

avoid the reinforcement bias is related to voluntary regulation of reward-seeking behaviour 536 

(Bechara et al., 1994; Lejuez et al., 2002) and a balance between exploitation and exploration 537 

(Cohen et al., 2007). These classical preferences are typically robust after repeating the task 538 

(Neiman & Loewenstein, 2011; Ota et al., 2016) or after explicitly knowing one’s own 539 

behavioural trait (Ota et al., 2019). We used a competitive game to set environmental 540 

constraints so that people should avoid such preferences in order to get rewards. Our results 541 

demonstrate that people can balance choice frequencies and break transitions between 542 

actions. Although we cannot directly compare our results with those of neuropsychological 543 

studies, our results do suggest that, when pressurised, people can behave randomly and 544 

autonomously more than suggested by the traditional neuropsychological literature.   545 

In contrast, we found people could not avoid reinforcement habits. Neither positive 546 

reinforcement bias nor negative reinforcement bias changed when penalised. A stereotypical 547 

win-stay lose-shift behaviour has been shown in competitive games (Ota et al., 2020; Wang et 548 

al., 2014). In particular, people are less flexible in changing lose-shift behaviour than win-stay 549 

behaviour when adopting to new game rules (Forder & Dyson, 2016; Sundvall & Dyson, 2022). 550 

The experience of a negative outcome generates a quicker decision and an impulsive 551 
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response on the next trial (Dyson et al., 2018). Indeed, event-related brain potentials show a 552 

greater negative amplitude after negative outcome feedback than after positive outcome 553 

feedback (Gehring & Willoughby, 2002; Hajcak et al., 2006). We note that individuals vary in 554 

their ability to avoid habitual behaviour after negative reinforcement. These individual 555 

differences are associated with post-error reaction times. Individuals who make quicker 556 

decisions after a loss than after a win show a poorer performance than individuals who make 557 

slower responses after a loss (Dyson, 2021). Therefore, overcoming impulsivity after a loss 558 

may be a key aspect of volitional control for humans.   559 

 560 

Sustaining autonomy during interactions with the world 561 

 Our model comparisons showed that participants did not achieve adaptive autonomy 562 

simply by behaving randomly and stochastically. Rather, their strategy depended on the reward 563 

assigned and the choices of the competitor. Reinforcement learning updates the best action by 564 

a reward prediction error while the belief learning updates the best action by an action 565 

prediction error, defined as a difference between the expected action competitor would take 566 

and the actual action taken. Both reinforcement learning and belief learning can contribute to 567 

volitional, self-generated actions, because both are determined by internal representations of 568 

expected values, rather by an immediate stimulus (Frith, 2013). Furthermore, belief learning is 569 

considered to recruit a mentalizing or an implicit understanding of what the other agent would 570 

do (Amodio & Frith, 2006; Hampton et al., 2008). These neural substrates are often found in 571 

separate neural networks: the reward prediction errors are encoded in the ventral striatum 572 

(McClure et al., 2003; O'Doherty et al., 2004; Zhu et al., 2012) while the prediction errors about 573 

the state of the environment are encoded in several areas including the rostral anterior 574 

cingulate, the medial prefrontal cortex and the posterior superior temporal sulcus (Hampton et 575 

al., 2008; Zhu et al., 2012).  576 

Mentalising is a key cognitive component recruited in competitive games (Hampton et 577 

al., 2008; Zhu et al., 2012). We found that people switch their strategy from reinforcement 578 

learning to belief learning when the competitor started predicting their upcoming action. This 579 

result suggests that people implicitly learned the likelihoods of the competitor’s actions based 580 

on a sampling of their past actions. Critically, belief learning was associated with enhanced 581 

autonomy. In particular, successful adaptation in avoiding standard choice habits was 582 

associated with a shift in learning: those individuals who shifted to learn from the likelihoods of 583 

the competitor’s actions rather than from reinforcement alone were able to gain greater 584 
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adaptive autonomy. We cannot tell whether participants discovered and explicitly represented 585 

the punishment rules used by the competitor, but we speculate that explicitly understanding the 586 

constraints on behaviour might be associated with increased autonomy.  587 

To conclude, we have developed a new experimental paradigm and analysis pipeline 588 

to study when and how human actions can become autonomous. We propose a new 589 

theoretical construct of adaptive autonomy, meaning the capacity to free one’s behavioural 590 

choices from constraints of habitual responding, when a particular habit becomes dysfunctional, 591 

for example due to environmental changes like the competitive pressure in our game scenarios. 592 

We have shown that people can indeed express adaptive autonomy, and that they do so by 593 

reducing habits of choice, habits of rule-based sequential action and habits of being guided by 594 

reinforcement. These appear to be three distinct forms of adaptive autonomy, rather than a 595 

single common strategy such as randomness. We show that becoming free from the effects of 596 

reinforcement is particularly difficult. Finally, by showing that belief learning plays an important 597 

part in boosting autonomy, we show a strong connection between autonomous action and 598 

mentalising abilities.  599 

 600 

Limitations 601 

The three habit forms we tested were hierarchical. The standard choice habit – favouring one 602 

action over all others – is more general, while the reinforcement habit is more specialised. 603 

Therefore, we ordered the blocks so that the competitive game algorithms could penalise 604 

habits progressively and serially. Thus, each block implicitly required participants to act more 605 

freely and unpredictably than the preceding block. This fixed order may limit the generalisability 606 

of our results, but the order we used is the most reasonable. The differences we observed 607 

between the different forms of adaptive autonomy could be confirmed in further between-608 

participant studies. 609 

 610 

Empiricist view versus nativist views of human autonomy  611 

Our work is broadly compatible with an empiricist view of “free will” as opposed to a nativist 612 

view. In our view, some of the key attributes historically associated with “free will”, such as the 613 

ability to act endogenously and purposefully, can be acquired, or at least adapted, through 614 

experience.  This adaptation requires people to make novel, non-habitual, ‘smart’ actions in 615 

certain situations. We found that people were more or less successful in adapting their trait 616 

habits both at the individual level and at the level of different punishments. An individual’s 617 
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degree of autonomy is unique and contingent on environmental constraints. A strongly nativist 618 

view would suggest that autonomy is a state that occurs inside an individual’s mind and is 619 

independent of the external world. However, our results imply that being sensitive to the 620 

contingencies of the external environment, and its restrictions on one’s own actions is key to 621 

autonomy. In this sense, autonomy can be seen a reasoned, goal-oriented response that 622 

occurs within an environmental context.  623 

 624 

 625 

Methods  626 

Participants 627 

One hundred and fifty-nine participants (age range = 18–45, M = 29.5 yo, SD = 7.2) were 628 

recruited online via the Prolific website (https://www.prolific.co/). Participants received a basic 629 

payment of £3.75 for their participation in a 30 minute experiment. They earned a bonus of up 630 

to £4 based on their performance on the task. There were 95 female participants and 64 male 631 

participants. Recruitment was restricted to the United Kingdom. Seven participants were 632 

excluded from the analysis (Suppl. Info.) and the remaining 152 participants were analysed. All 633 

procedures were approved by the Research Ethics Committee of University College London. 634 

Participants gave informed consent by checking and validating the consent form.  635 

 636 

Experimental design 637 

Apparatus. We used the JavaScript library jsPsych (de Leeuw, 2015) and the plugin jsPsych-638 

psychophysics (Kuroki, 2021) to program the task and hosted the experiment on the online 639 

research platform Gorilla (https://gorilla.sc/) (Anwyl-Irvine et al., 2020), which participants 640 

could access through their browser on their own computer. We assumed that monitor sampling 641 

rates were typically around 60 Hz, with little variation across computers (Anwyl-Irvine et al., 642 

2020). The size and position of stimuli were scaled based on each participant’s screen size 643 

which was automatically detected. The size of stimuli reported below are for a monitor size of 644 

15.6” (view point size, width x height: 1536 x 746 pixels).  645 

 646 

Stimuli and task. Each trial started with a fixation cross, which appeared for 0.6–0.8 seconds. 647 

The images of a tree, a flock of birds and a basket containing apples then appeared (Fig. 2A). 648 

A tree (width x height: 307 x 375 pixels) was shown on the left of the screen and a flock of 649 

birds (width x height: 30 x 22 pixels each) were located on the tree. A rectangular basket of 650 
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apples (width x height: 153 x 167 pixels) was presented in the bottom centre. After the fixation 651 

cross disappeared and all images appeared, the participants were given 4.5 sec to throw the 652 

food. Pressing a key initiated delivery of the food to a storage location which was located at 653 

447 pixels forward from the start point. This delivery took 1.5 sec. We programmed the birds to 654 

attempt to intercept and catch the food. The birds on each trial were designed to intercept the 655 

food thrown within one of three intervals: 1) early throw (0–1.5 sec), 2) middle throw (1.5–3.0 656 

sec) or 3) late throw (3.0–4.5 sec). After their departure, it took approximately 0.25 sec for each 657 

bird to reach the storage location; the birds passed through that point. The participants 658 

competed with the virtual competitor, aiming to deliver food before or after the birds reached 659 

the storage location. We counted whether one of the birds overlapped with the food when the 660 

delivery was completed (at the offset of moving). If this was the case, the food was caught, and 661 

the participant lost a trial. If not, the food was delivered without it being caught, and the 662 

participant won a trial. If no response was submitted before 4.5 sec, the food was launched 663 

automatically, and a trial was terminated as a timeout. Finally, we provided a feedback 664 

message: “Success!”, “Fail!” or “Timeout!”, which lasted for 1.0 sec. The next trial then started 665 

with a fixation cross.  666 

 In the instructions, we emphasised the following points. First, merely reacting to the 667 

absence of a stimulus – the birds resting in the tree – will not win the game because the birds 668 

can travel much faster than the food. Second, merely waiting for the birds to pass is not a 669 

solution because of the time constraint. Third, the birds’ flying interval is not the same on every 670 

trial, nor is it random. Instead, the birds can learn when the participant is likely to throw the 671 

food. Therefore, it is important to predict when the birds will likely fly and to randomise your 672 

throw times in order to avoid the competitor’s prediction.  673 

 674 

Procedure. Participants first received the instructions and viewed a set of demonstrations 675 

about the task. Following some practice trials, the participants completed four blocks of the 676 

game with a 1-minute break between blocks. The baseline block lasted 2.5 minutes while the 677 

remaining blocks 1, 2 and 3 lasted 5 minutes each. The participants got as many throws of the 678 

food as they could in the 2.5 or 5 minutes. The participants could check how much time was 679 

left in each block. We used time, and not trial number, to terminate each block so that 680 

participants did not respond immediately on every trial, finishing the game early. The bonus 681 

payment was determined by the percentage of throws that successfully avoid birds and was 682 

paid up to £1 for each block: if 40 out of 60 throws are successful, we paid £1 x 66.6% = £0.66 683 
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(average bonus, baseline: £0.94; block 1: £0.63; block 2: £0.59; block 3: £0.57). The success 684 

rate and the timeout rate were included in the feedback. Nevertheless, we assumed that some 685 

participants might consume time by not focusing on the game. To prevent this, we encouraged 686 

participants to sustain the proportion of timeout trials under 5%.  687 

 688 

Competitor design  689 

The virtual competitor design was primarily inspired by primate work (Barraclough et al., 2004; 690 

Lee et al., 2004) and by rat work (Tervo et al., 2014). We programmed the learning algorithm 691 

(i.e., birds) to seek out behavioural patterns in the participant’s choice history and to pressure 692 

participants into novel behaviour. The participants could decide the time to act between 0 sec 693 

(as soon as birds and food appeared) and 4.5 sec (until timeout). To make the competitor’s 694 

prediction simple, we discretised the time window into three intervals, 1) early interval (0–1.5 695 

sec), middle interval (1.5–3.0 sec) and late interval (3.0–4.5 sec). Given past behaviour, the 696 

competitor predicted which response interval a participant was likely to select. Accordingly, the 697 

two other intervals were primed for winning: if the participant threw the food during the interval 698 

predicted by the competitor, the participant lost. If the participant threw the food during one of 699 

two other intervals, the participant won. We adjusted the birds’ departure times by taking their 700 

travel time (0.25 sec) and the food delivery/travel time (1.5 sec) into account: if a prediction 701 

was made on the late interval, the birds departed from the tree at the period of 4.25–5.75 sec, 702 

and they reached the delivery point during 4.5–6.0 sec to catch the food when it was delivered.  703 

 We designed four distinct competitors (Fig. 2B). First, in the baseline block, Competitor 704 

0 punished participants for being impatient. In this block, the birds blocked the early throw on 705 

every trial. Thus, the stimulus-absence behaviour corresponded with waiting until the middle 706 

interval. Competitor 0 measured the volitional control to resist immediacy or external triggers 707 

(Haggard, 2019). Second, in block 1, Competitor 1 predicted standard choice habits (choice 708 

preferences) – which interval the participant is going to select –. On each trial, a history of the 709 

participant’s past ten choices was used to estimate the probabilities of selecting the early, 710 

middle and late interval. The choice probabilities were then used to generate the competitor’s 711 

prediction on the upcoming choice. For instance, if the participant chose the early interval 712 

seven times, the middle interval twice, and the late interval once, the competitor penalised the 713 

early interval 70% of the time, the middle 20% of the time and the late 10% of the time. Thus, 714 

Competitor 1 required participants to balance their general choice frequencies.  715 
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 In block 2, Competitor 2 sought out transition habits (sequential patterns) – which 716 

interval the participant is going to select after the participant made a particular response –. A 717 

history of the past 60 trials was used to estimate the conditional probabilities of selecting three 718 

intervals given the previous reaction time. The estimated probabilities were conditioned on the 719 

last reaction time ± 0.5 sec. Suppose a participant took 2.5 sec to act in the previous trial. 720 

Competitor 2 might discover that, in the past, the participant chose the early interval twice, the 721 

middle interval twice, and the late interval six times after the participant had acted in 2.0-3.0 722 

sec. In this case, Competitor 2 penalised the late interval 60% of the time. We assumed that 723 

using the previous response time (i.e., continuous variable) is more powerful to predict the next 724 

response than using the previous response interval (i.e., categorical variable). Competitor 2 725 

pressured participants in avoiding habitual transition patterns. Finally, in block 3, Competitor 3 726 

punished reinforcement habits (outcome dependence) – which interval the participant is going 727 

to select after the participant made a particular response and won a trial or lost a trial –. 728 

Competitor 3 used the same search algorithm as Competitor 2 with the exception that they 729 

conditioned the search on the last reaction time and the last outcome. Competitor 3 required 730 

participants to act independently from the previous outcome.  731 

 732 

Data analysis  733 

Because the birds intercepted one of the three response intervals, we mainly analysed the  734 

data that was discretised into 1) the early response: responding in 0–1.5 sec, 2) the middle 735 

response: responding in 1.5–3.0 sec, 3) the late response: responding in 3.0–4.5 sec (including 736 

timeout).  737 

 738 

Quantifying trait habits. Statistical distance is a standardised way of measuring the extent to 739 

which the observed probability distribution is different from the target probability distribution. 740 

We calculated the Kullback-Leibler divergence to quantify the extent to which the participant’s 741 

choice probability distribution is different from the choice probability distribution that a habit-free 742 

agent would exhibit, a proxy of three habit families. See Figure 3.  743 

 744 

1) Choice bias. Competitor 1 punished standard choice habits in selecting one interval more 745 

often than the other two. The probabilities of choosing the early, middle and late interval for a 746 

habit-free agent would be 0.33, respectively. We computed the choice probabilities 𝑃(𝑐) given 747 

a history of intervals each participant chose in each block. The K-L divergence is then  748 
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𝐷𝐾𝐿 𝑐ℎ𝑜𝑖𝑐𝑒 𝑏𝑖𝑎𝑠 =  ∑ 𝑃(𝑐) log2 (
𝑃(𝑐)

0.33
)  

𝑐 ∈ 𝐸,𝑀,𝐿

 749 

 750 

2) Sequential bias. Competitor 2 punished transition habits on the top of choice habits. Similar 751 

to computing the choice probabilities, we computed the conditional probabilities of choosing the 752 

early, middle and late interval given the interval chosen on the previous trial 𝑃(𝑐|𝑐−1) . We 753 

measured the K-L divergence of these participant’s conditional probabilities from the 754 

participant’s choice probabilities. The K-L divergence for each previous interval 𝑐−1  is 755 

computed as 756 

𝐷𝐾𝐿  𝑐−1 =  ∑ 𝑃(𝑐|𝑐−1) log2 (
𝑃(𝑐|𝑐−1)

𝑃(𝑐)
) . 

𝑐 ∈ 𝐸,𝑀,𝐿

 757 

The total K-L divergence as a weighted sum is then   758 

𝐷𝐾𝐿 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑖𝑎𝑠 =  ∑ 𝑃(𝑐−1) ∙ 𝐷𝐾𝐿  𝑐−1
 

𝑐−1 ∈ 𝐸,𝑀,𝐿

 759 

Since we conditioned the K-L divergence on the previous interval chosen, we took the 760 

proportion of observing that situation into account, and we weighed each divergence by this 761 

prior probability. The target probabilities (i.e., habit-free agent) were set to be the participant’s 762 

own choice probabilities, rather than purely stochastic choices 0.33. Therefore, 𝑃(𝑐|𝑐−1) 763 

becomes equivalent to 𝑃(𝑐) and the K-L divergence becomes zero, as long as the participant 764 

selects three intervals independently from the previous choice (even if the participant favours 765 

one interval). By this way, we quantified the deviation of patterns associated with the previous 766 

choice from sequential patterns logically expected from the participant’s own choice 767 

probabilities. Competitor 2 specifically detected and punished this conditional dependence.  768 

 769 

3) Reinforcement bias. Competitor 3 punished reinforcement habits on the top of choice habits 770 

and transition habits. Similar to computing the choice probabilities, we computed the 771 

conditional probabilities of choosing the early, middle and late interval given the interval chosen 772 

and the outcome obtained on the previous trial 𝑃(𝑐|𝑐−1, 𝑜−1). We measured the K-L divergence 773 

of these participant’s conditional probabilities from the participant’s conditional probabilities 774 

given the previous interval solely. The K-L divergence for each previous interval 𝑐−1 and each 775 

previous outcome 𝑜−1 is computed as 776 

𝐷𝐾𝐿  𝑐−1,𝑜−1 =  ∑ 𝑃(𝑐|𝑐−1, 𝑜−1) log2 (
𝑃(𝑐|𝑐−1, 𝑜−1)

𝑃(𝑐|𝑐−1)
) . 

𝑐 ∈ 𝐸,𝑀,𝐿

 777 
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The total K-L divergence as a weighted sum is then   778 

𝐷𝐾𝐿 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 =  ∑ ∑ 𝑃(𝑐−1, 𝑜−1) ∙ 𝐷𝐾𝐿  𝑐−1,𝑜−1
 

𝑜−1 ∈
𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑓𝑎𝑖𝑙  𝑐−1 ∈ 𝐸,𝑀,𝐿

 779 

Since we conditioned the K-L divergence on the previous interval chosen and the previous 780 

outcome obtained, we took the proportion of observing that situation into account, and we 781 

weighed each divergence by this joint prior probability. The target probabilities (i.e., habit-free 782 

agent) were set to be the participant’s own conditional probabilities given the previous interval 783 

solely. Therefore, 𝑃(𝑐|𝑐−1, 𝑜−1)  becomes equivalent to 𝑃(𝑐|𝑐−1)  and the K-L divergence 784 

becomes zero, as long as the participant selects three intervals independently from the 785 

previous outcome (even if the participant’s choice depends on the previous interval). By this 786 

way, we quantified the deviation of patterns associated with both the previous choice and the 787 

previous outcome from patterns logically expected from the conditional dependence on the 788 

previous choice solely. Competitor 3 specifically detected and punished this outcome 789 

dependence. We also quantified the positive reinforcement bias and the negative 790 

reinforcement bias, separately (Suppl. Fig. 1). We computed the K-L divergence of the 791 

conditional probabilities given the previous interval and the previous win only or the previous 792 

loss only from purely stochastic choices 0.33. Here the statistical distance can be argued as 793 

the distance between the participant’s post-win behaviour or post-loss behaviour and the habit-794 

free agent who is purely random. These measures were used to generate Figure 3. 795 

 796 

Statistical analysis. We tested the performance difference by Wilcoxon signed rank test. The 797 

alpha level of 0.05 was corrected by the number of tests we performed in each class of test 798 

(Bonferroni correction).  799 

 800 

Computational models 801 

Reinforcement learning. We tested a reinforcement learning (RL) model in which an action 802 

value is updated via a Rescorla-Wagner rule (Sutton & Barto, 2018). On each trial, an RL 803 

agent selects an action from the early, middle or late interval 𝑎 ∈ 𝐸, 𝑀, 𝐿 . For an action 𝑎 804 

selected on a trial 𝑡, the value of action 𝑎 is updated by a prediction error 𝛿:  805 

𝛿𝑡 = 𝑟𝑡 − 𝑉𝑡(𝑎) 806 

where 𝑟𝑡 is the actual reward received (1 for successfully avoiding birds and 0 for failure) and 807 

𝑉𝑡(𝑎) is the current expected reward for that action. The reward prediction error 𝛿𝑡 is then used 808 

to update the value of the selected action, weighted by the learning rate 𝛼 809 
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𝑉𝑡+1(𝑎) = 𝑉𝑡(𝑎) + 𝛼𝛿𝑡. 810 

 811 

Belief learning. In a belief learning (BL) model, a BL agent infers the opponent’s state of mind –  812 

what option the opponent is going to select – and decides on the action that maximises the 813 

expected reward (Camerer, 2003; Hampton et al., 2008; Zhu et al., 2012). Actions 𝑎′ ∈ 𝐸, 𝑀, 𝐿 814 

are available for the competitor to choose. For each action 𝑎 ∈ 𝐸, 𝑀, 𝐿 on trial 𝑡, the value of 815 

that action is updated by a prediction error  816 

𝛿𝑡 = 𝑟𝑡 − 𝑉𝑡(𝑎) 817 

where 𝑟𝑡 = −1 if 𝑎′ is same as 𝑎 (i.e., the competitor selects the same response interval as the 818 

participant) while 𝑟𝑡 = 0 if 𝑎′ is different from 𝑎 (i.e., the competitor selects a different response 819 

interval). This prediction error is the difference between the current expected value and the 820 

negative reward derived from the competitor’s current choice. Therefore, the updated expected 821 

value of action reflects the likelihood of the competitor’s choice: the larger the value, the less 822 

likely the competitor choose. The same rule with the RL model was used to update the value of 823 

action 𝑎, with the exception that the values of all three intervals were updated on every trial.  824 

Suppose that the birds repeatedly selected the early interval to intercept the food. A direct 825 

observation of the birds’ flight at the early interval decreases the value of the early interval. At 826 

the same time, this observation implies that the birds did not fly at the middle nor the late 827 

interval. This increases the values of these intervals.  828 

 829 

Hybrid learning. We modelled the hybrid learning rule (aka. experience weighed attraction) as 830 

a combination of reinforcement learning and belief learning (Camerer & Ho, 1999; Hampton et 831 

al., 2008; Zhu et al., 2012). After updating the value of the action in each learning process, the 832 

hybrid rule combines the values of the action such that  833 

𝑉𝑡+1(𝑎) = (1 − 𝑤) ∙ 𝑉𝑡+1
𝑅𝐿 (𝑎) +  𝑤 ∙ 𝑉𝑡+1

𝐵𝐿 (𝑎) 834 

where one additional free parameter 𝑤 is used to weigh the relative contribution placed on 835 

belief learning over reinforcement learning.  836 

 For all models, the action values were converted into the choice probabilities using the 837 

soft-max function to simulate action selection,  838 

𝑃𝑡(𝑎) =  
𝑒  𝛽∙(𝑉𝑡(𝑎)+𝑏(𝑎))

∑  𝑒𝛽∙(𝑉𝑡(𝑎)+𝑏(𝑎))
𝑎∈𝐸,𝑀,𝐿

  839 

where 𝑃𝑡(𝑎) is the probability of choosing the interval 𝑎. The inverse temperature parameter 𝛽 840 

scales the relative difference between the choice probabilities, which scales decision 841 
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uncertainty. We added the decision preference term 𝑏  with an exponential temporal 842 

discounting (Story et al., 2014): 843 

𝑏(𝑎) = 𝑒−𝜌∙𝑇(𝑎) 844 

where 𝑇 is the time corresponding to the chosen interval (𝑇 = 0, 1.5 or 3.0 sec for the early, 845 

middle or late interval, respectively). The parameter 𝜌 scales the relative preference to earlier 846 

intervals, which captures an individual’s temporal discounting or impatience to wait.  847 

For each model, we fitted the model decision probabilities to the participant’s choice 848 

interval data by minimizing the negative log-likelihood of the observed choices using Bayesian 849 

adaptive direct search (BADS) (Acerbi & Ma, 2017). Free parameters were optimised 850 

individually for each participant and separately for each block with the following boundaries: 851 

𝛼 ∈ [0,1] , 𝛽 ∈ [0,20] , 𝜌 ∈ [0,0.2] , 𝑤 ∈ [0,1] . The parameter 𝑤  was fixed to 0 for the 852 

reinforcement learning model and fixed to 1 for the belief learning model. For the stochastic 853 

selection model, we fixed the parameters 𝛼 and 𝑤 to 0 so that this model could only capture 854 

the participants’ decision uncertainty and their choice preference. This model produced 855 

constant model decision probabilities across all trials. To verify that we had found the global 856 

minimum, we repeated the search process with different starting points. For model comparison, 857 

we applied AICc—Akaike information criterion with a correction for finite sample size—to each 858 

participant and model as the information criterion for goodness-of-fit (Burnham & Anderson, 859 

1998; Hurvich & Tsai, 1989). The summed AICc across participants was reported in Figure 5B.  860 

 861 

Simulated play  862 

During simulated play, an RL agent and a BL agent played against the prediction algorithm 863 

used by each class of competitor. The competitor’s prediction was made using a history of 864 

choices a simulated agent made rather than using real data. For each simulated play of 60 865 

trials (which is approximately equal to the number of trials in the real game), the success rate 866 

was computed. We simulated each agent’s behaviour given a set of model parameters. Each 867 

set of parameters was determined by an extensive grid search in the parameters’ space. The 868 

simulation play was repeated 3,000 times for each parameter set.  869 

 870 

Latent change score model 871 

Latent change score (LCS) models are the statistical framework that captures the process 872 

underlying the change in the variables of interest at two measurement occasions (Carpenter et 873 
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al., 2019; Kievit et al., 2018; Kievit et al., 2017; McArdle, 2009). LCS models conceptualise the 874 

score of variable 𝑋 at time point 𝑇2 as  875 

𝑋𝑇2 = 𝛽𝑋𝑇1 + ∆𝑋 876 

where the score 𝑋𝑇2 is a function of the score 𝑋𝑇1 weighted by an auto-regressive (i.e., self-877 

feedback) parameter 𝛽 and some residual ∆𝑋. By fixing the regression weight of 𝑋𝑇2 on 𝑋𝑇1 to 878 

1, the change score ∆𝑋 can be simply rewritten as  879 

∆𝑋 = 𝑋𝑇2 − 𝑋𝑇1 880 

In structural equation modelling, the change score can be defined as a latent factor by fixing a 881 

factor loading on the score 𝑋𝑇2 to 1. By this mathematical manipulation, the change between 882 

𝑇1 and 𝑇2 is modelled as a latent factor. Bivariate LCS models predict the change score by an 883 

auto-regressive parameter 𝛽 and a cross-coupling parameter 𝛼:  884 

∆𝑋 = 𝛽𝑋𝑇1 + 𝛼𝑌𝑇1 885 

∆𝑌 = 𝛽𝑌𝑇1 + 𝛼𝑋𝑇1 886 

In this equation, the auto-regressive parameter 𝛽 captures the degree to which the initial score 887 

𝑋𝑇1  predicts (or is proportional to) the change score ∆𝑋 . The cross-coupling parameter 𝛼 888 

captures the degree to which the initial score in another domain 𝑌𝑇1 predicts (or is proportional 889 

to) the change score ∆𝑋 . Above these effects, the bivariate LCS models quantifies the 890 

variance-covariance structure in the change factor, which estimates the correlated change: the 891 

degree to which the change score in one domain ∆𝑋 covaries with the change score in another 892 

domain ∆𝑌 after taking auto-regressive and cross-coupling effects into account. See Kievit et 893 

al., 2018 & McArdle, 2009 for reviews and Kievit et al., 2017 & Carpenter et al., 2019 for its 894 

applications.  895 

 We examined the inter-relationships between adaptive autonomy and a shift in learning 896 

strategies. There were three decision bias scores (choice bias, sequential bias and 897 

reinforcement bias) and four hybrid model parameters (learning rate, decision uncertainty, 898 

decision preference and relative weight of belief learning). Considering potential correlations 899 

among seven variables, we controlled for the influences of the other five variables on bivariate 900 

changes. In Figure 6, we used the choice bias score and the belief learning weight. We first 901 

regressed all other five variables against these two scores and retaining only the residuals from 902 

the regression. We then used the residual scores in the choice bias and the residual scores in 903 

the belief learning weight at two measurement points to fit the bivariate LCS model. Therefore, 904 

any parameter estimates in the path model were considered a mere relationship between two 905 

variables included in the model. Because we fitted the bivariate LCS model to residuals, 906 
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parameter estimates for the initial intercepts (i.e., mean initial scores) and change intercepts 907 

(i.e., mean change scores) were fixed to zero.  908 

Models were estimated in the lavaan package for R (version 0.6-11) (Rosseel, 2012). 909 

We used maximum likelihood estimation with robust (Huber-White) standard errors and a 910 

scaled test statistic. We evaluated overall model fit using the root-mean-square error of 911 

approximation (RMSEA; acceptable fit: < 0.08; good fit < 0.05), the comparative fit index (CFI; 912 

acceptable fit: 0.95 to 0.97; good fit > 0.97) and the standardized root-mean-square residual 913 

(SRMR; acceptable fit: 0.05 to 0.10, good fit: < 0.05) (Schermelleh-Engel et al., 2003).  914 

 915 

 916 

Supplementary information  917 

Exclusion criterion 918 

We encouraged participants to sustain the percentage of timeout trials under 5%. We checked 919 

the histogram of the timeout rates. Seven participants displayed a timeout above 13 %. This 920 

was considerably high compared with the other participants (0–5%: 119 participants; 5–8%: 27 921 

participants; 8–11%: 6 participants; 13–20%: 5 participants; >20%: 2 participants). These 922 

participants might not be able to follow the instructions or might not be able to keep their 923 

attention on the task, thereby removed from the analysis.  924 

 925 

 926 

 927 

 928 

Supplementary Figure 1 929 

The scores for positive reinforcement bias and negative reinforcement bias were computed 930 

from the conditional probabilities of wins only and from the conditional probabilities of losses 931 
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only. These bias scores measure the statistical distance from random probabilities 0.33. See 932 

Figure 3.  933 

 934 

 935 

 936 

Supplementary Figure 2 937 

Real choice bias (white bars) in the actual experiment and fictive choice bias (green or blue 938 

bars) in simulated play. We simulated the choice bias from agents using the reinforcement 939 

learning (green) and agents using the belief learning (blue) (see Simulated play). Belief 940 

learning produced a smaller choice bias in all punishment schemes.  941 

 942 

 943 

Supplementary Figure 3 944 

As supplementary results, we fitted the bivariate LCS model to the data set in panels A-C, 945 

respectively. Estimated parameters in the path model were omitted for the sake of space. 946 

Instead, we visualised the scatter plot of correlated change as we did in Figure 6B. A. Here we 947 

used the choice bias score and the AICc difference between the RL only model and BL only 948 
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model, instead of the BL weight estimated under the hybrid learning rule. To estimate the latent 949 

change factors, we used these observed scores on the punishment of impatience in the 950 

baseline and the punishment of standard choice habits in block 1. We found a negative 951 

correlated change (standardised coefficient = -0.256, 95% CI = [-0.398 -0.101]): shifting the 952 

strategy toward belief learning as opposed to reinforcement learning was associated with 953 

gaining greater reductions in the choice bias. B. Here we used the scores of sequential bias 954 

and the scores of the BL weight on the punishment of choice habits in block 1 and the 955 

punishment of rule habits in block 2, to estimate the latent change factors. We did not find a 956 

negative correlated change (standardised coefficient = 0.180, 95% CI = [0.021 0.330]): shifting 957 

the strategy toward belief learning was not associated with gaining greater reductions in the 958 

sequential bias. C. Here we used the scores of reinforcement bias and the scores of the BL 959 

weight on the punishment of rule habits in block 2 and the punishment of reinforcement habits 960 

in block 3, to estimate the latent change factors. We did not find a negative correlated change 961 

(standardised coefficient = 0.168, 95% CI = [0.009 0.319]): shifting the strategy toward belief 962 

learning was not associated with gaining greater reductions in the reinforcement bias.  963 

 964 

 965 

 966 

Supplementary Figure 4 967 

A simulated experiment using permutation operation. A. In upper panels (red bars), we show 968 

the proportion of the belief learning weight estimated under the hybrid learning rule. A weight 969 

increases between blocks. In this model fitting, a trial sequence of rewards (success or failure) 970 
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and that of birds’ flight interval (early, middle or late interval) were used to simulate the 971 

participant’s choice interval (see Computational models). If the competitor’s action is critical for 972 

the model fitting, permutating the competitor’s action would disrupt the estimates of the BL 973 

weight. To validate this, we swapped the birds’ flight interval. For instance, if the participant 974 

chose the late interval and the birds intercepted the middle interval, we swapped the birds’ 975 

choice to the early interval on that trial. This permutation does not alter an outcome (i.e., a 976 

successful trial is still success) but does randomise the competitor’s action. We did not swap 977 

the birds’ choice for unsuccessful trials. In each iteration, we permutated the birds’ flight 978 

interval 75% of the time and estimated the BL weight under the hybrid rule. We repeated this 979 

procedure 100 times for each participant and for each block. In lower panels (blue bars), the 980 

parameter estimates recovered from the permutation sample are shown. The BL weights are 981 

right-skewed and indeed differ from the original estimates. B. In the upper panel, we show a 982 

scatter plot of the correlated change: how reductions in the choice bias co-occurs with a shift in 983 

learning strategies, replotted from Figure 6B. The correlation coefficient in this original sample 984 

(r = -0.347) is plotted as a vertical red line in the panel C. In lower panels, we plot the same 985 

correlated change but derived from the permutation sample. We only show three 986 

representative plots. In each sample, we computed the standardised coefficient of the 987 

correlated change. The proportion of these correlation coefficients is shown as a blue 988 

histogram in the panel C. The 95% confidence interval ranged from -0.03 to 0.20. The original 989 

correlation coefficient is significantly different from the permutated coefficients. This analysis 990 

validates the robustness of estimating the belief learning weight and the robustness of 991 

estimating the coefficient in the correlated change.  992 
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