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 2 

Abstract 36 

Background:  37 

Owing to high levels of resistance to previous first-line non-nucleoside reverse transcriptase 38 

inhibitors (NNRTI)-based antiretroviral therapy (ART), consolidated recommendations since 2019, 39 

from the WHO and others, have indicated that dolutegravir (DTG) is the preferred drug of choice for 40 

HIV treatment, globally. There is a paucity of resistance outcome data from non-B HIV subtypes 41 

circulating across West Africa.  42 

 43 

Aim:  44 

We aimed to characterise the mutational profiles of HIV-positive patients from a small North-East 45 

Nigeria cohort, failing a DTG-based ART regimen.  46 

 47 

Methods:  48 

Plasma samples were collected and stored from 61 HIV-1 infected participants. Following failure of 49 

DTG-based ART, all samples were sequenced by Illumina whole-genome, ultra-deep sequencing. 50 

Sequencing was successful in (n=33) participants with median age of 40 years and median time on 51 

ART of 9 years. HIV-1 subtyping was performed using SNAPPy. Haplotype reconstruction and 52 

transmission were inferred using standard phylogenetic methods. 53 

 54 

Result:  55 

Most patients had mutational profiles that were reflective of prior exposure to first- and second-line 56 

ART including exposure to thymidine analogues, efavirenz and nevirapine. One patient had evidence 57 

of major INSTI DRMs (T66A, G118R, E138K and R263K), reducing efficacy of DTG. The participant was 58 

aged 18, infected with a subtype G virus and likely vertically infected.  59 

 60 

Conclusion:  61 

This study found low level resistance to DTG in the cohort, with one patient having high-level 62 

resistance to DTG and other INSTIs. Critical population level and long-term data on DTG outcomes 63 

are required to guide implementation and policy action across the region.  64 

 65 

 66 

 67 

 68 

 69 
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 3 

Introduction 70 

In the context of rising pre-treatment NNRTI drug resistance
1,2

, the World Health Organisation 71 

(WHO) recommended dolutegravir (DTG) as the preferred antiretroviral therapy (ART) drug of choice 72 

for both newly diagnosed and individuals transitioning from previous regimens3. Safety, potency, 73 

tolerability and cost-effective characteristics of dolutegravir (DTG) supported this change
4
 74 

subsequently, countries across sub-Saharan Africa (SSA) have consequently rolled-out dolutegravir 75 

as part of standard treatment. Roll out across the region started in 2019 and is expected to continue, 76 

aided by the availability of a low-cost, generic fixed-dose co-formulation of tenofovir, lamivudine 77 

and dolutegravir (TLD)
5
.  78 

 79 

Dolutegravir-based antiretroviral therapy (ART) have been commercialised and sold in Nigeria since 80 

2019 with the national treatment guideline recommending transitioning to DTG-based ART in both 81 

virally suppressed and unsuppressed patients since 20206. There is no indication of virological or 82 

resistance testing prior to transitioning to DTG-based ART and therefore, majority of patients 83 

transitioned without prior viral load or resistance testing. Data from the ADVANCE and NAMSAL 84 

clinical trials
7,8

, which recruited ART naïve participants exclusively in SSA showed no evidence of 85 

emergence of drug resistance mutations (DRMS) on DTG-based ART. Data from treatment 86 

experienced patients transitioning to TLD is limited although data is starting to emerge.  87 

 88 

Given the high proportion of treatment experienced HIV patients with resistance following failure of 89 

previous first and second-line ART9, data on resistance outcome following failure of DTG in non-B 90 

subtypes is highly valuable. Here, we present data on drug resistance using Next-Generation 91 

Sequencing (NGS) in a small Nigerian cohort failing DTG-based ART following roll-out. 92 

 93 

Methods 94 

Study population and design 95 

This study was a cross-sectional study performed at the University of Maiduguri Teaching Hospital, 96 

Borno State, Nigeria between January, and June 2021. Study criteria included participants who were 97 

failing a DTG-based ART, ≥18 years of age and attending routine clinic visits. We defined virological 98 

failure as two consecutive HIV-1 RNA > 1000 copies/ml following exposure to a DTG-based ART for ≥ 99 

6 months. Patients who met inclusion criteria voluntarily signed informed consent. Available 100 

demographic data including age, gender, ART regimen, duration on ART and current CD4 count were 101 

collected from clinical files and recorded in Microsoft excel.  102 

 103 
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 4 

Laboratory methods:  104 

Plasma was separated from whole venous blood in EDTA within 2 hours of collection and stored 105 

immediately at -80oC. Plasma viral load testing and CD4 count were performed at the Defence 106 

Reference Laboratory, Asokoro Abuja using the COBAS AmpliPrep/COBAS TaqMan HIV type 1 (HIV1) 107 

v2.0 test (Roche Diagnostics, Basel, Switzerland). Whole genome sequencing of 61 blood samples 108 

was performed according to the Bonsall et al protocol10. Briefly, total RNA was extracted from HIV-109 

infected plasma samples, washed in ethanol, and eluted using the NUCLISENS easyMAG system 110 

(bioMérieux). Libraries were prepared using the SMARTer Stranded Total RNA-Seq Kits v2 (Clontech, 111 

Takara Bio) according to the manufacturer protocol. Total RNA was denatured, and reverse 112 

transcribed to cDNA and a total of 500ng of pooled libraries were hybridised to custom HIV-specific 113 

biotinylated 120-mer oligonucleotides (xGen Lockdown Probes, Integrated DNA Technologies). 114 

Captured libraries were then PCR amplified to produce a final pool for sequencing with an Illumina 115 

MiSeq (San Diego, CA, USA) to produce up to 300-nucletoide paired-end reads. FastQ files were 116 

trimmed of adapters and mapped iteratively to the best available reference from a curated 117 

alignment of 3000 HIV-1 genomes with SHIVER11.  Resistance genotyping was performed using an in-118 

house script that determines the prevalence of DRMS in each sequencing reads and calculates an 119 

overall score (1-4) for each ART, according to the Stanford HIV drug resistance algorithm (v9.1). 120 

 121 

Bioinformatics analysis: 122 

Haplotypes were reconstructed using CliqueSNV v2.0.312. Phylogenies were inferred with IQTREE2 123 

v2.2.213 using a GTR+F+I+R4 model with 1000 rapid bootstraps. Inference of transmission was made 124 

Phyloscanner v1.8.114 using overlapping windows of 150 bp across the whole genome. Phylogenies 125 

were rooted on a HIV-1 subtype G consensus sequence downloaded from the Los Alamos National 126 

HIV Database. HIV-1 subtyping was performed using SNAPPy v1.0. Prediction of co-receptor usage 127 

was made using TROPHIX (prediction of HIV-1 tropism). Available at: http://sourceforge.net/ 128 

projects/trophix/). 129 

 130 

Statistical analyses: 131 

The characteristics of the study population were summarized as either categorical or continuous 132 

variables and reported as either proportions or medians with interquartile ranges (IQRs), 133 

respectively. Analyses were performed with STATA v17 (StataCorp, College Station, TX).  134 

 135 

 136 

 137 
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Ethics:  138 

The study was approved by the University of Maiduguri Teaching Hospital Ethics Committee 139 

(UMTH/REC/21/714). All participants provided written informed consent. 140 

 141 

Results 142 

61 had samples available for resistance testing. Following sequencing and quality control, 33 143 

samples (61.7%) were of sufficient quality (i.e., fully in-tact pol gene and depth of ≥500x) to 144 

determine DRMS and minority variants (Median viral load in these samples was 4.1 log10 copies/ml 145 

(range 3.0-5.2). Using a minimum threshold of 20%, NRTI, NNRTI, PI and INSTI DRMS occurred in 17 146 

(50%), 24 (70.6%), 4 (11.8%) and 1 (2.9%) of samples respectively (Figure 1a). Dual-class resistance 147 

occurred in 17 (50%) patients and tri-class mutations occurred in 5 (14.7%) patients. Consistent with 148 

likely long-term exposure to lamivudine, the most prevalent NRTI mutation DRMS was M184V. The 149 

most prevalent NNRTI DRMS was K103N, reflecting previous exposure to nevirapine and efavirenz. 150 

Mutational profiles were similar across 2, 10 and 20% interpretative thresholds (Figure 1b).  151 

 152 

One patient of interest was found to have high-level resistance to NRTIs, NNRTIs and INSTIs, 153 

including almost complete resistance to the novel long-acting injectable, cabotegravir. Mutations 154 

included inE138K, inG118R, inT66A, inR263K, rtH221Y, rtV108I, rtK103N, rtM184V, rtM41L, rtA98G 155 

and rtT215Y, all at frequencies of >40%, with a mean read depth of 770x. This patient was 156 

established on DTG for a median of 1.2 years and on ART for a median of 12 years. Clinical data on 157 

other clinical data including nadir CD4 counts were unavailable. Using the SNAPPy HIV-1 subtyping 158 

tool, almost 40% of viruses were assigned to Subtype G, and 15% were G_A1 subtypes. The 159 

remaining viruses were recombinants (Table 1). 160 

 161 

To identify within-host diversity and potential transmission of DRMs between patients, we 162 

reconstructed viral haplotypes (Figure 2) for each patient. These were homogeneous and the same 163 

resistance mutations were identified on all reconstructed haplotypes for each patient. Following 164 

this, we investigated whether there was evidence of direct transmission between any patients in this 165 

cohort (Supplementary Figure 1). However, no significant transmission pairs were identified, 166 

indicating that there were several intermediaries between patients which have not yet been 167 

sampled. Of note, two patients’ virus was predicted to use the CXCR-4 co-receptor.  168 

 169 

 170 

 171 
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Discussion 172 

After rollout of previous first-line NNRTI based ART, DRMS were previously observed within first year 173 

of failure in around 15 and 35% of patients with resistance emerging against both lamivudine, 174 

tenofovir and NNRTIs16,17. Drug resistance has been associated with mortality in hospitalised 175 

individuals in LMIC settings
18

.  The second generation INSTI DTG has been systematically adopted 176 

and rolled out across the SSA region since 2019, with concerns of the emergence of resistance 177 

associated mutations following failure under a limited monitoring infrastructure. In a recent analysis 178 

of pooled evidence on virological and resistance outcomes following DTG failure in SSA region, there 179 

was an overall high rate of virological response to DTG; 88.5% (95% CI: 73.8-97.8) with the overall 180 

proportion of patients failing showing limited evidence of DRMS19 over short periods of time. It is 181 

likely that prolonged virologic failure will select for DRM to components of ART regimens within the 182 

viral quasispecies as a result of intrahost evolution
20,21

.  183 

 184 

It is important to note that pre-existing DRMS prior to switch to DTG may be critical to both 185 

virological and resistance outcomes with study evidence suggesting pre-existing NNRTI mutations 186 

reducing the short term efficacy of DTG
22

, although other studies across the region have shown 187 

similar rates of both virological and resistance outcomes in ART naïve23,24 and experienced 188 

patients25,26 (with no evidence of DRMs) and ART experienced patients with historical evidence of 189 

NRTI mutation (especially M184V/I)
27–29

.  190 

 191 

Here, in this cross-sectional analysis, we assessed drug resistance using next-generation sequencing 192 

in a small cohort of HIV-1 infected subjects failing DTG-based ART using a failure threshold of 1000 193 

copies/ml. Most patients were treatment experienced and amongst 33 participants with sequence 194 

data, mutational patterns observed were reflective of exposure to previous first-line NNRTI with only 195 

1/34 (3%) showing evidence of DRMS against DTG or protease inhibitors. The individual with DTG 196 

resistance was vertically infected with evidence of selection of mutations conferring high level 197 

resistance to dolutegravir and other INSTIs i.e T66A, G118R, E138K (accessory) and R263K. The T66A 198 

mutation is non-polymorphic and primarily selected by elvitegravir (EVG) and raltegravir (RAL) with 199 

~9-fold reduction in susceptibility to EVG but minimal impact on other INSTIs whilst the E138K 200 

mutation has negligible effect on susceptibility to INSTIs although a combination of E138K and other 201 

DRMs may lead to further decreased susceptibility to DTG30. Further, the G118R and R263K 202 

mutations observed in this patient, which causes between 2 to 15 fold  reduction to DTG 203 

susceptibility
31,32

 have also been observed in patients experiencing virological failure to INSTI drug 204 

agents in non-B HIV subtypes33–36. It is likely that the G118R mutation emerged first and led to the 205 
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 7 

accumulation of other mutations including the E138K compensatory mutation as the G118R 206 

mutation has been described as the DTG-resistance pathway in non-B subtype
31,37

.  207 

 208 

In context of the continuously expanding use of DTG, the most convenient approach to managing 209 

patients on DTG with persistent viraemia remains uncertain especially in resource limited setting 210 

such as this,  where drug resistance testing capacity remains limited38. Several factors may increase 211 

the likelihood of the emergence of DTG resistance across the region including prolonged virological 212 

failure due to lack of routine virological monitoring
39,40

and poor treatment adherence which is an 213 

independent determinant of virological outcome
41

 in these settings. Further analyses of resistance 214 

across SSA are warranted over extended periods, as well as surveillance for INSTI resistance in newly 215 

diagnosed individuals. This is even more critical given INSTI based long acting injectables are being 216 

considered as PreP
42

.  217 

 218 
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 8 

 242 

Table 1: Characteristics of study participants with successful genotyping  243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 
 255 
 256 
 257 
 258 
 259 
 260 
 261 
 262 
 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 
 272 
 273 
 274 
 275 
 276 

a
Data available from 25 participants; 

b
Other subtypes comprising CRF06_CPX (n=1); CRF13_CPX-like (n=1); 277 

CRF13_CPX/G (n=1); CRF 11_CPX (n=1); G/C (n=1); G/J/A (n=1).  278 
 279 

Characteristic  

Total number (%) 33 (100) 

Female, n (%) 20 (61) 

Age, median years (IQR) 40 (35, 48) 

CD4 count, median cells/mm
3
 (IQR) 200 (300, 467) 

ART regimen, (%)   

 TDF+3TC+DTG 33 (100) 

ART regimen prior to DTG
 

  

 
TDF+3TC+LPV/r 17 (52) 

 
TDF+3TC+ATV/r 4 (12) 

 
AZT+3TC+EFV 8 (24) 

 ABC+3TC+EFV 2 (6) 

 No prior ART  2 (6) 

Time on DTG, median years (IQR) 1.8 (1.4, 1.9) 

Time on ART, median years (IQR) 9.3 (5.8, 15.0) 

ART status  

 

 

Switching to DTG 

Starting DTG  

 

31 (94) 

2 (6) 

HIV-1 subtype, n (%)
 b

   

 G 13 (39) 

 G/A1  5 (15) 

 CRF02_AG 3 (9) 

 A (A1) 2 (6) 

 CRF02_AG/G  2 (6) 

 02AG/A1 2 (6) 

 Others  6 (18) 
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 9 

 280 

Figure 1a: Proportion of patients with resistance associated mutations using the Stanford algorithm.  281 
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 10

 282 

Figure 1b: Proportion of patients with resistance associated mutations using the Stanford algorithm, sub-divided into interpretational cut-offs of 2, 5 and 283 
20%. Evidence suggest that minority variants may play a role in drug resistance (https://doi.org/10.1128/mbio.00269-22). 284 
 285 
 286 

 287 

 288 
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 289 
Figure 2. Maximum-likelihood phylogeny of reconstructed haplotypes from each patient. Haplotypes 290 
were homogeneous and had the majority of the same mutations on each haplotype. Bootstraps are 291 
indicated at each node. 292 
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Supplementary Figure 1: Inferred transmission network of all patients in the cohort. Green lines 294 
indicate a degree of linkage between two sequences, but without sufficient statistical support to 295 
indicate a direct transmission event has occurred. 296 
 297 
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